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Abstract—Critical Infrastructure (CI) are nowadays linked 

with IOT devices that communicate data through networks to 

achieve significant collaboration. With the progress in internet 

connectivity, IOT has disrupt numerous aspects of CI 

comprising communication systems, power plants, power grid, 

gas pipeline, and transportation systems. As a disruptive 

paradigm, the IOT and Cloud computing utilizing Smart IOT 

devices equipped with numerous sensors and actuating 

capabilities play significant roles when deployed in CI 

surroundings with the aim of monitoring vital observable 

figures consisting of flow rate, temperature, pressure, and 

lighting situations. Over the years, oil pipeline infrastructure 

have been the main economic means for conveying refined oil to 

assembly and distribution outlets. Though damages to the 

pipelines in this area by exclusion have influence the normal 

transport of refined oil to the outlets across the country like 

Nigeria which has influence the stream of income and damages 

to the environment. Reinforcement Learning (RL) approach for 

infrastructure reliability monitoring have receive numerous 

consideration by researchers denoting that RL centered policy 

reveals superior operation than regular traditional control 

systems strategies. Many of the studies utilised mainly 

algorithms for environment with discrete action and 

observation spaces unlike others with infinite state space. This 

study proposed a framework for critical infrastructure 

monitoring based on Deep Reinforcement Learning (DRL) for 

oil pipeline network and also developed a pipeline network 

monitoring (PNM) architecture with expression of the 

environment dynamics as Markov Decision Process. The sample 

observation space data and strategy for evaluation of the 

framework was also presented. 
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I. INTRODUCTION 

Regarded as a connected system, internet of things (IOT) 
comprises of several connected processing devices, gadgets, 
apparatus and persons that can communicate data through 
networks to realised meaningful collaboration. With the 
advancement in internet connectivity, IOT has disrupt several 
domain of critical infrastructure ranging from power grid, 
power plants, airports, transportation systems, gas pipeline 
and communication systems [1] [2] [3]. Despite its numerous 
advantages, the IOT network have seen large amount of data 
been generated by sensor devices which pose challenges for 
near real time processing and bandwidth issues [4] [5]. 

Infrastructures such as oil and gas pipeline, airports, 
health care systems, power plants, water treatment plants, and 
transportation systems are often regarded as Critical 

infrastructure (CI) which are considered vital for the smooth 
running of a nation’s economy [6] [7]. 

The connection of CI, IOT and the rapid development of 
the Internet are facilitating the deployment of strong and 
reliable results whereby the breakdown of a specific system 
thus results into a severe catastrophe [8] [9]. As a disruptive 
paradigms, IOT and Cloud computing utilising Smart IOT 
gadgets equipped with several sensors and actuating 
capabilities play vital role when deployed in CI environment 
with the aim of monitoring essential visible figures 
comprising of flow rate, temperature, pressure, and lighting 
situations [10]. 

Over the years, oil pipeline infrastructure have been the 
key economic means for conveying refined oil to assembly 
and distribution outlets. Though, damages to the pipelines in 
this area by exclusion have influence the regular movement 
of refined oil to the outlets across the country like Nigeria 
which has influence the stream of income and damages to the 
environment [11]. 

Reinforcement Learning (RL) approach for infrastructure 
integrity control have drawn the attention of several 
researchers over the years specifying that RL centered policy 
shows superior operation than regular tradition control 
systems policies. More researches includes the planning of 
maintenance strategies on an operating oil plant by state 
action reward state action (SARSA) algorithm to exploit the 
system accessibility and production efficacy.  

