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ABSTRACT 

 

There is an alarming growth rate in spectrum usage, where some of the allocated spectra 

are fully engaged while others are sparsely utilized. The cognitive radio allows the 

primary users to use the available spectrum holes alongside the secondary users. The 

challenge of using cognitive radio technology is in the interference, which is a factor 

that causes a delay in the handoff time. This research developed a system that makes the 

cognitive radio operation more effective with little or no interference. Dataset were 

collected by scanning the spectrum between the frequency range of 80 MHz and 1 GHz 

using the Agilent N9342C Spectrum Analyzer (SA), which was connected to a personal 

computer and an antennae with a range of 47 MHZ to 1 GHz attached to the SA. The 

spectrum sensing exercise was carried out at Morris Fertilizer in Minna, Niger state, 

between 7:00 am-10:00 am (three hours). The method used in the sensing of the 

spectrum is Energy Detection. The dataset collected from the exercise was used to train 

and test different Machine Learning (ML) algorithms at a ratio of 7:3. The ML 

algorithms were used to predict the availability of the spectrum holes, that is, the 

frequency within the spectrum occupied or not occupied. The logistic Regression, 

Random Forest, Decision Tree, XGBoost and the K-Nearest Neighbour has training 

accuracy result of 94.84%, 99.93%, 99.93%, 99.86% and 98.19%, respectively and test 

accuracy result of 90.43%, 99.52%, 99.52%, 99.52%,  and 97.61%, respectively. The 

test accuracy, precision, recall and F1-score are 90.43%, 90.40%, 93.39% and 91.43%, 

respectively was obtained with the application of logistic regression. Random forest 

results of accuracy, precision, recall and F1- score are 99.52%, 99.98%, 99.17% and 

99.57%, respectively. For the Decision Tree, the test accuracy, precision, recall and f1- 

score are 99.52%, 99.99%, 99.17%, and 99.58%, respectively. The test accuracy, 

precision, recall and F1- score are 99.52%, 100.00%, 99.17% and 99.58%, respectively 

was obtained with the application of the XGBoost. Also, the test accuracy, precision, 

recall and f1-score are 97.61%, 100.00%, 95.87% and 97.89% respectively was 

obtained with the application of the KNN. From the result obtained, the XGBoost has 

the highest level of prediction accuracy. These results demonstrated the effectiveness of 

XGBoost when compared to other popular ML algorithms for spectrum occupancy 

prediction. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

 

1.1 Background to the Study 

 

The current exponential growth in technological advancements has led to an increased 

demand for wireless devices. This surge in demand, coupled with the static management 

of the radio spectrum, has resulted in a shortage of available spectrum. This shortage is 

due to the inefficiency of the static management of the spectrum, which is unable to 

accommodate the growing number of wireless devices. 

Nasser et al. (2021) observed that most current wireless communication systems are 

based on the concept of fixed frequency allocation. This allocation has resulted in the 

overuse of certain portions of the radio spectrum and the underutilization of others, 

consequently leading to potential denial of service events. To address this scarcity of 

radio spectrum and to advance the evolution of devices, cognitive radio technology has 

been proposed as a solution. Therefore, further research is needed to assess the efficacy 

of this technology in mitigating the issue of radio spectrum scarcity. 

Since its inception, there has been a significant amount of research conducted on 

Cognitive Radio Networks (CRN). Cognitive radio (CR) technology also helps to meet 

up with the quality-of-service (QoS) criteria of the radio spectrum while consuming less 

energy to carry out the task (Chen et al., 2018). Machine learning (ML) algorithms are 

used to mimic human intelligence and can make decisions without explicit 

programming (Goodfellow et al., 2020). There are two categories of users in CRN 

namely principal or Primary Users (PU) and Secondary Users (SU) (Ding et al., 2018). 

Spectrum occupancy measurements are used by CR technology to comprehend how 
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various spectrum bands are being used. These measurements can subsequently be used 

to create spectrum models that forecast upcoming usage trends (Bönsch and Kuhlen, 

2020). Policymakers can use these models to help them make judgments about dynamic 

spectrum access (Wang and Liu, 2021). 

CR technology adjusts its parameters to meet QoS requirements and conserve energy 

using ML algorithms. These methods select the spectrum occupancy measurements, 

which are subsequently applied to produce spectrum models (Al-Fuqaha et al., 2015). 

These models guide decisions about dynamic spectrum access, which are crucial for the 

efficient utilization of the radio spectrum in CRNs. The use of ML algorithms in CR 

technology improves both the efficiency and effectiveness of spectrum utilization 

(Saber et al., 2020; Solanki et al., 2021). 

To find patterns in data and base predictions or choices on those patterns, ML 

algorithms use statistical approaches. Examples of ML algorithms are Unsupervised, 

supervised, and reinforcement learning (Saber et al., 2020). To evaluate and 

comprehend data without the use of labeled training examples, unsupervised learning 

methods are used. These algorithms are used to sort data into useful clusters or 

categories and to find patterns and relationships in data that might not be immediately 

obvious. Contrarily, supervised learning algorithms are trained on data that have labels, 

which means that the data contains both the input attributes and the intended output. 

This input-output mapping serves as the basis for the algorithm's predictions (Saber et 

al., 2020; Solanki et al., 2021). 

Examples of supervised learning include regression and classification tasks. 

Reinforcement learning algorithms are a type of ML algorithm that seeks to learn the 

best actions to take in a given environment to maximize a reward. These algorithms are 
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used to train agents to make decisions in complex, dynamic environments. Thus, ML 

algorithms can be used to improve the performance of a cognitive radio network for 

spectrum sensing. 

The whole process of spectrum sensing in collating data as a dataset and subject it to an 

ML algorithm to be able to build a model is carefully represented in Figure 1.1. 

 

 

 

Figure 1.1: Workflow diagram of the entire process of prediction 

 

1.2 Statement of the Research Problem 

 

The Nigerian Communications Commission (NCC) has conducted relatively regular 

licensing rounds, showing that the allocated spectrum space is quickly diminishing, and 

the airwaves are becoming increasingly congested. The deployment of CR introduces 

the possibility of delays when transitioning between different frequency bands. This 

handoff delay can impact the overall performance of the CR system and affect the 

quality of service provided to PUs, and can lead to interference between the PU and the 

SU. Cognitive Radio technology is aware of its environment and can adjust its 

parameters to optimize the available spectrum (Wu et al., 2022). Cognitive radios 
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enable increased spectral efficiency by sensing the environment and providing quality 

service to the PU, such as reducing interference levels and reducing handoff time. 

Additionally, CRs can use the discovered gaps in the unused licensed spectrum (white 

space or spectrum holes) for their transmissions, allowing secondary users to make use 

of the available spectrum. 

Thus, this study determine the rate of spectrum utilization within the defined 

geographical location using Minna (Moris fertilizer) as a case study to sense and use the 

dataset to train different models of ML Algorithms to get the most efficient method to 

help improve the efficiency of the system while using the CR. 

1.3 Aim and Objectives 

 

The aim of the study is to predict spectrum occupancy using Machine Learning 

Algorithms. The objectives are to: 

i. Scan the spectrum from the frequency range of 80 MHz to 1 GHz using a 

 
spectrum Analyzer. 

ii. Train and test ML algorithms on the dataset so as to predict the availability of 

spectrum holes with various ML classifiers. 

iii. Evaluate the performance of the different ML algorithms by using the model 

with the highest prediction accuracy. 

1.4 Justification for the Research 

 

Due to the increasing need for wireless standards and bandwidth-intensive technologies, 

a perceived shortage of spectrum has been observed. To meet the escalating demand for 

spectrum, a shift in spectrum management policy is required. Despite the existing 
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regulatory obstacles that prevent these services from being easily accessible, acquiring 

spectrum licenses is typically exceedingly expensive for entrepreneurs. 

CR systems have been proposed as a potential solution to the issue of spectrum 

occupancy, allowing multiple parties to share a single spectrum space, provided there 

are sufficient gaps in the allocated portions of the spectrum. Furthermore, the ability to 

predict occupancy levels and rates can assist entrepreneurs and network providers in 

determining whether the available parameters are suitable for their use. 

Thus, sensing the spectrum within a geographical location to know the occupancy level 

and configure an ML algorithm that can predict when the frequency band is occupied or 

not occupied to help reduce the rate interference between the PUs and the SUs. 

1.5 Scope of the Research 

 

The scope of this research study is to investigate the rate of spectrum occupancy within 

the range of 80 MHz to 1 GHz and the utilization within a predetermined geographical 

area of Morris Fertilizer, within Minna as a case study. Data was collected over three 

hours to sense the level of occupancy in the early hours of the day (7:00am-10:00am). 

