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In this paper, a three-dimensional geometric channel model characterized by channel gain, angle of 
arrival, and departure (AoA/AoD) is used to develop a non-ideal and more realistic system representation 
that accounts for additional signal perturbations other than additive white Gaussian noise (AWGN). 
Hinged on this, compressive sensing (CS) based channel estimation technique is proposed for millimeter-
wave (MM-Wave) massive multiple-input multiple-output (MIMO) systems with inherent challenges due 
to hardware impairment (HI). The proposed estimator named dual singular value decomposition (SVD) 
and Marquardt, abbreviated as DSM estimator aims at tolerating complexity and improving channel 
estimation accuracy at reasonable trade-offs in the system. The normalized mean square error (NMSE) 
performance of the proposed channel estimation scheme, with modified Marquardt’s global minimum 
search, achieves higher accuracy at below 0 dB (LoS)/-3 dB (NLoS) signal-to-noise ratio (SNR) for uniform 
linear array (ULA) configuration and performs better for uniform planar array (UPA) configuration. A low-
rank range of unit difference is adopted for matrix decomposition twice (dual SVD) per SNR in ULA/UPA 
setting. The proposed estimator’s result shows early convergence during the simulation and a linearly 
scaled complexity in comparison with one of the earlier proposed schemes in literature in particular the 
super-resolution channel estimation with gradient descent optimization.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The problem of spectrum crunch and an exponential increase 
in mobile data traffic before the year 2020 necessitated among 
others the safe exploration into optimal gains of the spectrum 
chunk at mm-wave frequencies together with large antenna ar-
ray configuration at both mobile terminal (MT) and base station 
(BS) for fifth-generation (5G) implementation [1–3]. As a result, hy-
brid analog/digital precoding with channel estimation algorithms 
have been proposed to enable spectral efficient (SE) and energy-
efficient (EE) realization in practical mm-wave massive multiple-
input multiple-output (MIMO) systems [3–5]. A follow-up on the 
work in [4] sparked interest in the uplink channel estimation 
regime. This involves the development of accurate, low-power, and 
low-complexity channel estimation techniques for the BS where 
large portions of signal processing are expected to be handled. 
The work documented in [6] focused on the robustness of hard-
ware imperfection such as phase noise (PN), quantization error 
(QE), and nonlinearity (NL) to uplink massive MIMO systems. Links 
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to an extensive literature survey on modeling, the joint descrip-
tion of multiplicative phase-drifts (DϑB (t)) from PN that leads to 
inter-carrier interference (ICI) which is an additive distortion noise 
(eB(t)) in orthogonal frequency division multiplexing (OFDM) sys-
tem and noise amplification (NA) from thermal noise nB (t) were 
provided. The modulation scheme (single-carrier, OFDM, or filter 
bank multi-carrier) was found to determine the mapping of cir-
cuit imperfection to the three categories considered. The trans-
mitter hardware impairment (HI) was, however, not included. The 
joint effect of PN, mixer in-phase and quadrature (IQ) imbalance, 
and power amplifier (PA) NL in various fading channels for ultra-
wideband (UWB) OFDM systems based on IEEE 802.15.3.c standard 
using 60 GHz mm-wave band was presented in [7]. However, no 
unified system model representation incorporating all known im-
pairments was exemplified.

The effect of HI on the performance of channel estimation (CE) 
algorithms using residual transmitter HI (eM ) modeled as additive 
distortion noise was analyzed in [8], somewhat similar to that of 
[9]. For ease of analysis, transmitter HI was assumed uncorrelated 
with the transmitted signals and neglected receiver HI (eB ) to be 
treated as additive noise (n). The HI effect is also prevalent in relay 
systems for different application areas under various channel con-
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ditions but limited to resolving individual or selected contributing 
factors [10–15]. Independent and joint effect of PN, IQ imbalance, 
and nonlinearities (NL) was shown in [16], the details of the map-
ping are available in [17] where distinctions are made between 
transceiver multiplicative phase-drifts (DϑM (t), DϑB (t)) and their 
respective additive distortions (eM , eB). The impact of HI was ac-
knowledged in [18] with numerical results for the optimal level 
of HIs in uplink multi-user single-antenna massive MIMO Systems 
and its corresponding Analog to Digital Converter (ADC) resolution. 
The transmitter HI was however not considered.

It is important to note that hardware impairment refers to un-
calibrated imperfections or residual errors after calibration ([6], 
page 4356). Modelling these impairments and developing digital 
compensation algorithms for mm-wave [19,20] and massive MIMO 
[21] is an active research area particularly for OFDM systems [22]. 
The relative significance of these impairments depends on device 
characteristics, specific system implementation, and configuration 
[23]. The complicated nature of accounting for all nonlinearities 
led to the consideration of the most challenging types. Where 
hardware impairments (HIs) are used, they are often analyzed indi-
vidually ([17], [24–27]), partially [28,29], fully combined in effect, 
or assumed to have been compensated [16] leaving the uncompen-
sated as the residual ([6], [30]). In other words, the ideal hardware 
is one with assumed compensated algorithms that accounts for 
only additive white Gaussian noise (AWGN), the non-ideal hard-
ware accounts for any/all of the impairments while residual is 
used if few (one, two, or the main) and not all impairments are 
considered ([15]: page 1137, [21]: page 7113-7114). The popular 
use of the Gaussian model for its representation is based on ex-
perimental findings in [31] referenced by [32]. The central limit 
theory motivates this claim allowing the additive distortion noise 
to describe aggregate (combined) effects of many residual HIs [21]. 
Distortion is introduced due to decreased hardware or power cost. 
The proportionality coefficient in the Gaussian HI model is said to 
generally increase with signal power and channel gain. The use of 
the covariance matrix of the signal, similar to [8] compares with 
that of [21]. The additive distortion model was verified empirically 
to be accurate for systems that apply compensation algorithms 
to mitigate main HIs ([21], page 7131). The model is known to 
represent main HI effects such as quantization errors in automatic-
gain-controlled ADC, ICI induced by PN, leakage from subcarrier 
under I/Q imbalance, and amplitude-to-amplitude (AM-AM) NL in 
the power amplifier. The multiplicative phase noise effect (to be 
considered as refinement) cited as a likely major challenge to mm-
wave is known to be compensated by reduced symbol time derived 
from increased bandwidth. It can be incorporated in the channel 
model [33] or system model [6].