The utilization of several autonomous machines for armed 
trucks was likewise considered were the best maintenance 
time for individual element to reduce the system interruption 
by Monte Carlo RL was offered. Several of the studies 
utilised mainly algorithms for environment with discrete 
action and observation spaces not like majority of critical 
infrastructure services with endless state space [12]. This 
study present a framework for critical infrastructure 
monitoring based on DRL with sample observation space for 
the oil pipeline parameters and also formulate the PNM as a 
Markov Decision Process (MDP). The major contributions of 
the study is as follows: 

i. Developed an architecture for an oil pipeline 
monitoring Agent based on the DRL paradigm. 

ii. Formulated the PNM problem based on DRL 
framework as an MDP 

The study comprises of five segments that starts with 
introduction, related work, proposed framework and overview of 
DRL, evaluation approach and lastly the conclusion. 
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II. RELATED WORK 

CI such as oil and gas pipelines are critical facilities that 
needs regular monitoring for topmost functioning and safety 
for extended duration of time. The necessity for oil and gas 
transmission from production outlet to the receiving end have 
led to the rise of pipelines infrastructure manufactured 
globally with the oil and gas usage rate predicted to rise years 
ahead [13]. 

Contemporary society frequently depends on several CI 
that are substantially interlinked with one another and 
information distribution from one device to the other. This 
has resulted in the rise of critical infrastructure numbers thus 
rendering them susceptible to different dangers including 
regular operating breakdown [11]. 

Pipeline Infrastructure for transporting oil and gas is 
considered to be highly critical for a number of countries 
across the globe with several aging pipelines influenced by 
diverse distortions such as vandalism, corrosion and cracks 
resulting in the failure of the pipeline infrastructure [14] [15]. 
Several pipeline companies exploits different techniques for 
monitoring of the infrastructure which ranges from patrol 
near the Right of Way, monitoring acoustic sounds, actual 
time transient modeling, fibre optic sensing and pressure 
wave observation [16][17]. 

Studies reveal that the projected fatalities due to issues 
comprising transported fuel products using pipeline of longer 
distance has is commonly available across the world thereby 
raising the pipeline failure rates [18] [19]. The failures are 
normally intentional through vandalisation activities or 
natural cause like device failure and corrosion which results 
in financial losses and extreme environmental pollution, 
especially when the leak is not discovered early [18]. 

The authors in [20] utilized Deep learning approach for 
Real time CI protection in scenario of flood event. Even thou 
the study was able to help understand the dependencies 
among various CI and the severity of the current situation, it 
however did not examined a particular critical infrastructure 
as case study. 

The study by [21] centered on an effective failure with 
inducing generation of Cyber Physical systems using Deep 
Reinforcement Learning (DRL) approach. The study was 
able to propose a framework for achieving failure inducing 
input with no realization of the CPS parameters of history 
logs. The issues observed was that no analysis of a critical 
infrastructure identified. 

The authors in [22] proposed the use of deep 
reinforcement learning algorithm for anomaly detection in 
smart environment. The adopted algorithm used has the 
disadvantage of been a value based algorithm in comparison 
with Proximal Policy Optimization (PPO) or  twin delay deep 
deterministic policy gradient (TD3) algorithms that uses 
neural networks to fit both value and policy functions 
especially for continuous control task like the oil pipeline.  

More so, the study of [23] utilized Deep Reinforcement 
Learning for Interdependent Healthcare Critical 
Infrastructure Simulation to achieve Dynamic Varying 
COVID-19 scenario. Even thou the propose scheme shows 
promising results with regards to covid-19 case study, it was 
observed that it is limited to the healthcare sector. 

The study by [24] proposed a framework for intelligent 
and secure framework for cyber physical systems. The study 
was able to deliberate on part of machine learning for 
improvement of the cyber physical systems. Although the 

problem to be solved was in the area of security, there was 
still no clear explanation and illustration of the proposed 
framework utilizing the machine learning technique. 

The authors in [25] applied Swarm Based Deep Learning 
and Reinforcement based Q learning for 
Electroencephalography (EEG) Classification with Sparse 
Autoencoder. The study was able to propose a technique for 
efficient classification of epilepsy and schizophrenia from the 
EEG datasets. One of the major limitations of the proposed 
system is beside the application domain of the health sector, 
the use of Q learning has the limitation of handling large state 
space especially for environment with large state space or 
observation. 

