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Abstract 

 
This study used a multivariate negative binomial model to capture the Spatiotemporal endemic-epidemic of 

infectious disease and explore the spatial and temporal patterns of cholera outbreaks in Nigeria. The model for 

the epidemic part measured spatial weights for the disease spread across the geographical neighboring regions 

and the endemic part accounted for temporal variation of disease incidence. Weekly count data on cholera 

from the Nigeria Department of Disease Control and Monitoring Epidemiology (NCDC SED) between 

January 1
st
 and November 19

th
, 2018 was used to illustrate the model. In fitting the model, the study has 

shown that the model with seasonality and autoregressive components provided an adequate fit for the cholera 

count data and also perform better than the model without seasonality and autoregression for modelling the 

Spatiotemporal dependency structure of cholera disease 

 
Keywords: Disease; surveillance; epidemic proportion; negative binomial model; Spatiotemporal 

dependence; cholera. 

 

1 Background 
 

Cholera is caused as an acute watery diarrhea disease by contaminated water with the toxigenic strains of Vibrio 

cholerae serogroups O1 or O139 or by the ingestion of food or Clemens et al. [1]. It is always characterized by 
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Severe dehydration, sometimes fatal left untreated and watery diarrhoea, with or without vomiting [2]. 

According to Microbiology Society, [2] that the case fatality rate (CFR) from untreated cholera can be as high as 

30–50%, but when there is quick administration of rehydration therapy can reduce it to as low as 1%. Ali et al. 

[3] reported that the global estimates for cholera cases and deaths are about 2.9 million and 95,000 per year, and 

which 17 African countries reported over 150,000 cholera cases from all the outbreaks in 2017, NCDC [4]. 

 

In Nigeria, cholera is endemic and seasonal, especially in the rainy season and more often in poorly sanitized 

areas. Cholera infection is closely associated with inadequate access to clean water and sanitation from densely 

populated areas to other neighborhoods WHO [5]. Historically, Nigeria has experienced multiple outbreaks of 

cholera characterized by high case fertility rate (CFR), including the 1991 epidemic with 59,478 cases and 7654 

deaths. This outbreak remains the highest in the country with a CFR of 12.9%. In March, 1999, another major 

cholera outbreak happened in Kano state, with instances spreading to two states namely: Edo and Adamawa 

states; and the outbreak led to 26,358 cases and 2085 deaths. The closing predominant cholera outbreak prior to 

2018 became in 2014, at some point of which the wide variety of instances recorded cases surpassed over half of 

the quantity of cases recorded between 2012 and 2013 in addition to among 2015 and 2017. Dalhat et al., [6] 

pronounced that, Nigeria recorded 787 cases and 1716 deaths (CFR 4.1%) throughout 18 states between January 

to December 2010. In line with international proof, however, the cholera burden in Nigeria is underestimated as 

reported by Mengel et al., [7].  

 

There is increasing research on probabilistic models to fully understand the transmission and persistence of the 

disease. The susceptible infected removed (SIR) model and the chain binomial model [8,9] were used for the 

spread of an infectious disease over time. These models are developed for the infection mechanism of a disease, 

based on data of a completely observed infection process. Morton and Finkenstädt [10] proposed a stochastic 

discrete time variable of the SIR model for infectious diseases transmission within and between districts and 

susceptible individuals interact and carried out model fitting and inference using Markov chain Monte Carlo 

approach. In another approach, Kleinman et al. [11] proposed a generalized linear mixed model for the 

spatiotemporal modelling of disease counts that follows a binomial distribution for the counts. Also, Knorr-Held 

& Richardson [12] proposed a model for space-time meningococcal disease data dividing an ‘endemic’ pattern 

for periods of no outbreaks and a ‘hyper endemic’ pattern that allows for an auto regression on functions of 

counts of the same and neighboring regions. and the endemic pattern was built with respect to chronic disease 

models including structured time, space, and seasonal effects.  Sebastiani et al. [13] used dynamic Bayesian 

networks to include four different data streams into a multivariate model for influenza surveillance. Böhning 

[14]. used an Empirical Bayes (EB) techniques for space-time disease surveillance and Mugglin et al. [15] used 

log-linear Poisson model for space-time influenza data with assumption that the logarithm of the mean depends 

on a multivariate Gaussian autoregressive process among three levels, an endemic level, an epidemic level, and 

for the decline of the counts after the outbreak.  