The mm-wave channel redundancy motivates formulating a 
compressed sensing (CS) based channel estimation problem for 
sparse signal reconstruction. A comprehensive comparison of the 
three algorithmic approaches to pilot-aided and CS-based channel 
estimation problems was carried out in [8]. The paper showed that 
convex relaxation algorithms, iterative reweight (IR) based, have 
the highest computational complexity compared to their greedy it-
erative (GI) and Bayesian inference (BI) counterparts that are quite 
high. The received signal-to-noise ratio (SNR) and transmitter’s 
hardware impairments were identified causes for the IR-based. De-
spite the attractive low power performance of the GI algorithms, 
its angle quantization effect leading to poor estimation accuracy 
cannot be easily traded off in mm-wave systems. The severity 
will likely increase with node-to-node proximity. Moreover, the 
assumption that sparsity is known may not be too realistic [34]. 
Besides, a similar hardware impairment (HI) effect characterized 
by amplifier non-linearity, in-phase, and quadrature (IQ) mismatch, 
direct current (DC) offset, and phase noise (PN) occur at the re-
ceiver relative to the transmitter ([7], [24], [35]). In agreement 
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with the first remark of [8], there is, therefore, a need to reduce 
the computational complexity without significantly decreasing the 
accuracy. Added to that, is the requirement of a more realistic 
system representation by accounting for the omitted receiver HI. 
Despite the limiting complexity of the basis pursuit (BP) algorithm, 
it remains an attractive source of accurate channel estimates. This 
propelled further research work by [36], where a global minimum 
using Newton’s method is obtained in contrast to the likelihood 
of a local minimum via gradient descent method [34]. The New-
ton method uses the first and second approximate derivatives of 
the objective function for optimality. The drawback of the Newton 
method is however the poor performance when the initial angle is 
not close to the real angle of interest [37], that is, the true angle.

In this work, the methodology of [34] is adopted to harness 
the accuracy gain of IR over the GI method that super-resolves 
the angle quantization problem observed when the true angle 
of departure and arrival (AoD/AoA) is off the uniform distributed 
grid points. A low complexity method is proposed. The proposed 
method systematically provides almost exact information on the 
sparsity level which can further be used to determine the initial 
grid points close to the real angles. A proposition is made for the 
use of Marquidt’s criterion [38–40] to guarantee global optimality 
regardless of search direction as opposed to direction-dependent 
Newton’s method [37] used by [36] on the basis that the gradient 
descent method of [34] may arrive at a local minimum. The it-
erative reweight super-resolution channel estimation in hardware-
impaired hybrid-precoded mm-wave massive MIMO systems using 
dual singular value decomposition (SVD) and Marquardt’s global 
search, where errors are large, an error penalty is suggested to 
keep the search tractable. Furthermore, a more realistic system 
model that incorporates the effect of HI on transceiver sub-systems 
is proposed. Simulation results are provided to test the system 
performance using normalized mean square error (NMSE), spectral 
efficiency (SE), and computation speed as metrics of evaluation.

The major contributions of this paper are as follows. The deriva-
tions of system model that incorporate transceiver hardware im-
pairment. Followed by the incorporation of dual SVD into the esti-
mation scheme of [34]. Three versions of the dual SVD based esti-
mation scheme are presented as the proposed systematic method 
(PSM) 1 to 3. The achievable performance of the proposed scheme 
as well as the corresponding computational complexities are sum-
marized.

The rest of this paper is organized as follows. In the next 
section, the proposed system model with transmitter and re-
ceiver HI is established. Section three presents the proposed dual 
SVD initialization and Marquardt’s optimization algorithm. Section 
four shows sets of simulation results for discussion. Section five 
presents a summary of the work.

Notation: For the rest of this paper, bold upper and lower case 
symbolize matrices (E.g.V, W) and vectors (E.g.v, w), respectively. 
The transpose and Hermitian transpose operators are denoted as 
(.)T and (.)H , respectively. The diag(v) is the vector to matrix 
transformation with elements of v on its diagonal while vecd(V) is 
the matrix to vector transform of diagonal entries in V. The trace 
of W written as tr(W) is the sum of elements on its diagonal. E[.]
denotes expectation of [.]. CN (v, w) is a complex normal random 
variable with scalar mean v and variance w. If RU(v, w), implies 
real uniform random variable within an interval [v, w]. The set of 
complex and real matrix or vector of dimension Nv − by − Nw is 
∈ C(Nv ×Nw ) and ∈ R(Nv ×Nw ) , respectively. The Kronecker product 
of V and W is V ⊗ W.

