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ABSTRACT: Petrov-Galerkin finite element scheme for systematic analysis of the dynamics of a rising Taylor bubble 

and general free surface flow problems is derived and implemented. The validity of the scheme is confirmed by 

simulating the buoyancy-driven motion of a Taylor bubble through a stagnant Newtonian liquid in a vertical pipe 

characterised by dimensionless inverse viscosity number and Eötvös number of magnitude 111 and 189, respectively. 

Comparison of the numerical results for the steady state features defining the nose, film, and bottom regions around 

the bubble with the experiment shows a good agreement between the numerical simulation and the experiment. The 

percentage deviation of the numerical computed rise velocity, equilibrium film thickness, and stabilisation length 

ahead of the bubble from the experimental determined values are 8.4%, 2.3%, and 9.5%, respectively.  
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I. INTRODUCTION 
      

        Two-phase gas-liquid flows refer to the interactive flow 

of gas and liquid, as a result of which, the interface between 

the two phases is influenced by their motion. They are 

considered as the most complex of the four types of two-phase 

flows because of the deformable nature of the interface and the 

compressible nature of the gas phase. Different classes of 

interface distribution, termed flow regimes or patterns, can be 

defined in two-phase gas-liquid flows. In the vertical flow of 

gas and liquid through pipes, increasing the gas-phase flow rate 

at a constant liquid phase flow rate results in the following flow 

regimes: bubbly flow, slug or plug flow, churn flow and 

annular flow (Figure 1).  

Among the different flow patterns, slug flow has attracted 

a lot of attention in literature. It features periodic-like flow of 

large bullet-shaped elongated bubbles separated by regions 

containing liquid, which may have dispersed smaller bubbles. 

These large elongated bubbles are known as Taylor bubbles 

and have found applications in numerous processes such as the 

production and transportation of hydrocarbons, the emergency 

cooling of nuclear reactors, the flow of blood in blood vessels, 

the cooling of electronics, the eruption of volcano and the 

boiling and condensing process in power plants (Taha & Cui, 

2006; Magnini et al., 2013; Capponi et al., 2016; Pering & 

McGonigle, 2018). The near-periodicity nature of the gas-

liquid slug flow in vertical pipes has made the investigation of  

 

the behaviour of a single Taylor bubble a paradigm for 

understanding of the flow regime (Pringle et al., 2015).  

 

Figure 1: Flow patterns of gas-liquid flow in vertical pipes. Reproduced 

from Fazel (2017). 

      The morphology of a rising Taylor bubble is axisymmetric 

and can be divided into three different regions, namely nose, 

film, and bottom, with each region having definite features that 

characterise them. The nose region is nearly hemispherical 

while the body region is cylindrical surrounded by a falling 
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liquid film, which is either developing or fully developed. The 

bottom region comprises a tail subregion, which may be 

convex, flat, or concave, and may have a wake subregion, 

which could be laminar, transitional, or turbulent. 

      Several research works have been done to understand the 

hydrodynamics of Taylor bubble as it pertains to its different 

regions because of the numerous applications of the slug flow. 

While extensive experimental  and a number of theoretical 

studies (Bugg & Saad, 2002; Funada et al., 2005; Nogueira et 

al., 2006b; Llewellin et al., 2012; Fabre, 2016;Abubakar & 

Matar, 2021a, 2021b) have been carried out on the features that 

defined the aforementioned morphological regions, there are 

still much more to be understood, particularly in the area of 

systematically studying the influence of the dimensionless 

parameters that characterised the flow on the dynamics of the 

bubble and in the area of providing deep insight into the flow 

field around and within the bubble. In these areas, numerical 

simulations have proven to be an efficient and cost-effective 

means, and in recent years, there have been a number of 

computational studies that have attempted to address them 

(Bugg & Saad, 2002; Taha & Cui, 2006; Lu & Prosperetti, 

2009; Kang et al., 2010; Anjos et al., 2014; Lizarraga-Garcia 

et al., 2017).  