The XGBoost ML algorithm, alongside some ML algorithms such as Random Forest, 

Logistic Regression, Decision Trees, and K-Nearest Neighbour were used to train and 

test the data aquired. This is to detect the spectrum occupancy level or the spectrum 

holes. This was achieved by using the dataset collected from the spectrum sensing using 

Agilent SA. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 

2.1 Review of fundamental concept and similar works 

 

This chapter presents the background and an overview of the techniques and technologies 

relevant to the development of this thesis. The chapter links the problems introduced in 

Chapter one and the method used to solve the problem in the next chapter, and to provide 

a review of related works from literature. 

2.2 Review of fundamental concept 

 

Cognitive radio technology has the potential to address the shortage of available radio 

spectrum by enabling dynamic spectrum access. Since its introduction, researchers have 

been working on enabling this innovative technology in managing the radio spectrum. As 

a result, this research field has been progressing at a rapid pace and significant advances 

have been made (Arjoune and Kaabouch, 2019). 

2.2.1 Cognitive Radio (CR) 

 

Cognitive radio (CR) is a groundbreaking technology in the field of wireless 

communication that addresses the growing demand for efficient and flexible spectrum 

utilization (Usman et al., 2022). The primary objective of CR is to increase spectrum 

efficiency by enabling radio devices to intelligently and adaptively choose the best 

available frequency bands in the present. Dynamic spectrum access is made possible by 

CR, which, in contrast to conventional static spectrum allocation techniques, allows 

devices to detect unused or underutilized frequency bands and opportunistically transmit 

on them without interfering with other users. Fundamental to CR, this idea of spectrum 
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agility is realized by sophisticated signal processing methods, machine learning 

algorithms, and intelligent decision-making capabilities built into CR devices. Cognitive 

radio's main objective is to utilize data more effectively. The main objective of cognitive 

radio is to utilize the limited and congested radio spectrum more effectively, resulting in 

enhanced connection for diverse wireless applications, improved wireless communication 

performance, and increased spectrum utilization (Zehra et al., 2022). 

Additionally, cognitive radio integrates self-learning processes to continuously update its 

understanding of the spectrum and adapt to shifting environmental conditions. It is not 

just about spectrum sensing and adaption. To ensure optimal spectrum allocation, CR 

devices may evaluate channel quality, find interference, and even bargain with other CR 

devices. In order to enable the coexistence of diverse wireless technologies, reduce 

interference, and promote effective spectrum sharing, all of which are crucial in the 

Internet of Things (IoT) age and its ever-expanding use, cognitive radio must be dynamic 

and adaptive (Salameh et al., 2018). 

2.2.2 Spectrum sensing 

 

An essential component of cognitive radio systems is Spectrum Sensing (SS). 

This enables the identification of open frequency bands for opportunistic wireless 

communication. This procedure is essential for reducing the issue of spectrum scarcity 

and making sure that spectrum is used effectively. Recent rapid technology breakthroughs 

have made customers' lives easier through the development of sophisticated, cutting-edge 

devices. No matter the time or place, consumers can access data at fast speeds at their 

discretion. Due to the growing advantages of various wireless devices and technologies 

operating on well-known and effective radio frequency spectrum, radio frequency 

spectrum availability has become increasingly scarce in recent years. . Cognitive radio 
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networks (CRNs) have been discovered to be efficient and intelligent solutions that offer 

an ideal means of allocating spectrum to demanding users through a series of intelligent 

sensing, aggregation of sensed information, and decision-making (Arjoune & Kaabouch, 

2019; Sivagurunathan et al., 2021). 

Various spectrum sensing techniques have been developed to detect and identify unused 

or underutilized portions of the radio frequency spectrum. Recent research in this field, 

such as the work by has focused on machine learning algorithms and artificial intelligence 

to improve the accuracy and reliability of spectrum sensing (Saber et al., 2020). 

Spectrum sensing methods can be broadly categorized into two classes: energy detection 

and feature-based sensing. Energy detection involves measuring the energy level in a 

particular frequency band and comparing it to a predetermined threshold to determine the 

presence of a primary user. Feature-based sensing, on the other hand, leverages statistical 

and signal processing techniques to detect specific characteristics or features in the 

received signal (Arjoune and Kaabouch, 2019; Wu et al., 2022). 

2.2.3 Machine Learning 

 

Machine learning (ML) algorithms are built upon a foundation of core concepts that 

underpin their operation. Data serves as the raw material for these algorithms, consisting 

of input features and corresponding output labels, and it plays a central role in training 

models. Feature extraction and engineering are essential steps in preparing the data, 

involving the selection and transformation of relevant features. The machine learning 

model itself, whether it's a simple linear regression or a complex neural network, learns 

from this data by adjusting its parameters during the training process. 
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Machine learning is the scientific study of algorithms and statistical models that computer 

systems use to perform a specific task without being explicitly programmed. Learning 

algorithms in many applications that’s we make use of daily. Every time a web search 

engine like Google is used to search the internet, one of the reasons that work so well is 

because a learning algorithm that has learned how to rank web pages. These algorithms 

are used for various purposes like data mining, image processing, predictive analytics. 

The main advantage of using machine learning is that, once an algorithm learns what to 

do with data, it can do its work automatically. This adjustment is achieved through 

optimization algorithms, like gradient descent, which minimize the difference between the 

model's predictions and the actual target values (Mishra and Chaudhary, 2023). 

The performance of machine learning models is rigorously evaluated through testing and 

validation on unseen data. Overfitting, where a model fits the training data too closely and 

generalizes poorly, and underfitting, where a model is too simplistic to capture data 

patterns, are common challenges in model training. Achieving a balance between bias and 

variance is crucial to ensure a model generalizes well to new data. Additionally, feature 

scaling, normalization, and proper handling of hyperparameters are important aspects of 

model development and tuning. Cross-validation techniques are employed to assess a 

model's performance and generalization on various data subsets, providing a 

comprehensive view of its capabilities (Batta, 2018; Wang and Liu, 2021). 

To gauge a model's effectiveness, a range of evaluation metrics, specific to the problem at 

hand, is used. These metrics include accuracy, precision, recall, F1-score, and mean 

squared error, among others. They help quantify how well a machine learning algorithm 

performs against predefined objectives and provide valuable insights for model selection 

and refinement. These fundamental concepts form the bedrock of machine learning, 
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guiding practitioners in the creation, training, and evaluation of models for diverse 

applications across various domains (Wang and Liu, 2021; Wu et al., 2022). 

2.3 Review of Related Work on Cognitive Radio (CR) 

 

The rapid increase in wireless devices and the limited availability of spectrum have raised 

concerns among researchers due to the growing demand for wireless connectivity. The 

significant growth in mobile subscribers and the need for multimedia access have led to 

an examination of the effectiveness of current radio frequency management. The 

traditional command and control approach to spectrum management has proven to be 

ineffective. Research on spectrum management has revealed that a large portion of the 

assigned radio frequency bands remains unused (Chukwuchekwa et al., 2021). 

2.3.1 Cognitive radio 

 

While some parts of the radio spectrum are often used, others are unused or only 

sometimes used. It was found that licensed users do not always make use of their 

spectrum resources. On the spectra of authorized users, there exist spectrum holes that can 

be accessed using dynamic spectrum access (DSA) technology (Bani, 2022). 

Using Cognitive Radio technology, which has been thoroughly studied by the research 

community for more than two decades, is one way to overcome these and other 

difficulties. Wireless devices can sense the radio spectrum, make decisions about the 

condition of the frequency channels, and change their communication parameters to fulfill 

quality-of-service needs while consuming the least amount of energy possible through the 

use of cognitive radio technology (Arjoune and Kaabouch, 2019). 

Using CR technology, which has undergone substantial research, is one way to overcome 

these and other difficulties. The capacity of cognitive radio technology to adjust to the 
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radio environment is another crucial feature. Dynamic resource allocation techniques, 

which are created to optimize the utilization of available spectrum resources, are used to 

achieve this. These algorithms can also be used to modify the cognitive radio's broadcast 

settings, which will enhance its functionality and lessen the possibility of interference 

from other users (Arjoune and Kaabouch 2019; Bani 2022; Nasser et al., 2021). 

Cognitive Radio has been introduced as a potential candidate to perform complete 

Dynamic Spectrum Allocation (DSA) by exploiting the free frequency bands that are also 

called “spectrum holes” or “white spaces” (Hassan, et al., 2021). 

The CR can be classified into two categories namely the Primary Users (PUs), and 

Unlicensed User which can also be referred to as Secondary Users (SUs). While PUs can 

access the spectrum whenever they want, SUs are restricted by the activities of PUs. In 

other words, SUs should respect the PUs’ Quality of Service (QoS), and harmful 

interference coming from SUs to PUs transmission is prohibited. 

