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ABSTRACT

As energy forecasting is paramount to efficient grid planning, this
work presents a comparative analysis of different hybrid deep learn-
ing frameworks for energy forecasting in applications such as en-
ergy consumption and trading. Specifically, we developed hybrid
architectures comprising of Convolutional Neural Network (CNN),
an Autoencoder (AE), Long Short-Term Memory (LSTM) and Bi-
directional LSTM (BLSTM). We use the individual household elec-
tric power consumption dataset by University of California, Irvine
to evaluate the proposed frameworks. We evaluated and compared
the result of these frameworks using several error metrics. The
results show an average MSE of ~ 0.01 across all developed frame-
works. In addition, the CNN-LSTM framework performed the least
with a 20% and 10% higher RMSE and MAE to other frameworks
respectively, while CNN-BiLSTM achieved the least computation
time.
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1 INTRODUCTION

Access to affordable and clean energy is not only captured as the
seventh 7th objective of the Sustainable Development Goals (SDG)
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but has been linked to all elements of sustainable development [24].
This signifies that the development of any nation is directly related
to its energy consumption. Globally, energy demand is on the rise
due to the growing population and technological advancement [17].
To ensure energy security and stability, planning the power system
against large and sudden variation in generation and demand is
highly important [10]. Planning signifies a projection of how the
power system should operate over a given period under certain
assumptions. Unit commitment, economic dispatch and energy fore-
casting are employed to ensure stability, reliability, and economic
benefits [21].

Energy forecasting is an essential tool in the prediction of en-
ergy demand, consumption, and electricity trading. According to
the time horizon, energy forecasting can be classified into short-
term, medium-term, long-term, and real-time forecasting [25]. Tra-
ditional energy forecasting models have been deployed for a variety
of applications in different time range and different datasets. The
traditional techniques are statistical and machine learning models,
for example; Linear Regression, Autoregressive Integrated Moving
Average (ARIMA), Support Vector Regression (SVM) and Artificial
Neural Network (ANN) are data-driven and implemented on time-
series analysis [3]. However, an increase in numerical data intro-
duces complexities and inaccuracy in statistical data which makes
these methods inefficient for the modern and growing power net-
work [18], particularly in the surge of distributed energy resources
and trading [11, 12].

With advancement in the field of artificial intelligence and ma-
chine learning, deep learning models are now used for energy
forecasting [1]. Deep learning models can handle large dataset, non-
linear relationship, complexities, and offer better performance in
terms of computation in a timely manner [16]. The techniques range
from Multilayer Perceptron (MLP), Restricted Boltzmann Machines
(RBM), Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN), Autoencoders (AE), Deep Reinforcement Learning
(DRL), and Generative Adversarial Network (GAN) to hybrid deep
learning models. Many studies show that these models have been
applied to variety of short-term energy forecasting [15, 20], the
recent study focuses on hybrid models for better accuracy [4, 26].

In addition, it is vital to compare different hybrid deep learn-
ing frameworks for performance evaluation in energy forecasting
applications. For instance in [19], a comparative analysis of the
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statistical model (ARIMA), machine learning model (Multivariate
Linear Regression) and deep learning (LSTM) models for short-term
load forecasting was studied. Study [2] focused on comparison be-
tween deep learning models including multivariable CNN, LSTM,
GRU and hybrids of CNN-LSTM and CNN-GRU models for energy
consumption forecast in smart grids. While study [9] compares
six common methods, including Persistence, ARIMA, RNN, Long
Short-Term Memory (LSTM), Convolutional Neural Network-LSTM
(CNN-LSTM), and CNN-Fully-Connected Network (CNN-FCN) for
short-term locational marginal price (LMP) forecast.

In line with these studies, a comparative analysis of different
models and hybrids for a variety of application in energy forecasting
is required for quality and performance evaluation. Therefore, this
study seeks to implement the following:

e Develop a variety of deep learning and hybrid deep learning
frameworks comprising of CNN, LSTM, BiLSTM and AE for
energy forecasting in a variety of applications, including
consumption and trading.

o Discuss the architecture of the developed hybrid deep learn-
ing frameworks, whilst also evaluating the developed frame-
works utilising several error metrics.

e Provide recommendations of frameworks and hyperparame-
ters based on their performances highlighting their useful-
ness, outcome and trade-offs.