Complex numerical simulations of two-phase flows, or 

multiphase flows in general, are largely carried out based on 

either finite element or finite volume discretisation, with a 

large number of studies using the finite volume technique 

because of its simplicity. However, the advancement in mesh 

generation and adaptivity techniques, which allows refinement 

in regions that matters, makes the finite element approach a 

great choice, despite its rigorous mathematics. A number of 

numerical simulations of the dynamics of a large elongated 

bubble in liquid have been carried out based on finite element 

discretisation, particularly using Galerkin method (Feng, 2008, 

2009; Anjos et al., 2014). Studies have shown that Galerkin 

method of solving Navier-Stokes equations is only effective 

for low values of Reynolds number (Reddy & Gartling, 2010). 

For convection-dominated problems, the solution exhibits 

oscillations in the velocity field leading to non-physical results 

and eventually prevents the solution from converging. For a 

general problem, be it viscous, convection or surface tension 

dominated, streamline-upwind/Petrov-Galerkin (SUPG) 

stabilization technique is one of the recommended approaches 

to avoid the challenges associated with  convection-dominated 

problems (Reddy & Gartling, 2010; Pepper & Heinrich, 2017). 

In view of this, Petrov-Galerkin finite element scheme is 

developed and implemented within the open source finite 

element package FreeFem++ (Hecht, 2012) for a rising Taylor 

bubble in stagnant Newtonian liquids.  

 

II.  FINITE ELEMENT MODEL OF A RISING 

TAYLOR BUBBLE 
 

A. Problem Description 

      An axisymmetric Taylor bubble of constant volume Vb 

rising at a constant velocity of magnitude Ub in a liquid of 

constant density ρ, viscosity μ, and interfacial tension γ in a 

vertical pipe of radius R is considered. It is assumed that the 

density, ρg, and viscosity, μg, of the gas phase (bubble) are very 

small compared to those of the liquid. Therefore, the dynamics 

in the gas phase is approximated to a constant pressure Pb and 

the influence of the gas phase is therefore restricted to the 

interface between the liquid and the gas phase Γb. As a result, 

only the flow fields in the liquid phase and the bubble pressure 

are determined. This concept of constant bubble pressure in the 

gas phase is relatively common in the literature (Tsamopoulos 

et al., 2008; Fraggedakis et al., 2016) and has been shown to 

reasonably describe the dynamics of Taylor bubbles (Feng, 

2008; Lu & Prosperetti, 2009; Kang et al., 2010). Cylindrical 

coordinates system is adopted, so that the coordinates along 

and perpendicular to the axis of symmetry are z and r, 

respectively, with the origin of z chosen as the nose of the 

bubble. The problem therefore is to find the rise velocity (Ub) 

pressure (Pb), and shape of a Taylor bubble as it rises through 

a stagnant liquid of density (ρ), viscosity (μ), and interface 

tension (γ) in a pipe of diameter D = 2R so that its volume (Vb) 

remains constant.  

B.  Governing Equations and Boundary Conditions 

      For an isothermal flow, the motion of an incompressible 

Newtonian liquid in a domain Ω with boundary Γ at steady 

state is governed by the time-independent Navier-Stokes and 

continuity equations, supplemented with appropriate boundary 

conditions. By making the length, velocity, and pressure 

variables in these equations dimensionless with the 

characteristic length, velocity, and pressure scales, taken to be 

D, √𝑔𝐷 and ρgD, respectively, the dimensionless governing 

equations together with the boundary conditions in a frame 

translated with the velocity (ub) of the bubble nose become 

Momentum Equation 

(𝐮. 𝛁)𝐮 − 𝛁. 𝐓 = 𝟎   in    Ω          (1) 

Continuity Equation 

𝛁. 𝐮 = 0    in    Ω                         (2) 

where Ω denotes the domain of interest, u is the vector of the 

fluid velocity in the moving frame of reference, T is the stress 

tensor, and ∇ is the gradient operator in the cylindrical 

coordinate system. The constitutive equations that relate the 

stress tensor to the dependent variables of the system of 

equations are 

𝐓(𝐮, p) = −p𝐈 + 2Nf −1𝐄(𝐮)         (3a) 

