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A B S T R A C T   

Tridax procumbens (cotton buttons) is a flowering plant with a medicinal reputation for treating infections, 
wounds, diabetes, and liver and kidney diseases. The present research was conducted to evaluate the possible 
protective effects of the T. procumbens methanolic extract (TPME) on an experimentally induced type 2 diabetes 
rat model. Wistar rats with streptozotocin (STZ)-induced diabetes were randomly allocated into five groups of 
five animals each, viz., a normal glycemic group (I), diabetic rats receiving distilled water group (II), diabetic rats 
with 150 (III) and 300 mg/kg of TPME (IV) groups, and diabetic rats with 100 mg/kg metformin group (V). All 
treatments were administered for 21 consecutive days through oral gavage. Results: Administration of the 
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T. procumbens extract to diabetic rats significantly restored alterations in levels of fasting blood glucose (FBG), 
body weight loss, serum and pancreatic insulin levels, and pancreatic histology. Furthermore, T. procumbens 
significantly attenuated the dyslipidemia (increased cholesterol, low-density lipoprotein-cholesterol (LDL-C), 
triglycerides, and high-density lipoprotein (HDL) in diabetic rats), serum biochemical alterations (alanine 
transaminase (ALT), aspartate transaminase (AST), alanine phosphatase (ALP), blood urea nitrogen (BUN), 
creatinine, uric acid, and urea) and full blood count distortion in rats with STZ-induced diabetes. The TPME also 
improved the antioxidant status as evidenced by increased superoxide dismutase (SOD), catalase (CAT), gluta
thione (GSH), and decreased malondialdehyde (MDA); and decreased levels of cholinesterases (acetylcholines
terase (AChE) and butyrylcholinesterase (BChE)), and proinflammatory mediators including nuclear factor (NF)- 
κB, cyclooxygenase (COX)− 2, and nitrogen oxide (NOx) in the brain of rats with STZ-induced diabetes compared 
to rats with STZ-induced diabetes that received distilled water. However, TPME treatment failed to attenuate the 
elevated monoamine oxidases and decreased dopamine levels in the brain of rats with STZ-induced diabetes. 
Extract characterization by liquid chromatography mass spectrometry (LC-MS) identified isorhamnetin (reten
tion time (RT)= 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 25.25 min, 2.88%) as the three 
most abundant bioactive compounds that could be responsible for the bioactivity of the plant. In conclusion, the 
TPME can be considered a promising alternative therapeutic option for managing diabetic complications owing 
to its antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory effects in rats with STZ-prompted 
diabetes.   

1. Introduction 

Diabetes mellitus (DM), a metabolic disease, is associated with a 
defect in the pancreatic production of insulin or lack of insulin sensi
tivity/activity that respectively leads to type 1 or type 2 DM (T2DM) [1]. 
T2DM was reported to be the most common type affecting a very large 
percentage of the population [2]. It is symptomized by elevated blood 
and urine glucose levels, excessive urination, sweating, dehydration, 
and several tissue complications [3,4]. According to IDF, 6.7 million 
deaths were recorded in 2021 as a result of diabetes [5]. On average, 1 in 
10 adults has diabetes totaling about 537 million cases globally. The 
number is projected to increase to 643 million by 2030 and 783 million 
by 2045 [5]. In Africa, the rate of an undiagnosed diabetes condition is 
about 54% with 416,000 deaths recorded [5]. Undiagnosed diabetes or 
improper management can lead to chronic diabetic conditions which are 
accompanied by several tissue/organ complications such as retinopa
thies, hepato-nephropathies, and encephalopathies [6]. The liver as the 
central metabolic organ becomes functionally impaired due to any 
metabolic disorder [7], while the kidneys become thick, scarred, and 
leaky in diabetic nephropathy [8]. 

Oxidative stress plays important implicative roles in the develop
ment of vascular complications in T2DM [9]. Increased free radical 
formation in diabetes has been attributed to non-enzymatic glycation of 
proteins, increased lipid peroxidation (LPO), and glucose oxidation 
[10–12]. During oxidative metabolism by the mitochondrion electron 
transport chain, a component of the utilized oxygen is reduced to water, 
and a free radical, known as the superoxide anion (O), which can also be 
converted into other reactive oxygen species (ROS) such as ONOO− , OH, 
and H2O2 [13]. These free radicals can further modulate insulin 
signaling and induce insensitivity/resistance, a major risk factor for 
T2DM [14]. The build-up of free radicals in turn transfers their free 
unpaired electrons and causes oxidation of cellular macromolecules, 
including lipids, proteins, and nucleic acids [11]. It also modulates 
several intracellular signaling pathways [12] to promote insulin resis
tance (IR), pancreatic β cell damage, and the development of DM com
plications including coronary artery disease, neuropathies, 
nephropathies, retinopathies, and stroke. 

Inflammation is an important pathophysiological mechanism of DM 
and its complications, including diabetic nephropathy (DN) [15,16]. 
Chronic inflammation can cause cellular injury, and impair antioxidant 
defense systems, resulting in provoking oxidative stress [17]. Besides the 
damaging effect on cellular macromolecules, excessive ROS can activate 
several redox-sensitive molecules such as nuclear factor (NF)-κB, 
resulting in the release of proinflammatory mediators, cellular 
dysfunction, and injury [18]. Thus, oxidative stress, activation of NF-κB, 
and upregulation of proinflammatory mediators were observed in 

experimental diabetes and DN [19,20]. This interplay between oxidative 
and inflammatory responses plays a pivotal role in DN [21], and con
stitutes therapeutic strategies for preventing disease progression. 

Conventional drugs that are used to treat and manage diabetes are 
costly, not readily available, and not completely effective [22]. There
fore, due to the ease of accessibility and high therapeutic values in the 
clinics with little or no side effects [23,24], medicinal plants have been 
in use since time immemorial for preventing, treating, and managing 
different types of human diseases including parasites, infections, 
inflammation, oxidative stress, diabetes, and associated complications 
[25–30]. 

Tridax procumbens is a flowering plant that belongs to the Asteraceae 
family. It is popularly known as cotton buttons, and originates from the 
US but is now distributed in different parts of the world [31]. It was 
traditionally used for wound healing, infections, malaria, diabetes, and 
other metabolic disorders [32]. Tridax procumbens is rich in flavonoids, 
saponins, alkyl esters, sterols, triterpenes, fatty acids, and poly
saccharides [33]. Tridax procumbens was scientifically reported to 
possess various activities including antimicrobial, antihyperuricemic, 
antioxidant, and antipurgative effects and for treating wounds and liver 
diseases, among others [34–36]. Previous studies reported amylase in
hibition [37,38], blood glucose reduction [39–41], and hypolipidemic 
effects [41] of the crude extract of T. procumbens in diabetic rats. 
However, there is a paucity of information on evaluating its effective
ness in attenuating chronic diabetes-associated complications. Conse
quently, in the present study, an extract of T. procumbens demonstrated 
in vitro therapeutic efficacy, and attenuated hyperglycemia, insulin 
deficiency, oxidative stress, inflammation, and cognitive deficiency in 
an in vivo model of rats with streptozotocin (STZ)-induced diabetes. 