The remaining sections are organised as follows. Section 2 presents
the methodology of the energy forecasting frameworks and their
algorithms. Section 3 presents data description and architectures of
the proposed deep and hybrid learning frameworks, while Section
4 discusses the result. Section 5 concludes the paper with future
work.

2 LEARNING ALGORITHMS FOR ENERGY
FORECASTING

This section presents the hybrid deep learning algorithms used in
this article for energy forecasting. The data cleaning step is first
presented followed by the description of the learning algorithms.

2.1 Data pre-processing and Rolling Window

A data pre-processing step to deal with missing values in the col-
lected data is carried out for data smoothing. To improve prediction
performance, a moving average filter [22, 23] calculated by a rolling
window is employed for data cleaning in this study.

2.2 Deep learning and hybrid deep learning
algorithms

Five different deep learning and hybrid learning algorithms com-
prising CNN, LSTM, BiLSTM and AE for energy forecasting are
described below.

2.2.1  CNN. In the context of feature extraction preceding forecast-
ing, CNN is especially skillful at extracting complex features and
can store varied irregular trends. Feature extraction is an important
pre-processing step to reduce the parameters needed for making
predictions, therefore, reducing the network computations while
orchestrating prediction accuracy. CNN has several hidden layers
for its functioning. This includes a pooling layer, convolutional
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layer, and an activation function. The input data is fed to the convo-
lutional layer that convert it into a features map. The features map
is sampled by the pooling layer to further reduce its dimension.
Given the input vectors xl.m = {x1,x, -, xn}, where x™ rep-
resents the varied input vectors that could affect the predicted
output, including energy consumption data, weather data, week
index, energy price, consumer’s behaviour, etc. of m € M, and n is
the number of normalised half-hourly unit per window of observa-
tion. Utilising the CNN framework with the input vector x;", the
resulting output from the first convolutional layer is expressed in

(1.

M
Y=o b+ > wh xl ) (1)
m=1
where yg.’ resulted from the output vector xl.';? of the previous layer.
b}" is the bias for the j!" feature map, m is the index value of
the filter, w is the weight of the kernel and o is the activation
function for the CNN. Similarly, (2) is the output vector for the kth
convolutional layer of the CNN framework.

M
g0 2o 4 3 @

j m,j Xitm-1, J
m=1

Next, the output of the convolutional layer is fed to the input of the
pooling layer to further down-samples the activation from feature
maps. This process reduces the number of parameters and network
computation costs. The max-pooling layer operation is represented
by (3).

Pm(k) — k—1 (3)

where y represents the pooling size and T is the stride deciding the

length of the input data. If the CNN is being combined in a hybrid
model with other architectures, the output from the output Pir;.l(k)

will be fed as input to the next architecture.

2.2.2  LSTM. To overcome the vanishing gradient of RNN and pro-
mote preservation of long-term dependencies, LSTM is proposed
by Authors in [8]. The LSTM framework is capable of learning from
temporal dependencies from one sequence of information to an-
other, which have been proved to be able to process sequence data
and applied in real world problems. Essentially, LSTM architecture
overcomes the RNN vanishing gradient problem by using memory
cells and gates: input, forget and output. The input data to be re-
served is determined by the input gate, the forget gate determines
the discarded data, the processing states are stored by the memory
cells, while the output gate delivered the LSTM output. LSTM is
expressed as follows:

ir = o(W;, [he—1, x¢] + bi) ()
fe = o(Wp, [he1,x:] + by) (5)
ot = a(Wo, [he-1,%:] + bo) (6)
Cy = tanh(Wg, [hs—1,x¢] + be) (7)
Cr=fi XCro1+ir X G 8)
ht =0+t X tanh(Cy) 9)

where, iz, f;, and o; are the input, forget and output gate re-
spectively, W;, Wf, We, W, are the weight of the LSTM gates: input,
forget, memory cells and the output, respectively. Also, b;, b i3 be, bo
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are the bias of the respective gates. x; is the current input vector
at time t. o is the activation function, b is the bias and C; is the
candidate memory cell, identifying the memory to store in the cell
state; Cy—q is the old cell state and C; is the new cell state. h; is the
hidden state of the LSTM cell, updated at every ¢ step.

