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Abstract 

Water supply network are prone to leakages resulting to a loss of large volume of water. Hence it is required to 

implement a leak detection/prediction technique through water simulation and machine learning. The main 

objective of this study is to model water loss in the distribution network of Shiroro District Metered Area. This is 

important because leak is a measure of efficiency of water distribution network. The hydraulic machine, EPANET 

was used for the hydraulic modelling of the networks.  Emitters were used to simulate leakages at thirty-seven 

nodes in water distribution system. Physical measurement was carried out also at thirty-seven nodes in the 

network using measuring can, hose, GPS, meter, stop clock.  Nash-Sutcliffe simulation efficiency (ENS) indicates 

how well the plot of observed versus simulated value fits the 1:1 line. The value of efficiency of 1 (when E = 1) 

means there is a perfect match of modelled discharge relative to the observed data. The observed and model data 

were loaded into NSE model using coefficient of 0.1, 0.15 0.2 and 0.3. The performance of the model has suggested 

that using the emitter coefficient of 0.2 can model the study area. Having established this, the values of the model 

could be used to predict leakages in the DMA using Artificial neural Network, ANN. This study was based on 

Multi-Layer Perception which was trained and tested using DMA flow data. The objective was to develop an 

ANN-based model using flow data generated in the selected DMA in Minna, Niger State, Nigeria. The input 

variables are elevation, base demand, demand and pressure of the network. The data was trained tested and 

validated in neural network. The study has shown 17.15% of loss from the nodes in the network. The sum of square 

errors 13.4% and 5.1% respectively for training and testing of the variables in the machine learning. R square is 

97%. The model developed can be used in any district metered area of a distribution network to estimate or predict 

loss. The developed model is expected to help set the direction of improvement of the analysis of water distribution 

system and optimal operation of water supply in the studied DMA and other DMAs. 
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Introduction 

Water distribution systems are primary means of safe drinking water supply to the system. Water 

produced and delivered to the distribution system is intended for the customers or users. However, a 

significant amount of water is lost in the system before it gets to its intended users as leak which is 

termed a physical component of Non-Revenue Water. The occurrence of leaks depends on the factors 

like materials, composition, age, pressure and joining. Due to complexity of the distribution system, it 

may be difficult for the utility personnel to identify and fix all the leaks. Hence the need for the 

development of methodology to identify the leaks using model by integrating observation data 

Current statistical surveys indicated that NRW in developing countries is around 45 to 50% that is half 

of the total system input volume. A high level of apparent losses reduces the principal revenue stream 

to the utility.  Zabidi et al. (2020) reported that losses in water distribution system in some urban areas 

in Nigeria is as high as 50%. High levels of water losses are indicative of poor governance and poor 

physical condition of the Water Distribution System, WDS, (Mamlook et al., 2003). The amount of 

water loss in water distribution systems varies widely from one system to another, from as low as 3–7 

% to as high as 50 % of distribution input volume in the well-maintained systems of developed countries 

and less maintained system in developing countries respectively (Lambert, 2002). 

Regular maintenance of infrastructure also helps to maintain water efficiency levels and is more cost-

effective than rehabilitation (Makaya,2014).  Many water distribution systems in developing countries 

are operated under intermittent conditions (WWAP, 2014). As a result, water supply efficiency in these 

countries is compromised.  
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Losses from leaks that are discovered and repaired should be measured to determine the rate of loss and 

the total volume lost during the life of the leak. Three methods are suggested (from Leak Detection 

Productivity ‘’) by Douglas (AWWA California Nevada section, 1992). 

1. Use a container of known volume. 

2. Use a hose and a meter. 

3. Calculate losses using modified orifice and friction formula. 

An effective leakage management strategy should take into account the pressure dynamics of a water 

distribution network. This is because pressure plays a pivotal role in enhancing the magnitude of water 

leakage. This is because there is a physical relationship between leakage flow rate and pressure. Thus, 

the pressure exerted by either gravity or by water pumps results in a corresponding change in leakage 

rate. The frequency of new pipe bursts is also a function of pressure such that the higher or lower the 

pressure, the higher or lower the leakage. Pressure level and pressure cycling strongly influence burst 

frequency. Some of the most important ways of managing pressure is by either using pressure reducing 

valves (manual or automatic) or by using variable speed pump controllers. Under normal circumstances 

a pressure reducing valve is used to maintain a fixed downstream pressure regardless of the upstream 

pressure dynamics. The leakage from water distribution systems has been shown to be directly 

proportional to the square root of the distribution system pressure as indicated by the relationship 

(Wallingford, 2003).  

Evidence shows that the rate of increase of bursts is more than linearly proportional to pressure. Indeed, 

it has even been suggested that there could be a cubic relationship, i.e. burst frequency proportional to 

pressure cubed (Farley and Trow, 2003).  

Most software such as EPANET, is a widely used water distribution network simulator developed by 

the Environmental Protection Agency (EPA), requires that sub-components for distribution storage and 

piping be inputted with the necessary information.  

