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Abstract
A vital piece of medical technology that aids in the diagnosis of a number of heart-related disorders in
patients is an electrocardiogram (ECG). To find significant episodes in long-term ECG data, an
automated diagnostic method is needed. Cardiologists face a very difficult problem when trying to
quickly examine long-term ECG records. To pinpoint critical occurrences, a computer-based
diagnosing tool is necessary. Heart attacks, sometimes referred to as myocardial infarctions (MI), are
medical conditions that happen when the blood flow in the coronary arteries suddenly stops or
completely narrows. though lots of researches have been carried out with impressive performance
record for detection of MI, However, existing approaches for MI detection can be improved upon for
better results. In our paper we enhanced Convolutional Neural Network (CNN) algorithm with Graph
Neural Network (GNN) to better select features which gave us an f1 score of 99.58%, precision of
99.5% and an accuracy of 99.72%.
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1.0 Introduction
A heart attack, also known as Myocardial Infarction (MI), is a disorder in which one or more of the
coronary arteries that supply the heart muscle are blocked or narrowed. Atherosclerosis is the primary
cause of this illness (Pustjens et al., 2020). The hardening process starts early and progresses gradually
as time goes on. A complex chain of events involving several blood cells, cholesterol, proteins, and
hormones results in the development of a hardening plaque in the blood channel walls (Degerli et al.,
2021). From a thin coating, this plaque expands into a mass of tissue that blocks the arterial lumen and
restricts blood flow across it (Menyar, 2006).

The risk associated with this type of health issue is that it frequently comes on suddenly for the patient,
needing quick action to end the crisis out of concern for death or serious cardiac injury. In order to
effectively treat a MI, early diagnosis is therefore important (Degerli et al., 2021). A test called an
electrocardiogram (ECG) enables the advancement of an electrical wave that controls the activity of the
heart muscle. This electrical wave travels through the atria of a normal pacemaker, forcing them to
constrict and facilitating blood flow from the atria to the ventricles (Hammad et al., 2022). Once the
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heart chambers have contracted as a result of the electrical signal, blood flows from the right ventricle
to the lungs and from the left ventricle to the body tissues via the aorta. An ECG test can be used to
identify any irregularities in the generation and transmission of electrical waves, which may be caused
by issues with the heart conduction system (Hammad et al., 2020). Furthermore, whether they are
recent or old, alterations in the ECG may be a sign of MI. The ECG processing methodology, in brief,
can aid in the early detection of the most prevalent heart conditions, including arrhythmias, coronary
heart disease, and heart attacks. However, analyzing ECG signals manually takes time and effort.
Therefore, prompt diagnosis by physicians and clinicians depends greatly on accurate MI detection in
the medical area. In order to create an accurate methodology for the automatic detection of MI,
researchers are working on it.

2.0 Literature Review
This section covers the concept of myocardial infarction, detection techniques, performance, machine
learning detection models.

2.1 The Concept of Myocardial infarction Detection
As previously indicated, the prior techniques can be divided into two groups: machine learning and
deep learning approaches. Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) (Sharma &
Sunkaria, 2018), Fourier Decomposition Method (FDM) with SVM (Fatimah et al., 2021), and others
are some of the different machine learning techniques that are described in the literature. To recognize
various types of heart problems , Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs) (Jahmunah et al., 2021), residual networks (Śmigiel et al., 2021a) and capsule networks
(Prakash et al., 2021) are also used. However, only deep learning-based approaches that are pertinent
to the scope of the work presented have been included by the authors (Gupta et al., 2021).