2.2.3  BiLSTM. While LSTM architecture is an enhanced version of
RNN to overcome its vanishing gradient problem by using memory
cells and gates, it only considers the previous state of information,
thereby losing valuable information from the next state. Thus, a
BiLSTM is used to combine the information in the sequence pre-
diction in both forward and backward directions. The input vector
x¢ is fed to the input of the BiLSTM layer through the gate units.
Similarly to LSTM, BiLSTM consists of different gate functions (in-
put, output and forget gate) in backward and forward directions,
each gate is activated when the memory cells update their states
represented in (4) through (6). Where h; is the hidden state of the
LSTM cell, updated at every ¢ step in both forward and backward
directions. The hidden state and cell state determined through the
gate operation of the BiLSTM is expressed in (10) and (11) for the
cell and hidden state respectively.

¢t = fr - ct—1+ir - o(Wy, [he—1, x¢] + by) (10)

ht =0t - O'(Ct) (11)
The output of the BLSTM layer is concatenated for both forward
and backward direction expressed as

—

_ e
§=o(Wyhs +by) (12)

2.2.4 Encoder-decoder (AE). While CNN extracts important fea-
tures from the dataset, AE, on the other hand, are specially de-
signed for representation learning. For instance, AE are utilised to
understand unsupervised inputs in a feature vector. It consist of an
encoder and a decoder to first encode the input sequence before
subsequently decoding it using internal representations. The en-
coder framework could be made up of several RNN units to encode
the input sequence into a vector (C). Based on the input vector
x; and previous hidden state h;_j, the current hidden state h; is
calculated as h; = f(x¢, hy—1). Where, f is any RNN function, like
LSTM or GRU [5]. The output vector from the encoder unit serves
as the input vector to the decoder unit. The decoder unit follows
the encoder representations; thus, the hidden layer is expressed as
ht = f(C, ht—1) to give an output y; = g(h;). Where C is the output
vector from the encoder unit and g is an activation function.

3 FRAMEWORK EVALUATION

This section presents the experimental setup, dataset description
and evaluation metrics for the proposed deep and hybrid learning
frameworks for energy forecasting.

3.1 Dataset description

The UCI dataset [7] is used to evaluate and compare the proposed
frameworks. To avoid repetition, a detailed description of the UCI
dataset is provided in [13, 14]. The UCI dataset has 8 input variables
and 1 output target with a total of 2,075, 269 records. There are
25,979 missing values which are handled in the data cleaning steps
before proceeding to the deep and hybrid learning frameworks. UCI
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dataset is for residential buildings. The dataset time resolution is
converted to 24hr for short-term electricity prediction.

3.2 Experimental setup and Evaluation Metrics

The computation to train and test the developed frameworks is
performed on Google Colaboratory [6] using Intel Core i7-CPU, 16
GB RAM and 64-bit operating system.

Table 1: LSTM-autoencoder and its Definition

No Layer Type Neurons | Param
1 Input 8 8
4 LSTM 200 167200
7 Repeat vector 200 0
8 LSTM 200 320800
9 | TimeDistributed (Dense) 100 20100
10 | TimeDistributed (Dense) 1 101

After extensive experimentation and analysis of different param-
eters, the hyperparameter meeting the optimal performance of the
developed frameworks are summarised in Tables 1, 2, 3, 4, and 5.

Table 2: CNN-LSTM-AE and its Definition

No Layer Type Neurons | Param
1 Input 8 8
2 Convolution1D 64 1600
3 Convolution1D 64 12352
4 MaxPooling1D 64 0
5 Flatten 320 0
6 Repeat vector 320 0
7 LSTM 200 416800
8 | TimeDistributed (Dense) 100 20100
9 | TimeDistributed (Dense) 1 101

Table 1 presents the framework with LSTM and autoencoder.
Table 2 presents the framework with CNN, LSTM and autoencoder.
Table 3 presents the framework with BILSTM, while Table 4 includes
a CNN with BiLSTM in its framework. Finally, Table 5 presents the
CNN and LSTM framework.

