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ABSTRACT 
This paper proposes the Parameterized Reaccelerated 
Overrelaxation (PROR) method for numerical solution of linear 
systems arising from the discretization of partial differential 
equations. The method is a three-parameter generalization of the 
Reaccelerated overrelaxation (ROR) method. An expression for 
the eigenvalues of the iteration matrix of the method is obtained in 
terms of the eigenvalues of the corresponding Jacobi iteration 
matrix. Functional relations for determining the optimum values of 
the parameters are established. Numerical examples are 
presented to validate theoretical results as well as compare with 
existing methods. Results showed that the method is suitable and 
compares favourably with AOR, ROR and PAOR methods. 
 
Keywords: AOR, ROR, PAOR, spectral radius, Convergence. 
 
INTRODUCTION 
Partial differential equations (PDEs) play a significant role in many 
problems in Mathematics, Physics, Engineering, Economics and 
other Science and non-Science related fields. The Poisson 
equation, for example, occurs frequently in electromagnetism, fluid 
dynamics among others. Often, it is easy to express PDEs as 
systems of linear equations of the form 
𝐵𝑥 = 𝑐                                                                                         (1) 
The usual splitting of 𝐵 in (1) gives 

(𝐷 − 𝐿𝐵 − 𝑈𝐵)𝑥
= 𝑐                                                                                        (2) 

where  𝐷,−𝐿𝐵, −𝑈𝐵 are the diagonal, strictly lower and strictly 

upper parts of 𝐵 respectively. 

Although, it may be possible to use direct methods such as matrix 
inversion, Gaussian elimination, and so on, to exactly solve (1), the 
direct methods tend to take far too long to be practicable for very 
large and/or sparse systems. This difficulty in using direct methods 
for solving such systems of linear equations makes a case for 
iterative methods. 
In the past few decades, development of iterative methods for the 
solution of partial differential equations resulting in (1) have 
evolved, methods such as Gauss-Seidel (1874) and Jacobi (1884) 
have been introduced. Young (1950) introduced the SOR method 
which is an extrapolated Gauss-Seidel method that gives faster 
convergence than the Jacobi and Gauss-Seidel methods. 
Hadjidimos (1978) introduced the AOR, a two-parameter 
generalization of the SOR method which also gives better 
convergence results than the SOR. Thereafter, several 
modifications of the SOR and AOR methods have been made in an 
attempt to speed up the rate of convergence of the methods. These 
include Avdelas and Hadjimos (1981) who optimized the AOR 
method for the special case when matrix 𝐵 in (1) is consistently 

ordered. Wu and Liu (2014) proposed a new version of the AOR 
named the quasi accelerated overrelaxation method (QAOR), 
Youssef and Farid (2015) derived another variant of the AOR called 
the KAOR. Most recently, Vatti et al (2020) proposed two different 
versions of the AOR called parametric accelerated overrelaxation 
(PAOR) method and the reaccelerated overrelaxation (ROR) 
method derived for consistently ordered matrices. This present 
work is aimed at further improving the convergence of the AOR 
method by proposing a new version of the method named PROR 
 

 
MATERIALS AND METHODS 
Derivation of the Method 
Consider the linear system (2) given by: 

(𝐷 − 𝐿𝐵 − 𝑈𝐵)𝑥 = 𝑐                                                                                        (3) 

which results in 
(𝐼 − 𝐿 − 𝑈)𝑥 = 𝑏                                                                             (4) 

or equivalently 
𝐴𝑥 = 𝑏                                                                                                       (5) 

where 𝐴 = 𝐼 − 𝐿 − 𝑈,   𝑏 = 𝐷−1𝑐,   𝐿 = 𝐷−1𝐿𝐵, 𝑈 = 𝐷−1𝑈𝐵 . 