 

Meyer & Held [16] proposed a power model for short-time human travel and for long-term predictions of 

infectious transmission disease in both space and time. Additionally, Meyer & Held [16] reported that power 

models produce better predictions of final counts, epidemic curves, and regional final counts. Held et al. 

[17]also admitted that power model predictions perform better than predictions from models with simpler spatial 

assumptions. Held et al. [18] proposed the first multivariate time-series model framework for aggregated 

surveillance data and further developed in Paul et al. [19], Paul & Held [20], and Meyer & Held [16] 

respectively.  

 

The aim of this study is to adapt the model by Paul et al. [19] for modelling the cholera in Nigeria and 

implement the model for the analysis of 2018 cholera count data. The objective was to explore spatiotemporal 

characteristics of cholera and to describe the epidemiology week of cholera outbreak in Nigeria.  

 

2 Materials and Methods 
 

2.1 Data used  

 
Secondary surveillance data covering weekly cholera counts from 1 January to 19 November 2018 was received 

from NCDCSED mainly tasked with coordinating surveillance and response efforts for cholera outbreaks in 

Anambra and Eboni in the southeast. Adamawa, Borno, Bauchi, Gombe, and Yobe in the northeast. Abuja, 
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Kogi, Kwarra, Nasarawa, Niger, and Plateau in the north central area of Nigeria. Jigawa, Kaduna, Kano, 

Katsina, Kebbi, Sokoto, and Zamfara are all in the northwest. Persons aged two years or older with acute watery 

diarrhea and severe dehydration, or those who died within a week after having acute watery diarrhea in the same 

area fall in the population of cholera case.  Cases of cholera were included in the current study if they were 

under the age of two and met the case description. The confirmed cholera cases were those in which Vibrio 

cholerae O1 or O139 was isolated in the feces by the Nigerian Disease Control Center's microbiological 

investigation (2017). The original records were 44,198 cases, while a total number of 194 cases were duplicated. 

After removal of duplicated ones, a final number of records was 44,044. Records without an epidemiological 

week was only 8 cases and a final record used in this study was 43,996 cases and 836 deaths. 

 

2.2 Methodology  
 

A multivariate negative binomial model is used to model the 2018 cholera outbreak in Nigeria. 

 

Since there was over dispersion of cholera in all affected states. Negative binomial distribution follows some 

strong assumptions about the data. If the variance is significantly larger than the expected value, called the 

spread, then a negative binomial model is appropriate, but the Poisson distribution is a good alternative model if 

the mean and variance of the random variables are assumed to be equal [21].   

 

Models 

 

Let     represents cholera counts observed in unit   at time            geographical regions over   
       weekly time points. In this study, single disease is     , cholera, observed in the four geographical 

regions and for the number of choleras counts in a single region, for example, January 2018 is.      The counts 

are assumed to be distributed as negative binomial,                          with conditional mean 

 

                                                                                                                                           (1)  

 

And the conditional variance of     increases to;             with additional unknown over dispersion 

parameter    .  

 

Decomposed the disease incidence     into two parts: the ‘epidemic’ part which allows for capturing the 

occasional outbreaks is given as: 

 

                                                                                                                                                      (2) 

 

where,    is an unknown autoregressive parameter. 

 

And the endemic’ part which describes the endemic seasonal patterns is given as: 

 

                                                                                                                                                   (3) 

 

Equation (1) is further adjusted to capture the spread of a disease across the neighboring states. Also, 

incorporating the sum of the previous number of counts         in other units  ,     as a potential explanatory 

variable for the disease incidence in unit  .and introducing additional weight in the epidemic part of Equation 

(2) so that; 

 

                                                                                                                                   (4) 

 

where,        are the counts observed in region   at time     with lag          ,     are the chosen weights 

and the influence of       ,     on     is quantified by the additional autoregressive parameters   . Therefore, 

the relative population of each of the four geographical regions are measured to determine the weights    . 

 

To examine the temporal variation of cholera counts, the endemic     includes an overall trend and a sinusoidal 

wave for weekly data frequency          , (because data was weekly). The ratio of the population fraction 

    is included as a multiplicative offset. The endemic part of Equation (3) gives: 
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(5) 

 

where,   is the number of harmonics to be added,   are the Fourier frequencies and     allows for different 

incidence levels in each of the regions. 