Table 3: Bidirectional LSTM and its Definition

No | Layer Type | Neurons | Param
1 Input 8 8
5 | Bidirectional 128 37376
9 Dense 100 12900
10 Dense 7 707

After further extensive hyperparameter tuning, using a variety
of optimiser, a learning rate of 0.001, 70 epoch, 160 batch-size, 0.33
validation split and ReLU activation function are selected.

The performance of the developed frameworks are evaluated
using several error metrics, including mean squared error (MSE),
mean absolute error (MAE), and root mean squared error (RMSE),
as well as the computation time. The computation time includes
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Figure 1: Training and validation loss for different optimisers for the developed hybrid deep learning frameworks
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Table 4: CNN-Bidirectional LSTM and its Definition

No Layer Type Neurons | Param

1 Input 8 8

2 | Convolution1D 64 1600
3 | Convolution1D 64 12352
4 | MaxPooling1D 64 0

5 Bidirectional 128 66048
9 Dense 100 12900
10 Dense 7 707

Table 5: CNN-LSTM and its Definition

No Layer Type Neurons | Param

1 Input 8 8

2 Convolution1D 64 1600

3 Convolution1D 64 12352
4 MaxPooling1D 64 0

5 | TimeDistributed (Dense) 64 0

6 LSTM 100 66000
7 Dense 100 10100
8 Dense 7 707

the training and testing time of the frameworks on the dataset. The
MSE measures the average of the squares of the difference between
the predicted and actual values illustrated in (13).

MSE = D (-9 (13)

where 7 is the vector of n predictions produced from the n energy
dataset, and y is the observed vector of the predicted energy vari-
ables. RMSE expressed in (14) is the standard deviation of predicted
errors, i.e., the root mean square of MSE

1< .
RMSE = 4 ;le(y—y)2 (14)

On the other hand, MAE expressed in (15) measures the absolute
differences between the predicted and the actual values

1 n
MAE = - -9 15
nzl]ly gl (15)

4 RESULTS AND DISCUSSION

In this section, an experiment to select an appropriate optimiser for
the developed frameworks is first presented. Then a comparative
analysis of the frameworks using the UCI energy consumption
dataset against the defined error metrics is presented.

4.1 Experiment on different optimisers

Since an appropriate optimiser is paramount for efficient dimension-
ality reduction, the developed frameworks are analysed to deter-
mine the optimum optimiser. We performed different experiments
in selecting an optimal optimiser for the frameworks. The optimis-
ers analysed are Adam, Adadelta, Adagrad, Adamax, Ftrl, Nadam,
RMSprop, and SGD. This is illustrated in Fig. 1 (a to f). Fig. 1 shows
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the training and validation loss for 3 of the developed frameworks.
While all the training and validation loss for the optimisers are less
than 0.1, Adam optimiser gave the lowest training and validation
loss in all the developed frameworks. In addition, it can be observed
that all the optimisers except Adadelta and Ftr]l have similar result
for the framework with AE (Fig. 1 (e and f)) compared to other
proposed frameworks.

4.2 Comparative analysis of the frameworks

To compare the developed frameworks using the defined error met-
rics, we selected Adam optimiser with a learning rate of 0.001, since
it performed better than other optimisers from the above analy-
sis. Fig. 2 presents the comparison result using the UCI dataset for
daily energy consumption prediction. In terms of MSE, all the frame-
works have a similar result of 0.01. For RMSE and MAE, CNN-LSTM
framework has the highest value of 0.1 and 0.08, respectively com-
pared to other frameworks. Specifically, the RMSE and MAE values
for CNN-LSTM are 20% higher than BiLSTM, CNN-BiLSTM and
CNN-LSTM-AE, and 10% higher than LSTM-AE. However, compar-
ing the computation time including training and testing, LSTM-AE
is the longest, followed by CNN-LSTM-AE. CNN-BiLSTM achieved
the lowest computation time among the developed frameworks.

il

BIiLSTM CNBILSTM ~ CNNLSTM ~CNNLSTM-AE  LSTM-AE
Deep learning and hybrid models

[ MsE 100
[ RMSE
[ MAE
I Time

o

0

Loss function
Computation time (s)

=3

o

Figure 2: Performance comparison of the developed frame-
works.