The accelerated over-relaxation method (AOR) for solving (5) is given by 

𝑥(𝑛+1) = (𝐼 − 𝜔𝐿)−1{[(1 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + 𝑟𝑈]𝑥(𝑛) + 𝑟𝑏 }                   (6) 
while the Parametric accelerated over-relaxation (PAOR) method is as follows: 

𝑥(𝑛+1) = [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + (𝑟)𝑈]𝑥(𝑛) + 𝑟𝑏 }          (7) 
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where 𝛼 is a fixed parameter, 𝛼 ≠ −1 

and the reaccelerated overrelaxation (ROR) method is given as: 

𝑥(𝑛+1) = (𝐼 − 𝜔𝐿)−1{[(1 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿 + (𝑟 − 𝑟𝜔)𝑈]𝑥(𝑛) + (𝑟 − 𝑟𝜔)𝑏 } (8) 

Considering  the parameters 𝑟 ≠ 0 and 𝜔 ≠ 0 and adding 𝑟𝜔(𝐴𝑥 − 𝑏) = 0 to (7), gives 

𝑥(𝑛+1) = [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + (𝑟)𝑈]𝑥(𝑛) + 𝑟𝑏 + 𝑟𝜔[(𝐼 − 𝐿 − 𝑈)𝑥(𝑛)

− 𝑏]}                                                                                                                (9) 

⇒ 𝑥(𝑛+1) = [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟)𝐼 + (𝑟 − 𝜔)𝐿 + (𝑟)𝑈]𝑥(𝑛)

+ 𝑟𝑏 + (𝑟𝜔𝐼 − 𝑟𝜔𝐿 − 𝑟𝜔𝑈)𝑥(𝑛) − 𝑟𝜔𝑏]}                                                                                      (10) 

Simplifying (10), we obtain our proposed Parametric reaccelerated over-relaxation (PROR) scheme denoted by 𝑀αr,ω, as: 

𝑥(𝑛+1) = [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿 + (𝑟 − 𝑟𝜔)𝑈]𝑥(𝑛)

+ (𝑟 − 𝑟𝜔)𝑏}                                                                                             (11) 

where the iterative matrix of the PROR scheme, 𝐿α,r,ω is given as 

𝐿α,r,ω = [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿

+ (𝑟 − 𝑟𝜔)𝑈]                                                                                                                  (12) 

Method (11) reduces to some known methods for specific choices of the parameters (𝛼, 𝑟, 𝜔) as follows: 

𝑀0,r,ω gives the Reaccelerated over-relaxation (ROR) method, i. e. for (α, r,ω) = (0, 𝑟, ω) ) 

𝑀0,1,0 gives the Jacobi method i. e. for (α, r, ω) = (0,1,0) 

 
Convergence Analysis of PROR Method 
Consistently Ordered Matrix: Let 𝐴 be a consistently ordered 

square matrix. That is, 𝐴 is a matrix for which the expression 
|𝑎𝐴𝐿  +  𝑎−1𝐴𝑈  −  𝑏𝐷| is independent of 𝑎 for 𝑎 ≠  0 and for 

all 𝑏. where 𝐴𝐿, 𝐴𝑈and 𝐷 are the strictly lower, upper and diagonal 

matrices of 𝐴 respectively. Then, the following theorems are 

proposed and proved. 

 

Theorem 1: If 𝜆 is the eigenvalue of the iteration matrix  𝐿α,r,ω of the PROR method. Then, the characteristic equation of 𝐿α,r,ω is 

represented as : 

|[(1 + 𝛼)𝐼 − 𝜔𝐿)]𝜆𝐼 − {[(1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿 + (𝑟 − 𝑟𝜔)𝑈] | = 0           (13) 

Proof: Since 𝜆 is an eigenvalue of the iteration matrix 𝐿α,r,ω, then we have the characteristic equation given as  

 |𝜆𝐼 − 𝐿α,r,ω| = 0                                                                                       (14) 

Substituting 𝐿α,r,ω given in (12) into (14), we obtain 

|𝜆𝐼 − [(1 + 𝛼)𝐼 − 𝜔𝐿)]−1{[(1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿 + (𝑟 − 𝑟𝜔)𝑈]| = 0   (15) 