In clear terms, CR helps the secondary user to use the spectrum without harming the 

(QoS) of the primary user. Interference with PUs is one of the biggest problems CR has to 

deal with. When the CR system tries to access a frequency band that is already in use by 

PUs, this may happen. Implementing interference-aware resource allocation algorithms 

that dynamically modify the CR system's transmission power to reduce interference with 

PUs is one suggested approach. Also, because the availability of frequency bands might 

change quickly, dynamic spectrum access presents another issue for CR. Implementing 

dynamic spectrum access algorithms that can quickly recognize and access accessible 

frequency bands is one suggested option. Users of CR systems must receive a specific 

level  of  QoS.  Implementing QoS-aware resource  allocation  algorithms  that  may 
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dynamically distribute resources to satisfy the QoS needs of various apps and users is one 

suggested solution (Zhang et al., 2023). 

Numerous wireless communication systems, including cellular networks, wireless local 

area networks (WLANs), and wireless sensor networks (WSNs), have used cognitive 

radio technology. Cognitive radios can be used in cellular networks to increase the 

effectiveness of spectrum use by dynamically distributing resources to users following 

their needs. Also, by dynamically altering transmission parameters to prevent interference 

from other users and by optimizing the use of available spectrum resources, Cognitive 

radio has the potential to increase the effectiveness and performance of wireless 

communication networks. 

2.3.2 Spectrum sensing 

 

In cognitive radio, sensing techniques can be arranged into two fundamental classes: 

Narrowband and wideband. Energy detection (Nasser et al., 2021; Ranjan et al., 2016), 

cyclostationary detection (Arjoune and Kaabouch 2019), matched filter sensing, 

covariance-based detection, and machine learning-based sensing are examples of 

narrowband sensing approaches. Comprehensive wideband sensing and Nyquist-based 

wideband sensing are examples of wideband sensing techniques (Lu et al., 2017). The 

classification of these methods can be seen in Figure 2.1. 
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Figure 2.1: Classification of the spectrum sensing technique (Arjoune and 

Kaabouch, 2019) 

2.3.2.1 The narrowband spectrum sensing technique 

 

Narrowband spectrum sensing techniques is a type of technology that makes secondary 

users decide on the activity of the PU over a frequency channel of interest. Whether 

presently engaging the channel or not. Putting this in perspective, let us assume that H0 

denotes that the primary user signal is not present on the channel and H1 denotes that the 

primary user signal is present. This simple illustration of the received signal under these 

two assumptions, H0 and H1, can be expressed as (Arjoune and Kaabouch, 2019): 

 

H0 : y n   n (2.1) 

 

 

and: 
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N 1 

where y(n) represents the received signal, η(n) represents a Gaussian white noise, s(n) is 

the transmitted signal, and n denotes the sensing time (Arjoune and Kaabouch, 2019). 

State H0 represents the primary user absence and state H1 represents the primary user 

presence. For the sensing decision, a few of the recently referenced range-detecting 

methods can be utilized, including energy detection (Arjoune and Kaabouch, 2019; 

Arshid et al., 2022; Onumanyi et al., 2013), Cyclostationary detection, matched filter 

detection, covariance-based detection, and machine-learning-based detection which are 

examined underneath (Arjoune and Kaabouch, 2019; Nasser et al., 2021). 

2.3.2.2 Energy detection 

 

Energy detection (ED) computes the energy of the samples and compares it to a threshold 

(Arjoune and Kaabouch, 2019; Arshid et al., 2022). When the spectrum is observed, and 

the energy sampled seem higher than the threshold, this means the primary user signal is 

assumed present and if the signal is not above the threshold the primary user is considered 

absent. The concept calculates the energy of the samples as the squared magnitude of the 

Fast Fourier Transform (FFT) averaged over the number of samples N. This is given by 

(Arjoune and Kaabouch, 2019) : 

 

TED  1 / N 
N

 Yn
2

 (2.3) 

 

where N denotes the total number of received samples, and Y[n] denotes the nth received 

sample. 

If that energy is above the threshold, the primary user is considered present; otherwise, 

the primary user is considered absent. This is expressed mathematically (Arjoune and 

Kaabouch, 2019): 



15  

TED  
ED Primary User absent, (2.4) 

 

and: 

 

TED  ED Primary User present (2.5) 

 

where λED denotes the threshold that depends on the noise variance. The selection of the 

threshold, which can be static or dynamic, dramatically affects the detection performance. 

ED is a reasonably simple technique that does not require any prior knowledge of the 

signal characteristics. it has a low detection performance for low signal-to-noise (SNR) 

values. 

In Table 2.1, the existing Spectrum Sensing Techniques for the Handoff Delay, Energy 

Efficiency, and Throughput and the comparison of the narrowband spectrum sensing 

methods are shown respectively (Arshid et al., 2022). 
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Table 2.1: Comparison of some of the existing spectrum sensing techniques for the handoff delay, energy efficiency, and throughput 
 

Spectrum Sensing 

Technique 

Methods Used 

for Sensing 

Throughput Energy 

Efficiency 

Handoff 

Delay 

Merit Limitations 

Cooperative 

Spectrum Sensing 

Technique 

Cooperation 

between Multiple 

SPUs 

Average Average Maximum Reduction in Threshold. 
Sensitivity and 

Requirements. 

Sometime wide 

channels need to be 

scanned. 

Increased Data 

Overhead. 

Energy Detection Sensed energy Average Average Average Easy to Implement. Do 

not Require Previous 

Information of FPU’s. 

High Sensing Times. 

Uncertainty of Noise 

Power. 

Need Tight 

Synchronization. 

Matched filter 

detetion 

Previous 

information of 

FPU 

Average Minimum Maximum Less detection time. Noise 

detection is optimal 

Requires FPU’s 

Previous 

Information. 

Need a Dedicated 

Receiver. 

Cyclo-stationary 

Feature detection 

Periodicity of 

received signals 

Average Minimum Average Robust to Noise. 
Improves SPU 

Throughput. 

Long Sensing Time. 
High Computation 

Complexity. 

Proposed Energy 

Efficiency in CRN 

Energy detection 

on target channel 

Improved Improved Minimized Energy Efficiency Easy to 

Implement. 

Fewer Sensing Time. 

FPU’s Previous 

Information 

not Required 
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In Table 2.2, some sensing techniques are compared alongside energy detection showing the advantages and the disadvantages 

 

Table 2.2: Advantages and disadvantages of the energy detection method and other three narrowband spectrum sensing methods 
 

Sensing Technique Advantages Disadvantages 

Energy detection (Alom et 

al., 2017; Arjoune et al., 

2018.) 

- Easy to implement 

- No prior knowledge of the primary signal characteristics 

is required 

- High false alarm rate 

- Unreliable at low SNR values 

- Sensitive to noise uncertainty 

Cyclo-stationary feature 

detection (Cohen and Eldar, 

2017) 

- Robust against noise uncertainty 

- Distinguish between signal and noise 

- The decreased probability of false alarms at low SNR 

- Large sensing time to achieve a good 

performance 

- High energy consumption when the size 

of the samples is large 

Matched Filter based 

detection 

(Saalahdine et al., 2016; 

Xinzhi et al., 2014) 

- Better detection at low SNR region 

- Optimal sensing 

- Prior knowledge of the primary user 

signal is required 

- Impractical since prior knowledge about 

the signal is not always available 

Covariance-based detection 

(Zeng and Liang, 2007) 

- No prior knowledge of the primary user signal and noise 

is required 

- Blindly detection 

- Good computational complexity coming 

Good computational complexity coming 
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Sensing Technique Advantages Disadvantages 

Machine learning based 

spectrum sensing(Y. Lu et al., 

2016; Mikaeil et al., 2014) 

- Machine learning can detect if trained correctly can be a 

good approach 

- Minimize the delay of the detection 

- Use the complex models in an easy manner 

- Complex techniques 

- Has to be adapted to learning in very fast- 

changing environments 

- Features selection affects the detection rate 

and adds complexity 

- High dataset has to be built 
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ED is considered due to its simplicity, dependability, and sensitivity and is preferred 

over other techniques because of some reasons. The ED method is one of the most 

commonly used signal-sensing methods in spectrum sensing due to its low 

implementation complexity. ED can achieve good detection performance when the 

noise variance is known. However, in most cases, the noise variance is estimated, which 

may result in uncertainty in noise variance. In the presence of noise variance 

uncertainty, the detection performance of the ED method may degrade significantly. To 

reduce the impact of uncertainty in noise variance, an ED-based sensing method is 

proposed (Luo et al., 2022). In energy detection, the received signal's energy is 

computed and a threshold is set up. The signal is regarded as present if the energy of the 

received signal exceeds the threshold; otherwise, it is regarded as absent. The signal is 

detected by comparing the output of the energy detector with the threshold which 

depends on the noise floor (Abdulsattar and Hussein, 2012). 