5 CONCLUSION

This work developed five different hybrid deep learning frameworks
utilising architectures comprising CNN, AE, LSTM, and BiLSTM
for energy forecasting applications. Utilising household energy
consumption data to evaluate the developed frameworks, the results
were compared using several error metrics. The results show an
average MSE of ~ 0.01 across all developed frameworks. In addition,
the CNN-LSTM framework performed the least with a 20% and 10%
higher RMSE and MAE to other frameworks respectively, while
CNN-BiLSTM achieved the least computation time. The future
work will focus on an in-depth study on automatic fine-tuning of
hyperparameters to decide on optimal values, instead of by trial
and error.



ICFNDS 2021, December 15-16, 2021, Dubai, United Arab Emirates

ACKNOWLEDGMENTS

This work was supported by ENERGY-IQ, a UK-Canada Power For-
ward Smart Grid Demonstrator project funded by The Department
for Business, Energy and Industrial Strategy (BEIS) under Grant
number:7454460

REFERENCES

(1]

(2]

—
—

[12]

[13]

[14

[15]

[16]

[17

[18

[19]

[20]

[21

Musaed Alhussein, Khursheed Aurangzeb, and Syed Irtaza Haider. 2020. Hybrid
CNN-LSTM model for short-term individual household load forecasting. IEEE
Access 8 (2020), 180544-180557.

E Escobar Avalos, MA Rodriguez Licea, H Rostro Gonzalez, A Espinoza Calderén,
Al Barranco Gutiérrez, and FJ Pérez Pinal. 2020. Comparative Analysis of Multi-
variable Deep Learning Models for Forecasting in Smart Grids. In Intl. Autumn
Meeting on Power, Electronics and Computing (ROPEC), Vol. 4. IEEE, Ixtapa, Guer-
rero, Mexico, 1-6.

Mengmeng Cai, Manisa Pipattanasomporn, and Saifur Rahman. 2019. Day-
ahead building-level load forecasts using deep learning vs. traditional time-series
techniques. Applied energy 236 (2019), 1078-1088.

Zhaojing Cao, Can Wan, Zijun Zhang, Furong Li, and Yonghua Song. 2019. Hybrid
ensemble deep learning for deterministic and probabilistic low-voltage load
forecasting. IEEE Trans. Power Syst. 35, 3 (2019), 1881-1897.

Gopal Chitalia, Manisa Pipattanasomporn, Vishal Garg, and Saifur Rahman. 2020.
Robust short-term electrical load forecasting framework for commercial buildings
using deep recurrent neural networks. Applied Energy 278 (2020), 115410.
Google. 2021. Welcome to Colaboratory. Available at https://colab.research.
google.com/, Accessed: 2021-10-16.

G Hebrail and A Berard. 2021. Individual Household Electric Power Consump-
tion Data Set. Available at https://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption, Accessed: 2021-10-16.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Ying-Yi Hong and Rolando Pula. 2020. Comparative studies of different methods
for short-term locational marginal price forecasting. In Intl. Conf. Green Tech.
and Sust. Dev. (GTSD). IEEE, Ho Chi Minh City, Vietnam, 527-532.

Priyam Jain, Aman Gautam, Rahul Shukla, RK Porwal, Debasis De, SR
Narasimhan, and KVS Baba. 2020. Planning and Operation of Indian Power
System during the Pan India Lights Off Event. In 21st National Power Syst. Conf.
(NPSC). IEEE, Gandhinagar, India, 1-6.

Olamide Jogunola, Bamidele Adebisi, Augustine Ikpehai, Segun I. Popoola, Guan
Gui, Haris Gacanin, and Song Ci. 2021. Consensus Algorithms and Deep Rein-
forcement Learning in Energy Market: A Review. IEEE Internet of Things Journal
8,6 (2021), 4211-4227. https://doi.org/10.1109/JI0T.2020.3032162

Olamide Jogunola, Yakubu Tsado, Bamidele Adebisi, and Mohammad Ham-
moudeh. 2021. VirtElect: A Peer-to-Peer Trading Platform for Local Energy
Transactions. IEEE Internet of Things Journal (2021), 1.

Zulfigar Ahmad Khan, Tanveer Hussain, Amin Ullah, Seungmin Rho, Miyoung
Lee, and Sung Wook Baik. 2020. Towards Efficient Electricity Forecasting in
Residential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE
based Framework. Sensors 20, 5 (2020), 1399.

