
Android Malware And its Analysis Techniques

Olawale Surajudeen Adebayo
1
Computer Science Department, International Islamic

University Malaysia,
2
CSS Department, Federal University

of Technology Minna, Nigeria
1adebayo.olawale@live.iium.edu.my,

2
waleadebayo@futminna.edu.ng

Normaziah Abdul Aziz
Computer Science Department, International Islamic

University Malaysia
naa@iium.edu.my

Abstract— The more android operating system on the

smartphones is becoming more acceptable due to its market

openness and easier accessibility and operability, the more it is

increasingly targeted by malware. This research examines several

attack vectors on an android smartphone and its analysis in

order to identify and obtain useful features for analysis and

classification and to understand the attack vectors and offer

possible solutions. This work recommends appropriate practices

to ensure the security of information on an android smartphone.

Keywords— Android Malware; Malware Analysis; Static

Analysis; Android Smartphones; Malware Writer

I. INTRODUCTION

Malwares are malicious applications or software targeted at

operating systems or internet. Mobile malwares are malicious

software specifically designed to target the mobile operating

system. Android malwares are malicious executable program

designed to hamper the normal operation of android operating

system on smartphones. It is for various reasons like financial

gain, challenges or system testing and information stealing.

Efforts have been made by several researchers to develop

malware detection system to address the attack and effects of

malware on smartphones. Detection systems include

antimalware algorithm, intrusion detection system, among

others to address the malware attack. However, old malware

detection bank based on the signatures, IP addresses and

anomaly behaviours to detect malware may not necessarily

work for new malware that are developed using new

techniques.

 Android operating system being an open source OS

can be obtained through its official market Google play [31]

and other open market i.e. Amazon Appstore [29], GetJar [30].

The most popular operating system (OS) that allow

smartphones to perform most of the functions available on the

internet and desktop computer is Android by Google. This

paper examined the trend of malware on the Android phone

due to its acceptability and ubiquity. As anti-malware writers

are successfully developing various algorithms against

existing malware, malware writers also continue to change

their stealthy and obfuscation techniques to hide their

malicious codes. The task of preventing mobile facilities

therefore lies on the device’s security mechanism, and the

stakeholders’ knowledge. For example, some malwares rely

on user interaction before their execution, while others exploit

the bugs in the operating system of important facilities.

Analysis of malware has to do with identifying it by

examining the program semantics of malware code statically

[32] or dynamically [28] and using the attributes of known

malware characteristics for interpretation [1].

The major contribution of this research is analyzing android

malware to identify and obtain useful features through static

code analysis for classification and detection. The experiment

is also to examine several attack vectors targeting android

operating system to proffer appropriate solutions and

recommendation. The remaining sections of the paper are

organized as follows: Section II discusses the existing related

researches; Android framework and exploit were discussed in

section III and IV respectively; Section VI and VII discussed

the malware analysis techniques and android malware

experiment. Section VIII, IX and X discussed research benefit,

future works, and recommendations respectively.

II. RELATED WORKS

Malicious programs over time present an incessant threat to

the privacy and security of sensitive data and the availability

of critical services at crucial point in time [1]. The first

observable feature adopted by malware most detector at the

outset of smartphone is battery power consumption [9, 23, 24].

The technique was basically to observe the mobile phone

power consumption and compares it with the normal power

consumption in order to detect occurrence of anomaly. The

first malware specifically written for Symbian OS platform

was discovered in 2004 [6]. After the infection successfully

carried out by Cabir malware and its variants [8], researchers

proposed several approaches and developed different

mechanisms in order to detect malware on a mobile phone.

With the advent of smartphones availability, malware has

consistently double on the mobile phone due to its ubiquity.

The F-Secure’s Threat report [29] stated that the number of

Android malware has been doubling yearly since 2011 up to

the first quarter of 2013. In a bid to curtail the effect of

malware on android smartphone, Mohammad Karami et.al

[17] in a paper titled Behavioral Analysis of Android

Applications Using Automated Instrumentation, presented

effective security inspection mechanisms for identification of

malicious applications for Android mobile applications, where

they developed a comprehensive software inspection

framework for android smartphone. This system only works

on android phone. Another work by Abhijit, B. et al. [3]

proposed a behavioural detection on mobile handsets using a

support vector machine (SVM) algorithm to build a

behavioural malware detection system that work on a platform

dependent operating system like Symbian phones. In the same

vein, the behavioural-based Android malware detection

system by Abela, Kevin Joshua L. et al. [2] was designed to

categorize different Android applications in the market.

