
Refinements of Some Iterative Methods for Solving Linear System of Equations 

Khadeejah James Audu and James Nkereuwem Essien 

Department of Mathematics, Federal University of Technology, Minna, Nigeria. 

Corresponding email: k.james@futminna.edu.ng 

 

Abstract: 

The efficient and accurate solution of linear systems of equations is a fundamental problem in 

various scientific and engineering fields. In this study, we focus on the refinements of iterative 

methods for solving linear systems of equations (𝐴𝑘 = 𝑏). The research proposes two methods 

namely, third refinement of Jacobi method (TRJ) and third refinement of Gauss-Seidel (TRGS) 

method, which minimizes the spectral radius of the iteration matrix significantly when compared 

to any of the initial refinements of Jacobi and Gauss-Seidel methods. The study explores ways to 

optimize their convergence behavior by incorporating refinement techniques and adaptive 

strategies. These refinements exploit the structural properties of the coefficient matrix to achieve 

faster convergence and improved solution accuracy. To evaluate the effectiveness of the proposed 

refinements, numerical examples were tested to see the efficiency of the proposed TRJ and TRGS 

on a diverse set of linear equations. We compare the convergence behavior, computational 

efficiency, and solution accuracy of the refined iterative methods against their traditional 

counterparts. The experimental results demonstrate significant improvements in terms of 

convergence rate and computational efficiency when compared to their initial refinements. The 

proposed refinements have the potential to contribute to the development of more efficient and 

reliable solvers for linear systems, benefiting various scientific and engineering applications. 
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1. Introduction 

Generally, a linear system of equation can be denoted as; 

Ak b=         (1) 

where ,n n nA b   and nk  . If A  has a non-vanishing diagonal elements; then, the 

iteration process is obtained by splitting A  into the following form; 

                                                  A D L U= − −                                                             (2) 

In the realm of numerical analysis, the quest for efficient methods to solve linear systems of 

equations remains a fundamental pursuit. Despite significant advancements in iterative techniques, 

there exists a notable research gap in the refinement of existing methods to enhance their 

convergence rate, stability, and applicability to various types of matrices. This study is motivated 

by the imperative to address this research gap and contribute to the ongoing evolution of iterative 

methods for linear system solutions. By refining established iterative approaches, we aim to 

improve their performance and broaden their utility across diverse computational contexts. This 
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research is particularly relevant given the pervasive nature of linear systems in scientific 

computing, engineering, and various other fields where accurate and efficient solutions are 

paramount. A comprehensive review of the literature reveals notable contributions in this domain. 

Audu et al. (2021a) introduced the Extended Accelerated over relaxation (EAOR) method, 

demonstrating its efficacy in solving large and sparse linear systems. Building upon this work, 

Audu et al. (2021b) further refined the EAOR method, enhancing its capabilities for linear system 

solutions. Additionally, Dafchahi (2008) proposed a new refinement of the Jacobi method, while 

Eneyew et al. (2019) and Eneyew et al. (2020) presented second refinements of the Jacobi and 

Gauss-Seidel iteration methods, respectively. These studies provide valuable insights into the 

refinement of iterative techniques, laying the groundwork for further exploration and optimization 

in this area. With this backdrop, our research endeavors to contribute novel refinements to existing 

iterative methods for solving linear systems of equations. By leveraging insights from previous 

works and exploring innovative modifications, we seek to advance the state-of-the-art in numerical 

algorithms, ultimately facilitating more accurate and efficient solutions to a wide range of 

computational problems. 

The Jacobi and Gauss-Seidel methods, commonly used for solving systems of linear equations, 

encounter challenges related to their convergence rates, computational time, and applicability. 

Addressing these issues, this research introduces modifications to enhance the performance of the 

second refinements of the Jacobi and Gauss-Seidel methods. The proposed approaches, termed as 

the "Third refinement of Jacobi (TRJ) method" and "Third refinement of Gauss-Seidel (TRGS) 

method," aim to significantly reduce computation time, spectral radius, and the number of 

iterations while improving the convergence rate. This study seeks to improve the efficiency of 

iterative methods, specifically the Jacobi and Gauss-Seidel techniques, for solving linear systems 

of equations by achieving faster convergence towards accurate solutions. The research objectives 

encompass the derivation and testing of two modified approaches: The Third Refinement of Jacobi 

(TRJ) method and the Third Refinement of Gauss-Seidel (TRGS) method. Through these 

objectives, the study aims to evaluate the convergence properties of TRJ and TRGS and perform 

numerical tests to validate their effectiveness. Overall, by introducing these refinements, the 

research endeavors to enhance the computational performance and accuracy of iterative methods 

in solving linear systems of equations. 

 

2. Methodology 

2.1  Derivation of Third – Refinement of Jacobi method 

 Combination of (1) and (2) in iteration format gives; 

( ) Dk L U k b= + +                                           (3) 

( ) ( ) ( )1 1 1     
n n

k D L U k D b
+ − −= + +         (4) 

Remodeling (1) as D A L U− = +  and substituting into (3) yields; 

( ) ( ) ( )( )1 1 1 1 1 1       
n

k D L U k D b D b A D L U k D b
+ − − − − − = + + + − + +

    (5) 

Putting (4) in k ̃ of (5) gives; 



( ) ( ) ( )( )1 1 1 1 1 1       
n

k D L U k D b D b A D L U k D b
+ − − − − − = + + + − + +

 
  (6)  

  Remodeling (6) yields; 

( ) ( ) ( ) ( ) ( )( )
231 1 1 1 1n n

k D L U k I D L U D L U D b
+ − − − −  = + + + + + +    

 (7)  

Using (5) as a basis of refinement of Jacobi method, where ( )1n
k

+
 is the ( 1)thn+  approximation of 

RJ. Thus, an improvement on (7) yields;  

( ) ( ) ( ) ( ) ( )( )

( )( )

241 1 1 1

3
1 1

n n
k D L U k I D L U D L U

D L U D b

+ − − −

− −

 = + + + + + + +







+

   (8) 

Equation (8) is called Third-Refinement of Jacobi method and the iteration matrix is given as; 

( )
4

1D L U− +  . This method will converge if the spectral radius is less than 1, i.e. ( ) 1TRJ   . 