Three deep learning techniques were created by (Śmigiel et al., 2021b) to automatically categorize
main ECG signals. The first technique used CNN as its foundation, the second method used SincNet as
its foundation, and the last way used CNN with entropy-based characteristics as its foundation. Using a
CNN with entropy, they worked on five super classes from the PTB-XL dataset and got the best overall
accuracy of 76.50%. (Śmigiel et al., 2021a) further used R-peak detection and deep learning techniques
to automatically classify the ECG signals. They used the same database (PTB-XL) to work on five
super classes, and their best overall accuracy was 76.20%. Few-Shot Learning (FSLapplicability )'s for
categorizing ECG signals was determined by (Pałczyński et al., 2022). They took the QRS complex out
of the ECG signals and classified the data with a deep CNN. They worked with the five super classes in
the PTB-XL database and achieved the best overall accuracy of 79%. (Prabhakararao & Dandapat,
2021) developed a method for classifying arrhythmias into multiple categories using a CNN ensemble.
To lessen the computing load and remove baseline artefacts, they employed data augmentation
techniques and preprocessing. They assessed the 12-lead of the PTB-XL database on the five super
classes and found that their technique had an overall accuracy of 85%. A multi-lead fusion approach for
multi-class arrhythmia classification was proposed by (Zhang et al., 2021). The five super classes from
the PTB-LX database that they worked on yielded an aggregate accuracy of 93.10%. Utilizing the five
super classes for classification resulted in low accuracy for all of these earlier techniques. When
compared to these methods, the suggested method on the five super classes had the best accuracy. A
comparison of related literatures using various criteria is shown in Table 1.
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Table 1: Literature Review Comparison

Literature Year Database Classifiers Remarks
(Accuracy in %)

Śmigiel et al.
(2021b) 2021 PTB-XL CNN SincNet 72.00

73.00

Śmigiel et al.
(2021a) 2021 PTB-XL Neural networks 76.20

Pałczyński et al.
(2022) 2022 PTB-XL Neural networks 80.20

Prabhakararao &
Dandapat (2021) 2022 PTB-XL CinC-training DMSCE 84.50

88.30

Zhang et al.
(2021) 2021 China Physiological

Signal Challenge 2018 MLBF-Net 87.70

Prakash et al.
(2021) 2021 PTB GABORCNN 98.84

Tadesse et al.
(2021) 2020 PTB VGG-Net 99.20

Anand et al.
(2022) 2022 PTB-XL CNN 95.80

He et al. (2021) 2021 Combination of PTB
and PTB-XL

Multi-feature-branch lead
attention neural network (MFB-

LANN)
94.19

Based on the study of ECG signals, several artificial intelligence (AI) techniques are used to identify
MI by (Fatimah et al., 2021; Ibrahim et al., 2020; Sharma & Sunkaria, 2018). These are divided into
two categories: machine learning and other techniques (Cho et al., 2020; Jahmunah et al., 2021;
Sharma & Sunkaria, 2020) and for the deep learning approaches (Anand et al., 2022; He et al., 2021;
Ramaraj, 2021). Particularly when working with massive amounts of data, deep learning techniques are
regarded to be more dependable than traditional machine learning techniques. Deep learning
techniques' multi-layer architecture also offers capabilities for efficient feature interpretation and
pattern detection, both of which are essential for classifying sizable unstructured datasets. Although
they have superior features, standard deep learning networks are known to have a number of
disadvantages, such as the following:
- Misclassification in several circumstances of considerable interclass disparity.
- decreasing detection accuracy and, notably, sensitivity as a result of increasing data over-fitting

caused by the depletion of datasets.
- utilising ineffective MI detection techniques and sophisticated signal processing techniques.
- Implementing these strategies in real-time applications leads to low accuracy.
- Requiring the QRS complex to be found.

Therefore, the goal of this work is to develop a unique method for MI detection based on deep learning
approaches that will address the aforementioned shortcomings. Deep learning techniques have recently
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demonstrated success in a variety of applications, including pattern recognition (Khan et al., 2021;
Srinivasu et al., 2021), internet of things (IoT), and medical (Almadhor et al., 2021).

