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Abstract: Carbon dioxide (CO2) and other greenhouse gases are the main causes of global climate
change. This phenomenon impacts natural and human systems around the world through the rising
global average surface temperature, extreme weather, changes in precipitation patterns, rising sea
levels, and ocean acidification. However, this concept is alien to most people in developing countries.
They are also unaware of the connection between energy efficiency and climate change. This dearth
of knowledge makes them opt for highly inefficient appliances. Internet of Things (IoT)-based
visualisation platforms for tracking household carbon footprints (CFs) have been seen as a good
concept for combating this global phenomenon; however, there are potential challenges and ethical
restrictions that must be addressed when implementing platforms for tracking household CFs. It
is also vital to consider the user’s viewpoint and current technological state to ensure successful
implementation and adoption. As the literature in this area is rapidly developing, it is crucial to
revisit it occasionally. This paper presents a systematic review of IoT-based visualisation platforms
for household CFs, including their definitions, characteristics, decision-making processes, policy
development, related services, benefits, challenges, and barriers to implementation. Finally, it offers
suggestions for future research.

Keywords: carbon footprints; climate change; Internet of Things (IoT); visualisation platform;
energy efficiency

1. Introduction

The Internet of Things (IoT) refers to a network comprising numerous physical devices,
buildings, vehicles, and other objects. These objects are equipped with electronics, software,
and sensors, allowing them to collect and share data [1]. There is significant interest in
using IoT technology to detect and reduce household carbon footprints (CFs) due to the
need to minimise greenhouse gas (GHG) emissions and the growing concerns about climate
alteration. A household CF is the amount of GHG emissions produced by the activities of a
household, including energy use, transportation, and waste generation [2–4]. By tracking
household CFs, individuals can identify areas where they can reduce their emissions and
change their daily behaviours to mitigate their environmental impacts [3].

A visualisation platform based on IoT technology can provide real-time feedback
on household energy use and CFs [5]. The platform can generate visualisations showing
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how household activities affect carbon emissions by using sensors for data collection on
energy consumption and additional environmental features, such as temperature and
humidity [5,6]. This information can help individuals identify areas where CFs need to
be reduced, such as by reducing energy consumption or changing their transportation
habits [7].

The motivations for developing an IoT-based visualisation platform for tracking house-
hold CFs include increasing awareness. By providing real-time feedback on household CFs,
individuals can become more aware of their environmental impacts and make informed
decisions about their daily activities. Another motivation is encouraging behaviour change:
the visualisation platform can motivate individuals to change their behaviour and reduce
their CFs by highlighting areas where they can make changes. Improving energy efficiency
is another objective: by tracking energy consumption, the platform can identify areas where
energy efficiency can be improved, such as by replacing old appliances with more efficient
models or upgrading insulation in the home [7,8]. Overall, an IoT-based visualisation
platform for tracking household CFs has the potential to be an effective tool for promoting
environmental awareness and behaviour change while also contributing to the global effort
to reduce GHG emissions [7].

The various research objectives for IoT-based visualisation platforms for tracking
household CFs include the design and development of an IoT-based system that can track
and monitor household CF data in real time [9,10]; the identification and analysis of factors
that contribute to the household CF, such as energy consumption, transportation, and waste
management; the development of a user-friendly interface for visualising and analysing
household CF data [8], including historical trends and comparisons with similar households;
the investigation of the effectiveness of different visualisation techniques in communicating
household CF data to users, such as charts, graphs, and maps [9]; the conduction of
user testing to assess the usability and efficiency of the IoT-based visualisation platform
in promoting behaviour change and reducing household CFs; and the valuation of the
potential environmental and economic gains from reducing household CFs [4], including
reduced GHG emissions and energy costs [8]. Prominent among the main objectives is
to pinpoint the obstacles and difficulties in implementing IoT-based monitoring systems
for household CFs. The aim is to create effective strategies to overcome these barriers.
Additionally, we will evaluate the scalability and replicability of the IoT-based visualisation
platform in various contexts, including urban and rural households [9]. This research also
seeks to identify opportunities for further development and research of IoT-based systems
to track and reduce household CFs.

Questions from previous studies on IoT-based visualisation platforms for tracking
household CFs are as follows: What are the key features that an IoT-based visualisation
platform should have for tracking household CFs? How can IoT sensors be integrated
into households to collect data on energy consumption and carbon emissions? Are there
different visualisation techniques that can be used to present household CF data in an
easily understandable way? How can machine-learning algorithms be used to analyse and
predict future trends in household CF data [4]? What are the potential challenges and ethical
considerations that need to be addressed when implementing an IoT-based visualisation
platform for tracking household CFs? How can the data collected through an IoT-based
visualisation platform be used to promote sustainable behaviour and reduce household
CFs [11]? What are some potential applications of an IoT-based visualisation platform for
tracking household CFs beyond individual households, such as for community-wide carbon
reduction initiatives? How can the IoT-based visualisation platform be designed to be user-
friendly and accessible to people with different levels of technical knowledge and abilities?
What are the costs associated with implementing an IoT-based visualisation platform for
tracking household CFs, and how can they be minimised? How can the effectiveness of an
IoT-based visualisation platform for reducing household CFs be measured and evaluated
over time?
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This review summarily groups the numerous questions raised into two major headings.
They are:

i. What are the key features and challenges of implementing an IoT-based visualisation
platform to track and reduce household CFs?

ii. How can IoT sensor integration, data visualisation techniques, machine-learning anal-
ysis, user-friendliness, cost minimisation, and effectiveness evaluation be optimised
in an IoT-based visualisation platform for household CF tracking?

The following methodology has previously been used to create an IoT-based visuali-
sation platform for tracking household CFs. Identify the Relevant Metrics [2]: In the first
stage, recognise the related metrics that will be used to measure a household’s CF. This
could include electricity, water, transportation, waste generation, and food consumption.
Determination of Data Sources: Next, determine the data sources for each identified met-
ric. This could include smart meters, IoT sensors, and other data-generating devices [9].
Development of Data Collection Methods: Develop methods for collecting data from
the identified sources. This could include APIs, data integration, and manual data entry.
Storage of Data: Store the collected data in a database that the visualisation platform can
access. The database should be secure and able to handle large volumes of data. Choose
the Visualisation Platform: Choose a visualisation platform that can handle and display the
collected data meaningfully. This could include dashboards, charts, and graphs. Creation
of the User Interface: Develop a user interface that is easy to use and understand. This
could include a web-based interface or a mobile app. Add Features: Add features such as
alerts, notifications, and recommendations to help users reduce their CFs [12]. Test and
Refine: Test the platform with real users and refine it based on feedback. Launch: Launch
the platform and market it to households interested in reducing their CFs. Maintain and
Update: Maintain and update the platform to ensure it continues to meet users’ needs and
stays up to date with the latest data sources and technologies [12].

This paper, therefore, presents a systematic review of IoT-based visualisation platforms
for household CFs, including their definitions, characteristics, decision-making processes,
policy development, related services, benefits, drawbacks, challenges, and barriers to
implementation. Finally, it offers suggestions for future research.

2. Literature Review

Figure 1 shows the block outline of the review considered in this section to address
the two (2) major questions raised in the introduction.
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2.1. Carbon Footprint Tracking and Reduction

CF tracking and reduction are important for sustainability and climate change mit-
igation. Many tools and strategies are available to help individuals, organisations, and
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governments track and reduce their CFs. This extensive review will explore the most
effective CF-tracking and reduction methods.

2.1.1. Carbon Footprint Calculators

Online CF calculators are useful tools that assist individuals and organisations in
estimating their carbon emissions. These calculators consider various activities, including
transportation, energy consumption, and waste production. In addition, these calculators
are useful for identifying areas where emissions can be reduced and tracking progress over
time. Some popular CF calculators include CF, Carbon Trust, and EPA’s CF Calculator. A
research team studied household CFs in Iskandar, Malaysia, and their implications for sus-
tainable development [13]. The study highlights the impact of urbanisation on CFs and sug-
gests the need for policies promoting low-carbon actions and energy-saving goods/services,
particularly in urban areas, to support sustainable development in Malaysia [13].

2.1.2. Energy Efficiency

Reducing carbon emissions can be achieved effectively by enhancing energy efficiency.
This can be achieved by upgrading energy-efficient appliances, using LED lighting, and
improving building insulation. In addition, many governments and utilities offer energy
efficiency incentives and programmes to benefit individuals and businesses and lessen
their energy intake [14].

In a 2020 study conducted in Nice and Bordeaux in France [15], researchers investi-
gated the factors influencing smart energy-tracking application usage. The study focused
on app adoption and frequent use, considering determinants such as privacy concerns and
environmental awareness [15]. Smart city characteristics and individual factors impact
energy-tracking app adoption and usage. The specific details and results are shown in
Table 1. Privacy is important when using energy-tracking apps. Measures should be put in
place to protect personal information. The study highlights the need for more research on
energy challenges and the implications of using such apps. This can help policymakers
and researchers promote sustainable energy practices [15].

Table 1. A smart home’s potential and perceived user benefits [16].

Benefit Service Immediate Advantage Long-Term Impact

Environmental Comfort, consultancy,
monitoring

Energy efficiency that
has favourable
environmental
externalities

Environmental
sustainability, reduction
in carbon emissions

Social Support Social acceptance Overcome the feeling
of isolation

Economic/
Financial

Consultancy,
monitoring Reduction in energy bills Economic gains and

money saving

Health
Comfort, consultancy,
monitoring, support,
delivery, therapy

Medical prescription
interaction and feedback

Promote the health of the
elderly and vulnerable

2.1.3. Renewable Energy (RE)

By switching to renewable energy sources, for instance, biomass, solar, and wind,
people can lessen their CO2 emissions. Additionally, governments and utilities may offer
incentives for installing renewable energy systems, and some businesses are beginning to
adopt renewable energy as part of their sustainability efforts. Zheng et al. [17] explored
how China’s renewable energy development can help cut carbon emissions. China, the
top emitter of CO2 worldwide, is under intense pressure to reduce emissions. Therefore,
the study targeted the assessment of how renewable energy (RE) growth contributes to
emission reductions. The authors used inter-provincial panel data from 2008 to 2017 to
analyse this association using a quantile regression model and path analysis. The results
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highlight three key points related to renewable energy and carbon emissions: inhibitory,
varying, and indirect effects. The development of RE has had a positive outcome in re-
ducing CO2 releases. Studies show that for each 1% rise in RE, there is a corresponding
reduction in carbon intensity of 0.028% to 0.043%. The impact varies with the carbon
intensity level, but indirect effects are prominent. Energy intensity and per capita gross
domestic product (GDP) show the link between RE development and emission reduc-
tions. These findings have implications for policymakers in China. They emphasise the
importance of considering different carbon emission levels, which can be used to design
effective strategies for promoting renewable energy and achieving emission reduction
targets [17].