2. Materials and methods 

2.1. Chemicals and reagents 

The chemicals and reagents used in this study were of analytic grade. 
Assay kits used for liver and kidney function analyses were products of 
Randox Laboratories (Antrum, UK), neurotransmitter enzyme-linked 
immunosorbent assay (ELISA) kits were product of Elabscience, and 
chemicals used for the antioxidant analysis were a product of Sigma 
Aldrich (St. Louis, MO, USA). The insulin ELISA kit was a product of 
Calbiotech (El Cajon, CA, USA), and the ELISA reader was from Sunrise 
(Tecan, Austria). 

2.2. Collection and preparation of the extract 

The methanolic extract of T. procumbens (TPME) was produced 
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according to a method described by Alozieuwa et al. [42]. Briefly, 
freshly picked T. procumbens plants were washed under running water to 
remove dust and air-dried for 2 weeks at room temperature until a 
constant dry weight was obtained. The dried plant was then pulverized 
using a blender into fine powder, and 300 g of powder was soaked in 
1500 mL methanol for 72 h with intermittent shaking on a shaker for 
thorough and complete extraction. The mixture was filtered, and the 
filtrate concentrated under reduced pressure, to obtain a yield of 11.28 g 
(3.76%) and properly stored for further analysis. 

2.3. Analysis of total phenolic and flavonoid contents 

Total phenolic and total flavonoid contents of the TPME were 
determined according to a method described by Singleton et al. [43] and 
Chang et al. [44] using standard gallic acid and quercetin to prepare 
respective calibration curves. 

2.4. In vitro antioxidant assay 

2.4.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay 
The ability of the extract to stabilize DPPH free radicals was deter

mined using standard protocols [45] as described by Tsado et al. [46]. 
One hundred microliters of a DPPH solution in methanol (50 mg/mL) 
was incubated with 100 µL of the extract (50, 100, 200, 300, and 400 
µg/mL) for 45 min in the dark. The decrease in absorbance was 
measured at 517 nm against a blank, and the percentage of DPPH in
hibition was calculated. 

2.4.2. Ferric-reducing antioxidant power (FRAP) assay 
FRAP activity of the extract was assayed according to a method 

described by Oyaizu [45]. One milliliter of a sample containing various 
concentrations (50, 100, 200, 300, and 400 µg/mL) of METP was 
incubated at 50 ºC for 20 min in 0.2 M sodium phosphate buffer con
taining 1% potassium hexacyanoferrate (III) followed by the addition of 
10% trichloroacetic acid (TCA). The mixture was centrifuged, and the 
supernatant was mixed 0.1% ferric chloride for color development. The 
absorbance was read at 700 nm, and the percentage FRAP activity was 
computed. 

2.4.3. Lipid peroxidation (LPO) assays 
The thiobarbituric acid-reactive substance (TBARS) protocol 

described by Panjamurthy et al. [47] was employed for the LPO analysis. 

2.5. In vitro anti-diabetes analysis 

2.5.1. Alpha-amylase inhibition assay 
A method described by Worthington [48] was used to assay the 

α-amylase inhibitory effect of the extract. Different concentrations of the 
acarbose standard (12.5–100 µg/mL) and extract were prepared and 
incubated in a solution of porcine pancreatic enzyme at 37 ◦C for 10 min. 
A starch solution was added to initiate the reaction, the mixture was 
incubated for 30 min at 37 ◦C, and the reaction was terminated with 10 
µL of HCl (1 M). Iodine was added for color development, and the 
absorbance was measured at 580 nm. 

2.5.2. Glucose uptake by yeast cells 
Various concentrations of the standard drug or extract were incu

bated with a glucose solution at 37 ◦C for 10 min. A yeast suspension was 
introduced and incubated at 37 ◦C for 60 min. The mixture was centri
fuged and the percent increase in glucose uptake was measured in the 
supernatant. 

2.6. In vitro anti-inflammatory analysis 

2.6.1. Human red blood cell (RBC; HRBC) membrane stabilization test 
An HRBC membrane stabilization assay was carried out according to 

established protocols [49]. To a 10% RBC suspension, different con
centrations of the extract or standard aspirin drug were added to make 
2-mL reaction mixtures. These were incubated at 56 ◦C for 30 min and 
centrifuged at 2500 rpm for 5 min, and the absorbance of the superna
tants was measured at 560 nm. 

2.6.2. Inhibition of protein denaturation 
An assay of the inhibition of protein denaturation was carried out 

according to a method described by Mizushima and Kobayashi [50]. 
Various concentrations of the extract or standard aspirin drug were 
mixed and 1% bovine serum albumin in an aqueous solution). Samples 
were heated to 55 ◦C for 30 min and allowed to cool. At 660 nm, sample 
turbidities were read, and the percentage inhibition of protein dena
turation was calculated. 

2.6.3. Proteinase inhibitory assay 
A proteinase inhibitory assay was performed as described by Oye

depo and Femurewa [51]. The reaction mixture (2 mL; 0.06 mg trypsin 
and 1 mL Tris-HCl buffer) was incubated with 1 mL of the extract at 
37 ◦C for 5 min. The reaction was followed by the addition of 0.8% (w/v) 
casein, and incubation for 20 min. The reaction was terminated by the 
addition of 2 mL of 70% perchloric acid, and the absorbance of the su
pernatant obtained after centrifugation was measured at 210 nm. 

2.7. Maximum tolerated dose (MTD) analysis of TPME 

Preliminary MTD of TPME was determined in rats by oral adminis
tration of TPME at various concentrations of 0, 10, 100, 1000, 1600, 
2800, and 500 mg/kg BW in a 7-day toxicity study as described by 
Lorkes [52]. The MTD was defined as the maximum dose that causes no 
> 10% decrement in body weight and produces no mortality or external 
signs of toxicity that would be predicted to shorten the natural lifespan 
of the animal [53–55]. The animals were thereafter monitored for 
mortality and adverse effect over a period of 2 weeks. 

2.8. In vivo antidiabetic study 

In total, 30 male Wistar rats (115.78 ± 4.89 g in body weight (BW)) 
were procured from the animal facility of FUT Minna (Minna, Nigeria). 
Animals were kept under standard laboratory conditions (with a 12-h 
dark/light cycle) and fed a pelleted diet and H2O ad libitum. Animal 
experiments were conducted according to regulations of the Ethics 
Committee on Animal Use of FUT Minna. Diabetes was induced by an 
intraperitoneal injection of 40 mg/kg BW of streptozotocin (STZ), and a 
5% glucose solution 24 h after the STZ injection. Animals with fasting 
blood sugar (FBS) of 250 mg/dL [56] were considered to be diabetic and 
were divided into four groups (n = 5) consisting of rats receiving normal 
saline (group 1), 100 mg/kg BW metformin (group 2), 150 mg/kg BW 
(group 3), and 300 mg/kg BW (group 4) of the extract. A fifth group was 
given metformin as a control. All treatments were administered daily for 
21 days via oral gavage. 