2. System model

Consider Fig. 1 as a single cell consisting of a base station 
(B-for short) with NB antennas receive transmit pilot sequences 
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Fig. 1. Millimeter Wave massive MIMO system.
(s1, s2, s3, . . . , sN) of size Ns in parallel as vector x ∈ C(Ns×1) from 
the mobile terminal (M-for short) with NM antennas via base-
band (digital) precoder PB B ∈ C(NR F ×Ns) . The precoder encodes 
the symbol vector x to match the limited number of radio fre-
quency (RF) chains. Each RF chain at the transmitter does digital 
to analog conversion (DAC) followed by amplification and mix-
ing with a carrier frequency. Analog phase shifters or RF pre-
coder PR F ∈ C(NM×NR F ) is further used to drive the signals to the 
transmitting antenna segment. The combined transmitter precod-
ing matrix is represented as P = PR F PB B ∈ C(NM×Ns) . Transmit-
ted signal from NM antenna elements, s = Px ∈ C(NM×1) satisfies 
E[xxH ] = ρT N−1

s INs , where ρT is the total power of transmitted 
symbols and I is an identity matrix. Since pilot power and pattern 
are design criteria affecting the performance of sparse channel es-
timation let Ns : NR F < Ns < NM . For an assumed evenly placed 
pilot symbols and equal transmit power, the receiver combines 
all signals from the receiver antenna with RF and baseband com-
biners in the form of Q ∈ C(NB×Ns) where Q is the product of 
QR F ∈ C(NB×NR F ) and QB B ∈ C(NR F ×Ns) . For each set of transmit-
ting pilot sequence sq(1 ≤ q ≤ Ns), T-time slots are used to get 
NB − by − T received pilot sequence yq,T . By adopting the Saleh-
Valenzuela (S − V ) model found to be almost unchanged within 
channel coherence time, the training overhead is T Ns , and the 
combining matrix QNB ×Ns is used to get NB − by − 1 received pi-
lot sequence at the tth time slot [34]. The received signal at base 
station can then be expressed as

yq,t = [QH H(Px + eM) + QH n + QH eB ] (1)

Equation (1) can be written as:

yq,t = [QH H(sq + eM) + QH (n + eB)], (2)

where H ∈ C(NB ×NM ) is the channel matrix, sq = PNM×Ns xNs×1 ∈
C(NM×1) , and the noise vector n = nNB ×1 ∼CN (0, σ 2

n ). The trans-
mitter and receiver hardware impairment (HI) vectors are rep-
resented by eM and eB , respectively. In [8] only the transmitter 
HI was accounted for, however, in reality, a similar effect occurs 
at the receiver ([7], [24], [35]). Four major sources of these im-
pairments are considered in this work. The first is amplifier non-
linearity from the non-linear power amplifier with the distortive 
3

effect of high power on message signals that can cause intermod-
ulation noise. This would be more critical in NOMA systems that 
use power discrimination for user signal detection during succes-
sive interference cancellation [35]. Users with low power allocation 
will experience greater levels of signal degradation than those of 
higher power. The second is the in-phase and quadrature (I/Q )

imbalance. It is the amplitude and phase mismatch between I and 
Q branches of a received signal meant to have equal amplitude 
and phase shift of 900. This results in imperfect signal rejection 
and overall performance degradation. The third is the direct cur-
rent (DC) offset that occurs when the local oscillator (LO) signal 
leaks up to the RF port of the mixer during mixing. The result 
is a DC component and a component twice the bandpass signal 
frequency. This unwanted DC component can reduce the effective 
dynamic range of the analog-to-digital converter (ADC). Finally, the 
phase noise (PN) arising from the unstable nature of the LO in-
troduces random phase rotation to the received signal when it 
is down-converted. This results in a wider than necessary oscil-
lator spectrum. The wealth of knowledge available in the pieces 
of literature reviewed is drawn to present a unified system model 
representation as follows. From equation (2), after the T-time slot, 
the received signal:

Y = QH DϑM H(S + EM) + QH DϑB (N + EB), (3)

where Y is [y1, y2, . . . , yT ] and vector yT ∈C(NB ×1) , with the com-
biner Q = [Q1, Q2, . . . , QT ] : QT ∈ C(NB ×Ns) , for a total trans-
mit signal matrix S = [s1, s2, . . . , sT ], and noise matrix N =
[n1, n2, . . . , nT ] : nT = nNB×1. Let the multiplicative phase-drifts 
at transmitter and receiver be DϑM = DϑB . Such that DϑB �
diag(e(−iϑB1(t)), . . . , e(−iϑBNB (t))) according to [6] which describes 
a Wiener process ϑBN(t) ∼ N (ϑBN (t − 1), δ), N = 1, . . . , NB with 
δ = 4π2 f 2

c Ts� at symbol time Ts , carrier frequency fc , and Lo-
cal Oscillator Constant (LOC) � = 10−17. Suppose ϑBN (t) = 0 then 
DϑM and DϑB will become identity matrix INB . Then equation (3)
becomes:

Y = QH H(S + EM) + QH (N + EB), (4)

where the transmitter and receiver additive distortions (EM , EB)

are Gaussian of the form suggested by [8] and [13] such that 
for uniform linear array (ULA) it is proposed that the following 
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be used. EM is [eM,1, . . . , eM,T ] : eM ∈ CN (0, kM vecd(De)), De �
E[ssH ]. EB = [eB,1, . . . , eB,T ] : eB ∈ CN (0, kB eM), and kB , kM ∈
[0, 1]. The values kM and kB represent the levels of degrada-
tion assumed to increase at the base station for uplink. In uni-
form planar array (UPA) configuration, kM = kU L A

M
√

(μM) and kB =
kU L A

B
√

(μB), where μi : i ∈ [M, B] is the mutual coherence. The 
ei can be modeled as complex Gaussian or uniformly distributed 
CU(0, ki vecd(De)), i ∈ [M, B], to depict the equal likelihood of the 
symbol attenuation over the channel H, where,

H =
√

NB NM

ρ

L∑
�=1

αlaM(θl)aH
B (φl)[4] (5)

Here the average path-loss between transceivers is denoted as 
ρ, NB and NM are the number of antenna elements at the base 
station and mobile terminal, respectively. From Fig. 2, for one user, 
the complex gain of the �th path is α� , the variables θ� and φ�

both ∈ [0, 2π) are �th path’s elevation and azimuth angles. Angles 
of departure (AoD) from the transmitter (M) and angle of arrival 
(AoA) at the receiver (B) are aM and aB . The antenna array steer-
ing or response vectors are aM(θ�) and aB(φ�). The choice of this 
model is a result of signal scattering between transmitter and ge-
ometrically located receivers. The antenna array steering/response 
vectors a(θ�) for N Uniform Linear Array (ULA) is determined by 
one angle [34]:

a(θ�) = [1, e−i(
2πd sin θ�

λ
), . . . , e−i(

2πd(N−1) sin θ�
λ

)]
T

√
N

(6)

For Ni × Nii Uniform Planner Array (UPA), the expression is [34]:

a(φ�, θ�) = [1, e−i(
2πd sinφ� sin θ�

λ
), . . . , e−i(

2πd(Ni−1) sinφ� sin θ�
λ

)]
T

√
(Ni Nii)

⊗ [1, e−i(
2πd cos θ�

λ
), . . . , e−i(

2πd(Nii−1) cos θ�
λ

)]
T

(7)

Let z� = α�

√
NB NM

ρ : z = [z1, z2, . . . , zL]T , then the channel model 
similar to the one in [34] can be written as:

H =
L∑

�=1

z�aM(θl)aH
B (φl) (8)

This is a narrow band frequency flat model. The matrix form of 
(8):

H = AB DAH
M , (9)

where

D ∈CL×L = diagonal matrix with non zero element z�

written as diag(z�)

AB ∈ CNB×L = [a(θB,1), . . . ,a(θB,L)] for ULA or[a(φB,1, θB,1),

. . . ,a(φB,L, θB,L)] for UPA

AM ∈ CNM×L = [a(θM,1), . . . ,a(θM,L)] - ULA and[a(φM,1, θM,1),

. . . ,a(φM,L, φM,L)] - UPA

Then AB and AM are normalized spacial angles of the form AB

equal to AB(aB) and AM equal to AM(aM). The multipath channel 
exhibits sparsity as only a few dominant signals are received per 
antenna per position of the transmitter relative to the receiver. This 
causes the physical channel to be modeled as a discrete virtual an-
gular entity [8]. Discretized points result in an off-grid problem 

n

4

where points outside the quantized regions are not accounted for. 
Despite the assumption that the AoAs and AoDs are taken from a 
uniform grid of size G � L such that φ�, θ� ∈ {0, 2π

G , . . . , 2π(G−1)
G }, 

the choice of G will either increase quantization error (when 
small) or increase computational complexity (when large) [8]. A 
typical choice of G > (NM + NB) is observed in [41]. Therefore, 
channel quantization error EQ is fitted into the channel model as

H = AB DAH
M + EQ (10)

The channel estimation (CE) problem can now be approached us-
ing the compressed sensing (CS) method. In [34] the equation (4)
was evaluated without considering the hardware impairments, the 
dual effect of combining matrix on the noise component, and the 
quantization error. This reduced (4) combined with (8) to

Y = QH HS + N (11)

In [8] from the equation (4) the receiver HI was not considered 
leading to a partial combination of (4) and (9) as

Y = QH (AB DAH
M + EQ )(S + EM) + QH N (12)

By a full combination of (4) and (5), a more comprehensive and 
encompassing system representation is achieved as

Y = QH (AB DAH
M + EQ )(S + EM) + QH N + QH EB

Y = QH (AB DAH
M + EQ )(S + EM) + QH (N + EB)

Y = QH (AB DAH
M(S + EM)) + QH (EQ (S + EM)) + QH (N + EB)

(13)

3. Proposed channel estimation techniques

The IR-based channel estimation can be categorized into the 
initialization and optimization stages. Singular value decomposi-
tion (SVD) is used for dimension reduction to obtain the number 
of multipath and quantized angles without losing relevant infor-
mation about the signals. This is followed by a search for the real 
angles for optimized system performance. The iterative reweight is 
assumed to make quantization error zero. The right-hand side of 
equation (13) can then be written as

Y = QH (AB DAH
M(S + EM)) + QH (N + EB), (14)

where D from equation (9) shapes the size of the AoA (AB ) and 
the AoD (AM ) matrix to form the desired channel estimate (Ĥ). 
The objective is therefore to minimize the non-zero elements of D
subject to the Frobenius norm of the difference between the real 
and estimated observation at a given error tolerance. That is

min
ẑ, ˆaM ,âB

‖ẑ‖0

subject to ‖Y − QH Ĥ(S + EM)‖F ≤ ε,

(15)