⇒ |[(1 + 𝛼)𝐼 − 𝜔𝐿)]𝜆𝐼 − {[(1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 + (𝑟 − 𝜔 − 𝑟𝜔)𝐿 + (𝑟 − 𝑟𝜔)𝑈]| = 0   (16)  

which completes the required proof 

Theorem 2: Let 𝜆 be the eigenvalue of the iteration matrix  𝐿α,r,ω of the PROR method and 𝜇 be the eigenvalue of the corresponding 

Jacobi iteration matrix 𝐿0,1,0. Then, 𝜆 and 𝜇 are connected by the relation: 

[(1 + 𝛼)𝜆 + r(1 − 𝜔) − (1 + 𝛼))]2 = 𝑟𝜔𝜇2(1 − 𝜔)𝜆 + 𝑟2𝜇2(1 − 𝜔)2 − 𝑟𝜇2𝜔(1 − 𝜔)  (17) 

Proof: Form theorem 1, we have that 

|[(1 + 𝛼)𝜆𝐼 − 𝜔𝜆𝐿 − (1 + 𝛼 − 𝑟 + 𝑟𝜔)𝐼 − [(𝑟 − 𝜔 − 𝑟𝑤)𝐿 − (𝑟 − 𝑟𝜔)𝑈]| = 0           (18) 
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⇒ |[(1 + 𝛼)𝜆 − (1 + 𝛼 − 𝑟 + 𝑟𝜔)]𝐼 − [(𝜔𝜆 + 𝑟 − 𝜔 − 𝑟𝑤)𝐿 + (𝑟 − 𝑟𝜔)𝑈]| = 0     (19) 

|[
(1 + 𝛼)𝜆 − (1 + 𝛼 − 𝑟 + 𝑟𝜔)

(𝜔𝜆 + 𝑟 − 𝜔 − 𝑟𝑤)
1

2(𝑟 − 𝑟𝜔)
1

2

] 𝐼 − (𝐿 + 𝑈)| = 0                                 (20) 

We note that 𝐿 + 𝑈 is the Jacobi iteration matrix, 𝐿0,1,0. Thus, (20) is the characteristic equation of 𝐿0,1,0 and since 𝜇 is the eigenvalue of 

𝐿0,1,0, we have that 

(1 + 𝛼)𝜆 − (1 + 𝛼 − 𝑟 + 𝑟𝜔)

(𝜔𝜆 + 𝑟 − 𝜔 − 𝑟𝑤)
1

2(𝑟 − 𝑟𝜔)
1

2

= 𝜇                                                              (21) 

That is  

[(1 + 𝛼)𝜆 − (1 + 𝛼 − 𝑟 + 𝑟𝜔)]2 = 𝜇2(𝜔𝜆 + 𝑟 − 𝜔 − 𝑟𝑤). (𝑟 − 𝑟𝜔)                    (22) 

and so 

[(1 + 𝛼)𝜆 + r(1 − 𝜔) − (1 + 𝛼))]2 = 𝑟𝜔𝜇2(1 − 𝜔)𝜆 + 𝑟2𝜇2(1 − 𝜔)2 − 𝑟𝜇2𝜔(1 − 𝜔) (23) 

Theorem 3: Suppose 𝜆 and 𝜇 are the eigenvalues of 𝐿α,r,ω and 𝐿0,1,0 respectively, then 

𝜆 =
𝑟𝜇2𝜔(1 − 𝜔)

2(1 + 𝛼)2 −
𝑟(1 − 𝜔)

1 + 𝛼
+ 1 ,         for 𝜔 =

2(1 + 𝛼)

1 + √1 − 𝜇2
                   (24) 

Proof: From (24), we have   

[(1 + 𝛼)𝜆 + r(1 − 𝜔) − (1 + 𝛼))]2 = 𝑟𝜔𝜇2(1 − 𝜔)𝜆 + 𝑟2𝜇2(1 − 𝜔)2 − 𝑟𝜇2𝜔(1 − 𝜔) (25) 