3.0 Methodology
In this study, we first filter out the noise from the ECG readings. Then, to extract the deep features from
the input signal, we suggest a deep learning model based on a convolutional neural network (CNN).
The characteristics from the convolutional layers are then optimized and chosen. The CNN-GNN
classifier is then fed the chosen characteristics to detect MI. The examination and inquiry of the PTB-
XL database revealed that the suggested method surpasses current deep learning techniques (Wagner et
al., 2020). This section provides a thorough explanation of the methodology and dataset (PTB-XL)
used to assess the effectiveness of the proposed technique. The dataset contains several different
diagnostic groups as well as a sizeable percentage of healthy records. PTB-XL is a sizeable dataset with
exceptional variation that stands out for its superior signal quality. Rarely do clinical databases contain
samples with such a wide range of pathologies, a wide variety of co-occurring disorders, and a high
number of healthy controls. PTB-XL is an excellent option for training and testing algorithms in the
real world, where machine or deep learning algorithms must perform consistently regardless of the
recording environment or the caliber of the data.

In order to identify Myocardial Infarction (MI), the proposed CNN-enhanced GNN based MI detection
model in Deep Learning and GNN analyzes 12-lead ECG signals. Following the preprocessing stage,
the ECG signal pictures are normalized in accordance with the input specifications of the suggested
models for greater research accuracy. ECG images of various sizes that are appropriate for the model
are collected as input, divided into train, validation, and test portions, and then sent to the CNN model.
Convolutional, pooling, and fully connected layers make up the majority of the CNN model's layers.
The max-pooling layer does image subsampling and image size reduction, while the convolutional
layer is utilized to create tensors by applying filters. The data is flattened and then passed through a
compressed fully connected neural network for quick and accurate classification of MI affected class,
normal class, history class, and abnormal class based on the ECG images after passing through a
number of convolutional and max-pooling layers. A flow chart representation of the model that
categorizes two classes is shown in Figure 1.
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Figure 1: MI Detection Workflow

3.1 Description of ECG Dataset
The training and validation sets for this study were taken from the publicly available PTB-XL dataset
(Wagner). 21,837 clinical 12-lead ECGs from 18,885 patients are included in the PTB-XL dataset.
Each ECG signal lasts for 10 seconds. Only the 500-Hz ECGs were used as the dataset since the neural
network required 4,096 samples from the signal of each ECG lead. The ptbxl database.csv file was
extracted for the MI diagnosis.

3.2 MI Detection Process
I) Data Preprocessing
Each of the ECG is a 12 5,000 matrix, where the first (12) denotes the space dimension and the second
(5, 000) denotes the time dimension (12 leads, 10 s length, 500 Hz sampling). From the signal of each
ECG lead, we took 4,096 samples to utilize as the neural network's input. Prior to training, the raw
ECG data were pre-processed. We first used a low-pass filter on the raw data to create a baseline and
then zeroed the average value to make the baseline flat in order to remove ECG signal baseline drift
and low-power noise. After that, we filtered the high-frequency signals to denoise the data.

II)  Data Splitting
30% of the PTB-XL data were used to validate the model, while the remaining data were utilized to
train the model.
Development of model
We employed a residual network with a convolutional neural network-like topology (He et al., 2016).
Using this architecture, it is possible to train a deep neural network efficiently while including the
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graph convolutional layer with nonlinear activation. The network had four residual blocks, each with
four convolutional layers, and a convolutional layer (Conv). The final block's output was returned to a
dense fully linked layer with a sigmoid activation function. Batch normalization was used to rescale
each convolutional layer's output before being fed into a rectified linear activation unit (ReLU).

4.0 Results and Discussions
The experimental environment for this study was on google collaborative platform and is essentially a
python development environment. In this study, Keras was employed. On the machine learning
platform Tensorflow, Keras is a high-level deep learning API. It is a platform for solving machine
learning issues that focuses on contemporary deep learning. Keras can process enormous volumes of
complex data with ease. It is user-friendly and allows users to concentrate more on certain aspects of
the issue without experiencing a cognitive load. Low level TensorFlow operations on GPU and CPU
are also reduced by Keras and TensorFlow.