𝐄(𝐮) = ½[∇(𝐮) + ∇(𝐮)T]                        (3b) 

where p represents the dynamic pressure, I is the unit tensor, 

Nf is the dimensionless inverse viscosity number defined in 

(4), E is the rate of deformation tensor, and (.)T is the transpose 

operator. 
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𝑁𝑓 =
𝜌(𝑔𝐷3)

½

𝜇
             (4) 

𝐸𝑜 =
𝜌𝑔𝐷2

𝛾
             (5) 

       Appropriate boundary conditions are prescribed at the 

boundary of the domain to make the problem well posed and 

the solution unique. The boundary denoted by Γ can be divided 

into Γin, Γout, Γwall , Γsym and Γb as shown in Figure 2. The 

subscripts in, out, wall, sym and b stand for the inlet, outlet, 

wall, symmetry, and bubble boundaries, respectively. At the 

wall, no-slip and no-penetration boundary conditions are 

imposed, while at the inlet, prescribed values are specified for 

the velocity components, which for the stagnant liquid are 

zeros. Boundary conditions of the types at the wall and inlet 

where the values of the primary variables are specified are 

called Dirichlet, or essential boundary conditions. At the outlet 

of the domain, a zero traction condition, also known as outlet 

condition, is imposed. 

 

Figure 2: Discretised simulation domain showing the boundaries. 

       The conditions prescribed at the symmetry axis are zero 

normal velocity and shear stress. Finally, at the gas-liquid 

interface, normal stress, tangential stress, and kinematic 

boundary conditions are imposed. In (10a), κ is the curvature 

of the interface, z is the axial component of the spatial 

coordinates of the interface, and Eo is the dimensionless 

Eötvös number defined in (5). It should be noted that gravity 

appears in (10a) as z because the hydrostatic component of the 

pressure has been subtracted from the total pressure, leaving 

only the hydrodynamic part. In addition, it is noteworthy that 

rb in (10c) represents the position vector of all points on the 

gas-liquid interface and n in (8) − (10) is the unit normal vector 

for the corresponding boundaries. 

Boundary conditions 

Wall:  

𝐮 = −𝐮b  on 𝛤𝑤𝑎𝑙𝑙           (6) 

Inlet:  

𝐮 = −𝐮b  on  𝛤in          (7) 

Outlet: 

𝐧. 𝐓 = 𝟎  on 𝛤𝑜𝑢𝑡                          (8) 

 

Symmetry axis: 

𝐮. 𝐧 = 0   on  𝛤𝑠𝑦𝑚                        (9a) 

𝐧. 𝐓 × 𝐧 = 𝟎   on 𝛤𝑠𝑦𝑚        (9b) 

Gas-Liquid Interface:    

𝐧. 𝐓. 𝐧 + Pb − z − Eo−1k = 0  on  𝛤𝑏       (10a) 

𝐧. 𝐓 × 𝐧 = 0    on  𝛤𝑏       (10b) 

d𝐫b

dt
. 𝐧 − 𝐮. 𝐧 = 0   on  𝛤𝑏        (10c) 

     A close look at the system of Eq. (1)−(10) shows that the 

system is similar to what would be obtained for free surface 

flow; the only difference is that bubble pressure (Pb), in 

equation(10a) replaces the ambient pressure, Pa, for free 

surface flow. Hence, the scheme that is described in Sections 

II.C and II.D can be adapted to solve free surface flow 

problems. For a consistent system, an additional equation is 

needed to determine the unknown dimensionless bubble 

pressure. The equation is the constraint that the dimensionless 

bubble volume, Vb, remains constant. Applying Gauss’ 

theorem to the divergence of the position vector, 

Vb +
2π

3
∮ [𝐫b. 𝐧]dΓbΓb

= 0           (11) 

C. Weak Formulations 

      Eq. (1) − (11) are the continuous form of the mathematical 

model describing the problem. Solving equations (1) − (2) 

under the boundary conditions (6) − (11) using the finite 

element method requires that the equations be transformed into 

their weak forms, the dependent variables in the equations 

approximated using suitable basis functions and the domain 

divided into subdomains around which the approximated 

variables are defined to give a set of algebraic relations among 

the unknown parameters of the approximations, known as 

finite element models of the equations. The transformation is 

carried out by multiplying the governing equations for each 

variable with their corresponding test functions and integrating 

over the domain, reducing the order of integration by 

integrating by part, and finally, incorporating the boundary 

conditions into the resulting relations. 
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Let Φ ∈ H1
0 and φ ∈ L2