The authors in [26] utilised Deep Reinforcement learning 
for redundancy alleviation for vehicular Collective awareness 
Services. While the study was able to obtain the best policy 
on redundancy alleviation utilizing deep Q network, the 
domain of application is the Vehicular environment. 

The study by [27] utilised DRL for dynamic spectrum 
access in the Multi-Channel Wireless Local Area Networks. 
The proposed DQN algorithm was used to address the 
Spectrum Access problem of a Wireless Local Area 
Networks. The observed limitation was that beside the 
applications of the algorithm in the aspect of Local Area 
network, the adopted DQN algorithm is a value based 
algorithm that does not clearly enhance the reward system. 

 

III. PROPOSED FRAMEWORK AND OVERVIEW OF DEEP 

REINFORCEMENT LEARNING 

The world has over the years witness massive disruption 
by IOT paradigm such that numerous tasks before thought 
difficult such as reliable management of assets are now 
feasible. The significance of pipeline reliability management 
has led to numerous assets and enterprises in realising IOT on 
pipeline infrastructure systems with the aim of minimising 
needless charges. The instant result of IOT application on 
pipeline infrastructure is a wide monitoring system that can 
offer reliable, real time information about numerous aspects 
of the pipeline state.  

CI monitoring is fundamentally a successive decision 
making problem whereby decisions have persistent effects. 
The monitoring decisions not only influence the present form 
of the asset, but their consequences remain throughout the 
infrastructure life duration. RL is an aspect of Artificial 
Intelligence (AI) involved with data focused modelling and 
resolving successive decision making demands under 
ambiguity. It comprises three unique features making it 
suitable for formulating the pipeline infrastructure 
monitoring. The features includes learning from historical 
and real time data and ability to handle delay effects and also 
interact and learn in a stochastic surrounding [28]. 

DRL as a branch of artificial intelligence is the mixture of 
RL and Deep Learning (DL) intended to mimic the thinking 
process of human’s. RL emphasizes on resolving consecutive 
decision making problems concerning numerous real world 
problems such as video games, driving, sports and portfolio 
optimization. The objectives bearing in mind the defined 
problems includes reaching destination safely, winning the 
game or reducing a product building amount. This involves 
taking actions and getting responses from the given 
environment about how close we are to approaching the 
define goal. Basically the changes that is often observed in 
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the environment and the various responses gotten often heads 
to the succeeding action to be taken[29]. 

The idea of RL can best be understood through the notion 
of an agent relating with an environment at a given state and 
taking critical actions under specific policies and getting 
some positive or negative rewards. The architecture of DRL 
is shown in Fig. 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Deep Reinforcement Learning Architecture [30] 

 

The DRL paradigm consists of several parameters that are 
used in developing various applications which are dependent 
on the discrete or continuous state space of applications 
scenario.  Key aspect of the RL problem which includes 
discount factor, rewards and Bellman equation are used for 
updating Q-Values [29] [30] [31] [32].  

 The basic form of Bellman equation is given in equation 
1 and as a result of the agent environment interaction, the 
agent gets a reward R(s, a) as shown in equation 2. One of the 
primary form of RL algorithm is the Q-learning Algorithm 
that utilizes a lookup table that maps the state and action sets 
at each time phase t. The basic Q learning at time t is given in 
equation 3. 
 

V(s) = Max (V (s′))     (1) 
V(s) = Max (R(s, a) + (V (s′)    (2) 

   Q (st, at) = rt+1 + rt+2 + rt+3…… rt+n        (3) 
where n = 1, 2, 3, 4……∞ 
 

To avoid the terms running to infinity and due to the 
uncertainty of the future rewards as the learning progresses, 
a discount factor gamma (γ) is introduce with the aim of 
discounting the future rewards. With the gamma symbol, 
equation (1) can be rewritten as shown in equation 4. Using a 
discounted factor less than 1 and raising an exponential term, 
the number will keep decreasing as the exponential term 
increases.  