Akram et al. [18] investigated the impact of energy efficiency (EE), RE, and additional
factors on CF release from 1990 to 2014 in 66 developing countries. Also, this research
explicitly explored these effects within the framework of the “Environmental Kuznets
Curve (EKC)” hypothesis. Using panel least squares and panel quantile fixed-effects re-
gression approaches, the researchers established that the influence of these variables on
carbon emissions varied across different quantiles of the dataset. The researchers found
that these variables’ effects on carbon emissions change across different quantiles of the
dataset using panel ordinary least squares and fixed-effects panel quantile regression
approaches. The study identified several key factors contributing to reducing carbon
emissions, including EE, RE, Nuclear Energy Consumption, GDP, and Squared GDP. EE
and RE significantly impact carbon reduction, particularly at higher and lower quan-
tiles. While nuclear energy also helps to reduce emissions, its impact is comparatively
less. The study also found that economic growth positively correlates with carbon emis-
sions, with a more pronounced effect at higher quantiles. However, the squared term
can help mitigate emissions, especially at upper quantiles. For developing countries, the
study areas of interest are the critical roles of EE and RE in reducing carbon emissions.
They also emphasize the need to consider EE within the framework of the EKC hypoth-
esis, as presented in Figure 2. These findings provide insights into practical strategies
and policies for promoting sustainable development and achieving emission reduction
targets [18].
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2.1.4. Sustainable Transportation

A significant source of carbon emissions is the transportation sector. Thus, encouraging
sustainable transportation (ST), such as walking, biking, public transit, and electric vehicles,
can significantly reduce carbon emissions. Governments and businesses can promote ST
through infrastructure investments, incentives, and education campaigns.

Lopez and Crozet [19] focused on the issue of transport’s contribution to CO2 releases
and environmental effects. This paper evaluated possible solutions to meaningfully lessen
CO2 discharges in the French transport sector. This approach involves creating scenarios
by backcasting using long-term transportation problem models. In this study, the author
considered three scenarios and analysed the impact of technological advances and various
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public policies on CO2 emission reduction. The document also provides valuable infor-
mation on infrastructure investment needs and potential changes in transport budgets
(financial and temporary) in each scenario. The three scenarios presented are as follows:

i. Pegasus scenario: This scenario promotes adopting strict technology standards to
reduce emissions.

ii. Chronos scenario: This scenario focuses on promoting green multimodalities, which
involve integrating different modes of transport in an environmentally friendly manner.

iii. Hestia scenario: This scenario emphasises decoupling transport growth from the
overall gross domestic product (GDP) growth.

The paper showed different results from policy mixes, proposing a 50% reduction in
emissions. The remaining 25% can be achieved through various policy interventions to
reach the French target of 75%. The study suggests a feasible reduction in CO2 releases
from the transport sector. Combining technology and policies can make achieving the 75%
target possible [19].

Long et al. [20] assessed the CF of Japanese household consumption during the initial
phases of the “COVID-19” pandemic. According to the study, the changes in lifestyle
during the pandemic did not significantly impact household CFs compared to the previous
years. However, there were some noticeable changes in the consumption categories. For
instance, there was an increase in home-cooked meals, while dining out, transportation,
clothing, and entertainment expenses decreased. Additionally, the study found that elderly
groups have higher per capita CFs, particularly in energy-related categories, which is
an essential factor to consider when analysing the environmental impact of household
consumption patterns during the pandemic [20].

2.1.5. Waste Reduction

Reducing waste helps reduce the CFs linked to the production, transportation, and
disposal of goods. Strategies for waste reduction include recycling, composting, and reduc-
ing the use of single-use products. Many municipalities offer recycling and composting
programmes, and businesses can implement waste reduction strategies through sustainable
supply chain management.

Elgaaied-Gambier et al. [21] focused on reducing the impact of the Internet on the
environment. According to the study, individuals in society are not wholly mindful of the
effect of their online environmental events and tend to hold companies and authorities
responsible instead of themselves. Though they wish to protect the environment, they
hesitate to change their habits. The research shows that people are more likely to take
responsibility for reducing their digital footprints when they understand the severity of the
environmental consequences. The perceived difficulty of making behavioural changes has
a smaller impact on their sense of responsibility. The study found no significant interaction
between perceived severity and perceived sacrifice. In conclusion, the research highlights
the importance of increasing consumer awareness and addressing their perceptions of
responsibility to promote eco-friendly online behaviour [21].

In their study titled “Unequal household CFs in the peak-and-decline pattern of
U.S. GHG emissions,” Song et al. [22] examined household consumption’s impact on
GHG emissions in the United States. Through a combination of surveys and an input–
output framework, the researchers discovered that changes in household consumption
played a significant role in the national decline in emissions. The decrease in emissions
was attributed to the reduced consumption of carbon-intensive products, with different
income groups playing different roles. Higher-income households initially drove emission
increases, while lower- and middle-income groups contributed to reductions. Although
carbon inequality initially increased, it later stabilised. It was also found that higher-income
households had significantly higher emissions from leisure-related services and goods,
highlighting the need for emission reduction policies in specific consumption areas. These
findings underscore the importance of addressing carbon inequality and targeting specific
consumption areas to reduce emissions effectively [22].



Sustainability 2023, 15, 15016 7 of 32

2.1.6. Carbon Offsets

For example, investing in reforestation and renewable energy programmes can aid
in reducing carbon emissions. Individuals and organisations can purchase carbon offsets
to offset their CFs. It is crucial to verify the transparency and legitimacy of carbon offset
projects to ensure that they effectively reduce emissions.

Hernandez and Vita [23] conducted a study to analyse household consumption’s CF
in the Guadalajara Metropolitan Area (MAG) and identify socio-spatial inequalities in emis-
sions. It is worth noting that a recent study found that domestic conspicuous consumption
accounts for over 65% of worldwide GHG emissions. The study recognised a gap in emis-
sion reduction strategies implemented by governments under the Paris Agreement, as they
primarily focus on production-based accounting, which overlooks the emissions associated
with trade, consumption, and social inequalities. The researchers employed accounting
analysis in suburban areas to address this gap, leveraging the 2018 Mexican Consumer
Expenditure Survey and Environmentally Extended Multiregional Input–Output data. Fur-
thermore, this analysis identified areas with high emissions (emission hotspots), estimated
households’ CO2-equivalent (CO2 eq) footprint in the Guadalajara Metropolitan Area, and
examined socio-spatial inequalities related to emissions. Finally, by understanding the CF
of household consumption and identifying areas of inequality, the study sought to provide
insights for stakeholders and policymakers to develop targeted tactics for CF reduction
and address socio-spatial disparities in the region [23].

Hoffmann et al. [24] developed CF-tracking apps to reduce emissions and promote
sustainability practices. The study found that ease of use and privacy concerns are impor-
tant factors in consumers’ willingness to adopt such apps. The article emphasises the need
to consider hedonic, social, and utilitarian benefits in promoting adoption. The study used
an app prototype to assess adoption intention and found that perceived enjoyment and
social benefits positively influence adoption. The article concludes with recommendations
for policymakers, app designers, and marketers to encourage adoption. This article sheds
light on the potential of CF-tracking apps to promote sustainable consumption and address
climate change. It underscores the importance of effectively understanding consumer
motivations and concerns in designing and promoting such apps. Further research in this
area could explore additional factors influencing adoption intention and investigate the
actual impact of these apps on consumers’ CF reduction.

In [25], a study focused on quantifying the CF abatement potential influenced by local
governments and identifying effective policies for reducing emissions. The findings reveal
that 35% of the abatement potential in California lies within local government control. The
study highlights the importance of local policies, regulations, and initiatives in achieving
GHG reduction goals. The research offers valuable resources for cities to understand where
their efforts can be most effective, empowering them to allocate resources strategically. The
insights and tools developed have the potential for broader application beyond California.
While the study discussed provides valuable insights into the local government’s ability to
reduce CFs, it is essential to acknowledge specific challenges and limitations associated
with the research, which are Data Availability and Accuracy, Simplified Assumptions,
Policy Implementation Challenges, Generalisability, and Uncertainty in Future Projections.
The accuracy of findings relies on available and accurate data. Incomplete or outdated
information can cause biases. The study used simplifications that may overlook nuances.
Achieving GHG reduction targets requires strong political will and stakeholder engage-
ment. The study’s findings apply specifically to California and may not apply to other
regions. Future emission projections involve uncertainties due to technological changes,
the economy, and policies.

A new tool called a carbon tracker has been developed to track and forecast the energy
and CF associated with deep-learning model training [26]. The tool aims to raise awareness
among practitioners about the environmental impact of training deep-learning models and
promote responsible computing in machine learning. The authors provide a comprehensive
overview of related investigations in this area and propose the carbon tracker as a medium
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for tracking and predicting energy and CFs during the training of DL models. The tool’s
design principles and multithreaded implementation make it easy to integrate into existing
workflows. However, further research is needed to evaluate the tool’s performance across
a broader range of deep-learning architectures and applications.