Expanding (25), we obtain 

[(1 + 𝛼)𝜆 + (r − r𝜔 − (1 + 𝛼))]2 = 𝑟𝜔𝜇2(1 − 𝜔)𝜆 + 𝑟2𝜇2(1 − 𝜔)2 − 𝑟𝜇2𝜔(1 − 𝜔)      (26) 

= (1 + 𝛼)2𝜆2 − [𝜔(r − r𝜔)𝜇2 − 2(1 + 𝛼)(r − r𝜔 − (1 + 𝛼))]𝜆 + [r − r𝜔 − (1 + 𝛼)]2 + 𝜔(𝑟 − 𝑟𝜔)𝜇2 − (𝑟 − 𝑟𝜔)2𝜇2

= 0                                                                          (27) 

It is observed that (27) is a quadratic equation in 𝜆. Thus, the solution is obtained for 𝜆 as: 

𝜆 =
𝑟𝜇2𝜔(1 − 𝜔) − 2(1 + 𝛼)[r(1 − 𝜔) − (1 + 𝛼)]

2(1 + 𝛼)2
±

√∆

2(1 + 𝛼)2
              (28) 

where 

∆= 𝜔2(r − r𝜔)2𝜇4 − 4(1 + 𝛼)[r(1 − 𝜔) − (1 + 𝛼)]𝜔(r − r𝜔)𝜇2 + 4(1 + 𝛼)2[r − r𝜔 − (1 + 𝛼)]2

− 4(1 + 𝛼)2[r − r𝜔 − (1 + 𝛼)]2 − 4(1 + 𝛼)2𝜔(r − r𝜔)𝜇2

+ 4(1 + 𝛼)2(r − r𝜔)2𝜇2                                             (29) 

= (r − r𝜔)2{𝜔2𝜇2 − 4(1 + 𝛼)𝜔 + 4(1 + 𝛼)2}                                                      (30) 

We note that (30) equals zero if  

𝜔2𝜇2 − 4(1 + 𝛼)𝜔 + 4(1 + 𝛼)2 = 0                                                         (31) 

That is,  

𝜔 =
2(1 + 𝛼)

1 + √1 − 𝜇2
   𝑜𝑟        𝜔 =

2(1 + 𝛼)

1 − √1 − 𝜇2
                                          (32) 

Thus if (32) holds, then (28) becomes  
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𝜆 =
𝑟𝜇2𝜔(1 − 𝜔) − 2(1 + 𝛼)[r(1 − 𝜔) − (1 + 𝛼)]

2(1 + 𝛼)2                                   (33) 

i.e. 𝜆 =
𝑟𝜇2𝜔(1−𝜔)

2(1+𝛼)2
−

𝑟(1−𝜔)

1+𝛼
+ 1                                                                               (34) 

Choice of Parameters, 𝜶, 𝒓 and 𝝎 

We recall the eigenvalues of the iteration matrix of the PROR method given in terms of those of the corresponding Jacobi iteration matrix in 
(34) as below: 

𝜆 =
𝑟𝜇2𝜔(1 − 𝜔)

2(1 + 𝛼)2 − (
𝑟(1 − 𝜔)

1 + 𝛼
− 1)                                                             (35) 

Let (35) be such that  

𝑟𝜇2𝜔(1 − 𝜔)

2(1 + 𝛼)2 = 𝑘 (
𝑟(1 − 𝜔)

1 + 𝛼
− 1)                                                                   (36) 

where 𝑘 is any real constant, 𝑘 ≠ 0 

 Now, expressing 𝑘 in terms of 𝜆 and vice-versa, we obtain the following relations: 

𝑟𝜇2𝜔(1 − 𝜔)

2(1 + 𝛼)2 =
𝑘𝑟(1 − 𝜔)

1 + 𝛼
− 𝑘                                                                        (37) 

⇒ 𝑟 =
(1 + 𝛼)𝑘

(1 − 𝜔)[𝑘 −
𝜔𝜇2

2(1+𝛼)

                                                                                   (38) 

and  

𝑘 =
𝑟𝜇2𝜔(1 − 𝜔)

1 + 𝛼
 .

