

Material Development to Enhance Reversible Solid Oxide Cells for Hydrogen Production and Power Generation

Ubong Essien and Dragos Neagu

Department of Chemical and Process Engineering, University of Strathclyde

12th July 2023

Introduction

Solid Oxide Cells

Introduction

The Reversible Solid Oxide Cell (RSOC)

Introduction

A Net-zero or Hydrogen Economy

Scottish Government. Draft Hydrogen Action Plan. (2021)

Background of the Study

The Need for a Novel Perovskite Material

Problem

The Challenges of RSOCs

- The Multiple Electrochemical Requirements of RSOCs:
 - □ High ionic and electronic conductivity,
 - □ High catalytic activity.
- Cell components' stability

Goal

Highly efficient RSOCs

Background of the Study

The Exsolution Process

Great Advantage

Anchored

nanoparticles

Strained

nanoparticles

Particles properties (shape, size, ...) tunability

Research Focus

This research aims to develop a novel perovskite material capable of surface and bulk exsolution to fulfil the multiple electrochemical requirements of RSOCs.

Target Material

An A-site deficient perovskite of the family with a $(Sr,Ca)_{1-\alpha}(Ti,Fe,Ni)O_3$ stoichiometry.

Materials and Method

Materials selection and study of parameters related to the new perovskite material synthesis

 ✓ Characterization of potential precursor materials: Fe(NO₃)₃.9H₂O, Ni(NO₃)2.6H₂O, CaCO₃, SrCO₃, TiO₂, CuNO₃

Scanning electron microscopy (SEM),

Materials and Method

Selection of synthesis route from the preliminary study on the precursor materials

A combined TG curve, DSC curve, and temperature response for (a) $Fe(NO_3)_3.9H_2O$ and (b) SEM image of $Fe(NO_3)_3.9H_2O$

9

Materials and Method

Selection of synthesis route from the preliminary study on the precursor materials

Key findings from TGA of the precursor materials, predicting 1000 °C as the calcination temperature for the novel perovskite

Materials and Method

Selected synthesis route: a modified solid-state synthesis method

Materials and Method

Reduction of Perovskite Samples.

A reduction furnace set up for exsolution analysis, recently setup by our research group

Pelleting and sintering at 1100 °C enabled trace phases like SrMoO and FeNiO to diffuse into the desired perovskite crystal structure.

 \times

Result

Result

SEM Image of Sample after Reduction

$Sr_{0.95}Ti_{0.3}Fe_{0.5}Mo_{0.1}Ni_{0.1}O_3$

- Reduction at 600 °C for 1 hr.
- Exsolution was observed
- Particle size analysis revealed an average exsolved particles size: 33 nm
- Some particles emerged fully to the surface and look much bigger than those partially emerging.

Result

$Sr_{0.95}Ti_{0.3}Fe_{0.5}Mo_{0.1}Ni_{0.1}O_3$

Reduced at **800** °C for **1 hr**.

-

- Particle size analysis revealed an average exsolved particles size: 68 nm
- More particles fully emerged on the surface
- The high exsolution rate at 800 °C can be linked to the high-temperature effect.

Conclusion

- The preliminary study on the precursor materials revealed their decomposition products as valuable oxides in the novel perovskite material.
- The modified solid-state synthesis method
 - achieves homogeneous mixing of the precursors,
 - minimising phase separation in the perovskite, and
 - enabled further optimisation of the synthesised perovskite structure.
- SEM Image of Sr_{0.95}Ti_{0.3}Fe_{0.5}Mo_{0.1}Ni_{0.1}O₃ after reduction has shown that engineering A-site deficiency in SrTiFeMoNi perovskite can significantly improve exsolution in the materials.

Future Work

- Synthesizing other compositions of the perovskite for further studies and comparison;
- Characterisation of all the synthesized perovskites to understand the composition of the exsolved particles;
- Fabricate SOC electrodes from the synthesized perovskites for electrochemical tests;
- Modelling the exsolution process in the developed perovskite for properties tuning and performance optimisation.

Acknowledgement I acknowledge

Dr Dragos Neagu

RSE

DiTo-H2

18

listening

ubong.essien@strath.ac.uk

for