4.1 Evaluation Metrics for Proposed Model
The measures utilized to assess the success of the proposed system are described in this section. The
accuracy-based measures among them are as follows:
1) Confusion Matrix: This crucial measure is used to evaluate machine learning-based models. True

Positive, True Negative, False Positive, and False Negative are the four (4) main parts of it. Table 2
gives the following descriptions of these elements:

Where:
True positive (TP): Indicates the total number of occurrences of harmful network traffic that the

classifier "properly" categorized.
True Negative (TN): reflects the total number of occurrences of regular network traffic that the

classifier "properly" identified.
False positive (FP): shows the total number of occurrences of regular network traffic that the

classifier "incorrectly" labels as malicious.
False Negative (FN): Is the classifier's overall classification of instances of malicious network

traffic as normal in error.
I) Accuracy: It gauges how well a model can distinguish between legitimate and malicious network
data (intrusion). Equation (1) can be used to express it as follows:

ɐɭ ɭ ɿ ɼ ɫ ɭ ʃ ɐɒɒ ⱳɤɠ Ԝɤɞ Κ ɤɠ Ԝɕɠ Ԝɕɞ Ԝɤɞ (1)
II) Sensitivity: Also referred to as the detection rate. It is the proportion of total intrusion instances

Predicted Class

Normal Malicious

Actual Class Normal Web page TN FP

Malicious Web Page FN TP
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present in the dataset to the total number of intrusion instances actually detected by the model. It can be
said in the following way:

ɣɯɸɽɳɾɳʀɳɾʃ ɹ ɼ ɓɢ ⱳɤɠΚɤɠ Ԝɕɞ (2)

III) Specificity: This is the proportion of the total number of instances of network traffic accurately
identified as normal to the actual amount of normal network traffic in the dataset. Equation (3) uses
mathematics to convey the following:

ɣɺ ɯɭ ɳɰɳɭ ɳɾʃ ⱳ ɤɞ Κɤɞ Ԝɕɠ (3)

IV) Precision: This can be defined as a ratio between the total number of intrusion data (TP) instances
that were correctly labeled and the sum of the total number of correctly classified intrusion (TP) and
total number of intrusion (TP) instances that were incorrectly categorized as hostile network traffic
(FP). Equation (4) gives the following expression for this:

ɠɼɯɭ ɳɽɳɹ ɸ ⱳɤɠΚɤɠ Ԝɕɠ (4)

V) F1 Score: this can be defined with the equation (5) given below:
ɕ ԝ ɽ ɭ ɹ ɼɯɕ ⱳ ɠɼڬ ɯɭ ɳɽ ɳɹ ɸ ɣɯɸɽɳɾɳʀɳɾʃڬ Κ ɠɼ ɯɭ ɳɽɳɹ ɸ ɣɯɸɽڬ ɳɾɳʀɳɾʃ (5)

4.2 Analysis Comparison
The result generated from the experimental analysis is presented in Table 3, the composition of the
result evaluation is; precision, sensitivity, specificity, F1 Score and accuracy for the training, validation,
and testing phases.

Table 3: Summary of Results
Precision Sensitivity Specificity F1 Score Accuracy

Training MI 0.9894 0.9930 0.9945 0.9912 0.9938

Non-MI 0.9906 0.9946 0.8364 0.9926 0.9155

Validation MI 0.9657 0.9669 0.9680 0.9663 0.9675

Non-MI 0.9669 0.9686 0.7337 0.9677 0.8512

Testing MI 0.9950 0.9966 0.9978 0.9956 0.9972

Non-MI 0.9963 0.9969 0.8960 0.9966 0.9465

The precision score achieved from the experimental analysis is 0.9894, 0.9657, and 0.9963 for training,
validation, and testing respectively. While, sensitivity score of 0.9930, 0.9669, and 0.9969 was
obtained for training, validation, and testing phase respectively. Specificity score of 0.9945, 0.9680,
and 0.9978 was achieved for training, validation and testing respectively, 0.9912, 0.9663, and 0.9956
was achieved for F1 score, respectively for training, validation, and testing. Accuracy performance of
0.9938, 0.9675, and 0.9972 was achieved for training, validation, and testing respectively. The
performance analysis summary of the study experiment is further presented in Figure 2.
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Figure 2: Summary of Results

When we compared our results with other recent related works, our new model was observed to have a
batter performance in terms of accuracy, precision and f1score as shown in Table 3.