Nevertheless, introducing a carbon tracker represents a valuable contribution to the
field, addressing the need for increased awareness and action towards reducing the environ-
mental impact of deep-learning (DL) model training. The introduction of carbon trackers
is promising, but some challenges and limitations must be considered: the complexity of
energy measurement, generalisability, hardware dependency, the lack of standardisation,
limited scope, scalability and integration, privacy and data security, data availability and ac-
curacy, Scope 3 emissions, baseline selection, the scope of the analysis, and implementation
challenges. The statement acknowledges the potential of carbon trackers but highlights sev-
eral critical challenges and limitations that must be addressed. These include issues related
to the accurate measurement of energy usage, the applicability of tracking methods across
various contexts, reliance on specific hardware, the absence of standardised approaches,
a restricted focus in terms of the tracking scope, difficulties in scaling up and integration,
concerns about privacy and data security, the availability and reliability of data, the ability
to account for indirect emissions (Scope 3), the establishment of appropriate baselines for
comparison, the definition of the extent of the analysis, and finally, the practical hurdles in
implementing these trackers effectively. In essence, while carbon trackers hold promise for
CF reduction, the mentioned challenges need careful consideration for their successful im-
plementation and meaningful impacts. Measuring energy consumption during DL model
training is complex due to various factors, such as hardware, software, and algorithms. The
carbon tracker’s accuracy varies across models and datasets and may not account for energy
efficiency differences among hardware platforms. DL has no widely accepted standard
for energy and CF measurements. Moreover, the carbon tracker only tracks energy and
CF during DL model training, not during other stages of the ML lifecycle. Implementing
carbon trackers in real-world production environments is challenging due to compatibility,
scalability, and integration issues. Sensitive information sharing raises privacy concerns,
and improvements are needed for accuracy, scalability, and environmental impact.

A study on the CF of the American University of Sharjah (AUS) [27] highlights elec-
tricity consumption and university commute as key contributors to CO2 emissions. The
research offers recommendations for reducing emissions that could serve as a baseline for
other regional universities. Collecting accurate data on energy consumption, water usage,
and transportation can be challenging, and assigning responsibilities for indirect emissions
from commuting, procurement, and waste management is complex. Choosing an appro-
priate baseline timeframe and implementing emission reduction strategies can be difficult
due to financial constraints, institutional resistance, and a lack of stakeholder engagement.
A comprehensive sustainability assessment should consider multiple dimensions beyond
carbon emissions.

2.2. IoT-Based Monitoring Systems

IoT-based monitoring systems have significant potential to control carbon emissions.
These systems enable organisations and individuals to track their CF (as shown in Figure 3),
identify emission reduction opportunities, and make informed decisions about energy
usage [28,29].

Benammar et al. [30] created an IoT platform that monitors real-time indoor air quality.
This includes standards for various sensor technologies, wireless sensor networks (WSNs),
and smart mobile devices. A nearby gateway handles and distributes data through a web
server to users. The system uses Emoncms to store indoor air quality monitoring (IAQM)
data for immediate and long-term monitoring. The study enables the measurement of
various air quality parameters, including relative humidity, ambient temperature, CO, CO2,
NO2, O3, SO2, and Cl2. The research highlights the potential of IoT-based monitoring
systems in carbon emission control, particularly in indoor environments [30].
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Key advantages of IoT-based monitoring schemes are their ability to collect and analyse
statistics in real time. This allows organisations to respond quickly to changes in energy
use and make adjustments as needed. For instance, a smart building system can monitor
energy use and automatically adjust lighting and heating based on occupancy and ambient
light levels.

Nayak [31] developed an IoT-based solution to continuously detect vehicle emissions
and provide alerts in smart cities. Data from the prototype were stored in the cloud,
correlated with vehicle emissions, and then processed with a warning system. Sensors,
photon particle boards, and IFTTT (If This, Then That) were used to build the system. The
tool has been tested on various vehicles, and the results have been compared to those
obtained with currently available emission test methods. The results obtained showed
that the prototype could track emissions from vehicles and warn vehicle users to perform
proper regular maintenance of their vehicles.

Bagus et al. [29] focused on implementing an IoT-based scheme to monitor energy
usage. The scholars conducted a review to investigate the use of IoT in energy manage-
ment systems. Their study showed that IoT solutions for energy management include
microcontrollers, sensor modules, communication protocols, and cloud-based systems.
Their research findings revealed three categories. First, 73% of the studies focused on
simulations or device trials related to energy management using IoT. Second, a smaller
portion of the research (17%) involved the development of prototypes. Third, a limited
number of studies (10%) focused on actual implementation. The commonly deployed
microcontrollers for constructing IoT systems were Arduino and NodeMCU. The choice of
sensors varied depending on specific measurement requirements, with current and voltage
sensors commonly used [29].

A smart CO2-monitoring platform based on IoT-cloud planning for small cities in
beyond the fifth generation (B5G) was presented by Zhang et al. [12]. The model proposed
by the authors enables the real-time estimation of CFs at the block and street levels. They
also developed a smart carbon-monitoring platform incorporating IoT technology and
traditional carbon control methods. This platform facilitates the monitoring and man-
aging of low-carbon development in towns. The authors recommend exploring future
research directions to enhance the technical system’s meticulous monitoring and fiscal
cost. The authors provide a practical solution for implementing smart carbon-efficient
town monitoring.

Ma and Wang [32] created a model using deep neural networks to balance minimising
carbon emissions and maximising energy and the resource economy. To achieve this, the
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authors developed carbon emission prediction models and incorporated game theory to
optimise the resource economy. The simulation outcome indicated that the successful model
enhanced the maximisation of energy resources and reduced the CF economically. The
authors recommend that future research conduct numerous empirical studies to uncover the
underlying factors impacting carbon emission prediction. The authors demonstrated their
model’s efficacy in reducing carbon emissions while maximising the resource economy.

Employing a Raspberry Pi, Sruthi et al. [33] implemented an IoT-based system that
monitors and controls CO2 emissions from municipal transport, industries, and forest fires.
The system senses CO2 levels in a city and finds the most polluted areas. In addition, a
smart system will be put in place for the early detection of forest fires. The authors suggest
extending their system to detect other harmful gases. They conclude that their system can
help reduce global warming by monitoring and controlling CO2 emissions in real time.

An outstanding benefit of IoT-based monitoring systems is their ability to provide
detailed insights into energy use patterns [34]. By analysing data from sensors and other
sources, organisations can identify areas where they can make changes to reduce their CFs.
For instance, they may identify specific equipment or processes that consume more energy
than necessary or times of the day when energy use is exceptionally high.

There are also several challenges in implementing IoT-based monitoring systems for
carbon emission control. These systems require significant hardware, software, and per-
sonnel investments to install and maintain. Additionally, privacy concerns are related to
collecting and analysing data from individuals and organisations. This underscores the
obstacles tied to adopting IoT-based monitoring systems for controlling carbon emissions.
These hurdles encompass substantial hardware, software, and human resource require-
ments for the setup and upkeep. Furthermore, a noteworthy privacy issue is linked to
data collection and scrutiny from individuals and entities. While IoT monitoring holds
potential for carbon emission management, the demanding resource needs and privacy
considerations pose significant challenges to its successful implementation.

Overall, IoT-based monitoring systems have the potential to be powerful tools for
carbon emission control. As technology improves and costs decrease, we expect to see
more widespread adoption of these systems in the coming years. However, it is essential to
consider these systems’ potential benefits and challenges before investing in them.

2.3. Visualisation Platforms for Tracking the Carbon Footprint

Several visualisation platforms can help track and visualise CF data. Some of the
popular options are described below.

2.3.1. Carbon Analytics

Carbon Analytics is a cloud-based platform that provides tools for tracking and
analysing carbon emissions. It allows for collecting and managing energy consumption,
transportation, waste, and more data. In addition, the platform offers interactive dash-
boards and reports that allow an organisation to easily understand its CF.

2.3.2. Climate View

Climate View is a data visualisation platform representing an organisation’s CF. It
allows emission tracking across different sectors and visualises the impact of various miti-
gation strategies. Ytreberg et al. [35] researched digital climate nudges. Nordic online food
retailers used to encourage climate-friendly food choices. In this study, we categorised
nudges into three categories: decision-making information, structure, and support. These
nudges aim to make decision making easier for customers and decrease the amount of
mental effort required. Examples of decision structure nudges include prominently dis-
playing low-emission products and recipes. CF apps and climate labels are commonly used
as decision information nudges. However, the study reveals that non-salient nudges have
a limited impact, and there are difficulties in calculating product footprints. Additionally,
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the absence of industry norms for emission data and labelling makes it difficult for clients
to compare emissions from different stores [35].

Heydarian and Golparvar-Fard [36] studied a framework for monitoring construction
operations that was proposed to control productivity and the CF. An automated visual
sensing technique was used to track construction equipment, increasing productivity and
reducing the CF. To improve productivity and cut CF emissions, project managers were able
to monitor their activities in real time using the framework and make adjustments to the
construction plan and operation methods. The authors suggested that this approach could
significantly impact the current construction practice and its adherence to Environmental
Protection Agency (EPA) regulations on construction GHG emissions.

Similarly, Zaman and Jhanjhi [37] created a novel platform utilising a range of sensors
to offer intelligent contracts to minimise carbon emissions. This is achieved through data
visualisation, industrial control, and activity mapping. The developers used a qualitative
approach, including document analysis, to assess the feasibility of using blockchain tech-
nology in carbon trading. According to the authors, blockchain technology can effectively
address existing issues within carbon trading systems and provide a just and effective
solution. Carmeli et al. [38] suggest a platform that effectively combines expertise, market-
places, and motivations to encourage and pay individuals to reduce their CFs. Individual
carbon tracking, healthiness and fitness, social media, and financial motivations are all
interconnected in this five-part platform. By integrating a target-and-prize feedback loop
with Big Data, CarbonKit can become vital to people’s daily lives. The article also discusses
the technology platform and the concerns surrounding privacy and security, incentives,
stakeholders, and potential submissions for CarbonKit in British Columbia. Ultimately, the
authors concluded that combining technology, markets, and incentives can motivate and
empower individuals to take action and reduce GHG emissions.