T. Bläsing et al. [24] also developed an Android

Application Sandbox system for suspicious software detection

using dynamic, single API, clustering and fake API injection

techniques. This application only works on android platform.

Thomas Eder et al. [25] developed an expandable and modular

framework for analyzing Android applications called

ANANAS. The application takes care of common needs for

dynamic malware analysis and provides an interface for the

development of plugins a framework for analysing Android

applications. Suhas Holla and Mahima M Katti [22] discussed

Android mobile platform for the mobile application

development, layered approach and the details of its security

information. Andrew Walenstein et al. [4] proposes an

approach for selecting features of mobile malware by using

knowledge of malicious program structure to heuristically

identify malicious portions of any applications.

Dinesh Shetty [7] also analysed a malware called

iCalender.apk using static analysis and found out that this

malware was designed to send suspicious messages to a

designated number for a malicious purpose without the

knowledge of the victim. According to the static and dynamic

analysis carried out on DroidKungFu2-A using a reverse

engineering technique, [28] was able to identify

DroidKungFu2-A as a malware designated to send an

unauthorized message from legitimate user’s mobile to a

certain number. Geinimi also according to [28] was a bot that

connect with a remote server and delete and steal sms, and

make an unauthorised call. Hieu Le Thanh et al. [10] based on

the samples classified malware into existing families or

addition of a new family using collection of 58 malware

families and 1485 malware samples and introduced three

different techniques to analyse the samples.

Michael Grace et al. [15] proposed a proactive

scheme to spot zero-day Android malware by relying on

malware samples and their signatures, by specifically

developed an automated system called RiskRanker to scalably

analyze whether a particular app exhibits dangerous behaviour

(e.g., launching a root exploit or sending background SMS

mes- sages). Radek Vala et al. [19] examined the recent

advances in reverse engineering popular mobile operating

systems, namely iOS and Android. Iker Burguera et al. [11]

developed a framework for collection of traces from an

unlimited number of real users based on crowdsourcing that

was used to analyze the data collected in the central server

using two types of data sets: those from artificial malware

created for test purposes, and those from real malware found

in the wild (malware contained in Steamy Window and

Monkey Jump 2 applications). This method shows to be an

effective means of isolating the malware and alerting the users

of a downloaded malware.

Steven Meyer [21] examines the development phases

(submission, update, usage, development, validation,

download and ranking), and the misbehaviour that a developer

could do like sandbox escape, developer impersonation,

multiple download and ranking, social engineering etc. Qiang

Yan et al. [18] study the state of-the-art of mobile malware, as

well as the progress of academic research and industrial effort

against mobile malware. This research also analyze three

potential directions for effective malware detection and

prevention on mobile phones

William Enck et al. [27] developed a Taintdroid to provide

users with adequate control over and visibility into how third-

party applications use their private data. The framework

analyses the behaviour of application using sufficient

contextual information about the data that leaves a device and

its destination. Anubis [5] is the Windows operating system

malware analysis version that analyse applications on a

windows for malware. A modified version of Anubis for

Androids applications is called Codename Andrubis [14]. This

malware detector on the Androids however lacked in public

expository of its inner architecture for further research

analysis. Droidscope [12] is another malware analysis tool

built on top of QEMU and relies on introspection of an

emulated system running the application in question. This

detector uses dynamic analysis techniques to detect malware

and exports APIs. Min Zhao et al. [16] uses artificial

immunology to develop a framework for malware detection

based on dynamic behaviours of smartphone applications.

III. ANDROID APPLICATION FRAMEWORK

Android software stack has four layer components [20]:

Linux kernel, Libraries, Application framework, and

Applications. The Android operating system permits users to

decide whether an application is malicious or not [28], which

means that users must analyze and confirm its identity and if

found malicious need to report and thus will ensure its

removal from the Android Market. For example, a malware

application named droid09 [26] was released to allow users to

carry out banking activities. In order to use this application,

user requires to provide the account information details and it

would direct the communication to the bank. However, the

credentials that meant for the bank were actually sent to the

malware writer. In order to avoid this type of attack, an

Android application needs to show the permissions during the

installation so that user can decide whether to install it or not.