The challenges faced by the energy detection method mentioned in Table 2.2 can be 

tackled using threshold selection and machine learning approaches to analyze and 

categorize received signals thereby reducing false alarms in energy detection and 

increase detection precision. 

2.3.2.3 Threshold selection 

 

In ED, threshold selection is a typical technique for reducing false alarms. A threshold 

is used in ED to assess if the incoming signal contains energy or is simply noise. The 

noise floor, or the amount of background noise present in the signal, is often used to 

determine the threshold. 
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The effectiveness of ED depends on the threshold choice. The threshold is set as low as 

possible to detect weak signals while maintaining the false alarm likelihood below a 

specific level (Yucek and Arslan, 2009). The detection threshold can be established in 

several ways, such as using a fixed threshold, an adaptive threshold based on the 

anticipated noise floor, or a dynamic threshold that changes depending on the received 

signal's properties. 

Fixed thresholds are values that have been predetermined and are used to divide data into 

various groups or levels. These may not always be the best options because they are 

frequently selected based on prior knowledge or presumptions about the data. Fixed 

thresholds, however, have the benefit of being straightforward to use and understand 

(Yucek and Arslan, 2009). 

Contrarily, adaptive thresholds are determined using the qualities of the data themselves, 

such as mean, variance, or other statistical properties. When the data is noisy or the 

background changes, adaptive thresholds can be more useful than fixed thresholds 

because they can adapt to the changes in the data and reduce the number of false positives 

or false negatives. Adaptive thresholds' key benefit is their capacity to change with the 

environment and offer greater accuracy in complicated or dynamic contexts. Adaptive 

thresholding techniques, on the other hand, can need more complex hardware or 

algorithms and be more computationally demanding. In general, the decision between 

fixed and adaptive thresholds is based on the particular application and the trade-offs 

between accuracy and simplicity (Yucek and Arslan, 2009). 

To achieve this, one can analyze the noise floor and adjust the threshold as necessary. 

The Machine Learning Algorithm is quite helpful by analyzing and categorizing received 

signals based on their characteristics, machine learning techniques enable more precise 
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and reliable detection. This can enhance overall sensor performance and lower false alarm 

rates. 

2.3.3 Machine Learning Algorithm 

 

ML algorithm is computer software made to automatically learn from data and enhance its 

performance at a task without being explicitly coded. It analyzes data patterns using 

statistical and mathematical models and then makes predictions or judgments based on the 

findings. ML is the scientific study of algorithms and statistical models that computer 

systems use to perform a specific task without being explicitly programmed (Batta, 2018). 

There are different kinds of ML algorithms, such as reinforcement learning, semi- 

supervised learning, unsupervised learning, and supervised learning. Popular ML 

techniques include k-nearest neighbors, neural networks, decision trees, logistic 

regression, random forests, and linear regression. 

To improve the quality of service in the cognitive radio, the machine learning ML 

algorithm is added to the components. This means with the feature of this aspect of 

Artificial Intelligence (AI) can help with the prediction of the availability or unavailability 

of spectrum holes thereby reducing the probability of possible interference of the PU with 

SU and the handoff timing. 

Wang et al. (2023) make the case that conventional machine learning methods that call 

for batch processing of historical data may not be successful in DSA contexts, because the 

occupancy of the spectrum bands varies quickly and unpredictably. They suggest a 

Bayesian online learning strategy instead, which can gradually learn from fresh data as it 

becomes available. To model the occupancy probability distribution of each frequency 

band, a Gaussian process, and a Dirichlet process are combined. Additionally, they 
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include a Bayesian online learning algorithm that can instantly update the model 

parameters in response to fresh data. Using a dataset of spectrum occupancy 

measurements from a cognitive radio network, the authors assess their strategy. A brand- 

new Bayesian online learning-based method for predicting spectrum occupancy in 

cognitive radio networks. The method performs better than previous machine learning 

algorithms in terms of prediction accuracy and processing speed, and it is shown to help 

manage the dynamic and unpredictable nature of spectrum occupancy in cognitive radio 

networks. 

Ajiboye et al. (2021) suggested utilizing the k-nearest neighbor (k-NN) algorithm a 

machine learning-based method for forecasting spectrum occupancy. The k-NN model is 

trained and tested using a dataset of measurements of spectrum occupancy. Many 

performance metrics, such as prediction accuracy, precision, recall, and F1 score, are used 

to assess the model. Also, the author contrasts the performance of the k-NN model with 

that of other machine learning techniques, such as decision trees and support vector 

machines (SVM). According to the findings, the k-NN model can accurately estimate 

spectrum occupancy with a prediction accuracy of above 90%. The SVM and decision 

trees, two additional machine learning algorithms, are outperformed by the k-NN model 

in terms of prediction accuracy and processing speed. 

The paper concludes with a machine learning-based k-nearest neighbor algorithm as a 

method for cognitive radio systems' spectrum occupancy prediction. The strategy is 

demonstrated to be successful at forecasting spectrum occupancy, outperforming other 

machine learning methods, and achieving high prediction accuracy. 

Arivudainambi et al. (2022) suggested a two-step method for spectrum prediction, 

wherein a feature selection algorithm is used in the first stage to choose the most pertinent 
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features from the input data, and a machine learning algorithm is utilized in the second 

stage to predict spectrum occupancy. Using a dataset of measurements of spectrum 

occupancy, the author compares the performance of different machine learning 

algorithms, such as decision trees, k-nearest neighbors, and support vector machines 

(SVM). Also, the author contrasts the effectiveness of these algorithms with that of a 

conventional threshold-based strategy. 

The outcomes demonstrate that in terms of prediction accuracy, the machine learning- 

based technique outperforms the conventional threshold-based approach. For spectrum 

prediction, the SVM method is demonstrated to be the most successful machine learning 

technique, obtaining over 90% predictive accuracy. The necessity for a lot of training data 

and the possibility of overfitting are just two of the approach's drawbacks that the author 

mentions. The author offers cross-validation and feature selection strategies as potential 

remedies for these constraints (Batta, 2018; Mohammed et al., 2016). 

The research concludes by suggesting a machine learning-based strategy for spectrum 

forecasting in cognitive radio networks. The method is demonstrated to be successful in 

enhancing spectrum utilization and decreasing interference, and it is demonstrated that the 

SVM algorithm is the most successful machine-learning technique for spectrum 

prediction. The shortcomings of the approach are highlighted in the study, along with 

potential fixes. 

ML systems can enhance the functionality of CR networks by predicting the presence or 

absence of the main users of the radio spectrum. The ML algorithm can also be used to 

avoid potential sources of interference in the radio frequency, by taking into consideration 

the current demand for various frequencies, ML algorithms can be used to optimally 

allocate radio spectrum to various users. By monitoring and controlling the CR network, 
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ML algorithms may spot problems like congestion, interference, and security risks and 

take appropriate action. Spectrum handoff is a crucial function of CR which is the change 

of operating frequency. The main problem in spectrum handoff is the time taken in the 

searching, selection, and switching to a new available channel which can cause a 

significant amount of delay during spectrum handoff. This research aims to minimize the 

delay that occurs during spectrum handoff amongst others such as knowing the current 

level of spectrum occupancy in the location (Alozie et al., 2022) 

To increase the time and energy efficacy of the Spectrum Sensing (SS) process, spectrum 

prediction is a crucial area of study for CR. Large sensing time and significant energy 

would be required for SS with a large number of PU channels. By selecting channels that 

have a high likelihood of being empty during the next time slot, CRs can reduce the 

number of channels they use for sensing with spectrum prediction (Unadhye et al., 2021). 

2.3.3.1 Logistic regression 

Logistic Regression is a statistical method used for modeling the relationship between a 

binary dependent variable (that is, one that takes on values of 0 or 1) and one or more 

independent variables (that is, variables that may be used to predict the dependent 

variable). The logistic regression model assumes that the relationship between the 

independent variables and the dependent variable is linear on the log-odds scale. The log- 

odds (or logit) function is defined as the natural logarithm of the odds, which is the ratio 

of the probability of the event occurring to the probability of it not occurring (Song et al., 

2021). 

In the case of binary logistic regression, the dependent variable is binary, and the model 

estimates the probability of the dependent variable taking the value of 1 (as opposed to 0) 

as a function of the independent variables. Logistic regression is commonly used in 
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various fields such as medicine, economics, marketing, and social sciences to predict the 

probability of an event occurring based on one or more predictor variables. It can also be 

extended to multiclass classification problems using multinomial logistic regression. A 

Logistic Regression plot in Figure 2.2 is shown and the sigmoid function that can be 

represented by equation (2.6). 