Q (st , at) = rt+1 + γ rt+2 + γ2 rt+3…… rt+n  (4) 
Similarly, at time t+1, the Q learning equation is as shown 

in equation 5. It is worth nothing that part of equation 5 is 
included in equation 4 when the gamma is multiplied to it as 
seen in equation 6. Considering equation 6, equation 4 can 
further be simplified as shown in equation 7. Adjusting the term 
Q to reflect the aim of taking an action leading to the Max Q 

value at state t+1 will result in the Q-target equation given in 
8. 
Q (st+1 , at+1 ) = rt+2 + γ rt+3 + γ2 rt+4 +…… γnrt+(n+2)    (5) 
where n = 1, 2, 3, 4……∞ 
Q (st , at ) = rt+1 + γ[ rt+2 + γ rt+3 + γ2 rt+4  …… γn+1rt+n+2 ] (6) 
Q (st , at) = rt+1 + γ Q (st+1 , at+1)      (7) 
Q (st , at) = rt+1 + γ Max Q (st+1 , a)      (8) 

The Q target equation is the notion used in obtaining the 
values for a typical Q table and the mathematical form for 
updating the table is given in equation 9. The key notion 
regarding the error term in equation 8 is to regulate how fast 
or slow the Q table update is carried out with a learning rate 
attached to the error. Adding the learning rate parameter to 
equation 9 results in equation 10. 
QNew            QCurrent +Error     (9) 
QNew            QCurrent + α*Error    (10) 

With equation 9, a higher learning rate which is a tunable 
parameter will make the error term to regulate Q table quicker 
and a lower learning rate will make it slower. Similarly, the 
error term define the variance between the Q target values and 
the current Q values as shown in equation 11. Considering 
equation 8 and substituting equation 11 for the Q target 
equation results in equation 12 and 13 respectively: 
QNew            QCurrent + α [Q target – Qcurrent) (11) 
 
QNew            QCurrent + α [rt+1 + γ Max Q (st+1, a) – Qcurrent)
      (12) 
QNew            Q (st, at) + α [rt+1 + γ Max Q (st+1, a) – Q (st,at))
      (13) 

The equation 13 can be re-written as shown in equation 
14 to indicate it is an update process with no equal to sign.  

The equation 14 is the formal Q learning update equation 
which is use to update the table as given in table I. 

 
TABLE I. SAMPLE Q TABLE FOR OBSERVATION AND 

ACTION PAIRS 

 
Q (st , at )      Q (st , at ) + α[rt+1 + γ Max Q (st+1 , a ) – 
Q (st , at ) )     (14) 

 
The problem of continuous state space associated with most 

real world reinforcement learning has make the Q learning 
algorithm not practical enough due to the infinite number of 
observations [29]. This is resolved by introducing deep 
learning which acts as the function approximation to the 
reinforcement learning paradigm. For most problems, it is 
nearly unfeasible to symbolize the Q functions in table form 
consisting of individual states and action combinations. This 
has led to the development of neural networks which includes 
θ that acts as a constraint for approximating the Q values  
Q(s, a; θ) ≈ Q*(s, a) [29] [31] [32].  