2.9. Collection and preparation of blood, serum, and tissue homogenates 

At the end of treatment, animals were anesthetized with diethyl 
ether and sacrificed. Blood was collected via jugular vein/cardiac 
puncture and allowed to clot. Clotted blood was then centrifuged at 
3000 rpm for 15 min [57,58]. The serum was decanted and properly 
preserved in a refrigerator for the biochemical analyses. Whole blood 
was also collected in EDTA-coated bottles for a hematological analysis. 
Excised organs (brain, pancreas, and liver) were blotted to remove blood 
stains, weighed, and homogenized in a cold 0.25 M sucrose solution [59, 
60]. The mixture was centrifuged at 4000 rpm for 10 min, and the su
pernatant was decanted and properly preserved in a refrigerator for the 
biochemical analyses. 
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2.10. Analysis of full blood counts 

Levels of hematological indices. erythrocyte indices (hemoglobin 
[HGB], packed cell volume [PCV], RBCs, mean-corpuscular hemoglobin 
[MCH], mean cell volume [MCV], and mean corpuscular hemoglobin 
concentration [MCHC]). leukocyte indices (white blood cells [WBCs], 
and their differentials), and thrombocytic indices (platelets [PLTs]) 
were estimated using an automated hematologic analyzer (Sysmex, KX- 
21, Japan) as described by Dacie and Lewis [61]. 

2.11. Analysis of serum biochemical parameters 

Serum biochemical analysis kits were a product of Randox Labora
tories (UK) or were commercial biochemical kits (Olympus, Hamburg, 
Germany) on an automated analyzer (Olympus AU800). Standard 
experimental protocols were used to analyze serum biochemical pa
rameters; alanine transaminase (ALT) [62], aspartate transaminase 
(AST) [63], alkaline phosphatase (ALP) [64], total protein [65], bili
rubin [66], albumin [67], creatinine [68], and urea [69]. Serum levels of 
the lipid profile including total cholesterol (TC), high-density lip
oprotein-cholesterol (HDL-C) [70], and triglycerides (TGs) [71], were 
measured by colorimetric methods while the low-density lip
oprotein-cholesterol (LDL-C) (mg/dl) was computed as [TC − (HDL +
very LDL (VLDL))] [72]. The serum electrolyte concentration was 
determined according to a method described by Tietz [73]. 

2.12. Analysis of serum and pancreatic insulin levels 

Serum and pancreatic insulin levels were assayed using insulin ELISA 
kits (catalog no.: IN374S; Calbiotech, El Cajon, CA, USA) and an ELISA 
reader (Sunrise, Tecan, Austria) following the manual’s instructions. 
Insulin concentrations are expressed as µIU/mL. 

2.13. Analysis of serum and pancreatic monoamine oxidase (MAO) 
activities 

MAO activity was analyzed using MAO assay kits. The reaction is 
based on the ability of MAO to catalyze the transformation of 4-dimethy
lambenzylamine to p-dimethylaminobenzaldehyde. The reaction was 
monitored at a 355-nm wavelength. 

2.14. Analysis of antioxidant parameters 

Activities of superoxide dismutase (SOD) were estimated as 
described by Misra [74]. Briefly, to 0.2 mL of a sample, 2.5 mL of 0.05 
mol/L of carbonate buffer (pH 10.2) was added. The reaction was 
initiated by the addition of freshly prepared 0.3 mmol/L epinephrine. 
The absorbance was read at 480 nm, and changes in the absorbance 
were recorded every 30 s for 150 s to estimate SOD activity as described 
by Misra [74]. Activities of catalase (CAT) were estimated as described 
by Sinha [75]. To 0.1 mL of the serum or tissue supernatant, 1 mL of 
0.01 M phosphate buffer (pH 7.0) and 0.4 mL of 0.2 M H2O2 solution 
were added. The resulting solution was gently mixed, and the reaction 
was terminated by adding 2 mL dichromate acetic acid reagent. Reduced 
glutathione (GSH) levels were determined by a modified colorimetric 
protocol [76], while LPO was assayed by a thiobarbituric acid-reactive 
substance (TBARS) estimation [77]. 

2.15. Analysis of inflammatory biomarkers [cyclooxygenase (COX)-2/ 
nitric oxide (NOx)/NF-κB] 

COX-2 activity of the brain homogenate was estimated using a Rat 
PTGS2 (prostaglandin endoperoxide synthase 2)/COX-2 ELISA Kit 
(catalog no.: E-EL-R0792). NF-κB activities were analyzed using a 
research purpose Rat NFKB-p105 (p105 subunit) ELISA Kit (catalog no.: 
E-EL-R0673) based on the color development when rat NFKB-p105 was 

conjugated with a rat NFKB-p105-specific biotinylated detection anti
body and avidin-horseradish peroxidase (HRP) conjugate. The NOx level 
was determined based on the reduction of nitrate to nitrite according to 
a procedure reported by Miranda et al. [78]. 

2.16. Analysis of cholinesterases (ChEs) and neurotransmitters [serotonin 
and dopamine] 

Activities of ChEs, including acetylcholinesterase (AChE) and 
butyrylcholinesterase (BChE), were determined according to the method 
of Ellman et al. [79]. A reaction mixture containing phosphate buffer 
(0.1 M, pH 8.0), DTNB (10 mM), 50 µL cytosol, and 150 mM of ace
tylthiocholine iodide (for the AChE assay) or 150 mM of butyrylth
iocholine iodide (for the BChE assay) was incubated, and changes in the 
absorbance were monitored at 412 nm for 3 min. The serotonin assay 
was conducted using an ST/5-HT (serotonin/5-hydroxytryptamine) 
ELISA Kit (catalog no.: E-EL-0033, Elabscience, USA), while the dopa
mine assay was conducted using a dopamine ELISA kit (catalog no.: 
E-EL-0046) according to the manufacturer’s protocols. 

2.17. Molecular docking analysis 

The three (3D) Dimensional structure of the receptors including 
AChE, BChE, COX2, and NOx were obtained from the Protein Data Bank 
(PDB) (https://www.rcsb.org/). The mol2 file of the ligand candidates 
were built using the Avogadro molecular builder and visualization tool 
vers. 1. XX (http://avogadro.cc/) [80]. The mol2 file was transformed to 
PDB files with the aid of PyMOL Molecular Graphics System, vers. 
1.2r3pre (Schrödinger; https://pymol.org/edu/?q=educational/). All 
PDB files were subsequently converted to PDBQT files using AutoDock 
Vina (vers. 0.8, Scripps Research Institute, La Jolla, CA, USA) [81]. 
Docking preparation of ligand and receptors were conducted as 
described in previous studies [82–85]. Docking was conducted using 
AutoDock Vina according to standard protocols while the docked com
plexes were visualized and analyzed using Discovery studio visualizer 
vers. 19.1.0.18287 (BIOVIA, San Diego, CA, USA) [86]. 