4.3 Accuracy
The proposed model in our study achieved an optimal accuracy performance of 99.72% compared to
89.14%, 76.20%, 79.00%, 85.65%, 93.10%, and 99.20% respectively for Śmigiel et al. (2021b),
Śmigiel et al. (2021a), Pałczyński et al. (2022), Prabhakararao & Dandapat (2021), Zhang et al. (2021),
and Hammad et al. (2022). The performance of our proposed model indicates the efficiency in terms of
accurately been able to detect MI as against the preceding listed baseline articles.

4.4 Precision
The precision score of 71.40%, 66.70%, 70.60%, 84.25%, 94.30%, and 98.20% was achieved by the
following baseline articles Śmigiel et al. (2021b), Śmigiel et al. (2021a), Pałczyński et al. (2022),
Prabhakararao & Dandapat (2021), Zhang et al. (2021), and Hammad et al. (2022), respectively. While
our proposed model achieved an outperforming precision score of 99.50% which is far better than the
score achieved by baseline article.

4.5 Recall
The recall score of 99.66% was achieved by our proposed model for MI detection, which outperform
the precision score of baseline articles of  Śmigiel et al. (2021b), Śmigiel et al. (2021a), Pałczyński et
al. (2022), Prabhakararao & Dandapat (2021), Zhang et al. (2021), and Hammad et al. (2022) which
scored 66.20%, 66.70%, 70.60%, 85.21%, 93.10%, and 99.20% respectively.

4.6 F-score
The F-score of 68.00%, 68.30%, 70.60%, 84.55%, 92.80%, and 98.60% was achieved by Śmigiel et al.
(2021b), Śmigiel et al. (2021a), Pałczyński et al. (2022), Prabhakararao & Dandapat (2021), Zhang et
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al. (2021), and Hammad et al. (2022) respectively, however, the F-score of our study outperforms the
performance of all baseline article, with a record of 99.58%.

Table 3: Comparison of our proposed work with other works

Literature Year Database Technique Acc (in %) Pre (in %) Rec (in %) F-Score

Śmigiel et al.
(2021b) 2021 PTB-XL CNN and entropy-based

features 89.14 71.40 66.20 68.00

Śmigiel et al.
(2021a) 2021 PTB-XL Deep learning and R-

peak detection 76.20 66.7 66.7 68.30

Pałczyński et
al. (2022) 2022 PTB-XL Deep CNN and QRS

complex detection 79.00 70.60 70.60 70.60

Prabhakararao
& Dandapat
(2021)

2021 PTB-XL CNN ensemble 85.65 84.25 85.21 84.55

Zhang et al.
(2021) 2021 PTB-XL Multi-lead-branch fusion

network 93.10 94.30 93.10 92.80

Hammad et al.
(2022) 2022 PTB-XL Deep CNN model with

SVM classifier 99.20 98.20 99.20 98.60

Proposed
Model 2022 PTB-XL Deep CNN enhanced

GNN 99.72 99.5 99.66 99.58

5.0 Conclusion and Recommendations
The performance of our proposed model in this study have proven efficient in the detection of MI, this
will aid in effectively addressing the challenge of performance drawback in this domain of research,
furthermore health institution can implement the proposed model in its health sector for effective
performance output in terms of MI detection. Our model shows that f1 score, precision, and accuracy
achieved optimal record using the proposed CNN enhanced-GNN model based on PTB-XL dataset. We
further compared the result with other related works and it was observed to have a better performance.
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