Observations/States Actions 
 

Do Nothing Close the Valve Standby 

PR(0),FR(0),TP(0) Q(s,a) Q(s,a) Q(s,a) 

PR(1),FR(1),TP(1) Q(s,a) Q(s,a) Q(s,a) 

PR(2),FR(2),TP(2) Q(s,a) Q(s,a) Q(s,a) 

PR(3),FR(3),TP(3) Q(s,a) Q(s,a) Q(s,a) 

‘ ‘ ‘ ‘ 

‘ ‘ ‘ ‘ 

‘ ‘ ‘ ‘ 

PR(n),FR(n),TP(n)    
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A. PNM Problem Design and DRL Formulation 

The proposed pipeline network monitoring (PNM) agent 
consists of an IOT connected system to take sensor readings 
along the pipeline network which comprises pressure (PR), 
flow rate (FR) and temperature (TP). The goal of the 
monitoring agent is to ensure the monitoring parameters are 
in their optimal range especially during fluid pumping 
operations to avert leakages.  Usually, Pipeline leaks can be 
reliably modelled using mathematical dynamics of the flow 
in a gas or oil pipeline. Hence, the leak happening in a 
pipeline can be reliably projected by observing parameters 
such as changes in pressure, flow rates and temperature at the 
upstream and downstream regions of a pipeline following the 
a leak incidence.  

Incidence of leak essentially produces unexpected 
reduction of the flow characteristics that is proceeded by a 
limited restoration to its normal rate. Furthermore, the 
pressure pulsate moves upstream and downstream via the 
pipeline as wave. Hence, the transient pipeline flow model 
offers the possibilities for pipeline simulation and modelling. 

The goal of the proposed PNM Agent is to ensure prompt 
response of the state of the pipeline network at any given time 
on whether the valves should be closed, be in standby mode 
or remain opened. The system as shown in Fig. 2 comprises 
of a pipeline network environment, PNM Agent that will be 
guided by a policy, set of observations or states (PR, FR and 
TP), reward for taken an action (Do nothing, Close the Valve 
and Stand by) based on the observations and getting rewarded 
with a positive or negative number as the case maybe. 

 

 
Fig. 2. Proposed PNM Agent for an oil pipeline 

 

In line with the above proposed framework, an MDP in 
the context of state, action and possible reward for the agent 
is define. 
The state space includes observable parameters generated by 
the sensors such as pressure (PR), flow rate (FR) and 
temperature (TP). It is given formally as: 

St = [PR, FR, TP] ε S    (15) 
Action Space: The action space is defined by available 
actions that the PNM Agent can take in response of the 
system state. There are 3 distinct set of actions which includes 
(Do nothing, Close the Valve and Standby). It is formally 
given as: 

At = [Do nothing, Close the Valve and Standby] (16) 
Reward: At any point in time in DRL, the agent always gets 
a reward which can be positive or negative. The goal is to 
maintain the optimal parameter values at each time step 
during pumping activities. As such the agent obtains a 
positive reward for maintaining the optimal values within the 

specified time frame, negative reward if there are deviations 
from the optimal values and zero reward otherwise. 

The sample observation space which is generated by the 
environment using sensors of pressure flow, rate and 
temperature is as shown in table1. The data consist of initial 
values of 200, 400 and 20 for pressure, flow rate and 
temperature respectively. 

 
TABLE II. SAMPLE OBSERVATIONS FOR PROPOSED PNM AGENT 

 
 

IV. EVALUATION APPROACH 

The proposed framework will be evaluated considering the 
different aspect of the monitoring system which includes the 
environment, an agent and the reward mechanism to 
incentivize the agent based on the different actions performed 
at each time step. The environment in reinforcement learning 
settings represents the changes through which the agent 
relates with. This involves the environment receiving actions 
from the PNM agent and in turn outputting the observations 
considering the modelled dynamics of the environment. The 
environment then obtains a reward based on the actions taken 
to measure the agent’s performance in achieving the set 
objectives. The monitoring agent will be created considering 
one of several standard reinforcement learning 
algorithms and crafted policies for best performance.  
The training and validation will involve an agent interacting 
with an environment via frequent trial and error procedure 
with the aim of learning an optimal policy. During the 

Timestamp 

 

Pressure(PSI) Flow Rate (M3) Temperature (°C) 