 

3 Results  
 

Spatial weights in terms of prevalence rates (number of cholera cases/total number of people (per 1000) in the 

four affected geographical regions in Nigeria, is given in Table 1. The weight for: Southeast is 0.02316, 

Northcentral is 0.05324, Northwest is 0.38476, and Northeast is 0.91920. These weights are indications that 

cholera was more prevalent in Northeast than the others and means that the population of Northeast region is at 

a higher risk than the populations of other regions. 

 

Table 1. Weight matrix of cholera cases in four affected geographical regions, Nigeria, 2018 

 

Geographical 

region 

Southeast Northcentral Northwest Northeast 

Southeast 1 2.8323 5.8277 2.7780 

Northcentral 0.3531 1 2.0576 0.9809 

Northwest 0.1716 0.4856 1 0.4767 

Northeast 0.3599 1.0195 2.0977 1 

 

Using the weights     n Equation (4), a weight matrix of dimension 4 × 4 in Table 1 shown the cholera 

transmission from one region to other regions. For example, the spatial weights between Southeast to north-

central, northwest, and northeast are 2.8323, 5.8277, and 2.7780, respectively.  Two different negative binomial 

models, including the     seasonal term, were fitted in the endemic part to test whether the seasonal part and 

the autoregressive part were            added to the linear predictor. The results of the fitted models of 

Equations (4) and (5) are given n (Table 2) standard errors were given in parentheses. 

 

Table 2. Results of the fitted Negative Binomial Models 

 

Without seasonality part and autoregression component 

Distribution   (SE)   (SE)   
 (SE) Log-L AIC 

Negative 

binomial 

- 

- 

- 

- 

0.0664(0.3071) 0.9742(0.0429) 

0.4444(0.0731) 

0.8238(0.1060) 

0.0453(0.0674) 

-1384.71 

 

1883.96 

 

With both seasonality and autoregression 

Distribution   (SE)   (SE)   
 (SE) Log-L AIC 

Negative 

binomial 

0.8903(0.0889) 

0.1742(0.0186) 

0.8903(0.0758) 

0.8112(0.0857) 

0.0816(0.3588) 0.0706(0.0100) 

0.0351(0.0053) 

0.1004(0.0665) 

0.0305(0.0330) 

-1353.04 

 

1859.71 

 

 

Table 2 shows that a model with seasonal and autoregressive components maximizes the log-likelihood function 

compared to a model without seasonal and autoregressive components. Maximum likelihood estimates for the 

model using the seasonal component and the autoregressive component λ are 0.8903 (0.0889), 0.1742 (0.0186), 

0.8903 (0.0758), and 0.8112 (0.0857) in the four regions. These values indicate the presence of heterogeneity in 

the autoregressive component and can be easily interpreted as the epidemic rate of the outbreak of cholera 

disease. Akaike's Information Criterion (AIC) calculated for the two models confirmed whether it makes sense 

for these data to account and consider over dispersion. Models with both seasonal and autoregressive overcome 

other model with a small AIC (1859.71) and has to be part of the model since, it is more efficient than a purely 

parameter-driven model. And because it takes account the seasonality, over dispersion, and localized epidemics, 

that are common characteristics of infectious disease data. 
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3.1 Exploratory Analysis 
 

An exploratory analysis of the spatiotemporal characteristics of the study population is shown in (Table 3). The 

key outcomes are attack rate and case fatality rate presented in (Table 4) and distribution of cholera cases by 

epidemiological week in (Table 5). 

 

Table 3. Characteristics of the epidemic season by Week from Jan. 1
st
 to Nov., 19

th 
2018 

 

Epidemic Week Final count Consecutive Weeks 

(January) 

Consecutive Weeks 

(Season) 

Week1 

Week2 

Week3 

Week4 

Week5 

Week6 

Week7 

Week8 

Week9 

Week10 

Week11 

Week12 

Week13 

Week14 

Week15 

Week16 

Week17 

Week18 

Week19 

Week20 

Week21 

Week22 

Week23 

Week24 

Week25 

Week26 

Week27 

Week28 

Week29 

Week30 

Week31 

Week32 

Week33 

Week34 

Week35 

Week36 

Week37 

Week38 

Week39 

Week40 

Week41 

Week42 

Week43 

Week44 

Week45 

Week46 

91 

93 

52 

93 

101 

352 

253 

192 

173 

253 

292 

301 

521 

542 

901 

1000 

1203 

1003 

1201 

1002 

1351 

1215 

1308 

1258 

1108 

1109 

805 

793 

1000 

1011 

1364 

1540 

1030 

1615 

2614 

2764 

3064 

2300 

1968 

1558 

1302 

811 

532 

418 

301 

102 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

1
st
 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

2
nd

 Week 

3
rd

 Week 

3
rd

 Week 

3
rd

 Week 

3
rd

 Week 

3
rd

 Week 

3
rd

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

4
th

 Week 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Rainy 

Dry 

Dry 
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Week47 126 4
th

 Week Dry 

The counts for each week vary in several ways: epidemic Week, final count, consecutive Weeks (began on 