3.1. Initialization by dual singular value decomposition (SVD)

While the paper [34] that used gradient descent (GD) arrives 
at the unknown number of paths L by assuming an initial num-
ber Nin in the range [Nin, Nin + 5] during the SVD throughout 
the iteration process, it is proposed that for a given signal-to-
noise ratio (SNR) the exact or a better-estimated number of path 
Ne can be obtained. Beginning with an application of a threshold 
to the eigenvalue, discard the pivot value and count the num-
ber of non-zeros. The pivot value, according to [42], is discarded 
for being a strong disturbing signal. Subsequently, [Ne, Ne + n] for 
 = 1, 2, . . . , 5 paths are used in the iterative reweight process. This 

is expected to reduce the run time (in seconds) and improve con-
vergence to the local/global minimum.
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Fig. 2. (a)-(c) Mobile to Base station interaction in a Time-Division Duplexed (TDD) mode.
3.2. Optimization by Marquardt’s global search

To solve the problem of local minimum the use of the Hessian 
matrix in Marquardt’s (M_Q) method [40] is proposed for com-
parison with the gradient descent (GD) method when the number 
of multiple paths L is unknown and SVD initialization is used. 
The proposed alternative, Marquardt’s method [38], [39], [40], is 
a combination of Cauchy’s and Newton’s method. Details of the 
5

derivation for optimization are provided in Appendix A. For the 
sake of brevity ∂2�opt

∂aM,�
2 and ∂2�opt

∂aM,�∂aB,�
can be obtained by swapping 

denominator terms. The first and second partial derivatives of the 
equation are obtained with (22)-(25) to form the Hessian matrix 
(H) so that the true angle estimates are as follows.{

â( j+1)
B = â( j)

B − (H( j) +�( j)I)
−1�aB,�

�
( j)
opt(â( j+1)

B , â( j+1)
M )

â( j+1) = â( j) − (H( j) +�( j)I)
−1� �

( j)
(â( j+1)

, â( j+1)
)

(16)

M M aB,� opt B M
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Algorithm 1: DSM-based channel estimator

Input1: The noisy received signal Y, precoded transmit pilot signals Sq(S + EM ),

combining matrix Q, pruning threshold zth , termination threshold εth

1. Let Ĥp = Q(Y − εth)SH
q

2. Normalize Ĥp = Ĥnorm

3. Do [U,�,V] = S V D(Ĥnorm) − 1st

4. Discard Ui, j,�i, j ,Vi, j for i = 1, j = 1 and find ‖�i+1, j+1 > 2zth‖0 as Nin = Ne

5. Initialize â(0)
B , â(0)

M , ẑ(0) by boundaries or by Ne to get Ĥ(0)

6. Res
(k) = Y − QH Ĥ(k)Sq : k = 0,1,2, . . .

7. [U,�,V] = S V D(Res
(k)) − 2nd

8. for k = 1,2, . . . , iter

9. for � = 1,2, . . . , Ne do

10. (φ̂
(1)
B , θ̂

(1)
B ) = argmax

(φB ,θB )∈�B

uH
� QH aB (φB , θB )

11. (φ̂
(1)
M , θ̂

(1)
M ) = argmax

(φM ,θM )∈�M

vH
� SH

q aM (φM , θM )

end for(in 9)

Output1:The quantized AoAs/AoDs estimates of the Ne paths

Input2:The effective initial on-grid AoA/AoDs â(1)
B , â(1)

M from Output1

12. Initialize ẑ(1) = zopt (â(1)
B , â(1)

M ) by (20)

13. Repeat the following.

14. Update K by K= max(‖Res
( j)‖2

F ,Kmax)

15. Construct the function �
( j)
opt (aB ,aM ) by (21)

16. Search for new angle estimates â( j+1)
B , â( j+1)

M by (16)

17. Estimate the new path gains ẑ( j+1) by (20)

18. Prune path � with zth if ẑ( j+1) < zth

19. Until j(last) or ‖Res
( j)‖2

F < εth

20. âB = â(last)
B , âM = â(last)

M , ẑ = ẑ(last)

end for(in 8)

Output2:The estimated AoAs/AoDs and path gains.

where �( j+1) =
{

�( j)

2 , �
( j+1)
opt < �

( j)
opt

2�( j) , �
( j+1)
opt > �

( j)
opt

,

H( j) ��2�
( j)
opt=

⎡
⎢⎣

∂2�
( j)
opt

∂aM,�
2

∂2�
( j)
opt

∂aM,�∂aB,�

∂2�
( j)
opt

∂aB,�∂aM,�

∂2�
( j)
opt

∂aB,�
2

⎤
⎥⎦ ,

3.3. Proposed dual SVD and Marquardt’s (DSM) optimization channel 
estimator

The proposed estimator captured in Algorithm 1 can be eval-
uated in two compact stages. The first stage, consisting of the 
initialization using pseudo-estimate Ĥp , obtains an estimated num-
ber of paths from input 1 to output 1. The second stage, consisting 
of the optimization, estimates the channel with output 1 as input 
2 in an iterative re-weight paradigm to output 2.