0 be the test functions corresponding to 

u ∈ H1 and p ∈ L2, respectively. H1 and L2 are Sobolev and 

Lebesgue spaces while H1
0 and L2

0 are the corresponding 

subspaces as defined in Abubakar (2019). The weighted 

residual forms of the governing equations are obtained by 

taking the inner product of equation (1) with Φ, multiplying 

Eq. (2) with φ and integrating the equations over the domain. 

∫ {[(𝐮. 𝛁)𝐮]. 𝚽 − [𝛁. 𝐓]. 𝚽}dΩ = 0
Ω

         (12) 

∫ {(𝛁. 𝐮)φ}dΩ = 0
Ω

           (13) 

Integrating by part the last term on the left side of (12), 

enforcing the boundary conditions (6)-(9), taking into 

consideration that Φ ∈ H1
0 , which makes Φ to be zero on the 

boundaries Γin and Γwall, (12) gives  

∫ {[(𝐮. 𝛁)𝐮]. 𝚽 + 2𝐍𝐟−𝟏𝐄(𝐮): 𝐄(𝚽)}dΩ              
Ω

 

− ∫ {p(𝛁. 𝚽)}dΩ −   ∫ {𝐧. 𝐓. 𝚽}dΓb = 0
ΓbΩ

       (14) 

Boundary conditions (10a) and (10b) are imposed by 

decomposing the traction term, the last term on the left hand 

side, in (14) into its normal and tangential components 

(Pozrikidis, 2011) to give  

∫ {[(𝐮. 𝛁)𝐮]. 𝚽 + 2Nf −1𝐄(𝐮): 𝐄(𝚽)}dΩ −
Ω

∫ {p(𝛁. 𝚽)}
Ω

dΩ − ∫ {[Eo−1κ + z]𝐧. 𝚽}
Γb

dΩ +

∫ {Pb𝐧. 𝚽}
Γb

dΓb = 0                (15) 

Eqs. (13) and (14) are the weak forms of the continuity and the 

momentum equations with the boundary conditions 

incorporated except (10c) and (11). For the stability of the 

solution, the surface tension effect on the interface must be 

treated implicitly and (10c) is the additional equation that 

determines the interface deformation. A pseudo-time stepping 

technique is used and the deformation is taken to be in the 

direction that is normal to the interface so that (10c) is written 

as 

𝐱 = δ𝐫b = 𝐫b
n − 𝐫b

n−1 = δt(𝐮. 𝐧)𝐧        (16) 

and the weak form becomes 

∫ {𝐱. 𝚿 − δt(𝐮. 𝐧)𝐧. 𝚿}dΓb = 0
Γb

        (17) 

where Ψ is the test function for the interface deformation 

vector. Lastly, (16) is substituted in (11) to arrive at 

Vb − Vb
n−1 +

2π

3
∮ [𝐱. 𝐧]dΓbΓb

= 0         (18) 

Eqs. (13), (15), (17) and (18) form the consistent weak 

formulation for the mathematical models of the rising Taylor 

bubble with negligible dynamics in the gas-phase that allows 

the determination of the pressure field, velocity field, interface 

deformation and the bubble pressure, respectively. It is noted 

that the aforementioned equations are the same for Galerkin 

finite element formulation (Abubakar, 2019). However, unlike 

in Galerkin formulation, the test functions for the velocity and 

interface deformation in Petrov-Galerkin formulation are given 

as 

𝚽 = 𝚽* +
h

|𝐮0|
𝐮0. 𝛁𝚽*       (19a) 

𝚿 = 𝚿* +
h

|𝐮0|
𝐮0. 𝛁𝚿*        (19b) 

where Φ∗ and Ψ∗ are the standard Galerkin formulation test 

functions, h is the mesh length, and u0 is the streamwise vector 

of velocity. Petrov-Galerkin formulation in which the test 

functions are of the form (19) is called streamline-upwinded 

Petrov-Galerkin (SUPG) finite element stabilisation technique. 