An indoor air quality monitoring and control system (IAQMC) was developed by
Zhao et al. [39]. This groundbreaking system uses IoT technology and fuzzy inference. It
includes a new Fuzzy Air Quality Index (FAQI) model for assessing IAQ and a Simple
Adaptive Control Mechanism (SACM) that automatically adjusts the IAQMCS based on
the real-time FACI value. The results demonstrated that the method accurately measures
multiple air parameters and performs excellently in assessment precision, the average FAQI
score, and overall IAQ.

A comparison of global household CF characteristics and driving factors was per-
formed using a dynamic input–output model by Han et al. [40]. The consequences are
that food consumption contributes the maximum share of CO2 emissions in developing
countries, and residential real estate consumption makes up the peak share in developed
countries. The authors suggested that their findings could support countries in adapting
their emission reduction strategies to local circumstances. The article concludes that reduc-
ing relevant segments’ CF intensity and consumption formation was a better starting point
to lessen emissions.

Liao et al. [41] and Lin et al. [42] researched AI’s environmental impacts. They devel-
oped a platform for carbon-neutral management and services by analysing documents from
the International Telecommunication Union (ITU) and the China Internet Society (ISC),
respectively. According to these papers, AI-enabled smart services can optimise processes
and reduce emissions. The authors advise more research to justify, validate, and confirm
their design results. Their technology strategy is straightforward, practical, and flexible.

A Carbon, Health, and Savings System (CHSS) was proposed in [43]. The authors
interviewed experts in various fields to gather information and opinions on designing
and implementing a personal carbon-trading system. The CHSS would integrate techni-
cal know-how, markets, and encouragement to reward individuals for dropping GHG
emissions. The authors propose a minimum viable product approach to implementing
the CHSS in stages. The article concludes that personal carbon trading could complement
existing carbon pricing policies by providing psychological framing and feedback for
individual consumers.
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Analytical methods for assessing and visualising building carbon emissions are pre-
sented in [44]. The authors present a collection of indicators that break down the embodied
emission outcomes and an accumulation of the building’s record data. Upcoming emission
reductions brought on by high-tech advancements were also modelled using the technique.
The approach was verified with a case study identifying the leading causes of embedded
emissions and practical mitigation measures. This approach integrates case-specific and
statistical data to create the basis for further application during the project phases.

Hoffmann et al. [24], in their study in 2022, looked at what drives people to use CF-
tracking apps. These apps help individuals monitor and control their carbon emissions.
The study found that people are more likely to use these apps if they believe technology
can help solve the problem. However, the ease of use and privacy concerns affect this
relationship. Policymakers, app designers, and marketers can use this research to promote
app development and address these concerns to encourage adoption and reduce carbon
emissions [24].

Magtibay et al. [45] developed an energy-monitoring system called “Green Switch”
in their IoT-based research. This system was installed in Mabiniville, De La Salle Lipa.
There are almost 100 rooms in the building, of which students use about 70 for lectures
and laboratories. Rooms are available from 7:30 to 21.00 h every day. Researchers used
IoT technology to create a system that monitors and controls outlets and lighting in
each room.

The system can calculate the total kilowatt hours (kWh) used up. It uses a NodeMCU,
current and voltage sensors, a Raspberry Pi3, and the school’s network infrastructure
to transmit data to and from a server to accomplish this task. Consequently, using this
data, building managers can analyse consumption patterns and take action to reduce the
building’s CF. The hardware placement leverages the building’s existing wiring connections,
making it easy to set up and use. In addition, an easy-to-use web application was created
that allows users to access system functions and data from their desktops or mobile devices
to create new responses [45].

2.3.3. PowerDash

PowerDash is an energy management platform that tracks and visualises energy
consumption and carbon emissions. It provides real-time data on energy use and allows
goals to be set and progress to be tracked toward reducing CFs. Magtibay et al. [45]
developed “Green Switch,” an IoT-based energy-monitoring system for the Mabini Building
at De La Salle Lipa. The system controls room lights and power outlets, calculating the
total kWh consumed. It uses NodeMCU, sensors, a Raspberry Pi 3, and the school’s
network. The building administrator can evaluate consumption stats and reduce the CF. A
user-friendly web app was also developed for easy access [45].

2.3.4. Energy Elephant

Energy Elephant is an energy management platform that helps organisations track
and reduce carbon emissions. It provides various tools for monitoring energy use and
carbon emissions and offers customisable reports and dashboards to help visualise and
understand the CF.

Ramelan et al. [9] built a low-cost IoT system employing LoRa and MQTT to monitor
and control building energy. The system includes energy sensors, a microcontroller, a
LoRa-WiFi module, and a gateway. Nodes equipped with Arduino Uno and sensors
communicate with an IoT cloud server via Dragino LoRa Gateway LG01-N. The system
optimises energy consumption and uses the open-source Thingspeak platform for data
visualisation and device control; the study showcases a cost-effective approach to building
energy management using IoT technology. The accuracy errors for voltage, current, and
power sensors were 1.24%, 2.60%, and 3.13%, respectively [9].
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These are just a few visualisation platforms for tracking and visualising CF data.
Choosing a platform that meets the desired needs and provides the level of detail and
insight required to manage an organisation’s CF effectively is important.

2.4. IoT-Based Visualisation Platforms for Tracking the Household CF

IoT-based visualisation platforms for tracking household CFs are becoming increas-
ingly popular as people become more aware of the effects of their daily activities on the
environment. Energy and water usage and other environmental aspects can be tracked
through these platforms thanks to the IoT devices that monitor them.

One instance of an IoT-based visualisation platform is the Carbon Track system. This
system uses IoT sensors to monitor the energy usage of various appliances in the household,
as well as the amount of water consumed and the temperature and humidity levels inside
the home. The data collected by the sensors are transmitted to a cloud-based platform,
processed and analysed, and then presented to the user in a simple and intuitive dashboard.

Ming et al. [46] worked on IoT-based and cloud-based technologies for real-time
CO2 monitoring. The approach in this paper is considered a highly effective solution
for monitoring environmental CO2 levels. It is seamlessly integrated with IoT and cloud
computing technologies. The techniques mentioned earlier can provide readily available
and up-to-date data visualisation, which can greatly enhance the efficiency of analysis and
the deployment of counter-measures for smart homes. A monitoring system was created to
collect, store, and display CO2 concentration data using a CO2 sensor labelled MQ135, a
Wi-Fi module labelled ESP8266, the Firebase Cloud Storage Service, and Carbon in a mobile
application (app) for visual representation. This system successfully collected, stored, and
visualised 2880 data points within a 10-day timeframe with a 30 s interval [46].

Sruthi et al. [33] recently worked on a project that involved creating a smart IoT system
to monitor CO2 levels and detect forest fires. Sensors and a Raspberry Pi were utilised to
detect emissions and alert authorities promptly and accurately. The statistics are secured in
a cloud server for analysis. The system provides actionable information to help reduce risks
from climate change. The authors suggest that future research could focus on the real-time
monitoring of CO2 concentrations and the provision of the current atmospheric status to
users through a web portal or mobile application. In conclusion, the system provides an
effective way to monitor and control pollution caused by CO2 emissions.

Zhang et al. [47] published a study on smart CO2 emissions measurement and monitor-
ing in smart logistics. They used a technique called carbon emission factors to analyse the
CFs of smart logistics processes. They developed a carbon emission and energy consump-
tion evaluation system built on distributed 5G intelligent logistics. The authors developed
an intelligent logistics supply chain that considers CO2 emissions. This research provides a
basis for improving the environment, reducing carbon emissions, and increasing energy
efficiency in shared smart logistics through reduced building energy consumption.

Similarly, Mao et al. [48] proposed an IoT-based system background for real-time
carbon discharge monitoring in prefabricated construction. To determine GHG emissions,
they traced their origins back to specific processes. The system collects and displays
real-time emission data by integrating a distributed sensor network with a virtual model
generated through building information modelling (BIM). It was used in a component
manufacturing setting to ensure the system’s viability and practicality. The authors believe
this method has the potential to streamline emission monitoring in real time, enhance
decision making, and cut operational expenses. The authors believe that further studies
can improve the precision of carbon emission data.

Bilotta and Nesi [49] utilised data from sensors and reconstruction to estimate the CO2
emissions produced by IoT traffic flow. They created a model that considers congested and
uncongested conditions in assessing CO2 emissions based on traffic flow data. The model
was tested in the urban environment of Florence and successfully computed the city’s CO2
distribution. The authors presented an approach that characterises certain city traffic flow
based on emission factors to estimate CO2 emissions from traffic flow data.



Sustainability 2023, 15, 15016 14 of 32

Furthermore, Malmodin and Lundén [50] and Steen-Olsen et al. [51] conducted a
comprehensive study to estimate the energy and CFs of the global information and com-
munication technology (ICT) and entertainment and media (E & M) sectors between 2010
and 2015. The study also included a forecast for 2020 and utilised an extensive dataset
comprising both primary and secondary data. Surprisingly, despite increased subscriptions
and data traffic, the ICT and E & M sectors reduced their CFs. The authors recommend
conducting further research to stay updated on their progress.

A Vehicle Pollution Monitoring System using IoT was developed by Khatun et al. [52].
To monitor the vehicle’s emissions in real time, they installed a gas sensor at the exhaust,
among other sensors. The data are then forwarded to the vehicle’s operator through GSM
and the cloud, where they are checked against industry norms. The system’s performance
has been validated and can significantly reduce and regulate emissions. In future research,
the model can be used to monitor other harmful gases and be applied in various industries
to reduce air pollution.

The authors of [53] proposed creating a web-based dashboard to track the green
highway rating assessment and CF. This dashboard uses data from the Malaysian Green
Highway Index (MyGHI) and the CF Calculator (CFC) and was constructed using qual-
itative and quantitative research techniques. The proposal serves as a working example
for academics by digitally integrating MyGHI-CFC and displaying the results, giving
them access to efficient tools and standards that can aid in creating green roads and other
future sustainability endeavours. According to the authors, this novel approach to digi-
tising green technology would enable stakeholders to proceed with projects more quickly
and efficiently.