4. Simulation results

The simulation set up of [34] is adopted as the benchmark 
for this work. This is consistent with items 1-9 of Table 1. The 
noise variance σ 2

n is computed for several SNR using σ 2
z /σ 2

n . The 
path gain z� ∼ CN (0, σ 2

z ) which is a function of the propagation 
environment and the hardware impairment vector (eM , eB) are as-
sumed Gaussian as shown in section 2 for worst-case scenarios 
[43]. The choice of kB = 0.2, from the range of values in [44], is 
deduced after some random trials that realize minimum NMSE. To 
reduce the computation time, only the main diagonal of the Hes-

sian matrix is used. This implies that 
∂2�( j)

opt
∂aB,�∂aM,�

= ∂2�( j)
opt

∂aM,�∂aB,�
= 0. 

The ULA and UPA configurations are considered under line-of-sight 
(LoS) and non-line-of-sight (NLoS) conditions.
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Table 1
Simulation Parameters.

S/N Parameters Value

1 Number of RF chains (NR F ) 4

2 Number of transceiver antennas (NM/NB ) 64

3 Wavelength (λ) 1 m

4 Antenna spacing (d) λ/2

5 Number of pilot symbols (Ns) 32

6 LoS K-factor 20 dB

7 Transmitter pilot signal (S) si, j = (ρT /NM )
1
2 e−iωi, j

8 Transmit power (ρT ) ≈ 1W

9 Angular frequency (ωi, j) ∈ [0,2π)

10 Multi-path (L) 3

11 Signal-to-noise ratio (SN R) [−10 : 20]
12 Transmitter proportionality coefficient (kM ) 0.175 [13]

13 Receiver proportionality coefficient (kB ) 0.2

Table 2 is the LoS/NLoS simulation time comparison between 
the arbitrary dimension reduction method [34] and the proposed 
systematic methods (PSM 1-3) under transmitter and receiver 
hardware impairment (TRHI). The PSM is tested with the gradient 
descent (GD) true-value search in PSM1 followed by not only pre-
dicting the sparsity but also the initial angle quantization in PSM2 
for 500 Monte Carlo simulation (MCS). PSM2 offers the best time 
savings in ULA representing low computational complexity with-
out compromising the spectral efficiency (SE) shown in Fig. 3a and 
3b for ULA, that of UPA is similar. The result is better performing 
at high SNR compared to an orthogonal matching pursuit (OMP) 
based estimator [45]. Added to the advantage provided by the basis 
pursuit (BP) based estimators, it is observed that the spectral effi-
ciency is highly degraded when any of the impairment is modeled
as a function of the channel gain [45] and unchanged when mod-
eled as a function of the signal. The Frobenius norm and vector 
norm are used for normalization in the ULA and UPA configura-
tions respectively, to achieve the best NMSE performance in PSM 
1-2. The reverse is the case for PSM3. The PSM3 combines spar-
sity prediction with Marquardt’s (Ma_Q) search method ran over 
200 Monte Carlo simulations (MCS). The PSM 1-2 of the UPA fails 
to provide the needed time savings on estimation. However, PSM3 
provides a competitive solution. The overall complexity can be ex-
pressed as O(N Sx N S y [NB + NM ](Nc L)2). Where Nc = 1 in [34], 
0 < Nc < 1 for PSM 1-2 and 1 < Nc < 2 for PSM3 in ULA, while 
PSM 1-2 can be twice as complex as the others in UPA. From Ta-
ble 3 analysis the number of SNRs tested is Nsnr = 13 and the 
average of the mean predicted path (Lms) for all SNRs per method 
can be obtained after simulation. Observed variations between Ta-
ble 2 and Table 3 can be attributed to the state of the computing 
device.

Fig. 4a and 4b shows the NMSE performance for the four cases 
considered. PSM3 provides the best performance below 0 dB SNR 
in LoS/ULA pair and below −3.5 dB for NLoS/ULA pair respectively. 
However, PSM3 completely outperforms [34] and PSM 1-2 for al-
most all ranges of SNR considered as shown in Fig. 5a and 5b for 
both LoS/UPA and NLoS/UPA pairs. This is achieved with an afford-
able linear scale increase in complexity and the use of low mutual 
coherent signals. A general trend in Table 2 shows that the higher 
the run time the higher the likelihood of signal degradation at the 
higher SNR values tested. In Fig. 5a, the degraded NMSE perfor-
mance for PSM2 at SNR = 20 dB is due to the estimation method 
which involves initial multipath and angle prediction compared to 
the others where only the initial multipath is predicted. In Fig. 5b, 
the degraded NMSE performance for PSM3 at SNR = 10 dB is due 
to the high sensitivity of the estimator meted by the impairment 
and as the noise level grows with an increase in signal strength. 
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Table 2
Total running time per method for antenna configuration and propagation environment.