2.18. Molecular dynamic (MD) simulations 

The molecular dynamic (MD) simulations were carried out using the 
Schrodinger suite (2020–2). The docked complexes were prepared for 
simulation using the system builder module in Maestro v12.4. MD 
simulations were carried out using the Desmond software. The ortho
rhombic water box was used to create a 10 Å buffer region between the 
atoms on the receptors and box sides [87]. The volume of the box was 
minimized, and Na+ was used to neutralize the system charges. The 
system pressure and temperature were kept constant at 1.01325 bar and 
300 Kelvin using Nose–Hoover thermostat [88] and Marty
na–Tobias–Klein barostat methods. The simulations were performed 
using NPT ensemble by considering atoms number, pressure and time
scale and the simulation time at 50 ns. The simulation study was con
ducted to analyze the root-mean-square fluctuation (RMSF), 
root-mean-square deviation (RMSD), radius of gyration (Rg), 
solvent-accessible surface area (SASA), secondary structure, and the 
number of hydrogen bonds [89]. The molecular mechanics Pois
son–Boltzmann surface area (MM-PBSA) method was applied to calcu
late the binding free energy. The 1000 trajectory files were considered 
for MM-PBSA calculation. 

2.19. Maximum tolerated dose (MTD) analysis of TPME 

Preliminary MTD of TPME was determined in rats by oral adminis
tration of TPME at various concentrations of 0, 10, 100, 1000, 1600, 
2800, and 500 mg/kg BW in a 7-day toxicity study as described by 
Lorkes [52]. The MTD was defined as the maximum dose that causes no 
> 10% decrement in body weight and produces no mortality or external 
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signs of toxicity that would be predicted to shorten the natural lifespan 
of the animal [53–55]. The animals were thereafter monitored for 
mortality and adverse effect over a period of 2 weeks. 

2.20. Data analysis 

Data were analyzed with GraphPad Prism software, (GraphPad 
Software, La Jolla, CA, USA). Differences between the experimental 
groups were evaluated by an analysis of variance (ANOVA) followed by 
Tukey’s post hoc test and Student’s t-test. 

3. Results 

3.1. In vitro antioxidant, hypoglycemic and anti-inflammatory activities 
of the TPME 

Preliminary secondary metabolite profiling revealed that the TPME 
contained total phenolic and flavonoid contents of 198.97 ± 1.21 mg/ 
100 g and 95.56 ± 1.12 mg/100 g respectively. The in vitro antioxidant 
analysis revealed increased DPPH inhibition, FRAP activities, and inhi
bition of lipid peroxide in dose-dependent manners; 50% inhibitory 
concentration (IC50) values were 186.73, 160.56, and 200.72 µg/mL, 
respectively, while ascorbic acid (the standard) yielded IC50 values of 
20.90, 15.32, and 21.87 µg/mL, respectively (Fig. 1A). A hypoglycemic 
analysis of the extract showed that the uptake of glucose (5, 10, and 25 
mM) by yeast cells proportionally increased with an increase in the 
extract concentration; an increase in a dose-dependent manner of 
α-amylase inhibition (IC50 of 271.60 µg/mL) was also seen (Fig. 1C). The 
in vitro anti-inflammatory study revealed increases in dose-dependent 
manners of the inhibition of protein denaturation (IC50 of 268.45 µg/ 
mL), proteinase inhibition (IC50 of 219.00 µg/mL), and membrane sta
bilization (IC50 of 231.69 µg/mL) by the extract, while aspirin (standard 
control) gave maximum anti-inflammatory activities of 96.86%, 
99.80%, and 97.76%, respectively, at 250 µg/mL (Fig. 1C). 

3.2. maximum tolerated dose (MTD) analysis revealed the safe dose of 
TPME for oral remedy 

We evaluated the maximum tolerated dose of TPME after oral 
administration to rats. The MTD was estimated based on the threshold at 
which all animals survived with no more than a 10% BW loss. We found 
that all animals treated with 10, 100, 1000, and 1600 mg/kg BW 
tolerated these doses, and no death or deterioration in health were 
recorded throughout the study period. Furthermore, none of the animals 
in these groups exhibited weight loss. However, rats dosed with 2800 
and 5000 mg/kg bw of TPME were restless for few minutes after which 
they exhibited moderate writhing, abdominal tone, and profuse 
breathing which lasted for 1 h (Table 1). Furthermore, mortalities and 
severe weight loss were observed at 2800 and 5000 mg/kg dose. 

3.3. TPME improved the glycemic status and insulin level in rats with 
STZ-induced diabetes 

The TPME produced a significant (p < 0.001) decrease in the fasting 
glucose level and an improvement in BW of rats with STZ-induced dia
betes compared to untreated rats (Fig. 2A, B). The standard drug, 
however, showed a higher percentage of glucose reduction and BW 
improvement than the extract-treated groups (Tables 2 and 3). 
Furthermore, serum and pancreatic insulin levels decreased in untreated 
diabetic rats compared to normal control rats. Interestingly, treatment 
with the extract (at 150 and 300 mg/kg BW) and the standard drug 
significantly attenuated the decreases in serum insulin and pancreatic 
insulin levels compared to untreated rats (Fig. 2C). Similarly, the de
creases in serum and pancreatic monoamine oxidase in untreated dia
betic rats did not significantly differ (p > 0.05) compared to extract- 
receiving groups (Fig. 2D). 

3.4. Tridax procumbens demonstrated in vivo antioxidant activities in 
rats with STZ-induced diabetes 

Our analysis of the serum and tissue antioxidant statuses following 
STZ intoxication and treatment with the TPME revealed that untreated 
diabetic rats exhibited significant decreases in serum and tissue (liver, 
brain, and pancreas) levels of SOD and CAT, while demonstrating 
elevated levels of tissue MDA compared to normal control rats. With the 
exception of pancreatic SOD, we found that treatment of diabetic rats 
with the TPME significantly attenuated the decreased activities of serum 
and tissue levels of SOD and CAT, and the increase in MDA concentra
tions compared to the untreated diabetic controls. Activities of the 
extract were more pronounced at 300 mg/kg BW. Similarly, serum, 
liver, and pancreatic GSH levels significantly increased in extract- 
receiving animals compared to untreated rats (Fig. 3). 

3.5. Effect of the TPME on cholinesterase and neurotransmitter activities 
in the brains of rats with STZ-induced diabetes 

Activities of ChEs (AChE and BChE) and dopamine were significantly 
(p < 0.001) elevated in the brains of rats with STZ-induced diabetes 
compared to activities in the brains of control rats. Interestingly, treat
ment with TPME induced significant (p < 0.001) ameliorative effects on 
the elevated activities of ChEs. However, no treatment-related changes 
in brain levels of serotonin or dopamine were observed compared to 
untreated diabetic rats (Fig. 4). 