 

ℎ(𝑥) =  
1 

1+𝑒𝑥 
(2.6) 

 

 

 

 

Figure 2.2: Logistic Regression plot 

 

2.3.3.2 Random forest 

 

Random forest is a machine learning algorithm that is used for both regression and 

classification problems. It is an ensemble learning method that works by constructing a 

multitude of decision trees during training and outputs the mode or mean prediction of the 

individual trees. In Random Forest, each decision tree is built using a subset of the 

training data and a subset of the available features. The tree is constructed by recursively 

splitting the data into smaller and smaller subsets based on the values of the selected 
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features until the subsets are as homogeneous as possible. The splitting process continues 

until a stopping criterion is met, such as a maximum depth or a minimum number of 

samples required splitting a node. During prediction, the random forest algorithm 

aggregates the predictions of all the decision trees in the forest and returns the mode or 

mean of the individual predictions, depending on whether the problem is a classification 

or regression problem. 

Random Forest has several advantages over other machine learning algorithms. It is 

resistant to overfitting and performs well on high-dimensional data. It is also able to 

handle missing data and can provide estimates of the importance of each feature in the 

prediction (Cebekhulu et al., 2022). Random forest has been successfully used in various 

applications, including bioinformatics, remote sensing, and finance. However, it can be 

computationally expensive and may not be the best choice for very large datasets or real- 

time applications. Additionally, the interpretability of random forest models can be 

challenging due to the complexity of the model and the ensemble of decision trees. The 

Figure 2.3 shows the flowchart of Random Forest. 

 

 

 

Figure 2.3: The Random Forest Flowchart 
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2.3.3.3 Decision tree 

 

Decision Tree is a popular machine-learning algorithm used for both classification and 

regression tasks. It builds a tree-like model of decisions and their possible consequences, 

where each internal node represents a test on an attribute or feature, each branch 

represents the outcome of the test, and each leaf node represents a class label or a numeric 

value. 

During training, the decision tree algorithm recursively partitions the training data into 

smaller and smaller subsets based on the values of the selected features until the subsets 

are as homogeneous as possible in terms of the class label or numeric value. The 

partitioning process continues until a stopping criterion is met, such as a maximum depth 

or a minimum number of samples required to split a node. During prediction, the decision 

tree algorithm starts at the root node and follows the path of the decision tree based on the 

values of the selected features, until it reaches a leaf node that represents the predicted 

class label or numeric value. 

Decision trees have several advantages over other machine learning algorithms. They are 

easy to interpret and can be visualized, making them useful for explaining the reasoning 

behind the predictions. They can also handle both categorical and continuous data, and 

can perform feature selection by identifying the most important features in the data 

(Reddy, 2022). 

However, decision trees can suffer from overfitting, which occurs when the tree is too 

complex and fits the training data too closely, resulting in poor performance on new data. 

This can be mitigated by using techniques such as pruning, which removes nodes that do 

not contribute significantly to the accuracy of the model. Decision trees have been 
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successfully used in various applications, including medical diagnosis, customer 

segmentation, and fraud detection. However, their performance may be limited on large 

datasets with many features or noisy data, and they may not be the best choice for 

problems with complex interactions between features (Saber et al., 2020). The Figure 2.4 

is the representation of a Decision Tree flowchart. 

 

 

 

Figure 2.4: Flowchart of a Decision Tree 

 

2.3.3.4 K-Nearest neighbours (KNN) 

 

K-Nearest Neighbours (KNN) is a popular machine learning algorithm used for both 

classification and regression tasks. It is a non-parametric and instance-based algorithm, 

meaning that it does not assume any underlying probability distribution for the data, and 

the model is based on the entire training set. 

During training, KNN stores all the training instances as points in a multi-dimensional 

space, where each feature represents a dimension. When a new instance is presented for 

prediction, KNN finds the K closest instances in the training set based on a distance 

metric, such as Euclidean distance, and assigns the class label or numeric value of the new 
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instance as the majority class label or the mean of the K-nearest neighbors, respectively. 

The value of K, which is a hyperparameter of the algorithm, controls the level of 

complexity and smoothness of the decision boundary. A small value of K leads to a 

complex decision boundary that is sensitive to noise and outliers, while a large value of K 

leads to a smooth decision boundary that may oversimplify the problem (Saber et al., 

2020) . KNN has several advantages over other machine learning algorithms. It is simple 

and easy to implement and can handle both categorical and continuous data. It can also be 

used for semi-supervised learning, where only a small fraction of the data is labeled, by 

assigning the majority label of the K-nearest neighbors to the unlabeled instances. 

However, KNN can be computationally expensive for large datasets, and the performance 

of the algorithm may degrade in high-dimensional data due to the curse of dimensionality. 

Additionally, KNN does not provide any information about the underlying structure of the 

data or the importance of each feature in the prediction. The Figure 2.5 shows K-Nearest 

Neighbor Representation and the Euclidean distance (d) is expressed in equation 2.7. 

 

Euclidean distance (d) = (2.7) 
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Figure 2.5: K-Nearest Neighbor Representation 

 

2.3.3.5 The XGBoost 

 

Among many ML algorithms or models built, the XGBoost (eXtreme Gradient Boosting) 

is a popular open-source implementation of gradient boosting, a powerful machine- 

learning technique used for both regression and classification problems. Tianqi Chen, a 

Ph.D. candidate at the University of Washington, created XGBoost, which was made 

available in 2014. The C++-written library offers bindings for several programming 

languages, such as Python, R, Java, and Julia. The XGBoost has some features that made 

it stand out from many models. Some of these are regularized learning, high performance, 

missing data handling, and tree-based learning cross-validation. 

The main characteristics of XGBoost, such as regularized learning, tree-based learning, 

and cross-validation, are introduced and discussed in this study (Chen and Guestrin, 2016; 

Oyewo et al., 2023) shows that XGBoost outperforms several other well-known machine 

learning methods on a range of datasets. 
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LightGBM is a gradient-boosting library that competes with XGBoost and has 

occasionally been demonstrated to be faster. The authors compare the two libraries on 

various benchmarks and demonstrate that, on some datasets, LightGBM is quicker than 

XGBoost (Bentéjac et al., 2020; Ke et al., 2017). In a study of XGBoost, covering its 

background, salient characteristics, and potential applications, the authors also describe 

XGBoost's limits and potential future research avenues, as well as the various additions 

and adjustments that have been made to it since its first release (Reddy, 2022). 

The article outlines several XGBoost enhancements and changes that have been done 

since the software's initial release. These consist of (Graphic Process Unit) GPU 

acceleration, parallel processing, and distributed computing. The use of XGBoost for 

multi-class classification, ranking, and regression tasks is also covered by the authors. 

This work provides a thorough review of XGBoost's several applications, including time- 

series forecasting, natural language processing, and picture classification. The authors 

also go into how XGBoost has been used in various Kaggle tournaments and other real- 

world scenarios. The study examines XGBoost's restrictions as well as possible directions 

for development. These include the requirement for more sophisticated methods to handle 

imbalanced datasets and the need for more effective categorical feature-handling 

algorithms. The possibility of combining XGBoost with other machine learning methods 

to enhance performance is also covered by the authors (Reddy, 2022). 

The functionality of cognitive radio networks has been proven to be improved by ML 

algorithms which have gained popularity in recent years. These methods can be used to 

forecast spectrum occupancy, maximize the distribution of radio spectrum, and keep away 

from probable interference sources. To detect and address issues like congestion, 
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interference, and security concerns in the CR network, ML algorithms may also monitor 

and control it. Figure 2.6 shows the Flowchart of the XGBoost. 

 

 

Figure 2.6: Flowchart of a the XGBoost 

 

 

 

 

 

Table 2.3 shows some of the mentioned ML algorithms' advantages and disadvantages. 
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Table 2.3: Advantages and disadvantages of ML algorithms 
 

ML Algorithm Advantages Disadvantages 

K-Nearest Neighbors - Simple to understand and implement 

- No training is required, as it stores all training data 

- Can be used for classification and regression problems 

- Computationally expensive for large datasets 

- Sensitive to the choice of K and the distance 

metric used 

- Cannot handle missing data or categorical features 

easily 

Logistic Regression - Simple and fast algorithm 

Interpretability: easy to understand how each variable affects the 

outcome 

Can be used for classification and regression problems 

- Assumes a linear relationship between the features 

and the outcome 

- Cannot capture complex nonlinear relationships 

between features and outcome 

Random Forest - Can handle both categorical and numerical features 

- Robust to outliers and missing data 

- Can handle high-dimensional data 

- Low risk of overfitting 

- Black box model, difficult to interpret 

- Can be computationally expensive for large 

datasets 

- Difficult to tune hyperparameters 

Extreme Gradient 

Boosting 

- Highly accurate and performs well on a wide range of problems 

- Can handle missing data and outliers 

- Can handle high-dimensional data 

- Fast and scalable 

 

- Can be prone to overfitting if hyperparameters are 

not tuned correctly 

- Black box model, difficult to interpret 

- Requires more computational resources than other 

algorithms 
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ML Algorithm Advantages Disadvantages 

Decision Trees - Simple and easy to understand 

- Can handle both categorical and numerical features 

- Can capture complex nonlinear relationships between features 

and outcome 

- Prone to overfitting, particularly when the tree is 

deep 

- Sensitive to small changes in the data 

- Can be unstable and produce different trees with 

different splits 
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CHAPTER THREE 

 

3.0 RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

The system design consists briefly of two major stages: 

 

i. The spectrum sensing stage. 