Tsokov and Petrova-Antonova [54] proposed an IoT platform called EcoLogic for
the real-time monitoring and control of vehicle carbon releases. The platform comprises
hardware modules installed on vehicles and cloud-based applications for data processing,
analysis, and visualisation. The authors conducted a case study to validate the feasibility
of the proposed solution. They identified future research directions, such as optimising the
solution to split data into subsets, implementing an analytics functionality for the prediction
of possible failures in vehicles, and integrating EcoLogic with third-party systems and
services. The authors concluded that EcoLogic is a complete solution for monitoring and
controlling vehicles’ carbon emissions.

Darniss et al. [55] suggested that a blockchain and IoT system can monitor and trade
carbon credits to decrease CO2 releases and their environmental effects. The generation of
electricity is a possible use for this system. Each entity can be awarded carbon credits based
on usage by tracking and documenting emissions in a secure blockchain ledger. Then,
one may use a blockchain-based exchange to buy and sell these credits. The research also
features a proof-of-concept Ethereum implementation and performance analysis. Using
blockchain and the IoT, this system provides an all-encompassing method for lowering
carbon emissions and softening their effects.

In addition, Steen-Olsen et al. [51] conducted a study on the CF of Norwegian house-
hold consumption between 1999 and 2012. The study used a global multiregional input–
output database, a Norwegian consumer spending survey, and an environmental input–
output analysis. Transportation, housing, and nutrition have contributed to a 26% increase
in CF since 1999. The authors argue that policymakers can use the methodology to analyse
national footprint patterns and identify research priorities to reduce consumer effects on
the environment.

Moreover, Xu et al. [34] and Lu et al. [56] proposed ECAMS, an IoT-based method for
monitoring and assessing a building’s embedded carbon. Data gathering, data transfer,
and data analysis form the backbone of this system. Sensor-based data collection and
communication have been demonstrated through laboratory studies. The suggested system
has the potential to significantly improve the accuracy and efficiency with which embodied
carbon estimates for prefabricated buildings are calculated. Work must still be conducted
before the system can be implemented, such as creating application programming interfaces
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and a database. In addition, it is recommended to undertake a field test to verify the
system’s viability in actual building settings.

Liu et al. [28] focused on IoT multi-point indoor air quality monitoring. They devel-
oped an Indoor Air Quality Detector (IAQD) system that measured residential buildings’
CO2, PM2.5, temperature, and humidity. The system utilised Zigbee wireless technology to
monitor and transmit data to a cloud server. The study showed that concrete walls affected
the Zigbee network’s signal quality, leading to packet loss. In addition, cooking periods
resulted in significantly higher PM2.5 concentrations, and closed doors at night led to
increased CO2 concentrations, posing potential health risks. The research underscores the
importance of monitoring PM2.5 levels, ensuring suitable ventilation, and addressing ele-
vated CO2 concentrations, particularly during winter when ventilation may be limited. The
custom energy-monitoring system utilises sensors to gather electrical power data. These
sensors are connected to nodes that have a power supply and are linked to a microcontroller
with a LoRa communication interface. Inside each node is an Arduino Uno, a Dragino
LoRa Shield, an ACS712 current sensor, a ZMPT101B voltage sensor, and a relay. Dragino
LoRa Gateway LG01-N uses the MQTT protocol as a broker to connect sensor readings to
an IoT cloud server. Data Thingspeak was used in experiments to see data and manage
devices remotely, resulting in significant energy savings. Sensors at the terminals were
found to have 1.24%, 2.60%, and 3.13% precision errors for voltage, current, and power,
respectively [28].

Jo et al. [57] developed a smart air device and web server that uses IoT and cloud-based
computing to monitor the indoor air quality. The device measures aerosol concentration,
VOCs, CO, CO2, and temperature–humidity levels and transmits data via LTE. The web
server analyses data and displays air quality according to standards. The platform was
successfully tested at Hanyang University [57]. Also, Ecoisme uses sensors to monitor
the energy usage of appliances and devices. It generates personalised recommendations
from an overview of their CFs by monitoring and tracking various energy-consuming
devices, appliances, and systems in real time. This is achieved by the real-time monitoring
and tracking of different energy-consuming devices, appliances, and systems; Ecoisme
offers tailored energy efficiency advice derived from detailed energy usage data. However,
these platforms can also present several challenges in reducing energy usage and lowering
CFs. IoT-based platforms provide real-time feedback, identify areas for optimisation, and
motivate sustainable practices.

2.5. Benefits of IoT-Based Visualisation Platforms

IoT has emerged as a promising technology for tracking and monitoring household
carbon emissions. The IoT-based visualisation platform can track household CFs and
recommend reducing carbon emissions. The following are its benefits:

(a) Real-time monitoring: IoT-based visualisation platforms can monitor household
carbon emissions. This can help individuals track their CFs and identify opportunities
for reducing emissions.

(b) Energy efficiency: IoT can be used to monitor household energy consumption, which
can help identify areas where energy efficiency improvements can be made. This can
include using energy-efficient appliances, lighting, and HVAC systems.

(c) Behaviour change: IoT-based visualisation platforms can help encourage behaviour
change by providing individuals with feedback on their carbon emissions. For exam-
ple, if an individual uses more electricity than usual, the platform can alert them and
provide recommendations for reducing energy consumption.

(d) Data collection: IoT-based visualisation platforms can collect data on household
carbon releases. These data can be used to identify trends and patterns in carbon
emissions, which can help inform policy decisions.
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2.6. Challenges and Limitations of Existing IoT-Based Visualisation Platforms

IoT-based visualisation platforms for households can have comprehensive challenges
and limitations, including data accuracy and reliability, high costs, limited device compati-
bility, privacy and security concerns, user adoption, maintenance, and support. Using IoT
devices and sensors to monitor household energy consumption can produce unreliable
data, leading to inaccurate CF estimates and affecting the effectiveness of visualisation
platforms. These platforms can also be expensive due to the high cost of IoT equipment
and may not be compatible with all household appliances and systems. Privacy and se-
curity concerns must also be addressed, and regular maintenance is required for smooth
functioning. Adoption may be limited due to a lack of awareness or technical expertise.

Overall, while IoT-based visualisation platforms have the potential to help households
reduce their CFs, it is crucial to address these challenges and limitations to confirm their
effectiveness and adoption.

3. Summary of Various Concepts Employed for Tracking Household Carbon
Footprints

Tracking household CFs involves measuring and analysing various factors contribut-
ing to carbon emissions. The various concepts available to track household CFs, as
discussed, include energy consumption data analysis [58–65], the use of surveys and
questionnaires [66–71], life-cycle assessment (LCA) [66,72–78], IoT-based monitoring
systems [10,12,59,71,79–82], carbon calculators and online tools [24,62,66,78,83–92],
behavioural monitoring and feedback [64,87,93–95], and data integration and
modelling [12,88,96–99]. The benefits, drawbacks and inferences for each concept are
also highlighted.

3.1. Energy Consumption Data Analysis

The most frequently used method to monitor household CFs is energy consumption
data analysis (ECDA). Data on energy usage must be gathered and analysed to quantify
the carbon emissions linked to different household energy sources. Utility bills, smart
meters, and energy-monitoring equipment are just a few places where energy consumption
data can be found [72]. Utility bills offer historical information on fuel oil, natural gas,
and electricity usage, often expressed in kWh or gallons [59]. Smart meters and energy-
monitoring devices provide real-time or interval-based data on energy usage [81], enabling
more detailed analysis.

Since different energy sources contribute to household carbon emissions, including
electricity, natural gas, and fuel oil, each energy source has a specific carbon intensity
or emission influence, representing the volume of CO2 discharged per unit of energy
consumed [62]. Emission factors are typically measured in pounds or kilograms of CO2
per unit of energy (for example, CO2 kg/kWh) [62]. Conversion factors are applied to the
energy consumption data to estimate carbon emissions. These issues are detailed for each
energy source and are based on the average carbon concentration of the energy generation
mix. For example, the conversion factor for electricity can be based on the carbon emissions
per kWh generated by the local power grid. Carbon emissions associated with energy
consumption are calculated by multiplying the energy consumption data by the appropriate
conversion factors. For example, to estimate carbon emissions from electricity usage, the
total kWh consumed is multiplied by the conversion factor for electricity. The exact process
is applied to other energy sources, such as natural gas and fuel oil. An example of that of
electricity consumption is shown in Equation (1).

E = TEC × EF (1)

where E is the emissions in CO2 eq. The CO2 eq notation represents other gases besides
CO2. These gases include methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons,
nitrogen trifluoride, and sulphur hexafluoride. Moreover, TEC and EF are the total energy
consumption and emission factor, respectively [100].
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Energy consumption patterns can vary throughout the year and within different peri-
ods. Considering these seasonal and temporal variations when estimating carbon emissions
is important. For example, heating and cooling demands may differ significantly between
summer and winter, impacting energy usage and associated emissions. ECDA provides a
relatively accurate estimation of the household CF, directly relating energy consumption
to carbon emissions. However, certain limitations should be considered. These include
potential errors in data collection, variations in conversion factors based on regional energy
sources, and the exclusion of indirect emissions (for example, embodied carbon in prod-
ucts). Also, ECDA can provide insights into household energy usage patterns and identify
areas for energy efficiency improvements. Analysing trends and variations in energy con-
sumption over time can help detect opportunities for reducing carbon emissions through
behavioural changes, appliance upgrades, or insulation improvements. In addition, ECDA
is valuable for policymakers, researchers, and energy providers for understanding house-
hold energy usage trends and formulating energy efficiency policies. The data can inform
the development of targeted programmes, incentives, and regulations to decrease the CF
at the household level. Energy consumption data can be integrated with other household
data, such as transportation habits or waste generation, to comprehensively analyse the CF.
This integration allows for a holistic understanding of the factors contributing to carbon
emissions, enabling targeted interventions and behaviour change strategies.