3.6. TPME modulates inflammatory activities in the brain of rats with 
STZ-induced diabetes 

The brains of rats with STZ-induced diabetes exhibited a significantly 
(p < 0.001) elevated nitric oxide concentration and increased COX-2 
and NF-κB activities (p < 0.001) compared to activities of those in
flammatory markers in normal control rats. Treatment with the TPME 
significantly (p < 0.001) restored the activities of these inflammatory 
markers to their basal levels. Interestingly, levels of NOx and NF-κB in 
TPME-treated rats were significantly (p < 0.05) lowered compared to 
levels found in normal control rats (Fig. 5). 

3.7. TPME attenuated the hyperglycemia-related dyslipidemia in STZ- 
intoxicated rats 

STZ intoxication caused significant (p < 0.05) increases in serum 
levels of cholesterol (CHOL) (p < 0.001), TGs (p < 0.01), and LDL-C 
(p < 0.05) and decreased levels of HDL-C (p < 0.05) compared to 
levels in normal glycemic rats. Administration of the TPME at 300 mg/ 
kg BW significantly decreased elevated levels of CHOL, TGs, and LDL-C 
while increasing the level of HDL-C compared to STZ-intoxicated rats 
that received distilled water only. However, no treatment-associated 
changes in CHOL or LDL-C were seen in the group of rats treated with 
150 mg/kg TPME compared to STZ-intoxicated rats that received 
distilled water only (Fig. 6). 

3.8. TPME reversed the serum biochemical alterations in liver and kidney 
functional indices of STZ-intoxicated rats 

Administration of STZ significantly (p < 0.05) increased levels of 
total bilirubin, direct bilirubin, bicarbonate, urea, creatinine, and uric 
acid, and serum activities of AST, ALP, and ALT (Table 4), while levels of 
total proteins, albumin, and potassium significantly (p < 0.05) 
decreased. However, treatment with the TPME at 150 or 300 mg/kg BW 
significantly (p < 0.05) reduced the STZ treatment-associated alter
ations in levels of serum total bilirubin, direct bilirubin, urea, creatinine, 
uric acid, AST, ALP, ALT, total proteins, albumin, and potassium 
compared to levels of STZ-treated rats that received distilled water only. 
Levels of sodium in all experimental groups compared favorably 
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Fig. 1. In vitro antioxidant, hypoglycemic and anti-inflammatory activities of the Tridax procumbens methanolic extract. Data are the mean±standard error of the 
mean (SEM) of three replicate determinations. Values followed by different superscript letters significantly differ across treatment doses. 
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(p > 0.05) with the control group, and no extract treatment-related 
modulation of bicarbonate levels was seen compared to STZ-treated 
rats that received distilled water only (Table 4). 

3.9. TPME ameliorated the hematological alterations in STZ-intoxicated 
rats 

STZ administration significantly (p < 0.05) reduced the blood count 
of hemoglobin (HGB), packed cell volume (PCV), mean cell hemoglobin 
(MCH), RBCs, lymphocytes (Ls), and monocytes (Ms), while 

significantly (p < 0.05) increasing levels of mean corpuscular volume 
(MCV), platelet (PLC), WBCs, and neutrophils (Table 5). On the other 
hand, treatment with the TPME at 150 and 300 mg/kg BW significantly 
(p < 0.05) increased levels of HGB, PCV, MCH, RBCs, Ls, and Ms, while 
decreasing levels of PLC, MCV, WBCs, and neutrophils compared to 
those of the distilled water-treated control group (Table 5). However, 
the group of rats treated with 150 mg/kg BW did not significantly differ 
(p > 0.05) in TWBC compared to counts in STZ-treated rats that received 
distilled water. There was no extract treatment-related significant 
(p > 0.05) modulation of MCHC counts in STZ-treated rats that received 
distilled water. 

3.10. Characterization of the T. procumbens extract 

Extract characterization by LC-MS identified isorhamnetin (retention 
time (RT): 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol 
(RT: 25.25, 2.88%) as the three most abundant bioactive compounds 
that could be responsible for the bioactivity of the plant. Other com
pounds identified included biochanin A, dicumarol, cucurbitacin E, 
myricetin, silymarin, quercetin, apigenin, echinone, akuammidine, 
catechin, and sitosterol. The compounds’ identity profiles and chro
matogram are respectively displayed in Table 6 and Fig. 7. 

3.11. Molecular dynamic simulations revealed potential interaction of 
isorhamnetin with AChE/BChE/COX2/NOx 

Molecular docking profile revealed that isorhamnetin demonstrated 
best interactions with stronger binding energy to AChE/BChE/COX2/ 
NOx when compared with interaction of bixin and lupeol to the proteins 
(Fig. 8). Only isorhamnetin and lupeol interacted with AChE (Fig. 9) 
while only isorhamnetin bind with the COX2 and NOx (Fig. 10). The 

Table 1 
Maximum tolerated dose (MTD) profile of TPME in rats.  

Dose 
(mg/kg 
BW) 

Initial 
BW (g) 

Final 
BW (g) 

BW 
gain 
(%) 

Mortality Physiological 
observation for sign of 
adverse effect 

10 123.82 
± 1.30 

129.90 
± 0.28 

6.08 0/3 None 

100 121.68 
± 1.70 

125.95 
± 4.72 

4.35 0/3 None 

1000 121.66 
± 2.27 

126.90 
± 1.50 

5.24 0/3 None 

1600 124.07 
± 3.99 

125.31 
± 9.30 

1.24 0/3 restlessness, profuse 
breathing, hyper 
activeness 

2800 119.33 
± 5.04 

112.89 
± 5.46 

-6.44 1/3 moderate writhing, 
abdominal tone, and 
profuse breathing 

5000 116.35 
± 3.54 

109.79 
± 2.18 

-6.56 2/3 Severe writhing, 
moderate writhing, 
abdominal tone, and 
profuse breathing 

BW, body weight, MTD: maximum tolerated dose 

Fig. 2. Tridax procumbens methanolic extract (TPME) improved the glycemic status and insulin levels in rats with STZ-induced diabetes. Monoamine oxidase ac
tivities of TPME-treated rats with STZ-induced diabetes. 
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higher molecular docking score of isorhamnetin-BChE complex is an 
indication of compact interactions. Furthermore, more hydrogen bonds 
indicate an increasingly stable nature for the complex. In this simulation 
study, the RMSD from Fig. 8 illustrated that the bixin–BChE complex 
had a higher RMSD trend compared with those of the other two com
plexes. however, bixin-BChE complexes displayed large fluctuations in 
RMSD trends, which indicated complex flexibility. Interesting, 
isorhamnetin-BChE complex demonstrated most desirably high and 
remained in a steady state and demonstrating a rigid profile. The degree 
of mobility in a biological system can be indicated by the Rg profile. Our 
simulation revealed that isorhamnetin-BChE complex had a lower Rg 
profile than other complex, indicating the compacted nature of the 
protein complex, whereas higher Rg values, which correlate with the 
repeated folding and unfolding protein behavior, were observed for the 
protein complexes containing both bixin and lupeol. Furthermore, the 
bixin-BChE complex shows fluctuated Rg value, suggesting a loose 
packaging of the system [90]. The surface area of the biological systems 
and their corresponding binding patterns with ligand molecules can be 
assessed through SASA analysis. The SASA analysis revealed that 
isorhamnetin-BChE demonstrated a stable SASA profiles with no sig
nificant deviation in the surface area and formed more rigid and stable 
profiles. However, the increasing and fluctuating trend in SASA 
observed in bixin-BChE complex represents protein expansion and 
comparatively loose binding of bixin to BChE. 