Android operating system is developed using Java code.

The Java code is compiled into class files by android’s
compiler, which later converted into dex files. Dex files are
bytecode for Dalvik virtual machine (VM), a non-standard
JVM that runs Android applications. The dex file format keeps
the Dalvik bytecode and specifies the organization of the
various sections and items in the file. The dex files, binary

XML files, and other applications are put together in the
android application packages with the extension .apk. Android
applications’ components namely activities, services, broadcast
receivers, and content providers are implemented as classes in
application code and are declared in the AndroidManifest (.xml
file).

The AndroidManifest consist of important information
associated to android application such as package name, names
of the components declared, the permissions declared and
requested, and so on. AndroidManifest is written in human
readable XML and is transformed to binary XML during
application build.

IV. ANDROID EXPLOIT

The two layers of android application basically targeted by

malware are kernel layer and application layer. The kernel

layer contains important information within the smartphone

system inner operation while the application layer contains

browser application. The features that enhance the effective

operation of Android application but also increase its exploit

chances include Near Filed Communication (NFC), SMS

Stack, Android browser, Universal Serial Bus (USB), and

Drivers i.e. buggy driver. Some of these features might be

exploited by malware writer to install malware on the mobile

device or crashing the system to make it unavailable through

malfunction SMS [13].

V. ANDROID MALWARE METHOD OF PROPAGATION

1. User Interaction: This is a method whereby malware

lure its host to interact with it in order to cause

execution.

2. Social engineering techniques: These techniques

include embedding malware in online games, system

patches, pretentious messages to authorize user to

lure them to run malware on a smartphone.

3. Software download: malware may hide inside pdf

files or other files and infect the phone during

downloading.

VI. MALWARE ANALYSIS TECHNIQUES

A) Static Analysis

This is the analysis of malware behaviour without

executing the code of the mobile application. In this analysis

malware behaviour is examined statistically by studying their

interaction with the environment, the data they captured, the

files tampered with, network and port disruptions, and

operation activities among others. In static analysis, the code

of the program is disassembled and examined for possible

pattern change. Some of the tools for static analysis include

debugger and decompiler: Winzip, dexjar, JD-GUI,

Wireshark, TCPView, PEiD, Process Monitor, Process

explorer, and Strings.

B) Dynamic Analysis

Dynamic analysis is the analysis of malware by

examining its activity during the code runtime. Malware

dynamic analysis is usually carried out through reverse

engineering process, where malicious code embedded in the

original code of software are being decoded, examined,

analysed and decompiled. In this analysis, several tools are

employed like debuggers, which analyse the equivalent

software code and decompilers, which convert malware to its

binary equivalent code. Facilities for malware analysis on an

android smartphone includes Winzip (tool to unpack .apk file),

dex2jar (tool to convert .dex to jar file), JD-GUI (decompiler

for decompiling java code), and sample android malware

(Baksmali), Ollydbg.

C) Hybrid Approaches

This approach combines the features of static and dynamic

analysis in order to dissect the activity of malware.

VII. MALWARE ANALYSIS EXPERIMENT

In this research, we analyzed Zertsecurity Android

malwares to obtain android malware features and demonstrate

the analysis of android malware statically.

1. Obtain samples of android malwares from

www.contagiomobile.com and

www.contagiominidump.com

2. Test the malware for the rate of detection using virus

total engine and Andrubis.

3. Unpack the .apk file and extracted the file into a

component.

4. Convert the .dex file (dalvik code) to .jar file (java

file) equivalent

5. Decompiled java code using jD-GUI to view its

content of source code.

6. Analyze the source code of the malware for features

identification.

A) Step 1:

After acquiring Zertsecurity from www.contagiomobile.com,

we tested it using virustotal engine and found the detection

rate of 29/50 as shown below in the virustotal report of figure

2.

Fig. 2. : Zertsecurity detection rate by Virustotal

B) Step II:

We extracted the zertsecurity.apk file using winzip in

order to explore the content of .apk file. Winzip also displays

the .dex file as wel as .xml files. The .dex files are the dalvik

code that is lightweight in nature and suitable for mobile

application while .xml files are contain in AndroidManifest

file, which store important attributes of android application.