 

ii. The data analysis with the ML algorithm for the prediction of spectrum holes 

 

Figure 3.1 is a block diagram that shows the steps or the process involved in the two 

stages 

 

 

 

Figure 3.1: Methodology of System Architecture 

 

 

 

3.2 Data Collection 

In ML projects, data plays an important role. To collect our data to run analysis, a high- 

gain outdoor antenna with an acceptable capability frequency range of 47 MHz to 

1 GHz was connected to the Agilent spectrum analyzer to capture electromagnetic 

signals. It is good to note that the data captured with the spectrum was an outdoor 
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exercise carried out within three hours. The components used for the acquisition of data 

are as follows. 

i. Gotv Antennae: In the VHF and UHF frequency bands, the typical frequency 

range of a GOtv antenna of frequency range of 47 MHz to 1 GHz. This 

antenna is connected to the spectrum analyzer. A personal computer (PC): 

laptop HP 250G was used to interface with the Agilent Spectrum analyzer 

with a USB cord. The PC is used to save the dataset after each sweep of the 

case study. 

ii. A generator was available as a backup for an uninterrupted power supply. 

 

iii. The Global Position System (GPS) is used to find a suitable location to carry 

out the outdoor survey. 

iv. An Agilent Spectrum Analyzer N9342C has the following features as seen in 

Table 3.1. 

Table 3.1: Features of Agilent N9342C Spectrum Analyzer 

 

Features Value 

Frequency range 100 kHz to 7 GHz 

Display resolution 640 x 480 pixels 

RBW 1 Hz to 3 MHz 

DANL -155 dBm/Hz (@1 GHz, preamp off) 

Phase noise -100 dBc/Hz (@10 kHz offset) 

Amplitude accuracy ±0.5 dB (@25°C ±5°C) 

Maximum input power +30 dBm (1 W) 

Frequency range of study 80MHz – 1 GHz 

Sweep time 413.5s 

Trace Point 222 
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Driving around the town, using the GPS, a few locations were noticed but the MORRIS 

fertilizers (LAT N9o35’37.374” and LONG E 6o 32’12.858”) was chosen based on their 

more elevated position and the region situated at a place where there is a good number 

of line of sight to base stations. This place is located in the city of Minna, Niger State in 

Nigeria. The spectrum analyzer is made to run for 3 hours and the CSV (comma- 

separated values) file is saved after each of the 13 sweeps. During the duration of the 

exercise, thirteen sweep was taken and eleven was used to ensure accuracy of result. 

Plate I and Plate II shows the set-up of the spectrum measurement campaign and the 

Back-up power system for the campaign. 

 

 

Plate I: The connection of the Agilent spectrum analyzer and a PC 
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Plate II: Back-up Power Source 

 

 

 

The CSV files were acquired in a format as the dataset to be used to train a model of the 

ML Algorithm. To have a proper record of the data captured, the spectrum analyzer is 

interfaced with a personal computer (laptop) to save captured data. Also, the laptop was 

configured to be able to control the Agilent spectrum analyzer interfacing it with a USB 

cord to the PC using Keysight HSA and BSA software alongside the Agilent Library 

IO office suite. 

It is quite convenient to collect the data from the personal computer which will store all 

the information collected by the spectrum analyzer. This will serve as the source of the 

dataset used as the input for the ML algorithm. The dataset was cleaned. This involves 

removing errors, handling missing values, and addressing outliers to ensure that the data 

is accurate and reliable for training a model. The energy detector narrowband sensing 

technique was used since it has no need for prior information about the primary signal is 

required. 
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3.3 Determining Threshold 

 

To carry out this research effectively, the dataset was gotten by sweeping across the 

frequency band in the spectrum. The threshold is determined using the energy detection 

method, by taking into cognizance the power sensed in the frequencies of the spectrum. 

Using equation 3.1, the effective threshold power can be calculated. For effective usage 

of the spectrum holes (unoccupied frequency), the threshold is set at the Power 

Threshold Calculation 

Given: 

 

Spectrum Analyzers’ Noise floor power PNF = −120 dBm 

Required signal-to-noise ratio (SNR) = 20 dB 

Bandwidth B = 1 MHz 

To calculate the power threshold (PTH) for energy detection, we use the formula: 

 

P
TH 

 P
NF

  SNR  10log10( B) (3.1) 

 

Substituting the given values: 
 

 

PTH  120  20 10log101  100dBm 

Therefore, the power threshold for energy detection is −100 dBm. This is done so that 

the false alarm error is reduced to a minimal level. 

3.4 Training and Prediction 

 

The dataset was collected in CSV format. These files were analyzed using Python 3.0 in 

the Jupyter notebook. The data preprocessing was done to check if the data is clean. 

That is, to know if there are missing values or not. Also, the dataset was checked to 

know the type; whether it is a discreet or classification (yes or no) problem. The dataset 

from the spectrum sensing exercise is continuous. 
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The dataset was divided into training and testing datasets. To train the dataset, 70% of 

the dataset was used to train while the other 30% was used to test the functionality of 

the prediction exercise (Nagulapati et al., 2021). The dataset was grouped into the 

predictor and the target (what is being predicted).The target is the frequencies and the 

predictors are the powers. Using powers to predict frequencies occupied or not 

occupied. 

The following ML algorithms Logistic regression, Random forest regression, Decision 

Tree, K- Nearest Neighbour, and the XGBoost were trained using the dataset gotten 

from the sensed spectrum. Each of the above-mentioned ML algorithms were trained 

and tested. 

The mathematical representation of the XGBoost algorithm involves two main 

components: a loss function to be optimized and a regularized objective function to 

control model complexity. The objective function can be written as: 

Obj  L  yi, ŷ i     f  (3.2) 

 

Where L is the loss function, 


yi is the true label for the i-th observation, yi 
is the 

 

predicted label, f is the ensemble of decision trees, and Ω(f) is a regularization term that 

penalizes complex models. 

3.4.1 Trained model 

The flowchart in Figure 3.2 fully describes the performance of the operation different 

stages. The model is retrained and tested, if the performance is not satisfactory. 
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Figure 3.2: ML algorithm prediction flowchart 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

The sensing and prediction of the spectrum were carried out in stages in which the first 

stage was the acquisition of the dataset in the field and stage two was to use the 

acquired dataset to train and to test different ML algorithms alongside the XGBoost to 

show its efficacy in the degree of accuracy. 

4.2 Results 

 

Table 4.1 shows the sample of the collected data from sensing the spectrum with the 

Agilent SA. A chunk of the dataset is presented in the Appendix A. 

Table 4.1: Sample of cleaned dataset signal power for some trace point 
 

Frequency (Hz) 8.00E+07 8.42E+07 8.83E+07 9.25E+07 9.67E+07 1.01E+08 1.05E+08 1.09E+08 

 Data 

points 1 

Data points 

2 

Data points 

3 

Data points 

4 

Data points 

5 

Data points 

6 

Data points 

7 

Data points 

8 

Sweep 1 -1.07E+02 -1.07E+02 -4.71E+01 -6.57E+01 -9.08E+01 -8.89E+01 -9.81E+01 -8.73E+01 

Sweep 2 -1.06E+02 -1.06E+02 -5.39E+01 -7.76E+01 -8.59E+01 -9.13E+01 -9.86E+01 -9.25E+01 

Sweep 3 -1.08E+02 -1.05E+02 -5.22E+01 -7.17E+01 -8.85E+01 -8.78E+01 -9.75E+01 -9.33E+01 

Sweep 4 -1.09E+02 -1.07E+02 -3.98E+01 -7.38E+01 -8.85E+01 -8.78E+01 -9.75E+01 -9.33E+01 

Sweep 5 -1.08E+02 -1.05E+02 -4.99E+01 -7.19E+01 -8.87E+01 -8.77E+01 -9.68E+01 -9.39E+01 