4. Discussion 

The α-Amylase inhibitory effect of TPME clearly suggest it potential 
to reduce postprandial glucose levels. Our findings validate the study of 
Sonawane [37] who worked on α-amylase inhibitory activities of several 
extracts of T. procumbens. Although inhibition of α-amylase by the 
extract would not cause any net nutritional caloric losses, they slow 
down carbohydrate digestion and glucose absorption, thus attenuating 
postprandial blood glucose transport and hyperglycemia. Results also 
indicated that the TPME had high efficiency in increasing glucose uptake 
by yeast cells. 

The DPPH radical-scavenging activity of the TPME demonstrated its 
ability to serve as an electron donor, thereby attenuating the DPPH 
radical and preventing oxidative damage [91]. The FRAP activities also 
indicated that the TPME contains some bioactive compounds that react 
with free radicals and donate electrons to terminate the cascade of the 

free radical chain reactions [92]. Inflammation triggers secondary 
damage via free radical-induced LPO [93]. The dose-dependent in
creases in the inhibition of LPO by the TPME further confirm its po
tential antioxidant effect. HRBC membranes are analogous to lysosomal 
membranes, and their stabilization by TPME indicated the ability of the 
extract to stabilize lysosomal membranes and prevent tissue inflamma
tion [51]. The proteinase inhibitory and protein inhibition activities of 
the extract further strengthens its potential for preventing tissue 
inflammation [42]. 

The loss of BW in untreated rats with STZ-induced diabetes may have 
been due to mobilization of stored fat and protein from muscles as 
sources of energy [94]. The reversal of hyperglycemia and loss of BW in 
diabetic rats treated with the TPME agreed with a study by Bhagwat 
et al. [39], who reported a significant reduction in blood glucose 
following oral administration of leaf extract of T. procumbens at 
200 mg/kg BW to rats with alloxan-induced diabetes. The reduction in 
FBS levels by treatment with the TPME provides scientific support for 
the use of the plant in traditional management of DM [95]. The hypo
glycemic effect of the extract could be attributed to its high phenol and 
flavonoid contents which were reported to exhibit antioxidant activity 
[96], enhance glucose uptake [97], and stimulate insulin secretion from 
pancreatic β cells [98,99]. 

The ability of the extract to increase insulin levels of the diabetic rats 
could be ascribed to its effect in preventing loss of β-cells or the ability to 
enhance insulin secretion by residual β-cells. It is worth noting that the 
improvement in serum insulin levels produced by the extract at 150 and 
300 mg/kg was comparable to that of the reference compound, met
formin, which is a known stimulator of insulin secretion by β-cells [100]. 

The increased MAO activities in diabetic non treated rats are asso
ciated with increase production of H2O2, antioxidant exhaustion, and 
subsequent oxidative stress [101,102]. Consistent with our findings, 
previous studies also reported increased MAO expressions in rats with 
STZ-induced diabetes treated with MAO inhibitors which reduced levels 
of free radical generation and oxidative stress by 50% [103,104]. 
However, treatment with the TPME produced no significant attenuating 
effects on elevated MOA activities in STZ-intoxicated rats. In line with 
the abovementioned results, the present study acknowledged the 
contributing role of MAO in oxidative status in the serum and pancreas 
of diabetic rats. Our data however, further revealed that the improve
ment in the antioxidant status of diabetic rats following treatment with 
the TPME was not associated with inhibition of MOA. 

Table 2 
Glucose concentration (mg/dL) of rats with STZ-induced diabetes treated with the methanolic extract of Tridax procumbens (TPME).  

Group 0 3 6 9 12 15 % Change in FBS 

Control 96.07 ± 2.95 94.57 ± 2.37 95.50 ± 2.69 100.10 ± 0.96 99.87 ± 1.68 99.63 ± 0.90 3.71↑ 
Untreated 475.33 ± 12.00 509.13 ± 5.80 553.87 ± 20.40 601.53 ± 9.60 623.50 ± 9.22 648.33 ± 9.08 36.40↑ 
Metformin 466.83 ± 11.08 405.90 ± 6.98 283.43 ± 9.86 213.37 ± 2.62 177.87 ± 5.83 130.53 ± 3.64 72.04↓ 
150 mg/kg TPME 439.50 ± 16.93 414.03 ± 16.37 382.23 ± 12.18 315.57 ± 9.03 251.50 ± 6.03 224.17 ± 3.12 48.99↓ 
300 mg/kg TPME 473.53 ± 9.49 450.23 ± 4.83 399.40 ± 8.10 317.27 ± 8.23 255.93 ± 12.94 218.00 ± 4.11 53.96↓ 

Values are presented as mean±standard error of mean of replicate determinations. 
↓ = Decrease, ↑= increase. 
FBS, fasting blood sugar. 

Table 3 
Effect of the methanolic extract of Tridax procumbens (TPME) on the body weight of rats with STZ-induced diabetes.   