D. Discretised Formulations 

      The derived weak formulations in Section II.C are 

discretised using suitable finite elements and the unknowns 

represented using a stable combination of finite element 

functions. The domain is triangulated based on Delaunay-

Voronoi algorithm and the finite element combinations used 

are Taylor-Hood element for the velocity-pressure coupling, i.e 

piecewise quadratic continuous element, P2 for the velocity 

components and a piecewise linear continuous element, P1, for 

pressure. For interface deformation, following Ban̈sch (2001), 

a piecewise quadratic continuous element was used. Thus, the 

final discrete finite element models are 

⟨[(𝐮. 𝛁)𝐮]. 𝚽 + 𝟐Nf −1𝐄(𝐮): 𝐄(𝚽)⟩𝛀𝐞 − ⟨p(𝛁. 𝚽)⟩Ωe −

Eo−1⟨k𝐧. 𝚽⟩Γb
e  - ⟨Pb𝐧. 𝚽⟩Γb

e  = ⟨z𝐧. 𝚽⟩Γb
e          (20) 

⟨(𝛁. 𝐮)φ⟩Ωe = 0                         (21) 

 

−δt⟨(𝐮. 𝐧)𝐧. 𝚿⟩Γb
e + ⟨𝐱. 𝚿⟩Γb

e = 0                        (22) 

⟨𝐱. 𝐧⟩Γb
e =

−3

2π
(Vb − Vb

n−1)          (23) 

 

k = k0 +
1

r0

d

ds0 [r0 (𝐧0.
d𝐱

ds0)] − [k1
0 (𝐭0.

d𝐱

ds0) + k2
0 xr

r0]        (24) 

where n0 and t0 are the unit normal and tangent vectors to the 

currently known interface; ds0 is the elemental arc length of the 

currently known interface with position vector r0 whose 

components are r0 and z0; κ0 is the total curvature of the 

currently known interface and is related to the two principal 

curvatures of the interface in r−z and r−θ planes, κ0
1 and κ0

2, 

respectively as in Eq. (25). 

𝜅𝑜 = 𝜅1
0 + 𝜅2

0           (25) 
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III. FINITE ELEMENT MODEL SIMULATION 

A. Steady State Model Simulations 

        The discrete formulation given by the system of equations 

(20)-(25) is non-linear in velocity and interface position due to 

the presence of the convective terms and the implicit treatment 

of curvature, respectively. For this reason, the equations are 

solved in three stages, using Newton’s method.  

       First, for a given Nf and Eo, initial guesses for the bubble 

rise velocity, the flow field variables, and position vector of the 

interface, denoted as Ub, (u0, p0), and r0
b are provided. The 

variables in the equations and the interface curvature are 

linearised about the given initial guesses to obtain linear 

discrete equations which are solved iteratively in a frame of 

reference that moves with velocity ub = Ubiz until the solution 

converges. The Newton iteration is deemed to have converged 

when the L2 norm of the difference between the solutions of 

two successive iterations is less than 10 −15.  In the second 

stage, the rise velocity of the bubble is estimated from the 

velocity field solution computed in the first stage. The velocity 

field is converted from a moving frame of reference to a fixed 

frame (26a) and the value of the axial velocity at the nose of 

the bubble, which is fixed as the origin, is extracted and set as 

the updated bubble velocity (26b). This stage is summarised as 

 

𝐮fixed = 𝐮 + 𝐮𝐛 = ur𝐢𝐫 + (uz − Ub)𝐢𝐳      (26a) 

𝑈𝑏 = −𝑢𝑧
fixed(0,0)        (26b) 

      Lastly, the domain is deformed by solving a linear 

elasticity equation based on the elastic mesh update technique, 

described in Abubakar (2019), using the computed solution for 

the interface deformation field in the first stage, as the 

boundary condition.  