Sweep 6 -1.04E+02 -1.14E+02 -4.81E+01 -6.79E+01 -9.87E+01 -8.88E+01 -1.01E+02 -8.38E+01 

Sweep 7 -1.07E+02 -1.05E+02 -5.25E+01 -7.78E+01 -1.01E+02 -9.11E+01 -1.06E+02 -9.00E+01 

Sweep 8 -1.06E+02 -1.08E+02 -5.34E+01 -6.67E+01 -9.69E+01 -9.48E+01 -1.06E+02 -9.34E+01 

Sweep 9 -1.08E+02 -1.06E+02 -5.39E+01 -6.97E+01 -9.66E+01 -9.66E+01 -1.05E+02 -9.14E+01 

Sweep 10 -1.04E+02 -1.08E+02 -5.14E+01 -6.59E+01 -9.63E+01 -9.56E+01 -1.02E+02 -9.47E+01 

Sweep 11 -1.04E+02 -1.04E+02 -4.09E+01 -7.02E+01 -9.88E+01 -9.09E+01 -1.05E+02 -1.01E+02 
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4.2.1 Spectrum occupancy level of the dataset collected 

 

The data point after each sweep across the spectrum from the 80 MHz to the 1 GHz is 

222 data point. Applying the formula, 

Spectrum Occupancy Level 
Number of occupied data points 

100%
 

Total number of data points 
(4.1) 

 

Given: Number of occupied data points = 141 

Total number of data points = 222 

Spectrum Occupancy Level  
141 

100% 
222 

≈ 63.51%. 

The Table 4.2 shows the occupancy percentage after each sweep of the spectrum. 

 

Table 4.2: Spectrum Occupancy Level 
 

Sweep Number Spectrum Occupancy (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

63.51 

62.16 

61.26 

60.81 

60.36 

59.91 

59.46 

59.01 

58.56 

58.11 

57.66 

57.21 

56.76 
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The sample dataset for spectrum analysis was acquired at Morris Fertilizer and this 

collated data as seen in Table 4.1, was used as a dataset to train and test the following 

ML algorithm using the powers of each frequency as a predictor in Python 3 software. 

4.2.2 Analysis of machine learning models 

 

Various ML models were designed and results were obtained. The results obtained 

using the five selected classification algorithms (Logistic Regression, K-NN, Random 

Forest, XGBoost, and Decision Tree) are presented. 

4.2.2.1 Logistic regression classifier 

 

The test accuracy, precision, recall and f1-score are 90.43%, 90.40%, 93.39% and 

91.43% respectively was obtained with the application of logistic regression as shown 

in Figure 4.1. The dataset was divided into two with 70% of the data used in training 

and 30% used in testing. Also, Figure 4.1 shows the confusion matrix of the output of 

the test carried out. This display that out of 240 frequency channels not occupied, the 

logistic Regression algorithm made the mistake of 8 predictions while when the channel 

was occupied it made a mistake of 24 predictions. 
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Figure 4.1: The Confusion Matrix for the Logistic Regression 

 

 

 

 

4.2.2.2 Random forest classifier 

 

The test accuracy, precision, recall and f1- score are 99.52%, 99.98%, 99.17% and 

99.57% respectively was obtained with the application of the Random Forest as shown 

in Figure 4.2 as the confusion matrix is displayed. The dataset was divided into two 

with 70% of the data used for training and 30% used for testing. The Random Forest 

(RF) made a mistake of one channel as occupied when it was not occupied and it also 

made a mistake of seeing three channels as unoccupied when they were actually 

occupied. 
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. 

Figure 4.2: The Confusion Matrix for the Random Forest 

 

4.2.2.3 Decision tree classifier 

 

The test accuracy, precision, recall and f1- score are 99.52%, 99.99%, 99.17%, and 

99.58% respectively was obtained with the application of the Decision Tree as shown 

in Figure 4.3. The dataset was divided into two with 70% of the data used for training 

and 30% used for testing. The decision Tree classifier gave similar results as the 

Random Forest, showing an equal number of prediction errors. 

 

 

 

 

Figure 4.3: The Confusion Matrix for the Decision Tree 
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4.2.2.4 XGBoost classifier 

 

The test accuracy, precision, recall and f1- score are 99.52%, 100.00%, 99.17% and 

99.58% respectively was obtained with the application of the XGBoost as shown in 

Figure 4.4. The dataset was divided into two with 70% of the data used for training and 

30% used for testing. After the test was carried out, it was discovered that the XGBoost 

made only three errors in prediction, seeing two channels that were not occupied as 

occupied and one channel that was occupied as occupied. 

 

Figure 4.4: The Confusion Matrix for the XGBoost 

 

 

 

 

4.2.2.5 K-Nearest neighbour classifier 

 

The test accuracy, precision, recall and f1-score are 97.61%, 100.00%, 95.87% and 

97.89% respectively was obtained with the application of the KNN as shown in Figure 

4.5. The dataset was divided into two with 70% of the data used for training and 30% 

used for testing. In the K-nearest Neighbour, only four errors were made as the model 

predicted three occupied channels as not occupied and one channel that is not occupied 

as occupied. 
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Figure 4.5: The Confusion Matrix for the K-Nearest Neighbour 

 

 

Table 4.2 is the test score as well as the training score are presented in percentage. 

 

Table 4.3: Tabular representation of results. 
 

 

Serial 

Number 

ML 

algorithm 

Train 

Score % 

Test 

Accuracy 
% 

Precision 

% 

Recall 

% 

F1-score 

% 

1 Logistic 
Regression 

94.84 90.43 90.40 93.39 91.43 

2 Random Forest 99.93 99.52 99.98 99.17 99.57 

3 Decision Tree 99.93 99.52 99.99 99.17 99.58 

4 XGBoost 99.86 99.52 100.00 99.17 99.58 

5 K-Nearest 
        Neighbour  

98.19 97.61 100.00 95.87 97.89 

 

4.3 Results and Plot 

 

Figure 4.6 shows the graph of the evaluation plot displaying the trained model against 

their f1 scores in percentages. XGBoost with a lower training score than other models 

like Decision Tree and Random Forest gave a high performance evaluation. 
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Figure 4.6 A graph of the train score and models 

 

In Table 4.3, the XGBoost was used to test random signals in decibels, in which if the 

output displays “1”, the frequency is occupied and if the output displays “0”, this means 

the frequency is not occupied. It was proved that the degree of accuracy is exceptional. 

The accuracy, the precision and the F1-score as presented in Table 4.4 was derived by 

the formulas: 

Accuracy, describing the number of correct predictions over all predictions: 

 

Accuracy  
Numbers of correct predictions (4.2) 

Numbers of all predictions 

 

 

Precision is a measure of how many of the positive predictions made are correct (true 

positives). 

 

Pr ecision  True positives 
 

Numbers of correct predicted positive instance (4.3) 
True positive and false positive Numbers of total positive predictions 
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F1-Score is a measure combining both precision and recall while Recall is a measure of 

how many of the positive cases the classifier correctly predicted, over all the positive 

cases in the data. It is sometimes also referred to as Sensitivity. 

 

F1 score  2 
Precison  Re call 

Precison  Re call 

 

 

 

(4.4) 

 

Table 4.4: Testing the model with random power in (-dBm) 
 

S/N Power (-dBm) ON / OFF STATUS 

1 69.10 1 OCCUPIED 

2 70 0 UNOCCUPIED 

3 100 0 UNOCCUPIED 

4 100.1 1 OCCUPIED 

 

 

 

4.4 Discussion of Result 

 

As shown in Table 4.3, the degree of accuracy of the XGBoost, when tested, supersedes 

the other ML algorithm in performance. This is the main reason why the XGBoost 

algorithm was selected for the random prediction as seen in Table 4.4. 

The retrained model of the XGBoost algorithm was used to test the random signal point 

of -69.10dbm. The algorithm sees the trace point as an occupied channel because any 

signal higher than the -70dBm as occupied. Also, the retained algorithm sees any 

frequency of the trace point below -100dBm as noise. That is, any signal below is seen 

as occupied which makes it unavailable for any secondary user. 

According to Table 4.4, the trace point -100.1dBm was tested, which mathematically 

was approximately -100dBm. Although these trace point are in discretely close, the 

https://stats.stackexchange.com/questions/362332/is-there-any-difference-between-sensitivity-and-recall
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trained algorithm sees the -100.1 dBm as occupied because of the degree of accuracy. It 

is clear according to the result that the XGBoost will see in the spectrum the signal 

power of any trace point as unoccupied in an much if falls within the range of -100dBm 

(the threshold power signal) and the -70dBm , which signifies that the frequency of the 

trace point is presently free for the secondary user to engage. 