2.2  Derivation of TRGS Method 

 

 From (2), re-arranging and substituting in (1) gives;  

  ( )             D L k Uk b − = +       (9)
 

( ) ( ) ( ) ( )
1 11

 
n n

k D L Uk D L b
− −+

= − + −     (10) 

Remodeling (2) as  U D L A= − − , and replacing in (9) yields; 

( ) ( ) ( ) ( )( )11 1 1
     

n n n
k k D L b Ak

−+ + +
= + − −     (11) 

Putting (10) in k ̃ of (11) gives; 

( ) ( ) ( ) ( ) ( )
2

1 1 11n n
k D L U k I D L U D L b

− − −+    = − + + − −
   

               (12)   

Remodeling (12) yields; 

 

( ) ( ) ( )

( ) ( )( ) ( )

3
11

2
1 1 1

                       

n n
k D L U k

I D L U D L U D L b

−+

− − −

 = −
 

 
+ + − + − −
  

   (13)  

Using (11) as a basis of refinement of Gauss-Seidel method, where 
( )1n

k
+

  is the ( 1)thn+   

approximation of RGS. Thus, an improvement on (13) yields;  



( ) ( ) ( ) ( ) ( )( )

( )( ) ( )

24
1 1 11

3
1 1

                                                   

n n
k D L U k I D L U D L U

D L U D L b

− − −+

− −

 = − + + − + − +
  


− −



   (14) 

Equation (14) is called TRGS and the iteration matrix is represented as ( )
4

1
D L U

− −
 

. 

  

2.3  The Algorithm for TRJ 

To solve Ak b=  using TRJ Method, the following steps are adopted 

Step 1: Choose an initial guess   ( )0
k   to depict the starting point. 

Step 2: Set S= ( )
4

1D L U− +   and 

 Set P= ( ) ( )( ) ( )( )
2 3

1 1 1 1I D L U D L U D L U D b− − − − + + + + + +
  

  

Step 3:  Compute  
( 1)nki S+ =  

                         
( )nki P+ , for i =  0, 1, 2,…,m. 

Step 4:  Update   1n n= +  for  n =0, 1, 2,…, m. 

Step 5: Terminate at k=exact solution. 

 

2.4  The Algorithm for TRGS Method 

 

To solve Ak b=   using the derived TRGS Method, the following steps are adopted  

Step 1:  Choose an initial guess ( )0
k   to depict the starting point. 

Step 2: Set H= ( )
3

1
D L U

− −
 

 and 

  Set V= ( ) ( )( ) ( )( ) ( )
1

2
1 1

3
1

I D L U D L U D L U D L b
− −− − 

+ − + − − −
  

+   

Step 3:  Compute  
( 1)nki S+ =  

                             
( )nki P+ , for i =0, 1, 2, … , m. 

Step 4: Update n=n+1 for n=0, 1, 2, … , m. 

Step 5: Terminate at k =exact solution. 

 

3. Numerical Experiment and Results 

In this research, we validate the proposed methods with numerical examples of;  



M  Matrix, SDD  Matrix, SPD Matrix and 2-Cyclic Matrix. 

 

 

 

 

 



 

The results of the study highlight the significant improvements achieved through the introduction 

of the Third Refinement of Jacobi (TRJ) and Third Refinement of Gauss-Seidel (TRGS) methods.  

 

 

 

 



Discussion of the Results: 

Firstly, the numerical experiments revealed that TRJ and TRGS outperformed both the traditional 

Jacobi and Gauss-Seidel methods, as well as their existing refinements, in terms of computational 

efficiency and speed. This suggests that the proposed modifications successfully addressed the 

limitations of the original methods, enabling faster convergence towards accurate solutions. One 

particularly noteworthy finding was the drastic reduction in the spectral radius of the proposed 

methods. This reduction indicates a more stable behavior and faster convergence, which is crucial 

for practical applications where efficiency and reliability are paramount. By minimizing the 

spectral radius, TRJ and TRGS demonstrated enhanced convergence rates, making them more 

suitable for a wide range of computational tasks. Overall, the results of the study demonstrate the 

effectiveness of TRJ and TRGS in providing faster and more accurate solutions to linear systems 

of equations. These findings not only contribute to the advancement of iterative methods in 

numerical analysis but also have practical implications for various fields where efficient solution 

techniques are required. 

 

4. Conclusion 

In this study, we introduced the Third Refinement of Jacobi (TRJ) and Third Refinement of Gauss-

Seidel (TRGS) methods as enhanced versions of the traditional Jacobi and Gauss-Seidel 

techniques for solving linear systems of equations. Through extensive numerical experiments, the 

results demonstrated that the proposed algorithms outperform both the original Jacobi and Gauss-

Seidel methods, as well as their existing refinements, in terms of computational efficiency and 

speed. One notable improvement observed was the significant reduction in the spectral radius of 

the proposed methods, leading to an enhanced convergence rate and suitability for a broader range 

of computational tasks. This outcome underscores the effectiveness of TRJ and TRGS in providing 

faster and more accurate solutions to linear systems of equations, thus representing a promising 

advancement in iterative methods for numerical analysis. 
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