Furthermore, presenting energy consumption data and carbon emissions estimates
to households can raise awareness and engage individuals in reducing their CFs [62].
In addition, feedback mechanisms, such as energy dashboards or personalised reports,
allow households to monitor their progress and compare their energy consumption with
benchmarks or similar households, fostering a sense of competition and motivation for CF
reduction. An effective tool that offers quantified insights into household CFs is ECDA,
which provides a basis for comprehending how much energy is used.

3.1.1. Benefits of Energy Consumption Data Analysis

i. Cost Savings: The utility bills and overall operation costs can be lowered due to the
discovered energy-saving options.

ii. Environmental Impacts: It can pinpoint areas for efficiency improvements, lowering
carbon emissions and supporting sustainability goals.

iii. Behavioural Insights: It helps understand usage patterns and habits, enabling in-
formed decisions for energy conservation.

iv. Data-Driven Decisions: It allows informed choices to be made based on accurate
energy usage data, enhancing overall energy management strategies.

3.1.2. Drawbacks of Energy Consumption Data Analysis

i. Data Quality Issues: Inaccurate or incomplete data can lead to misleading analysis
and ineffective decision making.

ii. Complexity: Data analysis requires expertise, and complex models may be challenging
to interpret correctly.

iii. Initial Investment: Implementing data collection systems and analysis tools can
involve significant upfront costs.

iv. Behavioural Resistance: People might resist making behavioural changes suggested
by data analysis due to habits, convenience, or perceived inconvenience.

Through insights derived from a thorough analysis of consumption patterns and
behaviours, ECDA encourages well-informed decision making, increases energy efficiency,
and lowers CFs.

3.2. Surveys and Questionnaires

Surveys and questionnaires (SaQs) are widely used for gathering data and insights on
various aspects of human behaviour, including tracking household CFs. They provide a
structured approach to collecting information, allowing researchers to assess individual
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behaviours, attitudes, and practices contributing to carbon emissions. The design of the
survey or questionnaire is crucial for obtaining accurate and meaningful data. Researchers
should clearly define the research objectives and identify the information needed to track
household CFs. The questionnaire should be designed to collect data on relevant factors
such as transportation, energy consumption, waste management, and other practices
influencing carbon emissions [24,66,69,71,84,87].

Determining the appropriate sample size and sampling method is essential for ensur-
ing the representativeness of the target population [66,69]. Various sampling techniques,
including random, convenience, or stratified, can be employed based on the research
goals and available resources [101]. A diverse sample that reflects the target population’s
demographic and geographic characteristics helps ensure the findings’ generalisability.
SaQs can be administered through different methods, including face-to-face interviews,
telephone surveys, mailed questionnaires, or online surveys [101]. Different data collection
methods have advantages and limitations. SaQs use self-reported data to gather valuable
insights on household behaviours related to carbon emissions. However, self-reporting
can be biased, so researchers need to minimise bias by providing clear instructions and
ensuring anonymity. SaQs also collect demographic data to explore associations between
demographics and CF. It assesses individuals’ attitudes, knowledge, and awareness regard-
ing climate change, carbon emissions, and environmental issues. This helps identify factors
influencing individuals’ willingness to reduce their CFs.

Data from SaQs can be analysed using various statistical techniques [101]. The de-
scriptive analysis provides an overview of the sample characteristics, behaviour patterns,
and attitudes. Inferential analysis, such as regression or correlation analysis, can examine
relationships between variables and identify significant predictors of carbon emissions.
Simultaneously, the qualitative responses can be analysed using thematic or content anal-
ysis to uncover themes and patterns. In addition, SaQs can be conducted at multiple
time points, allowing for longitudinal data collection. Longitudinal studies provide in-
sights into changes in behaviours, attitudes, and awareness over time, helping researchers
track the effectiveness of interventions and identify trends in CF reduction. This lon-
gitudinal approach enhances the understanding of behavioural dynamics and enables
the evaluation of long-term impacts. Similar to ECDA, SaQ data can be combined with
other data sources. Researchers may fully comprehend household CFs and find connec-
tions between self-reported behaviour and that from an experimental study by merging
several datasets.

3.2.1. Benefits of Surveys and Questionnaires

i. Data Collection Flexibility: SaQs can be customised to gather a wide range of informa-
tion, providing flexibility in capturing diverse perspectives and insights.

ii. Scalability: These methods can be distributed to many participants, allowing for
efficient data collection from a broad audience.

iii. In-depth Exploration: SaQs’ open-ended questions encourage participants to give
thoughtful comments, providing a rich context for the data.

3.2.2. Drawbacks of Surveys and Questionnaires

i. Response Bias: Participants may not provide accurate or honest answers, leading to
biased or unreliable data.

ii. Limited Depth: Closed-ended questions may not capture complex opinions or experi-
ences, limiting the depth of insights.

iii. Question Interpretation: Participants may interpret questions differently, leading to
misunderstandings and inconsistent responses.

iv. Time and Effort: Designing, distributing, and analysing surveys can be time-consuming
and resource-intensive for researchers.
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In conclusion, SaQs are valuable instruments for gathering information and view-
points, but their success depends on careful planning, truthful responses, and considering
potential biases.

3.3. Life-Cycle Assessment

The ecological footprint of a product, service, or process is assessed across its full
life cycle using a method called life-cycle assessment (LCA) [73]. It considers all stages,
from raw material mining to manufacturing, use, and disposal. A household’s CF can
be estimated more accurately by applying LCA to household activities, such as energy
consumption, transportation, and waste generation.

Defining the purpose and parameters of the evaluation is the first stage in conducting
an LCA [77]. Objectives, limits, functional units, and life-cycle phases must be defined
to assess a product’s or process’s environmental impact. Data on inputs and outputs are
collected from various sources and organised using life-cycle inventory databases. Impact
assessment techniques are applied to the inventory data to put numbers on the environ-
mental effects [10]. Climate change, resource depletion, acidification, eutrophication, and
human toxicity are only some of the impacts that Eco-indicator 99 [72] appraises. The
environmental effects of a product or process can be better understood using these tech-
niques. The impact assessment results are analysed and interpreted at the interpretation
stage. To ease comparison and decision making, the findings are frequently presented as
environmental indicators, like CF. A sensitivity analysis can be performed to determine
the findings’ reliability and zero in on the parameters or steps responsible for the most
severe environmental impacts. The interpretation stage aids in comprehending the findings’
importance and locating areas for development.

LCA has certain limitations and challenges that should be considered [73]. Results
from CAs can be trusted if they are based on high-quality data, reasonable assumptions, and
well-delineated system boundaries. LCA can be data-intensive and time-consuming, requir-
ing data collection, modelling, and interpretation expertise. LCA does not comprehensively
capture all environmental and social aspects, such as social impacts or ecosystem services.
Therefore, it should be used with other assessment tools to gain additional insights.

3.3.1. Benefits of Life-Cycle Assessment

i. Holistic View: LCA considers the entire life cycle of a product or process, providing a
comprehensive understanding of environmental impacts, from resource extraction
to disposal.

ii. Comparative Analysis: LCA allows for comparisons amongst products, processes, or
scenarios, helping identify more sustainable alternatives.

iii. Identifying Hotspots: LCA highlights key stages with the most significant environ-
mental impacts, allowing targeted interventions for emission reduction.

3.3.2. Drawbacks of Life-Cycle Assessment

i. Data Availability: LCA requires extensive data, and obtaining accurate, reliable, and
comprehensive data for all life-cycle stages can be challenging.

ii. Complexity: LCA involves complex methodologies and requires expertise in various
disciplines, making it resource-intensive and potentially prone to errors.

iii. Interdisciplinary Challenges: Conducting LCA requires collaboration between experts
from different fields, leading to communication and coordination challenges.

Finally, LCA provides a thorough framework to assess how products and activities
affect the environment, assisting in sustainable decision making by considering all phases
of their life cycles.

3.4. IoT-Based Monitoring Systems

IoT-based monitoring systems track energy use and other environmental variables
in real time using sensors and networked devices [12,80–82]. For example, smart me-
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ters, smart thermostats, and other IoT devices can provide detailed information on elec-
tricity usage, heating and cooling patterns, and indoor air quality. This methodology
enables households to track their CFs continuously and make real-time adjustments to
reduce emissions.

IoT monitoring systems for tracking household CFs have gained significant atten-
tion recently. These systems leverage IoT technologies to monitor and analyse various
aspects of household energy consumption, enabling a more detailed and real-time as-
sessment of carbon emissions. Research has explored the potential of IoT monitoring
systems in tracking household CFs and identifying opportunities for energy efficiency
improvements [12,80–82].

One key advantage of IoT monitoring systems is that they can provide granular and
real-time data on energy consumption. These systems employ a combination of sensors,
smart meters, and connected devices to monitor electricity usage, heating and cooling
patterns, water consumption, and other relevant parameters. For instance, smart meters can
measure energy consumption at different intervals, providing detailed insights into usage
patterns throughout the day [80]. IoT monitoring systems offer real-time data collection,
identifying peak energy usage and providing personalised feedback and recommendations
for energy conservation. Homeowners can optimise their energy usage and reduce carbon
emissions through the remote control of energy-consuming devices and integration with
renewable energy sources.

There are some difficulties with IoT monitoring devices for tracking household CFs.
Data privacy and security concerns should first be addressed to secure the confidentiality
and integrity of the data gathered. Implementing effective data encryption, access controls,
and data anonymisation mechanisms is essential to preserve user privacy and stop unau-
thorised access to sensitive information [102]. Secondly, the scalability and interoperability
of IoT monitoring systems should be considered. As connected devices increase, ensuring
seamless integration, compatibility, and standardised communication protocols becomes
essential. This allows for easy deployment, integration with existing infrastructure, and
data exchange between different systems and platforms.