Nash-Sutcliffe simulation efficiency (ENS) indicates how well the plot of observed versus simulated 

value fits the 1:1 line. The Nash–Sutcliffe model efficiency coefficient is used in assessing the 

predictive power of hydrological models. Nash–Sutcliffe efficiency ranges from infinity to 1. The value 

of efficiency of 1 (when E = 1) means there is a perfect match of modeled discharge relative to the 

observed data. The value of efficiency equal to (when E = 0) shows that the predictions of model are as 

accurate as the mean of the observed data, whereas an efficiency below zero (E < 0) occurs when the 

observed mean is a better predictor than the model or, in other words, when the residual variance, is 

larger than the data variance (the denominator). Therefore, the closer the model efficiency is to 1, the 

more accurate the model is (Karthikeyan et al. 2013). And according to Dongquan et al. (2009), an ENS 

greater than 0.5 indicates acceptable model performance for model simulation. 

Artificial Neural Networks (ANN) comprise of a network of neurons and take the cue from their 

biological counterparts. ANNs have found wide application in modelling water resources management 

problems including leakage detection, water distribution network optimisation, water pipeline 

replacement and rehabilitation, water demand forecasting, and pressure monitoring. Hamideh et al. 

(2021) proposed a new method to locate a leakage in WDNs using feedforward artificial neural 

networks (ANNs).   

Methodology 

Water Distribution Network Simulation 

The hydraulic machine, EPANET was used for the hydraulic modelling of the networks  

Other software machines employed are for data collection to accomplish this assignment include: 

ArcGIS, AutoCAD and Google Earth Pro.  
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Shapefiles from digitized map of transmission and distribution mains, reservoirs, tanks and valves were 

loaded to AutoCAD all geo referenced. These shape files loaded into AutoCAD were converted to 

metafile and used as backdrop in EPANET. The simulated backdrops were saved as NET File or INP 

file in EPANET interface 

The shapefiles were as well converted to KML and superimposed in google earth to obtain nodal 

elevation values. The shapefiles were equally loaded in AutoCAD and then converted to DXF file for 

terrain extractor to assign the nodal elevation values as check for nodal values. TCX converter utilized 

as well to verify correctness of key nodal point values which were viewed in excel sheet.. 

Comprehensive data analyses were carried out, Geo referenced network maps successfully loaded on 

to EPANET interface for modelling. 

Model Calibration  

Nash-Sutcliffe simulation efficiency (ENS) indicates how well the plot of observed versus simulated 

value fits the 1:1 line. The Nash–Sutcliffe model efficiency coefficient is used in assessing the 

predictive power of hydrological models, and it is defined as  

    (1) 

Where;  

Qo = mean of observed discharges, and  

Qm = modeled discharge and  

Qot = observed discharge at time t.  

Nash–Sutcliffe efficiency ranges from infinity to 1. The value of efficiency of 1 (when E = 1) means 

there is a perfect match of modeled discharge relative to the observed data. The value of efficiency 

equal to (when E = 0) shows that the predictions of model are as accurate as the mean of the observed 

data, whereas an efficiency below zero (E < 0) occurs when the observed mean is a better predictor than 

the model or, in other words, when the residual variance (numerator in equation (1), is larger than the 

data variance (the denominator). Therefore, the closer the model efficiency is to 1, the more accurate 

the model is (Karthikeyan et al. 2013). And according to Dongquan et al. (2009), an ENS greater than 

0.5 indicates acceptable model performance for model simulation. 

Neural network construction predicts the independent variable giving the available information of 

independent variables, Neural networks are made up of a series of layers with each layer comprising at 

least one neuron. While intermediate layers (hidden layers) perform the data processing functions of 

the network, the first and last layers input and output variables respectively. Within the hidden layers, 

weights to the neurons are adjusted by training the network in accordance with the stipulated learning 

rule (Zealand et al., 1999).  

 
Figure1: Neural Network Diagram 
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3Model Calibration using NASH Sutcliffe Efficiency Coefficient and Artificial neural network  

Emitters were used to simulate leakages at nodes. This is given by the equation  

𝑄 = a * Pb               (2) 

Where Q = leakage (Qleak), a and b are discharge coefficient and emitter exponent respectively and  

P is the pressure at the node. 

 

Figure 2: EPANET interface of Shiroro DMA showing the selected nodes for analysis 

Result 

Modelled and Observed Data Test in NS 

Analyses at 8 to 11th hours 

Using the leak coefficients of 0.1, 0.15, 0.2 and 0.3 in the emitter equation  

Qleak = a * PN   at 8 and 9 hours, observed and modelled data loaded in the NASH provided the NASH 