     The three stages of the solution are continuously repeated 

using the updated initial guess for the variables, bubble rise 

velocity and interface position vector until the L2 norm of the 

normal velocity at the interface is less than 10−4. In addition, it 

is expected that the average error for the flow field, rise 

velocity, and interface position is less than 10−6. On 

termination of the iterative process, the flow field solution, rise 

velocity, and interface position vector for the last iteration are 

declared as the solutions for the given dimensionless 

parameters. From the interface position vector, the steady state 

bubble shape is generated. It is noteworthy that occasionally, 

there is the need to carry out remeshing which is done by 

adapting the mesh around the interface to the curvature of the 

interface and the  by adapting the mesh around the interface to 

the curvature of the interface and the flow field around it, while 

the other boundaries of the domain are maintained at a fixed 

number of mesh points that have been previously verified to be 

sufficient in Abubakar (2019).  

 

B. Steady State Model Validation and Discussions 

      The model derived in Section II and the numerical scheme 

detailed in Section III.A are validated by simulating the 

experiment of Nogueira et al. (2006a,b) in which the flow field 

around the nose, film,  and wake regions around a Taylor 

bubble rising in aqueous glycerol in an acrylic column of 

diameter 32 mm was measured using particle image 

velocimetry (PIV) and pulsed shadowgraphy techniques 

(PST). The fluid has a viscosity of 199 cp, density of 1233 

kgm−3 and a surface tension of 0.0328 Nm−1. 

      The values of the model dimensionless groups 

corresponding to these properties are Eo = 189 and Nf = 111. 

The governing equations were solved using these 

dimensionless parameters for two aspect ratios, L = 1.32 and 

2. The converged steady shapes, flow patterns, and rise 

velocities are shown in Figure 3. These results indicate that the 

rise velocity, film thickness, and flow patterns around a Taylor 

bubble are independent of volume. The predicted Froude 

numbers, which is the rise velocity, for the two cases, are 

0.3072 and 0.3084, correspond to deviations of 8.45% and 

8.44%, respectively, from the experiment measured value of 

0.3355.  Further comparisons with the experiment were carried 

out using measurements taken at points around the nose, within 

the film and below the bottom regions using the results for the 

aspect ratio L = 2.0 in a fixed frame of reference.  

 

 

Figure 3: Steady state contour plot around a Taylor bubble rising in 

liquid of Nf = 111 and Eo = 189 for aspect ratios L = 1.32 and L = 2.00. 

1) Hydrodynamics of nose region 

      In the nose region, measurements of axial velocity were 

taken in the radial direction at three different dimensionless 

axial distances ahead of the bubble nose, 0.00, 0.10, and 0.20. 

Figure 4 shows the experimental velocity profiles for these 

three locations scaled with the bubble rise velocity and are well 

predicted by the numerical simulation. The velocity profiles all 

peak at the origin, affirming that the impact of the rising bubble 

on the surrounding liquid is most felt at points directly above 

the nose of the bubble, fixed as the origin, as it pushes through 

the liquid. This impact decreases farther away from the nose of 

the bubble as captured by the increase in the flatness of the 

velocity profile and decrease in the magnitude of the axial 

velocity as the axial distance from the nose is increased. 
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Figure 4: Axial components of velocity as a function of dimensionless 

radial location ahead of the bubble nose; numerical results (solid lines) 

compared with experimental PIV measurements (symbols) of Nogueira et 

al. (2006a, b). 

      With further increase, a point is reached beyond which the 

velocity profiles become flat and the magnitude of the velocity 

is zero. This distance when obtained along the tube axis is 

known as the stabilisation length ahead of the bubble and it was 

determined to be 0.4601 corresponding to a deviation of 9.5% 

from the experimental value of 0.42. Figure 5 shows the 

comparison between the experiment and the numerical results 

of axial velocity ahead of the bubble nose at fixed radial 

location. While the numerical results were extracted at the 

specified radial location, the experiment is the average of the 

square of the deviation between the local value of the axial 

velocity and the value for the same radial position far ahead of 

the bubble obtained at seven different radial positions. 

     Further comparison in the nose region was carried out by 

overlaying the plot of the experimental bubble nose shape with 

the numerical profile of the bubble shape (Figure 6). It is seen 

that the numerical prediction adequately matches with the 

experiment. 