Sunday and ended on Saturday) and consecutive Weeks (season) (Table 3). The data for week35, Week36 and 

Week37 (in red) represent the extreme nature of the cholera pandemic. Incidence peaks much higher, at 3064 

counts, than at any other time in the data set which was about 94.48% of cholera cases and were reported during 

the rainy season as also reported in (Table 5). This means that the majority of cases were as a result of water 

flood. The data for Week5 represented the peak weak listed as 52 because the 2018 epidemic season is really in 

the first wave of the dry epidemic season. 

 

Table 4. Distribution of cholera attack rates and case fatality rates by region, Nigeria, 2018 

 

Geographical 

region 

Projected 2018 

population 

Cases Deaths Attack rate/100,000 

population 

CFR (%) 

Southeast 

Northeast 

Northcentral 

Northwest 

Total 

8,852,569.68 

24,593,161.29 

25,072,869.86 

51,590,496.43 

110,109,097.26 

205 

22,606 

1,335 

19,850 

43,996 

8 

251 

62 

515 

836 

2.32 

91.92 

5.33 

38.48 

127.43 

3.90 

1.11 

4.64 

2.59 

1.90 

 

Table 4 shows the distribution of cholera AR and CFR. The overall AR during the breakout period was 127.43 / 

100,000. Specifically, the northeast (91.92 / 100,000 population) and northwest (38.48 / 100,000 population) are 

two other geographic areas, such as Northcentral and Southeast, which are residents of 5.33 / 100,000 and 2.32 / 

100,000, respectively. CFRs are generally high in all affected geographic regions, with approximately 75% of 

these regions reporting high CFRs in excess of 1.90% at the national level. In particular, Northcentral recorded 

the highest CFR (4.64%). The northeast recorded the second highest CFR (3.90%) and the northwest recorded 

the CFR (2.59%). 

 

 
 

Fig. 1. Spatial maps: (a) Attack Rates and (b) Case Fatality Rates. 

 

The spatial distribution of cholera cases in terms of attack rates and case fatality rates across the 20 affected 

states is shown in Fig. 1. The modes of attack rates were found in category 6: 60 to 100(per 100,000) and 

category 5: 30 to 49.9(per 100,000) which were notably found in northeast and northwest regions. The spatial 



 

 
 

 

Usman et al.; AJPAS, 16(2): 15-24, 2022; Article no.AJPAS.79858 
 

 

 
21 

 

distribution of case fatality rates was more often in category 5: with 5.0% and above than categories 3 and 4: 

with (2.0 to 3.5%) and (3.5 to 5.0%) which were notably dispersed in northcentral, and northwest regions. 

 
 

Fig. 2. Plot by epidemic Week for (a) Alive and (b) Deaths 
 

The epidemiological curve for cholera cases alive and fatalities by epidemic Week are shown in Fig. 2. The bulk 

of cholera cases occurred in the second and fourth waves, with a peak at week 37; nevertheless, there was a 

preponderance of cholera deaths near the conclusion of the third wave and the start of the fourth wave, with 

occasional occurrences of death in between. 
 

Table 5. Cholera cases by epidemiological week in Nigeria, 2018 
 

Characteristic Epidemiological week  

Week 1–9 

Cases (%) 

Week 10–28 

Cases (%) 

Week 29–34 

Cases (%) 

Week 35–47 

Cases (%) 

Total 

Cases (%) 

Age (years) 

< 5 

≥ 5 

Missing 

Sex 

Female 

Male 

Geographical 

region 

Southeast 

Northeast 

Northcentral 

Northwest 

Season 

 

386 (34.50) 

731 (65.33) 

2(0.18) 

 

567 (50.67) 

552 (49.33) 

 

 

3 (0.27) 

874 (78.11) 

3 (0.27) 

239 (21.36) 

 

 

4551 (25.96) 

12,955 (73.91) 