Sutcliffe Efficiency Coefficients of -4.552, 0.092, 0.73, 0.187 and -3.777, 0.143, 0.68 and -0.07. NSE 

at 10 and 11 hours are -2.573, 0.286, 0.582, -0.288 and -0.689, 0.256, 0.516 and -0.826 These values 

deviated from the required standards of perfect or nearly perfect match except at 0.2 which gives a 

nearly perfect match 

The performance of the model has suggested that using the emitter coefficient of 0.2 can model the 

study area.  Table 1 shows the model performance in NSE 

Table 1: Summary of the Model performance in NSE 

 a 

Hour 0.1 0.15 0.2 0.3 

8 -4.552 0.092 0.73 0.187 

9 -3.777 0.143 0.68 -0.07 

10 -2.573 0.286 0.582 -0.288 

11 -0.689 0.256 0.516 -0.826 

 

Summary of the of the modelled and measured leak is shown in Table 2 
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Table 2: Simulated and Observed Leaks at the site 

  

Base 

Demand 

(m3/h) 

Demand 

(m3/h) 

Pressure 

(m) 

Simu_Qleak 

(m3/h) 

Obs_Qleak 

(m3/h) 

249 0.87 1.67 16.08 0.8 1 

242 0.87 0.87 24.16 1 0.7 

252 3.86 4.61 13.88 0.7 0.8 

253 0.87 1.59 12.83 0.7 0.6 

250 0.87 1.65 15.32 0.8 0.1 

252 3.86 4.59 13.28 0.7 0.9 

252 0.87 1.6 13.27 0.7 1 

243 0.87 1.81 22.06 0.9 1 

254 3.86 4.51 10.53 0.6 0.5 

253 0.87 1.55 11.53 0.7 0.6 

252 0 0.72 12.79 0.7 0.6 

252 0 0.71 12.72 0.7 0.8 

254 0.87 1.52 10.53 0.6 1.1 

254 3.86 4.51 10.55 0.6 0.8 

251 3.86 4.59 13.33 0.7 0.6 

251 3.86 4.6 13.67 0.7 0.6 

0 3.86 7.11 264.68 3.3 3 

248 0.87 1.69 16.72 0.8 0.8 

246 0.87 1.74 18.71 0.9 1 

Having established this, the values of the model can now be used to predict leakages in the DMA using 

Artificial neural Network, ANN. The study has shown 17.1% of loss in the network.  

Table 3: Summary of flow logging data 

Elevation 

(m)  

Base 

Demand 

(m3/h  

Demand 

(m3/h) 

Pressure 

(m)  

Simu_Qleak 

(m3/h) 

248 0.87 1.69 16.72 0.8 

246 0.87 1.74 18.71 0.9 

246 0.87 1.74 18.71 0.9 

252 0.87 1.58 12.71 0.7 

251 0.87 1.61 13.62 0.7 

248 0.87 1.69 16.61 0.8 

250 0.87 1.63 14.55 0.8 

249 0.87 1.66 15.52 0.8 

255 3.86 4.47 9.19 0.6 

247 3.86 4.69 17.14 0.8 

254 3.86 4.5 10.29 0.6 

248 3.86 4.67 16.29 0.8 

Table 4: Model Validation Result in ANN 

Elevation 

(m) 

Base 

demand 

(m3/h) 

Actual 

Demand 

(m3/h) 

Pressure 

(m) 

Leak 

(m3/h) 

MLP_PredictedValue 

(m3/h) 

249 0.87 1.67 16.08 0.8 0.79 

242 0.87 0.87 24.16 1 0.98 

252 3.86 4.61 13.88 0.7 0.7 

253 0.87 1.59 12.83 0.7 0.7 

250 0.87 1.65 15.32 0.8 0.77 

248 0.87 1.67 15.89  0.8 

246 0.87 1.72 17.89  0.85 

246 0.87 1.72 17.89  0.85 

252 0.87 1.56 11.89  0.69 

251 0.87 1.59 12.8  0.72 
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In this model calibration, sum of square errors for training and testing are 13.45% and 5.1% 

respectively. 

The sum of square errors for samples trained and tested is depicted in Table 5 Table 6 indicate the model 

summary in percentages of the valid samples.  

Table 5: Model Summary 
Training sum of square error  Testing sum of square error 

  0.051 

Table 6: Case Processing Summary 

Training samples  Testing 

samples 

Validity % trained % tested % valid Samples excluded 

83 28 111 74.8 25.2 100 37 

The predicted and the real values of leaks are depicted in Figure 3 

 

Figure 3: Real loss and predicted values of loss 

The result showed that the model built can estimate the amount of leak, given elevation, base demand, 

demand, pressure and head as variables. This can be useful for water utilities in pipe inspection and 

maintenance. The value of R2 indicates the model is doing well in terms of prediction 

Conclusions  

The main objective of this study is to model water loss in the distribution network of Shiroro District 

Metered Area. The model developed can be used in any district metered area of a distribution network 

to estimate the loss. R2 linear .97% The errors are 13.4% and 5.1% respectively for training and testing 

of the variables in the machine learning. The input variables are elevation, base demand, demand and 

pressure of the network. The developed model is expected to help set the direction of improvement of 

the analysis of water distribution system and optimal operation of water supply in the studied DMA and 

other DMAs. This study has shown 17.1% of physical or real loss as NRW. This study has shown 17.1% 

of physical or real loss as NRW. 
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