1

2[𝑟(1 − 𝜔) − (1 + 𝛼)]
                                                        (39) 

Now, from (38) and (39) we can obtain expressions for 𝑘(1 + 𝛼) as follows: 

From (38) 

𝑘(1 + 𝛼) = 𝑟 [𝑘(1 − 𝜔) −
𝜔𝜇2(1 − 𝜔)

2(1 + 𝛼)
]                                                            (40) 

and from (39), we have  

𝑘(1 + 𝛼) =
𝑟𝜔𝜇2(1 − 𝜔)

2[𝑟(1 − 𝜔) − (1 + 𝛼)]
                                                                          (41) 

Equating (40) and (41) gives 

[𝑟(1 − 𝜔) − (1 + 𝛼)] [𝑘(1 − 𝜔) −
𝜔𝜇2(1 − 𝜔)

2(1 + 𝛼)
] =

𝜔𝜇2(1 − 𝜔)

2
                  (42) 

Consider the expression  
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𝜔 +
�̅�2 − 𝜇2

2

𝜔 +
�̅�2 − 𝜇2

2

                                                                                                    (43) 

where �̅�2 and 𝜇2 are the maximum  and minimum among the absolute values of 𝜇 respectively. In view of (43), we can obtain the following 

equation from (42):   

[𝑟(1 − 𝜔) − (1 + 𝛼)] [𝑘(1 − 𝜔) −
𝜔𝜇2(1 − 𝜔)

2(1 + 𝛼)
] = [𝜔 +

�̅�2 − 𝜇2

2
] [

𝜔𝜇2(1−𝜔)

2

𝜔 +
�̅�2 − 𝜇2

2

]   (44) 

so that 

𝑟(1 − 𝜔) − (1 + 𝛼) = 𝜔 +
�̅�2 − 𝜇2

2
                                                             (45) 

⇒ 𝑟 = (1 + 𝛼 + 𝜔 +
�̅�2 − 𝜇2

2
)

1

(1 − 𝜔)
                                                        (46) 

and  

𝑘(1 − 𝜔) −
𝜔𝜇2(1 − 𝜔)

2(1 + 𝛼)
=

𝜔𝜇2(1−𝜔)

2

𝜔 +
�̅�2 − 𝜇2

2

                                                                   (47) 

⇒ 𝑘 =
𝜔𝜇2

2(1 + 𝛼)
+

𝜔𝜇2

2

𝜔 +
�̅�2 − 𝜇2

2

                                                                                   (48) 

Substituting 𝜔 =
2(1+𝛼)

1+√1−�̅�2
 into (47), we have an expression for 𝑘 as 

𝑘 = 1 − √1 − �̅�2 +

𝜔𝜇2

2

𝜔 +
�̅�2 − 𝜇2

2

                                                                       (49) 

Following Vatti et al (2020), if  𝑘 > 1 in (49), then 𝑟 is as given in (46) but if 𝑘 < 1 in (49), then 𝑟 is taken to be half of the value given in (46). 

In summary, we categorize the choice for optimum parameters 
𝛼, 𝑟 and 𝜔 presented above into three cases: 

Case I: When 𝜇 = �̅� and 𝑘 = 1 

then 𝜔 =
2(1+𝛼)

1+√1−�̅�2
,   𝑟 = (

1+𝛼

√1−�̅�2
) (

1

1 − 𝜔
) 

Case II: When 𝜇 ≠ �̅� and 𝑘 > 1 

then 𝜔 =
2(1+𝛼)

1+√1−�̅�2
,   𝑟 = (1 + 𝛼 + 𝜔 +

�̅�2−𝜇2

2
) (

1

1 − 𝜔
) 