Body weight (g)  

Group 0 3 6 9 12 15 18 % Change 

Control 121.93 ± 2.82 126.56 ± 3.36 132.88 ± 2.73 139.15 ± 3.59 145.79 ± 3.56 151.90 ± 3.41 157.63 ± 2.95 29.28 
Untreated 122.86 ± 5.49 115.66 ± 5.73 108.24 ± 6.09 102.31 ± 6.18 96.87 ± 5.47 90.89 ± 5.84 83.84 ± 5.60 -31.76 
Metformin 122.05 ± 5.87 115.41 ± 6.22 119.77 ± 5.44 125.26 ± 5.71 130.22 ± 6.05 135.11 ± 6.53 139.89 ± 6.04 14.62 
150 mg/kg TPME 122.62 ± 2.80 116.03 ± 2.95 117.68 ± 2.13 120.67 ± 2.33 125.46 ± 2.09 130.58 ± 2.41 138.32 ± 4.26 12.80 
300 mg/kg TPME 121.13 ± 4.20 116.83 ± 4.81 120.25 ± 5.30 126.70 ± 5.07 132.11 ± 5.31 136.74 ± 5.08 142.81 ± 4.90 17.90 

Values are presented as the mean ± standard error of mean of replicate determinations. 
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Fig. 3. Antioxidant activities in the serum and tissues of rats with STZ-induced diabetes treated with the methanolic extract of Tridax procumbens (TPME). Data are 
the mean±SEM of replicate determinations. Values followed by different superscript letters significantly differ across the groups. * Significantly differs from STZ- 
treated rats that received distilled water. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant. 
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MAO is responsible for metabolizing dopamine and serotonin, and 
increased MAO activity causes a dopamine deficiency in the brain [105]. 
This is consistent with the decrease levels of dopamine and serotonin 
that we observed in the diabetic untreated rats. Consequently, the fact 

that no TPME treatment-related changes in levels of serotonin or 
dopamine were observed, could be attributed to a failure of the extract 
to attenuate elevated MAO activities in rats with STZ-induced diabetes 
as we discussed earlier. Our finding also concurred with a study of 

Fig. 4. Cholinesterase and neurotransmitter activities in the brain of rats with STZ-induced diabetes treated with the methanolic extract of Tridax procumbens 
(TPME). Data are the mean±SEM of replicate determinations. **p < 0.01, ***p < 0.001, ns, non-significant. 

Fig. 5. Activities of inflammatory markers in the brains of rats with STZ-induced diabetes after treatment with Tridax procumbens extract. Data are the mean±SEM of 
replicate determinations. ***p < 0.001, ****p < 0.0001. 

Fig. 6. Serum lipid profiles of rats with STZ-induced diabetes treated with the methanolic extract of Tridax procumbens (TPME). Data are the mean±SEM of five 
replicate determinations. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant. 
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Emory [106], who reported that MAO inhibition in diabetic patients 
attenuated a dopamine deficiency. 

The higher expression levels of COX-2, NOx, and NF-κB in STZ- 
induced diabetes is consistent with a previous study which reported 
that diabetes-associated inflammation is mediated by the release of 
several endogenous inflammatory mediators including NOx, glutamate, 
COX-2, NF-κB, serotonin, and histamine [107–109]. Our results 
demonstrated for the first time that the TPME inhibited the releases of 
major inflammatory mediators including COX-2/NOx/NF-κB in diabetic 
rats, hence suggesting its potential for preventing diabetes-associated 
inflammation. 

The increased levels of MDA in the pancreas and brain of untreated 
rats with STZ-induced diabetes indicated oxidative damage to the 
cellular and neuronal membranes. Conversely, decreased levels of MDA 
in the liver, pancreas, and brain of TPME-treated diabetic rats indicated 
anti-LPO activity of the extract and suggested the preservation of the 

integrity of neuronal and cellular membranes. Furthermore, the signif
icant increased levels of SOD, CAT, and GSH, and improved antioxidant 
status of the diabetic rats, suggesting that the TPME possesses anti
oxidative properties capable of protecting tissues of rats with STZ- 
induced diabetes from oxidative stress. 

Therefore, an ideal antidiabetic agent should not only regulate the 
blood glucose level, but also attenuate cognitive deficits and other 
complications associated with diabetes [110]. Hence the increased 
AChE activity in untreated rats with STZ-induced diabetes could result 
in decreased ACh (acetylcholine) levels, which may in turn disrupt nerve 
impulse transmissions and eventually induce memory dysfunction 
[111]. The inhibitory activities of TPME on AChE and BChE could pre
vent rapid degradation of ACh, thus ensuring proper nerve impulse 
transmission among neurons. This study agreed with the findings of 
Ramrao et al. [112], who reported that the aqueous extract of 
T. procumbens modulated cognitive functions with a nootropic effect and 
also reversed scopolamine-induced amnesia. Hence, significant de
creases in blood glucose levels produced by the extract revealed a 
possible mechanism by which the TPME can prevent cognitive and 
learning deficits in diabetic conditions. 

The elevated activities/levels of AST, ALP, ALT, total bilirubin, direct 
bilirubin, bicarbonate, urea, creatinine, and uric acid in diabetic un
treated rats is an indication that the functional integrity of the liver and 
kidney have been compromised [113–115]. However, the attenuation of 
these parameters by TPME treatment suggests the alleviation of the 
STZ-induced organs injury. 

Diabetic dyslipidemia, characterized by high levels of CHOL, TGs, 
and LDL, contributes to the increased production of ROS, activates 
cascades of inflammatory events, induces insulin resistance, and accel
erates vascular diseases in diabetic patients [116]. Thus, regulating 
plasma levels of lipids is essential for patients with T2DM. Interesting, 
the abnormal lipid profile (elevated CHOL, TRIG, and LDL-C and 
decreased HDL-C) was significantly reversed in TPME-treated rats. 
Altogether, our data suggested that the TPME can attenuate diabetic 
dyslipidemia and subsequent IR, oxidative stress, and inflammation 
associated with T2DM. 

Extract characterization by LC-MS identified isorhamnetin (RT: 
3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 
25.25 min, 2.88%) as the three most abundant bioactive compounds 
that could be responsible for the bioactivity of the plant. Other com
pounds identified included biochanin A, dicumarol, cucurbitacin E, 
myricetin, silymarin, quercetin, apigenin, echinone, akuammidine, 
catechin, and sitosterol. The compounds’ identity profiles and chro
matograms are respectively displayed in Table 5 and Fig. 7. Conse
quently, the most abundant compounds were subjected to in silico 
molecular and dynamic modeling revealing that isorhamnetin demon
strated best interactions with stronger binding energy to AChE/BChE/ 
COX2/NOx when compared with interaction of bixin and lupeol to the 

Table 4 
Functional indices of the liver and kidney of rats with STZ-induced diabetes after 
oral administration of the methanolic extract of Tridax procumbens (TPME).  