This is shown in the figure 3.

Fig. 3. Extraction of Zertsecurity.apk using winzip.

C) Step III:

In this stage, we used dex2jar tool to render better

view of the dalvik code. This tool converts the dalvik

executable code into java .classes files equivalent . We

dropped the classes.dex file contains in the zertsecurity

application into the dex2jar’s directory and converted it into

java .jar file using the command dex2jar.bat classes.dex as

shown in the figure 4 below:

Fig. 4: Dropping classes.dex file in the dex2jar tool for conversion

D) Step IV:

The classes_dex2jar.jar file is not yet readable and in order to

make it readable, we used JD-GUI to open this file into a

redable format.

Fig. 5: Preview of Zertsecurity .apk file using JD-GUI

E) Step V:

In this stage, we check the entire source code to

determine the insertion or substitution of malicious code

injected into the original code or build from scratch by

malware writer. Zertsecurity Analysis is as follows:

1. Its malicious code hides under four modules

namely; MainActivity, SmsReceiver,

TimeReceiver, and onBootReceiver

2. This malware application uses masquerading

technique and pretends as a German certificate

installer application.

3. In the MainActivity module, it uses two hard-

coded domains

http://app-smartsystem.com/sms/d_m009.php

and http://app-smartsystem.net/sms/d_m009.php

as multiple Command and Control Servers as

shown in figure 6.

4. It uses a fake login pin on top of phone number

and IMEI to identify different phone uniquely.

5. It updates C & C universal resouce locators by

either communicating the exisiting C & C

servers, or through sent SMS by the user as

contains in the string “&Sign28tepXXX” as

shown in fig. 7.

6. It encrypts the Command and Control

communication with AES-ECB, using

“0523850789a8cfed” as static key (Fig. 7)

7. Zertsecurity uses onBootReceive module to

monitor the boot start time so as to launch itself

using BOOT_COMPLETED and query the

server to detect updated C & C universal

resource locators within fiften minutes (Fig. 9).

Fig. 6: Code snippet showing Zertsecurity multiple C&C servers

package com.guard.smart;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.widget.Button;

public class MainActivity extends Activity

{

 public static int a = 900000;

 public static String[] b = { "http://app-smartsystem.com/sms/d_m009.php", "http://app-

smartsystem.net/sms/d_m009.php", "", "", "", "" };

 public static boolean c = false;

 public static String d = "";

 public static String e = "";
 public static String f = "";

 public static int g = 0;

 public static int h = 1;

 public static String i = "";

 public static Context j;

 protected void onCreate(Bundle paramBundle)

 {

 super.onCreate(paramBundle);

 j = getApplicationContext();

 a.c(j);
 if (!b[0].isEmpty())

 a.a(j);

 if (f.isEmpty())

 {

 setContentView(2130903040);

 ((Button)findViewById(2131165190)).setOnClickListener(new c(this));

Fig. 7: JD-GUI decompression of Zertsecurity

Fig. 8: Encryption strategy of Zertsecurity

Fig. 9: Booting action of Zertsecurity

F) Analysis Conclusion

The research identified several android malware features

which include .apk file features, .xml file features, .dex file

features. The .apk file consists of the size of apk, the zip

number, related folders that store files, quantity of files for file

type, among others. The .xml file consists of element names,

attribute type, used permission, xml elements, attribute names

etc., while .dex file features include strings elements, types,

methods used, static values, classes, prototypes, fields etc.

 It is observed that Zertsecurity is a Trojan malware that

steal user’s login information on system boot-up and send it to

a remote servers through command and control universal

resource locator (C&C urls) . It uses onBootReceive module

to monitor the boot start time so as to launch itself using

BOOT_COMPLETED and query the server to detect updated

C & C universal resource locators within fiften minutes. It also

uses encryption techniques to cover its dastard activities.

Prevention stage includes alert raised, report generation, threat

intelligence gathering and forwarding, and malware profile

creation.

VIII. FUTURE WORK

The future direction of this research is to carry out

comprehensive assessment of security on the Android mobile

framework, hybrid analysis and use the identified features for

effective classification in order to develop a detection system

that can help in the detection and containment of malware on

the same platform. The researchers aim to improve apriori

association rule for extracting and selecting features using

particle swarm optimization for purpose of effective detection.