22(0.13) 

 

8782 (50.10) 

8746 (49.90) 

 

 

188 (1.07) 

12,372 (70.58) 

1083 (6.18) 

3885 (22.16) 

 

 

1422 (19.08) 

5744 (77.06) 

288(3.86) 

 

3773 (50.62) 

3681 (49.38) 

 

 

14 (0.19) 

807 (10.83) 

158 (2.12) 

6475 (86.87) 

 

 

3899 (21.79) 

12,947(72.35) 

1049(5.86) 

 

9200 (51.41) 

8695 (48.59) 

 

 

0 (0.00) 

8553 (47.80) 

91 (0.51) 

9251 (51.70) 

 

 

10258(23.32) 

32377(75,59) 

1361 (3.09) 

 

22322(50.74) 

21674(49.26) 

 

 

205(0.47) 

1335(3.03) 

19850(45.12) 

22606(51.38) 
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Characteristic Epidemiological week  

Week 1–9 

Cases (%) 

Week 10–28 

Cases (%) 

Week 29–34 

Cases (%) 

Week 35–47 

Cases (%) 

Total 

Cases (%) 

Dry 

Rainy 

Outbreak 

setting 

Rural 

Urban 

Missing 

0 (0.00) 

1119 (100) 

 

 

887 (79.27) 

199(17.79) 

33(2.95) 

997 (5.69) 

16,531 (94.31) 

 

 

3073 (17.53) 

14382(82.05) 

73(0.42) 

7454 (100) 

0 (0.00) 

 

 

4093 (54.91) 

3318(44.51) 

43(0.58) 

311 (1.74) 

17,584(98.26) 

 

 

7448 (41.62) 

10119(56.54) 

328(1.83) 

2427(5.52) 

41569(94.48) 

 

 

15501(35.23) 

28018(63.68) 

477(1.08) 
 

Epidemiological Weekly Cholera Cases, Table 5 shows that very high number of cholera cases were 

consistently recorded during the 29-34 Weeks, which was about 77.06% of those aged 5 years and older. For 

cholera cases by sex, it shows that the distribution of cholera cases was about the same between men and 

women throughout the week. In terms of geographic region, the northeastern states accounted for more cases in 

(1-9) Weeks (78.11%) and (10-28) Weeks (70.58%), while the northeastern states accounted for higher cases in 

Weeks (29-34) (86.87%) and (35-47) Weeks (51.70%). About (94.48%) of cholera cases were reported during 

the rainy season. The epidemiological week during the outbreak of cholera also seemed to be heavily influenced 

by seasonality. 
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Fig. 3. (a) Southeast (b) Northcentral (c) Northwest and (d) Northeast 2018 epidemic weekly plot 

The plotted time series from Weeks 1 to 47 (Fig. 1) shows the overall seasonality of the data, with higher 

incidence between Weeks 35 to 37 toward the end of the 2
nd

 quarter to the beginning of the third quarter when 

rainy season is expected to begins.  

 

4 Conclusion  
 

From the results of this study, the fitted negative binomial model shown that a negative binomial model with 

both seasonality and autoregressive components is more rational for cholera count data than without seasonality 

and autoregressive. The study therefore, concluded that it is best suitable for modeling the spatiotemporal 

dependence structure of infectious disease. The results of this study are consistent with the report by Paul et al. 

[19] and Sifat & Israt [22].  

 

 For the exploratory analysis of spatiotemporal characteristics, the analyses shown that there are three problems. 

First, there was a significant spike in cholera cases and deaths between Weeks 35 and 47, which coincided with 

the end of the rainy season across the country and increased the likelihood of water sources being contaminated 

by floods during these times. , Second, the majority of cases were reported in rural areas from Weeks 1 to 9, 

Week 29 to 34, and Week 35 to 47, since many people rely on contaminated water sources as water levels drop 

toward the conclusion of the rainy season. Finally, the CFR in this study is 1.9 percent, which is greater than the 

accepted guideline of 1% [5] (WHO, 2017). 

 

5 Recommendations 
 

1. Regular monitoring by the technical working groups of the affected states is required to know the current 

epidemiology of cholera in the country. 

 

2. Provide medical facilities to the affected Municipalities (LGA) Cholera Treatment Center (CTC) for rapid 

examination of suspected cholera cases.  

 

3. The study recommend a further research on the spatiotemporal cholera model that will detect routes of 

transmission. 
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