Sample TP150 TP300 Positive Normal Negative 

TB 1.62 
± 0.04b* 

1.55 
± 0.48b* 

1.42 
± 0.05ab* 

1.24 
± 0.04a* 

2.33 
± 0.07c 

DB 1.44 
± 0.35b 

1.18 
± 0.02a* 

1.86 
± 0.02b 

1.67 
± 0.17b 

1.51 
± 0.40b 

AST 45.35 
± 0.32c* 

45.77 
± 1.36c* 

21.87 
± 1.62a* 

25.60 
± 2.66b* 

65.75 
± 0.18d 

ALT 20.32 
± 0.42b* 

26.87 
± 0.39c* 

14.69 
± 2.53a* 

18.43 
± 0.45a* 

32.88 
± 0.79d 

ALP 166.81 
± 0.91b* 

238.44 
± 2.27d* 

177.38 
± 0.86c* 

67.57 
± 1.02a* 

298.51 
± 1.50e 

TP 8.93 
± 0.20b* 

9.63 
± 0.14c* 

10.60 
± 0.16d* 

10.33 
± 0.31d* 

6.49 
± 0.51a 

ALB 3.97 
± 0.18b* 

4.91 
± 0.25c* 

5.32 
± 0.19d* 

6.08 
± 0.10e* 

3.33 
± 0.21a 

Na 199.23 
± 1.43a 

202.11 
± 1.07a 

196.43 
± 0.79a 

195.70 
± 4.47a 

195.42 
± 6.48a 

K 10.81 
± 0.07b* 

13.42 
± 0.13d* 

14.16 
± 0.07e* 

12.71 
± 0.09c* 

7.01 
± 0.15a 

CO3 21.38 
± 0.12b 

20.35 
± 0.38b 

21.92 
± 0.16b 

18.70 
± 0.24a* 

22.45 
± 1.08b 

Urea 40.29 
± 0.69c* 

39.05 
± 0.38c* 

29.05 
± 0.14b* 

19.35 
± 0.99a* 

47.96 
± 0.68d 

Creatinine 8.21 
± 0.58b* 

5.09 
± 0.04a* 

5.54 
± 0.04a* 

4.86 
± 0.08a* 

9.91 
± 0.05c 

Uric acid 31.47 
± 0.36b* 

30.20 
± 1.99b* 

32.96 
± 0.54b* 

26.94 
± 0.11a * 

45.64 
± 0.29c 

Data are the mean±SEM of five replicate determinations. Values followed by 
different superscript letters significantly differ across the groups. * Significantly 
differs from the STZ-treated rats that received distilled water. TP150, TPME at 
150 mg/kg of body weight; TP300, TPME at 300 mg/kg of body weight; TB, 
total bilirubin; DB, direct bilirubin. 

Table 5 
Hematological parameters in rats with STZ-induced diabetes after oral administration of the methanolic extract of Tridax procumbens (TPME).  

Sample TP150 TP300 Positive Normal Negative 

Hb (g/dL) 13.25 ± 0.35b* 13.40 ± 0.40b* 15.20 ± 0.40c* 16.10 ± 0.30c* 8.00 ± 0.20a 

PCV (%) 37.00 ± 1.00b* 39.00 ± 1.00b* 39.50 ± 0.50b* 39.50 ± 0.50b* 29.00 ± 1.00a 

MCV (fi) 81.00 ± 1.00a* 77.00 ± 1.00a* 75.00 ± 1.00a* 79.00 ± 1.00a* 89.50 ± 0.50b 

MCH (pg) 23.50 ± 0.50b* 25.50 ± 0.50b* 27.00 ± 1.00b* 26.00 ± 1.00b* 21.00 ± 1.00a 

MCHC (g/dL) 25.50 ± 0.50a 25.00 ± 1.00a 27.00 ± 1.00b* 29.00 ± 1.00b* 23.00 ± 1.00a 

RBC (X1012/L) 4.00 ± 0.20b* 4.40 ± 0.40b* 4.30 ± 0.30b* 6.00 ± 0.40 C* 3.50 ± 0.30a 

PLC (X109/L) 171.50 ± 1.50b* 163.50 ± 1.50a* 168.00 ± 1.00a* 171.00 ± 1.00b* 194.00 ± 1.00c 

TWBC (X109/L) 114.00 ± 1.00b 99.00 ± 1.00a* 95.00 ± 1.00a* 95.00 ± 1.00a* 117.00 ± 1.00b 

N (%) 50.50 ± 1.50c* 47.00 ± 1.00b* 41.00 ± 1.00a* 49.00 ± 1.00c* 58.00 ± 1.00d 

L (%) 47.00 ± 1.00b* 50.50 ± 0.50b* 50.00 ± 1.00b* 51.00 ± 1.00b* 33.00 ± 1.00a 

M (%) 7.00 ± 1.00c* 5.00 ± 1.00b* 5.00 ± 1.00b* 4.50 ± 0.50b* 2.50 ± 0.50a 

E (%) 2.50 ± 0.50a* 4.00 ± 1.00d* 3.50 ± 0.50c* 3.50 ± 0.50c* 3.00 ± 1.00b 

Data are the mean±SEM of five replicate determinations. Values followed by different superscript letters significantly different across the groups. * Significantly differs 
from the STZ-treated rats that received distilled water. TP150, TPME at 150 mg/kg body weight; TP300, TPME at 300 mg/kg body weight; Hb, hemoglobin; PCV, 
packed cell volume. 
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proteins. The high hydrogen bonds indicate an increasingly stable na
ture for the complex. furthermore, isorhamnetin-BChE complex 
demonstrated most desirably high simulation profile and remained in a 
steady state, and thus serve as a potential therapeutic template for future 
study. 

However, the limitation of our study must be acknowledged. The 
absence of cellular experiment marked an important area that required 
further studies. Further experiment including molecular experiments, 
targets and therapeutic validation in cells are necessary for the clinical 

validation, and applicability of our findings. Further preclinical studies 
are currently in progress to examine the potential activities of these 
compound against diabetes and its associated complications. 

5. Conclusions 

Conclusively, the TPME could be considered a promising alternative 
therapeutic option for managing diabetic complications owing to its 
antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory 

Table 6 
LC-MS characteristic of the compounds identified in the Tridax procumbens extract.  

ID RT (min) Height Height % Area Area % M/Z Identity Fragments 

1 0.475 1772 1.30057 1997 1.023139 284.2 Biochanin A 213, 284 
2 5.691667 12,088 8.872057 8292.75 4.248692 317 Isorhamnetin 317 
3 8.325 450 0.33028 1090.25 0.558577 337.05 Dicumarol 212, 300, 427 
4 8.866667 846 0.620927 1126 0.576893 557.3 Cucurbitacin E 224, 317, 448, 529 
5 9.425 740 0.543127 1039 0.532319 318.9 Myricetin 288, 318 
6 11.8 967 0.709735 617.75 0.316497 482.9 Silymarin 483 
7 16.7 1907 1.399654 2841.5 1.455809 302.2 Quercetin 107,302, 225 
8 18.16667 1924 1.412131 2757 1.412516 271.2 Apigenin 271 
9 20.33333 3131 2.298015 2981.1 1.527331 345.15 Echinone 111, 171, 225, 345 
10 22.6 3116 2.287006 7007 3.589953 353.2 Akuammidine 353 
11 25.06667 6444 4.729611 7860.75 4.027362 395.25 Bixin 304, 353, 395 
12 25.25833 3937 2.889584 5457 2.795829 427.4 Lupeol 113,427 
13 29.61667 811 0.595238 1204.25 0.616983 291.1 Catechin 291 
14 36.08333 757 0.555604 1105.5 0.56639 415.05 Sitosterol 105, 415 

RT, retention time; M/Z, molecular weight. 

Fig. 7. LC-MS chromatogram of Tridax procumbens.  
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effects in rats with STZ-induced diabetes. 
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