3.4.1. Benefits of IoT-Based Monitoring Systems

i. Real-Time Data: IoT systems provide real-time data collection and analysis, enabling
prompt decision-making and change responses.

ii. Remote Monitoring: IoT allows devices and processes to be monitored and controlled
remotely, enhancing convenience and efficiency.

iii. Predictive Maintenance: IoT systems can predict maintenance needs based on data
patterns, reducing downtime and extending the equipment lifespan.

iv. Sustainability: IoT-based systems enable resource-efficient operations, reducing waste,
energy consumption, and environmental impacts.

3.4.2. Drawbacks of IoT-Based Monitoring Systems

i. Security Risks: IoT devices are vulnerable to hacking and data breaches, potentially
compromising sensitive information.

ii. Complex Implementation: Setting up IoT systems can be complex and require techni-
cal expertise, making deployment challenging.

iii. Data Privacy Concerns: Collecting personal or sensitive data through IoT devices can
raise privacy concerns, requiring careful management.

iv. Reliability Issues: IoT systems rely on connectivity and can experience downtime or
malfunctions if the network is unstable.

IoT-based monitoring systems offer real-time visibility and control over numerous
processes, enabling increased productivity, sustainability, and informed decision making in
various applications.
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3.5. Carbon Calculators and Online Tools

Carbon calculators and online tools provide a user-friendly interface for households
to input their consumption data and receive estimates of their CFs [89,103,104]. Carbon
calculators and online tools are efficient and straightforward, providing individuals and
organisations with the means to measure their GHG emissions. These tools use algorithms
and databases to calculate emissions based on user inputs and predefined factors, helping
users understand their environmental impacts and identify areas for improvement. One
of the key benefits of carbon calculators and online tools is their accessibility and ease of
use [89]. Carbon calculators and online tools are widely available and user-friendly. They
cover various emission sources and activities, including energy consumption, transporta-
tion, waste management, and travel. Users input data related to their habits and indirect
emissions, ensuring accuracy with comprehensive databases and emission factors. These
databases contain information on emission factors for various activities, such as energy
consumption, transportation modes, and waste management practices [24]. Emission fac-
tors represent the average emissions associated with a specific activity per consumption
unit or distance travelled. These factors are based on scientific research, industry data,
and national emission inventories, ensuring a consistent and standardised approach to CF
calculations [105]. In addition to calculating CFs, many online tools provide features for
goal setting, tracking progress, and suggesting mitigation measures. Users can set targets
to reduce emissions and track their progress over time. These tools often offer recommenda-
tions and strategies for emission reductions, such as energy efficiency measures, renewable
energy adoption, waste reduction, and sustainable transportation options. Some tools may
even provide personalised feedback and tips based on user inputs and specific emission
hotspots [103].

It is important to note that carbon calculators and online tools have limitations [88].
Data inputs, which may be prone to estimation or user bias, affect the accuracy of cal-
culations. Moreover, these tools often rely on default emission factors and assumptions,
which may not capture unique circumstances or regional variations. Considering these
limitations and using the results as a starting point for further analysis and improvement
is important.

In conclusion, carbon calculators and online tools are valuable resources for tracking
and managing CFs. They provide accessibility, ease of use, comprehensive coverage
of emission sources, and a range of features for goal-setting and mitigation strategies.
By empowering individuals and organisations to assess their CFs and make informed
decisions, these tools contribute to the broader efforts of mitigating climate change and
promoting sustainability.

3.5.1. Benefits of Carbon Calculators and Online Tools

i. Awareness and Education: Carbon calculators raise awareness about personal CFs,
educating users about the environmental impacts of their choices.

ii. Behaviour Change: Calculators motivate individuals to adopt more sustainable be-
haviours by quantifying their emissions and suggesting reduction strategies.

iii. Easy Assessment: Online tools provide a user-friendly platform for assessing CFs,
making the process accessible and understandable.

iv. Goal Setting: Carbon calculators allow users to set reduction goals and track progress,
fostering a sense of achievement and continuous improvement.

v. Comparative Analysis: These tools enable users to compare their footprints with
benchmarks, helping contextualise their efforts and stimulate sustainability competition.

3.5.2. Drawbacks of Carbon Calculators and Online Tools

i. Data Accuracy: Accuracy depends on user inputs, which can be estimated or inaccu-
rate, leading to unreliable CF calculations.

ii. Scope Limitations: Carbon calculators might focus on certain emission sources, omit-
ting less obvious but still significant contributors to CFs.
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iii. Behaviour Change: While calculators promote behaviour change, they might not
account for potential rebound effects or unintended consequences of changes.

iv. Assumption Variation: Different calculators may use varying assumptions and method-
ologies, leading to inconsistent results and confusing users.

To sum up, carbon calculators and online tools provide simple ways to measure and
increase awareness of personal CFs, promoting wise decision making and encouraging
actions that support environmental sustainability.

3.6. Behavioural Monitoring and Feedback

This involves tracking and monitoring individual behaviour and providing person-
alised feedback on carbon emissions [24]. It can be implemented through smartphone
applications, wearable devices, or online platforms. By tracking behaviours such as energy
usage, transportation choices, and waste management, individuals can receive real-time
feedback and suggestions for reducing their CFs [106]. Behavioural monitoring involves
collecting and analysing data on individuals’ actions, habits, and choices related to energy
consumption, transportation, waste management, and other environmentally relevant
activities [64,87]. Energy usage, travel, recycling, and water consumption data can be
collected through smart meters, sensors, apps, or self-reporting. These data are used to
provide feedback to individuals on their environmental impacts through channels such as
mobile apps, web portals, email, or in-person interactions [93]. Feedback comes in different
forms, like personalised reports, alerts, or peer group comparisons; timely and relevant
feedback is crucial, and real-time feedback is always more effective. For example, energy
consumption data on a smart thermostat show the immediate consequences of adjusting
settings or turning off appliances [94]. In addition, these systems can reduce CFs and
foster a more sustainable society by integrating real-time monitoring, tailored feedback,
persuasive techniques, and social influences [24].

3.6.1. Benefits of Behavioural Monitoring and Feedback

i. Awareness: Monitoring provides individuals with insights into their behaviours,
making them more conscious of their actions’ environmental impacts.

ii. Behaviour Change: Feedback prompts users to modify behaviours, encouraging the
adoption of sustainable practices and reducing CFs.

iii. Customisation: Systems can offer personalised recommendations based on individual
behaviours, enhancing the effectiveness of behaviour change strategies.

iv. Long-Term Sustainability: Behavioural changes prompted by monitoring and feed-
back can lead to lasting habits and a sustained reduction in carbon emissions.

3.6.2. Drawbacks of Behavioural Monitoring and Feedback

i. Resistance and Inertia: Individuals may resist behaviour changes suggested by feed-
back due to habits, inconvenience, or psychological barriers.

ii. Data Privacy Concerns: Monitoring behavioural data can raise privacy concerns,
especially if personal information is collected and stored.

iii. Behavioural Complexity: Not all behaviours are easily trackable or amenable to
change through feedback systems, limiting their effectiveness in some cases.

iv. Overreliance on Technology: Relying solely on technology for behaviour change may
neglect broader systemic, cultural, or psychological factors influencing actions.

Behavioural monitoring and feedback systems are crucial in promoting sustainable
behaviours and fostering positive environmental change by raising awareness, enabling
informed decision making, and promoting eco-friendly activities.

3.7. Data Integration and Modelling

For a more complete understanding of the household CF, it is helpful to combine data
from other areas, such as energy use, transportation, and waste data [107]. In addition,
data modelling techniques, such as regression analysis or machine-learning algorithms,



Sustainability 2023, 15, 15016 23 of 32

can be applied to identify significant variables and their impacts on carbon emissions.
Combining multiple methodologies can provide a more accurate and holistic understanding
of household CFs [71]. Researchers often use a combination of data sources and analytical
techniques to understand the complexities of household emissions and enable targeted
action to reduce CFs. One approach to data integration is using application programming
interfaces (APIs) or data connectors [26]. These enable seamless data exchange between
different systems and facilitate the retrieval and aggregation of data from various sources.
For example, utility companies can provide APIs that allow users to access their energy
consumption data directly, enabling integration with CF-tracking platforms.

Data modelling creates mathematical or statistical models that show how different
variables affect carbon emissions. These models give insights into decision making and
policy development. LCA is a commonly used modelling technique in CF analysis [75]. An-
other modelling technique is regression analysis, which examines the relationships between
dependent variables (such as carbon emissions) and independent variables (such as energy
consumption, transportation habits, and household characteristics) [108–110]. Regression
models can identify significant factors and quantify their impact on CFs, providing valuable
insights for behaviour change interventions and policy recommendations [108].

3.7.1. Benefits of Data Integration and Modelling

i. Comprehensive Insights: Integration and modelling allow for a holistic view, revealing
complex relationships and interactions within data.

ii. Informed Decision Making: Integrated data and models provide evidence-based
insights, aiding effective decision making and strategy formulation.

iii. Prediction and Planning: Models can forecast trends and outcomes, supporting
proactive planning and resource allocation.

iv. Communication and Visualisation: Integrated data and visual models simplify com-
plex information, aiding communication and understanding among stakeholders.

3.7.2. Drawbacks of Data Integration and Modelling

i. Complexity: Integrating diverse data sources and building models can be complex,
requiring expertise and resources.

ii. Data Quality: Poor-quality or inconsistent data can compromise the accuracy and
reliability of integrated results and models.

iii. Assumption Dependency: Models often rely on assumptions, which, if incorrect, can
lead to inaccurate predictions and decisions.

Although obstacles like data quality and complexity must be carefully considered
for accurate and useful results, data integration and modelling offer vital insights for
well-informed decision making and resource optimisation.

A summary of the diverse concepts available to track the household CF considered in
the literature is shown in Table 2.

Table 2. Diverse concepts for tracking the household CF.