Ref. Method (L=3) Pseudo estimate Ĥp/initialization LoS Time (sec) NLoS Time (sec)

ULA with Transmitter and Receiver Hardware Impairment

[34] G D [L1, L2] = [5,10] 73823.01 108195.74

PSM1 Ma(L_G D) L1 = Ne : Algorithm 1 − 5 (ẑ(0)) & L2 = L1 + 1 67058.46 86606.25

PSM2 L A_G D L1 = Ne : Algorithm 1 − 5 (ẑ(0), â(0)) & L2 = L1 + 1 44420.70 70388.30

PSM3 Ma_Q (L_M) L1 = Ne : Algorithm 1 − 5 (ẑ(0)) & L2 = L1 + 1 113741.92 198861.68

UPA with Transmitter and Receiver Hardware Impairment

[34] G D L1 = Ne : Algorithm 1 − 5 (ẑ(0)) & L2 = L1 + 1 171812.36 207259.25

PSM1 Ma(L_G D) L1 = Ne : Algorithm 1 − 5 (ẑ(0)) & L2 = L1 + 1 330238.10 261744.88

PSM2 L A_G D L1 = Ne : Algorithm 1 − 5 (ẑ(0), â(0)) & L2 = L1 + 1 369581.32 310579.98

PSM3 Ma_Q (L_M) L1 = Ne : Algorithm 1 − 5 (ẑ(0)) & L2 = L1 + 1 176925.61 112546.22

Fig. 3. Spectral Efficiency plot for Uniform Linear Array (ULA).

Table 3
Computational Time Complexity Contrast between Proposed Methods.

Ref. Method (L=3) Computational complexity LoS NLoS

ULA: (Nc L)2 = (Nsnr Lms), N Sx /N S y = 32, NM/NB = 64 Numerical results

[34] G D ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 7,390,907,597 ≈ 7,395,252,634

PSM1 Ma(L_G D) ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 6,552,315,494 ≈ 6,859,023,974

PSM2 L A_G D ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 6,687,778,406 ≈ 7,125,093,581

PSM3 Ma_Q (L_M) ≈ O(2NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 6,033,501,061 ≈ 6,004,943,094

UPA: (Nc L)2 = (Nsnr Lms), N Sx /N S y = 32, NM/NB = 64 Numerical Results

[34] G D ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 7,449,778,586 ≈ 7,426,519,859

PSM1 Ma(L_G D) ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 12,302,162,330 ≈ 10,257,013,146

PSM2 L A_G D ≈ O(NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 12,974,961,459 ≈ 10,183,743,898

PSM3 Ma_Q (L_M) ≈ O(2NI N Sx N S y [NB + NM ]Nsnr Lms) ≈ 4,334,813,184 ≈ 3,211,033,313
PSM3 has therefore traded off the algorithm complexity issues for 
a fewer number of iterations and accurate channel estimation.

Figs. 6a to 6d show the mean sparsity levels attained for both 
ULA and UPA at different SNR, and the respective LoS and NLoS 
condition. The lower the sparsity level the faster the estimation 
time representing lower computational complexity as described. 
This correlates with the run time recorded in Table 2.

5. Conclusion

In this paper, three variants of iterative re-weight super-
resolution channel estimation are suggested for low-power and 
high accuracy in mmWave massive MIMO systems with hybrid-
7

precoding and transceiver hardware impairments. The hardware 
impairment introduces higher signal degradation in the system 
requiring a more sophisticated channel estimator to achieve the 
desired goal. A system model is first presented followed by a 
compressed sensing approach for channel estimation procedure in 
mm-wave massive MIMO. This involves dual-SVD for initialization 
and modified Marquardt’s method of optimization. The proposed 
systematic method, under LoS/NLoS condition, has the best NMSE 
performance for ULA configuration at below 0/ − 3 dB SNR and al-
most all SNR tested for UPA configuration. Finally, the effect of the 
level of impairments and that of the number of users on the NMSE 
would need to be investigated for the proposed system.
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Fig. 4. Normalized Mean Square Error (NMSE) plot for ULA.

Fig. 5. Normalized Mean Square Error (NMSE) plot for UPA.
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Appendix A. Derivation of Hessian matrix for real angle 
optimization

To obtain the estimate Ĥ from equation (15) is the same as 
estimating aB , aM , and z for all L paths before substitution into 
equation (8). The complicated and computationally inefficient log-
normal is replaced with a log-sum function based on [46]:

argmin
z,aM ,aB

F (z) �
L∑

�=1

log (|z�|2 + �)

subject to ‖Y − QH Ĥ(S + EM)‖F ≤ ε,

(17)

The log-sum function is well defined for � > 0. A regularization 
parameter K > 0 is added, for trade-off balance between data fit-
ting and sparsity of the solution, to formulate the problem in (17)
as an unconstrained optimization problem:

min
z,aM ,aB

G(z,aM ,aB)

�
L∑

�=1

log (|z�|2 + �) +K‖Y − QH Ĥ(S + EM)‖2
F

(18)

The log-sum function is replaced with a surrogate function:

min
z,aM ,aB

�( j)(z,aM ,aB) � K−1zH D( j)
L z +K‖Y − QH Ĥ(S + EM)‖2

F ,

(19)
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Fig. 6. (a)-(d) Mean multi-path prediction plot for ULA/UPA.
where D( j)
L � diag( 1

|ẑ( j)
1 |2+�

1

|ẑ( j)
2 |2+�

. . . 1

|ẑ( j)
L |2+�

) and ẑ( j) is the es-

timate of z at the jth iteration. The optimal z that satisfies (19) is 
gotten by function expansion and equating it to zero to give:

zopt(aB ,aM) = {∑Ns
q=1(yqKH

p ) − ∑Ns
q=1(KH

p Kq)}
{K−1DL + ∑Ns

q=1(KpKH
p )} (20)