IX. RESEARCH BENEFITS AND RECOMMENDATIONS

This research is beneficial for us to: a) emphasize on the

need to ensure the security of vita information on android

smartphone; b) understand the attack vectors on android

phones and better ways to address it. The followings are some

of the recommendations for the effective use of smartphone

for the protection against malware:

• User education: Since many malware can only

request for the user permission before installing

themselves on the phone, hence a need to educate the

users to be aware of strange or unfamiliar application

before installing it on their phones.

• Download and Install software and application from

approved and trusted sources.

• Use of mobile anti-malware software

X. CONCLUSION

This research examined the vulnerabilities, exploits and

attacks associated with android operating system security on a

smartphone. The researchers identified several features

associated to android malware through the analysis, which

could be used in further research. The research studied several

existing approaches in the analysis, detection and

classification of malware on an android phone in a bid to

identify weaknesses and propose a consolidated approach. The

researchers share analysis of a sample android malware to

obtain features, determine its attacks strategy and code

semantics. The research finally highlighted the benefit of this

research to the global society and recommends better

approaches to ensure security of vita information on android

smartphones.

REFERENCES

[1] O. S. Adebayo, M. A. Mabayoje, A. Mishra, O. Osho “Malware
Detection, Supportive Software Agents and Its Classification Schemes”,

International Journal of Network Security & Its Applications (IJNSA),

Vol.4 (6), Pp. 33 – 49, 2012.

[2] K. J. Abela, L. Angeles, Don Kristopher E., D. Alas, J. Raynier P.,

Tolentino, R. Joseph, Gomez, A. N. Miguel “An Automated Malware
Detection System for Android using Behavior-based Analysis, AMDA”

International Journal of Cyber-Security and Digital Forensics (IJCSDF),

2 (2): The Society of Digital Information and Wireless Communications,

ISSN: 2305-0012, 2013.

[3] B. Abhijit, H. Xin, G. S. Kang and P. Taejoon“ Behavioral detection of
Malware on Mobile Handsets”, June 17–20, 2008, Breckenridge,

Colorado, USA. ACM 978-1- 60558-139-2/08/06, 2008.

[4] A. Walenstein, L. Deshotels, and A. Lakhotia “Program Structure-Based

Feature Selection for Android Malware Analysis” MOBISEC 2012,

LNICST 107, Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pp. 51–52, 2012.

[5] Anubis: Analyzing unknown binaries. [Online]. Available:
http://anubis.iseclab.org/

[6] Cabir, Smartphone Malware. Available at http://www.f-secure.com/v-

descs/cabir.shtml.

[7] D. Shetty, "Demystifying the Android Malware", Retrieved From:
 http://packetstormsecurity.org/files/view/104458/demystifying-

 android.pdf, Last Accessed: 25 October, 2013.

[8] F-secure. Cabir. Access from

 http://www.f-secure.com/v-descs/cabir.shtml, 29-10-2011.

[9] H. Kim, J. Smith, and K. G. Shin “Detecting energy-greedy anomalies

and mobile malware variants”. In Proceeding of the 6th international

conference on Mobile systems, applications, and services, MobiSys '08,

ACM , pages 239-252, New York, NY, USA, 2008.

[10] H. Le Thanh “Analysis of Malware Families on Android Mobiles:
 Detection Characteristics Recognizable by Ordinary Phone Users and

 How to Fix It” Journal of Information Security, 4 (4), 213-224, 2013.

[11] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani “Crowdroid: Behavior-

Based Malware Detection System for Android”. In Proceedings of the

1st ACM workshop on Security and Privacy in Smartphones and mobile
devices (October 2011), Pp.15-26, 2011.

[12] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing, the OS

and dalvik semantic views for dynamic android malware analysis,” in

Proceedings of the 21st USENIX conference on Security symposium,

 ser. Security’12. Berkeley, CA, USA: USENIX Association, pp. 29–29,
 2012. Available: http://dl.acm.org/citation.cfm?id=2362793.2362822.

[13] L. Delosieres and D. Garcia, “Infrastructure for detecting Android

 malware,” in Proc. 28th Int. Symp. on Computer and Information

 Sciences (ISCIS’13), 2013.