Case III: When 𝜇 ≠ �̅� and 𝑘 < 1 

then 𝜔 =
2(1+𝛼)

1+√1−�̅�2
,   𝑟 = (1 + 𝛼 + 𝜔 +

�̅�2−𝜇2

2
)

(
1

1 − 𝜔
)

2
 

It is noteworthy that 𝜇 can be equal to zero in all the three cases. 
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RESULTS AND DISCUSSION 
Problem 1: Consider the consistently ordered matrix 

[
3 −4
2 −3

] ,   𝑏 = [
−1
−1

] found in Hadjidimos (1978) 

𝜇 = �̅� =
2√2

3
 

Problem 2: For the matrix 𝐴 = 

[
 
 
 
 
 1 0

1

5

1

5

0 1 −
71

10

113

10
16

5

1

5
1 0

2
1

5
0 1 ]

 
 
 
 
 

 

and 𝑏 =

[
 
 
 
 
 

7

5
26

5
22

5
16

5 ]
 
 
 
 
 

 

𝜇 =
√23

5
, �̅� =

√24

5
 

 
considered by Vatti et al (2020) and Avdelas and Hadjimos (1981)  
The results of the above examples obtained from the optimum 
values of parameters for AOR, ROR, PAOR and PROR methods 
are presented as comparative analysis in tables 1 and 2 
 
Table 1:  Convergence Results for Problem 1  

Method Choice of Parameters Number of 
iterations 

Spectral radius 

AOR 
𝑟 = 3,𝜔 =

3

2
 

2 0 

ROR 
𝑟 = −6,𝜔 =

3

2
 

2 0 

PAOR 𝛼 = 1, 𝑟 = 6,𝜔 = 3 2 0 

PROR 𝛼 = 1, 𝑟 = −3,𝜔 = 3 2 0 

 
 
Table 2:  Convergence Results for Problem 2  

Method Choice of Parameters Number of 
iterations 

Spectral radius 

AOR 
𝑟 =

−5

4
, 𝜔 =

5

3
 

diverging 1.3070322618 

AOR 
𝑟 =

14

3
, 𝜔 =

5

3
 

86 0.7512951780 

ROR 
𝑟 =

−403

100
, 𝜔 =

5

3
 

45 0.5689256932 

PAOR 
𝛼 =

−9

10
, 𝑟 =

43

150
, 𝜔 =

1

6
 

44 0.5653710679 

PROR 
𝛼 =

−9

10
, 𝑟 =

43

125
, 𝜔 =

1

6
 

44 0.5653710679 

 
Table 1 and 2 display the spectral radii as well as the number of 

iterations needed to reach an accuracy of about ten decimal places 

(tolerance) for the case of optimum values of the parameters 

computed using the functional relations for each of the methods for 

problems 1 and 2 respectively. The results revealed that the PROR 

method agrees with other methods in Table 1 with spectral radius 

equal to zero. In Table 2, it is observed that the spectral radius of 

the derived PROR coincides with that of PAOR while it maintains a 

lead over AOR and ROR methods, indicating faster convergence 

than the AOR and ROR methods. Worthy of note is that for the pair 

of optimum values of AOR parameters provided by Avdelas and 

Hadjidimos (1981) for this problem, the spectral radius is 

1.3070322618 and not 0.5651941652 as claimed in the paper 

which shows the method diverges for that pair. However, Vatti et al 

(2020) provided a different pair of parameter values for which the 

spectral radius of the AOR iteration matrix is 0.7512951780 which 

still lags behind the derived method PROR and the other versions 

of AOR methods considered, in terms of convergence. 

CONCLUSION 
This work has derived a new version of the AOR iterative method 
named PROR method which is a hybrid of the PAOR and ROR 
methods and determined the optimum choice of the parameters in 
order to speed up rate of convergence. It can be observed from the 
numerical examples considered above that the method competes 
admirably with recent versions of the AOR methods. 
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