2022-06-24 
12:51:10.456032 

200.000000      
    

500.000000 20.000000          

2022-06-24 
12:51:10.456032 

357.89473684   684.21052632   21.57894737  

2022-06-24 
12:51:10.456032 

615.78947368   868.42105263  23.15789474  

2022-06-24 
12:51:10.456032 

873.68421053  1052.63157895  24.73684211  

2022-06-24 
12:51:10.456032 

1131.57894737 1236.84210526  26.31578947  

2022-06-24 
12:51:10.456032 

1389.47368421
  

1421.05263158  27.89473684 

2022-06-24 
12:51:10.456032 

1647.36842105
  

1605.26315789  29.47368421  

2022-06-24 
12:51:10.456032 

1905.26315789
  

1789.47368421  31.05263158  

2022-06-24 
12:51:10.456032 

2163.15789474
  

1973.68421053  32.63157895  

2022-06-24 
12:51:10.456032 

2421.05263158 2157.89473684 34.21052632  

2022-06-24 
12:51:10.456032 

2678.94736842
  

2342.10526316  35.78947368  

2022-06-24 
12:51:10.456032 

2936.84210526
  

2526.31578947  37.36842105 

2022-06-24 
12:51:10.456032 

3194.73684211
  

2710.52631579  38.94736842  

2022-06-24 
12:51:10.456032 

3452.63157895
  

2894.73684211  40.52631579  

2022-06-24 
12:51:10.456032 

3710.52631579 3078.94736842 42.10526316  

2022-06-24 
12:51:10.456032 

3968.42105263
  

3263.15789474  43.68421053  

2022-06-24 
12:51:10.456032 

4226.31578947
  

3447.36842105  45.26315789  

2022-06-24 
12:51:10.456032 

4484.21052632
  

3631.57894737  46.84210526 

2022-06-24 
12:51:10.456032 

4742.10526316
  

3815.78947368  48.42105263  

2022-06-24 
12:51:10.456032 

5000.0000000 4000.0000000 50.0000000 
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training, the agent adjusts its policy parameters depiction 
with the aim of maximizing the long term reward. Metrics 
such as average reward, running mean and cumulative reward 
will be considered for the selected algorithms and for 

performance evaluation. 

V.  CONCLUSION 

CI are nowadays linked with IOT processing devices that 
can communicate data through networks to realised 
meaningful collaboration. With the advancement in internet 
connectivity, IOT has disrupt numerous aspects of CI 
consisting of power plants, power grid, gas pipeline, 
communication systems and transportation systems.  

The connection of CI, IOT and the rapid development of 
the Internet are enhancing the deployment of strong and 
reliable results whereby the failure of a particular system thus 
results into a severe damages. As a disruptive paradigm, the 
IOT and Cloud computing utilising Smart IOT gadgets 
equipped with several sensors and actuating capabilities play 
key roles when deployed in CI surroundings with the aim of 
monitoring vital observable figures consisting of flow rate, 
temperature, pressure, and lighting situations. 

Over the years, oil pipeline infrastructure have been the 
key economic means for conveying refined oil to assembly 
and distribution outlets. Though, damages to the pipelines in 
this area by exclusion have influence the regular movement 
of refined oil to the outlets across the country like Nigeria 
which has influence the stream of income and damages to the 
environment. 

RL approach for infrastructure reliability monitoring have 
receive several consideration by researchers over the years 
denoting that RL centered policy reveals superior operation 
than regular traditional control systems strategies.  
The use of numerous autonomous systems for armed trucks 
was equally considered were the best maintenance time for 
specific element to reduce the system interruption by Monte 
Carlo RL was offered by researchers over the years. Several 
of the studies utilised mainly algorithms for environment with 
discrete action and observation spaces unlike others with 
infinite state space. This study proposed a framework for 
critical infrastructure monitoring based on DRL with sample 
observation space for oil pipeline parameters and also 
formulate the PNM as a Markov Decision Process (MDP). 
The sample observation data and strategy for the evaluation 
of the framework was also presented. 
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