[14] M. Lindorfer, “Andrubis: A tool for analyzing unknown android

applications”. Available at: http://blog.iseclab.org/2012/06/04/andrubis-

a-tool-for-analyzing-unknown-android-applications-2/

[15] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “RiskRanker: Scalable

and Accurate Zero-day Android Malware Detection“ Proceedings of the

10th International Conference on Mobile Systems, Applications and

Services (MobiSys 2012), 2012.

[16] M. Christodorescu, S. Jha, D. Maughan, D. Song, C. Wang, “Malware

Detection: Advance Information Security”, ISBN-10: 0-387-32720-7,

ISBN-13: 978-0-387-32720-4,e-I SBN-10: 0-387-44599- 4, e-ISBN-13:

978-0-387-44599-1.

[17] M. Zhao, T. Zhang, J. Wang, Z. Yuan, “A Smartphone Malware

Detection Framework based on Artificial Immunology”. Journal of

Networks, VOL. 8 (2), 469-472, 2013.

[18] M. Karami, E. Mohamed, N. Parnian, and S. Angelos, “Behavioral

Analysis of Android Applications Using Automated Instrumentation”.

In Proceedings of the 7th International Conference on Software Security

and Reliability (SERE), Washington DC, USA, 18-20 June 2013.

[19] Q. Yan, Y. Li, T. Li, and R. Deng, “Insights into malware detection and
 prevention on mobile phones,” Security Technology, pp. 242– 249, 2009.

[20] R. Vala, L. Sarga, and R. Benda, “Security Reverse Engineering of

Mobile Operating Systems: A Summary”. Recent Advances in

Computer Science, ISBN: 978-960-474-311-7, 2013.

[21] S. Meyer, J. Freudiger, J. Hubaux “Misbehavior in Mobile Application

Markets: Security and Cooperation in Wireless Networks Mini-project”

EPFL, 2011.

[22] S. Holla, and M. Katti “Android based Mobile Application and Its

Security”. International Journal of Computer Trends and
Technology, 3 (3)Page 486 – 490, ISSN 2231 – 2801, 2013. Available at

http://www.internationaljournalssrg.org

[23] T. K. Buennemeyer, M. N. Theresa, M. C. Lee, P. D. John, C. M.

Randy, and G. T. Joseph, "Mobile device profiling and intrusion

detection using smart batteries." In Hawaii International Conference on

System Sciences, Proceedings of the 41st Annual, pp. 296-296. IEEE,

2008.

[24] T. Blasing, A. Schmidt, L. Batyuk, A. C. Seyit, and S. Albayrak “An

android application sandbox system for suspicious software detection”.

In 5th International Conference on Malicious and Unwanted Software

(Malware 2010), Nancy France, 2010.

[25] T. Eder, M. Rodler, D. Vymazal, M. Zeilinger “A Framework For
Analyzing Android Applications”. Workshop on Emerging Cyberthreats

and Countermeasures ECTCM., 2013. Available at

 http://arxiv.org/find/all/1/all:+ANANAS/0/1/0/all/0/1

[26] T. Vennon, "Android Market Threat Analysis", Retrieved From:

 http://www.scribd.com/doc/33454935/Android-Market-Threat-Analysis-

 6-22-10-v1#download, Last Accessed: 04 October, 2013

[27] E. William, G. Peter, C. Byung-Gon, P. C. Landon, J. Jung, P.
McDaniel, A.l N. Sheth, “TaintDroid: An Information-Flow Tracking

System for Realtime Privacy Monitoring on Smartphones”. 9th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI’10), 2010.

[28] V. J. Varghese and S. Walker, “Dissecting Andro Malware”. SAN
Institute, School of Computer and Electronic Engineering, University of

Essex, Colchester CO4 3SQ, UK, 2011.

[29] Amazon appstore for android. URL http://www.amazon.com/mobile-

 apps/b?ie=UTF8\&node=2350149011, 2013.

[30] Getjar, 2013. URL http://www.getjar.com/

[31] Google play, 2013. URL https://play.google.com/store

[32] A. Shabtai, Y. Fledel, & Y. Elovici, "Automated static code analysis for
classifying Android applications using machine learning." International
Conference on Computational Intelligence and Security (CIS), 2010.