This implies that �opt(z, aB , aM) at z = zopt(aB , aM) can be ex-
pressed as

�opt(aB ,aM) = −{∑Ns
q=1(yH

q Kp) − ∑Ns
q=1(KpKH

q )}
{K−1DL + ∑Ns

q=1(KH
p Kp)}

× {
Ns∑

q=1

(yqKH
p ) −

Ns∑
q=1

(KH
p Kq)} +

Ns∑
q=1

(yH
q yq)

−
Ns∑

q=1

(yH
q Kq) −

Ns∑
q=1

(yqKH
q ) +

Ns∑
q=1

(KH
q Kq)

(21)

Let �opt(aB , aM) = �opt , X = K−1DL + ∑Ns
q=1(KH

p Kp), and A =
{∑Ns (yqKH

p ) − ∑Ns (KH
p Kq)}:
q=1 q=1

9

�opt = −AHX−1A+
Ns∑

q=1

(yH
q yq) −

Ns∑
q=1

(yH
q Kq) −

Ns∑
q=1

(yqKH
q )

+
Ns∑

q=1

(KH
q Kq)

(22)

The partial differential of �opt w.r.t. aB,� using product rule:

�aB,�
�opt = −(�aB,�

AH )X−1A−AH (�aB,�
X−1)A

−AHX−1(�aB,�
A) +�aB,�

Ns∑
q=1

(yH
q yq)

−�aB,�

Ns∑
q=1

(yH
q Kq) −�aB,�

Ns∑
q=1

(yqKH
q )

+�aB,�

Ns∑
q=1

(KH
q Kq)

Only Kp = QH ABdiag(AH
M(S + EM)) and KH

p = QAH
B diag(AM(S +

EM)H ) are functions of aB,� , causing partial differential of other 
terms to vanish.

�aB,�
�opt = −(�aB,�

AH )X−1A−AH (�aB,�
X−1)A

−AHX−1(� A)
aB,�
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Let the second term on the right-hand side (R.H.S.) be
AH (�aB,�

X−1)A = −AHX−2[(�aB,�
X)]A so that AH (�aB,�

X−1)A =
−AHX−1(�aB,�

X)X−1A (chain rule):

�aB,�
�opt = −(�aB,�

AH )X−1A+AHX−1(�aB,�
X)X−1A

−AHX−1(�aB,�
A),

(23)

where �aB,�
X � ∂X

∂aB,�
= ∂K−1DL

∂aB,�
+ ∂

∑Ns
q=1(KH

p Kp)

∂aB,�
, ∂X

∂aB,�
=∑Ns

q=1{
∂(KH

p )

∂aB,�
Kp + KH

p
∂(Kp)

∂aB,�
}, and

∂Kp

∂aB,�

� tr{( ∂Kp

∂AB
)T ∂AB

∂aB,�

} + tr{( ∂Kp

∂AH
B

)T ∂AH
B

∂aB,�

}[46] :
∂(KH

p )

∂aB,�

= ∂(QAH
B diag(AM(S + EM)H ))

∂aB,�

is also

∂(KH
p )

∂aB,�

= (Q
∂AH

B

∂aB,�

diag(AM(S + EM)H )),

the �th non-zero path is simply

∂(Kp)

∂aB,�

= [0 . . . 0 QH ∂aB(âB,�)

∂aB,�

aH
M(âM,�)(sq + eM) 0 . . . 0].

Recall AB = aB(âB,�), ∂AH
B

∂aB,�
= ( ∂AB

∂aB,�
)H , and applies to AM =

aM(âM,�), ∂AH
M

∂aM,�
= ( ∂AM

∂aM,�
)H

∂2�opt

∂aB,�
2

= − ∂2AH

∂aB,�
2
X−1A+ ∂AH

∂aB,�

X−1 ∂X

∂aB,�

X−1A

− ∂ HA

∂aB,�

X−1 ∂A

∂aB,�

+ ∂AH

∂aB,�

X−1 ∂X

∂aB,�

X−1A

−AHX−1 ∂X

∂aB,�

X−1 ∂X

∂aB,�

X−1A

+AHX−1 ∂2X

∂aB,�
2
X−1A−AHX−1 ∂X

∂aB,�

X−1 ∂X

∂aB,�

X−1A

+AHX−1 ∂X

∂aB,�

X−1 ∂A

∂aB,�

− ∂AH

∂aB,�

X−1 ∂A

∂aB,�

+AHX−1 ∂X

∂aB,�

X−1 ∂A

∂aB,�

−AHX−1 ∂2A

∂aB,�
2

(24)

The first and second partial derivatives with respect to the AoA 
and AoD:

∂2�opt

∂aM,�∂aB,�

= − ∂

∂aM,�

(
∂AH

∂aB,�

)X−1A+ ∂AH

∂aB,�

X−1 ∂X

∂aM,�

X−1A

− ∂ HA

∂aB,�

X−1 ∂A

∂aM,�

+ ∂AH

∂aM,�

X−1 ∂X

∂aB,�

X−1A

−AHX−1 ∂X

∂aM,�

X−1 ∂X

∂aB,�

X−1A

+AHX−1 ∂

∂aM,�

(
∂X

∂aB,�

)X−1A

−AHX−1 ∂X

∂aB,�

X−1 ∂X

∂aM,�

X−1A

−AHX−1X−1 ∂X

∂aB,�

X−1 ∂A

∂aB,�

− ∂AH

∂aM,�

X−1 ∂A

∂aB,�

+AHX−1 ∂X

∂aM,�

X−1 ∂A

∂aB,�

−AHX−1 ∂
(

∂A
) (25)
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