
The applicability of the Maximum Power-point of Microbial Fuel Cells: Influence of Potential Scan rate and real-time external Load

Simeon M. I.^{1,2,*}, Freitag R.¹

¹ Universität Bayreuth, Universitätstraße 30, 95447, Bayreuth Germany

² Federal University of Technology Minna, PMB 65, Minna, Nigeria *Email: meshack.simeon@uni-bayreuth.de; s.imologie@futminna.edu.ng

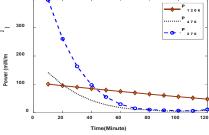
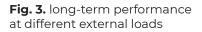

Performance evaluation of a microbial fuel cell (MFC) is usually done with linear sweep voltammetry (LSV) ^[1] at a given potential scan rate (PSR) ^[2]. This evaluation does not often reflect the long-term performance of the MFC under real-time external loads ^[1]. In this study, the performance of a single-chamber MFC was evaluated with three external loads (1206, 470, and 270 Ohms) calculated from LSV maximum power point (MPP) with three PSRs (0.1, 0.5, and 1 mV/s). The estimated power from the MPP in ascending order of PSR were 61.96, 87.88, and 166.68mW/m² at 116.5, 229.6 and 403 mA/m², respectively. The average power obtained with 1206, 470, and 270 Ohms in the first two hours of operation were 73 ± 16.7, 36.3 ± 42, and 88.5 ± 120.1 mW/m² at current densities of 124.6 ± 14.3, 121.2 ± 73.4, and 232.6 ± 176.2 mA/m², respectively. The result showed that overestimation was more pronounced at higher PSRs. Although the MFC was initially underestimated at 0.1 mV/s, this PSR more accurately reflects the true and applicable estimate of the long-term performance of the MFC. These results are explicitly beneficial for electrochemical estimation of the actual performance of MFCs under real-time external loads.

Fig. 1. Maximum power at different scan rates


Keywords: maximum power, microbial fuel cell, external load, potential scan rate

Funding:Nigerian-German Postgraduate Training Programme PhD, 2018 (57401043)

Fig. 2. Short-term performance at different external loads

References

[1] Watson & Logan. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 2011, 13: 54–56 [2] Zhao et al. Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem. Soc. Rev., 2009, 38: 1926–1939.