This clearly signifies that the XGBoost take any signal that falls in between the range 

of -100dBm and -120dBm (the noise floor power signal) as occupied, since the weak 

signals can be disturbed by the noise, thereby making the quality of service poor for the 

CR user. Whenever the power signal trace point signals higher than -70dBm, such as 

-69.10dbm, the Xgboost sees it as occupied. 
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CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

Sensing the spectrum to know the level of occupancy, for a cognitive radio user to 

engage the spectrum holes, can have certain setbacks such as the handoff time. This can 

lead to the interference of the secondary user with the primary user. This factor affects 

the quality of service of the spectra. Although ED is one of the simplest ways to know if 

a certain frequency within a spectrum is occupied, it has some disadvantages such as 

false alarms as well of its unreliability to detected properly at low SNR. To solve this 

challenge that follows the usage of the ED, the ML technique is used to produce an 

effective system to determine the occupied and unoccupied frequency within the 

spectrum sensed. 

It was seen that out of the dataset that was trained and tested from the data collated from 

the sensed spectrum, the XGBoost gave a test accuracy of 99.52%. The logistic 

regression gave the least accuracy at 90.43%. The Decision Tree and the Random 

Forest, gave an accuracy of 99.52% each while the KNN gave the accuracy of 97.61%. 

Since the XGBoost gave the highest accuracy, it is used to train the dataset amongst the 

highlighted because it gave the highest prediction accuracy. 

 

 

5.2 Recommendations 

While XGBoost has been shown to provide excellent predictive performance, its models 

can be challenging to interpret. Research into methods for interpreting XGBoost 

models, such as feature importance (a technique used to determine the relative 



53  

importance or contribution of different features which can also be called variables or 

predictors in a machine learning model ranking) or partial dependence plots (a visual 

representation that shows the relationship between a predictor and the predicted 

outcome of a machine learning model). These could improve the transparency and 

trustworthiness of XGBoost-based predictions. 

Investigate the use of XGBoost in online learning scenarios. Online learning involves 

continually updating a model as new data becomes available. XGBoost may be able to 

adapt to new data more effectively than other algorithms, making it a promising choice 

for online learning applications. 

5.3 Contribution to Knowledge 

 

The research developed an improved predictive modeling techniques and demonstrating 

the effectiveness of XGBoost compared to other popular machine learning algorithms. 

As seen in Table 4.3, the test accuracy, precision, Recall and F1- score are 99.52%, 

100.00%, 99.17% and 99.58%, respectively. This shows the best degree of accuracy 

compared to commonly used ML algorithms such as Random Forest, Logistic 

Regression, Decision Tree, and KNN. By leveraging on XGBoost, telecommunication 

companies can enhance predictive accuracy, leading to improved network performance, 

optimized resource allocation, and advanced customer analytics. Also, this will provide 

a competitive advantage, which will enable proactive network optimization, better 

resource management, personalized marketing campaigns, increased customer 

satisfaction, and ultimately, improved business outcomes. 
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APPENDIX 

APPENDIX A 

SAMPLE OF POWER SPECTRUM DATA 
 

Freq_in_MHz Sweep 1 O/U Sweep 2 O/U Sweep 3 O/U Sweep 4 O/U Sweep 5 O/U 

8.00E+07 -1.07E+02 1 -1.06E+02 1 -1.08E+02 1 -1.09E+02 1 -1.08E+02 1 

8.42E+07 -1.07E+02 1 -1.06E+02 1 -1.05E+02 1 -1.07E+02 1 -1.05E+02 1 

8.83E+07 -4.71E+01 1 -5.39E+01 1 -5.22E+01 1 -3.98E+01 1 -4.99E+01 1 

9.25E+07 -6.57E+01 1 -7.76E+01 0 -7.17E+01 0 -7.38E+01 0 -7.19E+01 0 

9.67E+07 -9.08E+01 0 -8.59E+01 0 -8.85E+01 0 -8.85E+01 0 -8.87E+01 0 

1.01E+08 -8.89E+01 0 -9.13E+01 0 -8.78E+01 0 -8.78E+01 0 -8.77E+01 0 

1.05E+08 -9.81E+01 0 -9.86E+01 0 -9.75E+01 0 -9.75E+01 0 -9.68E+01 0 

1.09E+08 -8.73E+01 0 -9.25E+01 0 -9.33E+01 0 -9.33E+01 0 -9.39E+01 0 

1.13E+08 -1.16E+02 1 -1.16E+02 1 -1.19E+02 1 -1.14E+02 1 -1.17E+02 1 

1.18E+08 -1.12E+02 1 -1.10E+02 1 -1.14E+02 1 -1.13E+02 1 -1.13E+02 1 

1.22E+08 -9.85E+01 0 -1.05E+02 1 -9.93E+01 0 -1.04E+02 1 -1.01E+02 1 

1.26E+08 -1.15E+02 1 -1.08E+02 1 -1.05E+02 1 -1.12E+02 1 -1.10E+02 1 

1.30E+08 -1.04E+02 1 -9.74E+01 0 -1.10E+02 1 -1.04E+02 1 -1.03E+02 1 

1.34E+08 -1.07E+02 1 -1.05E+02 1 -1.07E+02 1 -1.05E+02 1 -1.11E+02 1 

1.38E+08 -1.16E+02 1 -1.15E+02 1 -1.16E+02 1 -1.17E+02 1 -1.17E+02 1 

1.43E+08 -1.13E+02 1 -1.13E+02 1 -1.12E+02 1 -1.14E+02 1 -1.13E+02 1 

1.47E+08 -1.10E+02 1 -1.12E+02 1 -1.11E+02 1 -1.14E+02 1 -1.12E+02 1 

1.51E+08 -9.68E+01 0 -9.39E+01 0 -9.46E+01 0 -1.08E+02 1 -1.15E+02 1 

1.55E+08 -1.12E+02 1 -1.12E+02 1 -1.16E+02 1 -1.18E+02 1 -1.19E+02 1 

1.59E+08 -1.12E+02 1 -1.14E+02 1 -1.14E+02 1 -1.14E+02 1 -1.16E+02 1 

1.63E+08 -1.20E+02 1 -1.17E+02 1 -1.17E+02 1 -1.17E+02 1 -1.19E+02 1 

1.68E+08 -1.15E+02 1 -1.12E+02 1 -1.12E+02 1 -1.07E+02 1 -1.09E+02 1 

1.72E+08 -1.18E+02 1 -1.17E+02 1 -1.12E+02 1 -1.11E+02 1 -1.15E+02 1 

1.76E+08 -1.02E+02 1 -1.03E+02 1 -1.05E+02 1 -9.78E+01 0 -1.01E+02 1 

1.80E+08 -9.87E+01 0 -9.83E+01 0 -1.01E+02 1 -9.92E+01 0 -9.98E+01 0 

1.84E+08 -1.16E+02 1 -1.10E+02 1 -1.17E+02 1 -1.16E+02 1 -1.15E+02 1 

1.89E+08 -1.15E+02 1 -1.14E+02 1 -1.16E+02 1 -1.19E+02 1 -1.17E+02 1 
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Freq_in_MHz Sweep 1 O/U Sweep 2 O/U Sweep 3 O/U Sweep 4 O/U Sweep 5 O/U 

1.93E+08 -1.00E+02 0 -1.00E+02 0 -1.02E+02 1 -1.03E+02 1 -1.03E+02 1 

1.97E+08 -1.17E+02 1 -1.15E+02 1 -1.14E+02 1 -1.19E+02 1 -1.18E+02 1 

2.01E+08 -1.01E+02 1 -9.49E+01 0 -9.66E+01 0 -9.64E+01 0 -1.00E+02 1 

2.05E+08 -1.06E+02 1 -1.05E+02 1 -1.05E+02 1 -1.02E+02 1 -1.02E+02 1 

2.09E+08 -1.14E+02 1 -1.12E+02 1 -1.15E+02 1 -1.14E+02 1 -1.09E+02 1 

2.14E+08 -1.14E+02 1 -1.13E+02 1 -1.15E+02 1 -1.10E+02 1 -1.14E+02 1 

2.18E+08 -1.10E+02 1 -1.11E+02 1 -1.08E+02 1 -1.10E+02 1 -1.10E+02 1 

2.22E+08 -1.19E+02 1 -1.17E+02 1 -1.12E+02 1 -1.14E+02 1 -1.16E+02 1 

2.26E+08 -1.12E+02 1 -1.13E+02 1 -1.10E+02 1 -1.15E+02 1 -1.14E+02 1 

2.30E+08 -1.18E+02 1 -1.19E+02 1 -1.19E+02 1 -1.17E+02 1 -1.19E+02 1 

2.34E+08 -1.18E+02 1 -1.19E+02 1 -1.18E+02 1 -1.19E+02 1 -1.19E+02 1 

 