2) Hydrodynamics of film region 

       As Taylor bubble rises in a liquid, it displaces the liquid 

ahead of it, which flows into the annular space between the 

bubble and the column wall as a thin film. Starting from the 

nose of the bubble, which is a stagnation point in a frame of 

reference that moves with the bubble rise velocity, the radial 

velocity component increases until it peaks before gradually 

diminishing, approaching zero, see Figure 7. The region 

starting from the nose and ending at the point at which the 

radial velocity on the interface attains its maximum value 

constitutes the nose of the bubble. 

From the point where the radial velocity attains its maximum 

value to the point where it begins to take a negative value is the 

film region, which can be divided into the developing film 

region where the magnitude of the radial velocity is positive 

and the developed film region where the magnitude is zero. 

 

Figure 5: Axial components of velocity as a function of dimensionless axial 

location ahead of the bubble nose; numerical results (solid lines) 

compared with experimental PIV measurements (symbols) of Nogueira et 

al. (2006a,b). 

 

Figure 6: Steady state Taylor bubble shape; numerical results (solid lines) 

compared with experimental PST measurements (symbols) of Nogueira et 

al. (2006a, b). 

     In the fully developed region, the velocity profile and the 

liquid film thickness are stabilised. The numerical result for the 

stabilised axial velocity profile is shown in Figure 8, which 

compares well with the experimental data and the stabilised 

dimensionless film thickness determined to be 0.1173 that is 
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equivalent to a deviation of 2.3% from the experimental value 

of 0.12. 

 

 

Figure 7: Radial velocity profile (coloured blue) along the interface 

(coloured red) rotated at angle -900. 

 

Figure 8: Axial components of velocity in the fully developed film; 

numerical results (solid lines) compared with theoretical results (broken 

lines) and experimental PIV measurements (symbols) of Nogueira et al. 

(2006a, b). 

3.) Hydrodynamics of wake region 

     As the liquid emerges from the film region into the wake of 

the bubble, the radial component of its velocity becomes 

nonzero to redirect the liquid from the film back towards the 

center of the tube, Figure 7. The axial velocity profiles in the 

wake of the Taylor bubble at dimensionless axial distances of 

0.10 and 0.35 below the bubble bottom are shown in Figure 9.  

 

Figure 9: Axial components of velocity at dimensionless distances below 

the bubble bottom; numerical results (solid lines) compared to 

experimental PIV measurements (symbols) of Nogueira et al. (2006a, b). 

      As seen from Figure 9, the predictions from the numerical 

simulations also reasonably agree well with the experiment. 

Just as observed for the velocity profiles ahead of the bubble 

nose, the impact of the wake decreases the farther the distance 

below the bubble bottom until a point is reached beyond which 

the velocity profile becomes flat. The minimum distance below 

the bubble bottom beyond which the impact of the bubble is 

not felt is the stabilisation length below the bubble bottom and 

is determined to be 0.345. The wake flow pattern below the 

bubble bottom is captured in Figure 10, showing the streamline 

and vector field around the bubble. 

                    IV. CONCLUSION 

      Consistent Petrov-Galerkin finite element scheme for 

computing steady state liquid velocity and pressure fields, 

bubble pressure and rise velocity, and interface shape of a 

rising Taylor bubble in liquid with negligible dynamics in the 

gas-phase is derived, implemented and validated. The scheme, 

implemented within FreeFem++ finite element package and 

which can be adapted to general free surface flow problems, is 

based on steady state governing equations with implicit 

treatment of curvature and pseudo-time-step technique for 

interface deformation. By simulating the experiment of 

Nogueira et al. (2006a,b) and comparing the results for the 

velocity profiles at points ahead of the bubble, in the film 

region and behind the bubble with experiment data, it was 

shown that the prediction from the scheme is adequate and 

accurately captures the physics of the problem. Thus, the 

scheme can be used to further carry out a systematic analysis 

of the dynamics of a rising Taylor bubble and general free 

surface flow problems. 
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Figure 10: Numerical steady state bubble shape showing the flow vector 

field (left side) and streamlines (right side) around the bubble. 
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