Tae-Young Kim and Sung-Bae Cho. 2019. Predicting residential energy consump-
tion using CNN-LSTM neural networks. Energy 182 (2019), 72-81.

Min-Seung Ko, Kwangsuk Lee, Jae-Kyeong Kim, Chang Woo Hong, Zhao Yang
Dong, and Kyeon Hur. 2020. Deep Concatenated Residual Network With Bidi-
rectional LSTM for One-Hour-Ahead Wind Power Forecasting. IEEE Trans. Sust.
Energy 12, 2 (2020), 1321-1335.

Mohamed Massaoudi, Haitham Abu-Rub, Shady S Refaat, Ines Chihi, and Fakhred-
dine S Oueslati. 2021. Deep learning in smart grid technology: A review of recent
advancements and future prospects. IEEE Access 9 (2021), 54558-54578.

RC Ney, MR Ferreira, MP Vianna, RB Orling, MA Gama, and LN Canha. 2020.
Planning Energy Distribution Systems in an Environment That Accelerates the
Use of Distributed Energy Resources. In PES Trans. & Distr. Conf. and Exhibition-
Latin America (T&D LA). IEEE, Montevideo, Uruguay, 1-6.

Vladimir Popov, Mykola Fedosenko, Vadim Tkachenko, and Dmytro Yatsenko.
2019. Forecasting consumption of electrical energy using time series comprised
of uncertain data. In 6th Int. Conf. Energy Smart Syst. (ESS). IEEE, Kyiv, Ukraine,
201-204.

Rajat Sethi and Jan Kleissl. 2020. Comparison of Short-Term Load Forecasting
Techniques. In Conf. Tech. for Sustainability (SusTech). IEEE, Santa Ana, CA, USA,
1-6.

Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, and Shady S Refaat. 2021.
Household-level energy forecasting in smart buildings using a novel hybrid deep
learning model. IEEE Access 9 (2021), 33498-33511.

Philipp A Trotter, Marcelle C McManus, and Roy Maconachie. 2017. Electric-
ity planning and implementation in sub-Saharan Africa: A systematic review.
Renewable and Sust. Energy Reviews 74 (2017), 1189-1209.

[22

[23

[24

[25

[26

]

]

Jogunola, et al.

Fath U Min Ullah, Amin Ullah, Ijaz Ul Haq, Seungmin Rho, and Sung Wook
Baik. 2019. Short-term prediction of residential power energy consumption
via CNN and multi-layer bi-directional LSTM networks. IEEE Access 8 (2019),
123369-123380.

Israr Ullah, Rashid Ahmad, and DoHyeun Kim. 2018. A prediction mechanism
of energy consumption in residential buildings using hidden markov model.
Energies 11, 2 (2018), 358.

United Nations. 2021. Sustainable development goals report 2021. Available at
https://unstats.un.org/sdgs/report/2021/, Accessed: 2021-11-1.

Gao Xiuyun, Wang Ying, Gao Yang, Sun Chengzhi, Xiang Wen, and Yue Yimiao.
2018. Short-term load forecasting model of gru network based on deep learning
framework. In 2nd Conf. Energy Internet and Energy Syst. Integration (EI2). IEEE,
Beijing, China, 1-4.

Yue Zhang, Chuan Qin, Anurag K Srivastava, Chenrui Jin, and Ratnesh K Sharma.
2020. Data-driven day-ahead PV estimation using autoencoder-LSTM and per-
sistence model. IEEE Trans. Ind. Appl. 56, 6 (2020), 7185-7192.


https://colab.research.google.com/
https://colab.research.google.com/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+ power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+ power+consumption
https://doi.org/10.1109/JIOT.2020.3032162
https://unstats.un.org/sdgs/report/2021/

	Abstract
	1 Introduction
	2 Learning algorithms for energy forecasting 
	2.1 Data pre-processing and Rolling Window 
	2.2 Deep learning and hybrid deep learning algorithms 

	3 Framework Evaluation 
	3.1 Dataset description 
	3.2 Experimental setup and Evaluation Metrics

	4 Results and Discussion 
	4.1 Experiment on different optimisers
	4.2 Comparative analysis of the frameworks

	5 Conclusion 
	Acknowledgments
	References