Energy
Consumption

and Data
Analysis

Surveys and
Questionnaires

Life-Cycle
Assessment

IoT-Based
Monitoring

System

Carbon
Calculators and

Online Tools

Behavioural
Monitoring

and Feedback

Integration
and Modelling

[60,63,65,66,71,
79,107–132]

[63,66,68,70,106,
111,118,119,
121]

[63,71,95,111,
121]

[12,46,79,80,95,
133,134]

[89,93,103–
105,111–113,133]

[67,68,70,93–
95,110,118]

[65,67,70,70,71,
96–99,107–111,
113,121,124,129,
131,132,135]

4. Implications for Research and Practice

The implications for research and practice stemming from the review of IoT-based
visualisation platforms for tracking household CFs are as follows:
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(a) Advanced Analytics: Further research can explore advanced analytic techniques, as
outlined in [136], such as ML algorithms, to advance the accuracy and reliability of
CF calculations [136], enhancing the platform’s ability to provide actionable insights
to users.

(b) Integration with Smart Home Technologies: Investigating the integration of IoT-
based visualisation platforms with smart home technologies enables seamless data
collection and enhances user convenience, as highlighted in [137]. Such integration
further optimises energy usage and reduces carbon emissions.

(c) Longitudinal Studies: The authors of [138] conducted longitudinal studies to sup-
port the long-term effectiveness of IoT-based visualisation platforms in promoting
sustainable behaviour. Monitoring user behaviour over an extended period pro-
vides insights into behavioural change patterns and factors influencing sustained
environmental actions.

(d) Awareness and Education: The findings from [139] emphasise raising awareness and
educating individuals about their household CFs. Practitioners can use the insights
from the research in [140] to develop educational materials and campaigns highlight-
ing daily activities’ environmental impacts and promoting sustainable choices.

(e) Personalised Feedback: IoT-based visualisation platforms, as shown by [141], pro-
vide personalised feedback to users regarding their carbon emissions. Practition-
ers can leverage this feature to deliver tailored recommendations and suggestions
for reducing CFs, empowering individuals to make informed decisions and take
meaningful actions.

(f) Behavioural Nudges: The authors of [142] highlighted the potential of incorporating
behavioural nudges, such as goal-setting and social sharing features, into IoT-based
visualisation platforms with recommendations for practitioners to utilise the tech-
nique as sustainable behaviour, fostering a sense of competition, cooperation, and
accomplishment among users.

(g) Policy Support: The insights gained from this research can inform policymakers about
the effectiveness of IoT-based visualisation platforms in tracking and reducing house-
hold CFs. It can encourage the development of supportive policies and incentives to
promote the adoption of such platforms at a broader scale.

IoT-based visualisation platforms can be enhanced for better results. Practitioners,
policymakers, and stakeholders can use these platforms to promote sustainable behaviour
and reduce CFs.

5. Limitations of the Review

The review of IoT-based visualisation platforms for tracking household CFs has certain
limitations, as identified below:

(a) Limited Scope: The field of IoT-based visualisation platforms for tracking household
CFs is an emerging field. Limited research in terms of scope and platforms is covered,
as identified by [88]. Additional relevant studies and platforms were recommended
for a plethora of research resource outputs in terms of technologies in the niche.

(b) Heterogeneity of Existing Solutions: The authors of [143] identified that the diver-
sity of existing IoT-based visualisation platforms for tracking household CFs varies
significantly in design, functionality, and data sources; thus, heterogeneity makes it
challenging to draw direct comparisons and generalise findings across all platforms.

(c) Data Accuracy and Reliability: Data accuracy and reliability are critical in IoT-based
visualisation platforms. However, due to the lack of proliferation of information in
the visualisation of CF techniques, assessing accurate data in these platforms becomes
challenging. In [144], the authors recommended future research in addressing the
curation of accurate and reliable data.

(d) User Engagement and Behaviour Change: In [145], the authors discuss user interaction
and engagement features; they may not delve deeply into the effectiveness of these
features in driving sustainable behaviour change. Understanding the long-term
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impacts of these platforms on user behaviour and assessing the factors influencing
behaviour change require further investigation.

(e) Lack of Longitudinal Studies: Many previous studies have focused on short-term
evaluations of IoT-based visualisation platforms. Longitudinal studies assessing the
long-term effects of these platforms on user behaviour and the environmental impacts
are needed to provide more robust evidence.

IoT-based visualisation platforms can revolutionise how we monitor our household’s
CF. However, privacy, user experience, and integration must be addressed to realise their
full potential. Future research can refine and improve these platforms.

6. Suggestions for Future Research

Based on the review of IoT-based visualisation platforms for tracking household CFs,
several suggestions for future research are outlined:

(a) Privacy and Security: As IoT devices collect and transmit sensitive data, privacy and
security concerns become increasingly important. Investigating privacy-preserving
data collection and sharing mechanisms and robust data encryption techniques can
enhance user trust and promote platform adoption. Balancing data granularity for ac-
curate CF calculations and the protection of user privacy is also important. Therefore,
future research should focus on developing secure and privacy-preserving IoT-based
visualisation platforms.

(b) User Experience and Design: The user experience of IoT-based visualisation platforms
should be optimised to encourage behaviour change. This may include develop-
ing personalised recommendations and making the platform easy to use. Exploring
different visualisation techniques, user interfaces, and interactive features can help
identify the most effective approaches to presenting CF data and motivating sustain-
able actions. User-centred design methodologies can be employed to ensure that the
platforms are intuitive, user-friendly, and appealing to a wide range of users.

(c) Integration with Other Systems: Exploring seamless data integration from smart
appliances, energy management systems, and other IoT devices can enhance the com-
pleteness and accuracy of CF calculations. IoT-based visualisation platforms should
be integrated with other systems, like smart grids, to provide a more comprehensive
view of carbon emissions. Research should focus on developing these integrations.

(d) Standardisation: There is currently no standardisation for IoT-based visualisation plat-
forms for tracking household CFs. Research should focus on developing standards to
ensure interoperability and compatibility across different platforms. Additionally, in-
vestigating the interoperability and compatibility of different smart home technologies
can facilitate broader adoption and scalability.

(e) Longitudinal Studies: Conducting longitudinal studies to assess the lasting effects
of IoT-based visualisation platforms on user behaviour and environmental impacts
is crucial. Monitoring user behaviour over an extended period can provide insights
into behaviour change patterns, the sustainability of adopted practices, and potential
rebound effects. Long-term studies can also shed light on the durability of behaviour
change and identify strategies to maintain sustainable habits in the long run.

By addressing these suggestions for future research, the development and implemen-
tation of IoT-based visualisation platforms for tracking household CFs can be enhanced,
leading to improved accuracy, user engagement, and overall effectiveness in promoting
sustainable behaviour.

7. Conclusions

This paper reviews new ways to explore and advance smart carbon control in general
households, whose carbon emissions have been reported to account for three-quarters of
global greenhouse emissions, using IoT technology. The deployment of IoT machinery in
smart households brings about an improved, valued way of life, allowing for novel and
superlative technological solutions. Revolutionary changes in communication systems,
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mainly inspired by the IoT, present much better control and monitoring possibilities in
households. Energy efficiency models included in the smart house help in reducing energy
consumption, and this ensures that the implemented smart house technology does not
contribute to greenhouse gas emissions and does not result in a system that is vulnerable to
climate-change-related problems. The diverse methodologies used to create an IoT-based
visualisation platform for tracking household CFs have been discussed. IoT technologies
deployed with high-level sensing devices, such as radio frequency identification, function
sensors, and global positioning systems, have been highlighted for intelligent identification,
monitoring, and control. In this paper, IoT-based visualisation platforms for tracking
household CFs have also been extensively discussed. A diverse range of household data
collection sensors and devices, including energy consumption monitors, water usage track-
ers, waste management systems, and transportation sensors, have been comprehensively
discussed. Different energy management platforms, such as PowerDash, Energy Elephant,
Carbon Analytics, and Carbon View, have also been discussed for tracing and visualising
energy consumption and carbon emissions. The comprehensive challenges and limitations
of IoT-based visualisation platforms, including data accuracy and reliability, high costs,
limited device compatibility, privacy and security concerns, user adoption, maintenance,
and support, have been discussed.

Based on this review and suggestions for future research, developing and imple-
menting IoT-based visualisation platforms for tracking household CFs can be enhanced,
leading to improved accuracy, user engagement, and overall effectiveness in promoting
sustainable behaviour.

Funding: This research was funded by the Tertiary Education Trust Fund (TETFund), Nigeria, under
the National Research Fund (NRF) Intervention with project ID TETF/ES/DR&D/CE/NRF2021/CC/
CAE/00114.

Acknowledgments: This research was funded by the Tertiary Education Trust Fund (TETFund),
Nigeria, under the National Research Fund (NRF) Intervention with project ID TETF/ES/DR&D/CE/
NRF2021/CC/CAE/00114.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Microsoft. What Is IoT (Internet of Things)?|Microsoft Azure. Available online: https://azure.microsoft.com (accessed on 5

July 2023).
2. WRAP. Introducing the Carbon Waste and Resources Metric (Carbon WARM); WRAP: Banbury, UK, 2021.
3. Agency Environmental Protection. Carbon Footprint Calculators. Available online: www.epa.ie (accessed on 5 July 2023).
4. Khoa, T.A.; Phuc, C.H.; Lam, P.D.; Nhu, L.M.B.; Trong, N.M.; Phuong, N.T.H.; Van Dung, N.; Tan-Y, N.; Nguyen, H.N.; Duc,

D.N.M. Waste Management System Using IoT-Based Machine Learning in University. Wirel. Commun. Mob. Comput. 2020,
2020, 6138637. [CrossRef]

5. United Nations. United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1992.
6. Sarrab, M.; Pulparambil, S.; Awadalla, M. Development of an IoT based real-time traffic monitoring system for city governance.

Glob. Transit. 2020, 2, 230–245. [CrossRef]
7. The Carbon Trust. Footprinting and Reporting; The Carbon Trust: London, UK, 2020.
8. IEA. Appliances & Equipment—Fuels & Technologies; IEA: Paris, France, 2023.
9. Ramelan, A.; Adriyanto, F.; Hermanu, B.; Ibrahim, M.H.; Saputro, J.S.; Setiawan, O. IoT Based Building Energy Monitoring

and Controlling System Using LoRa Modulation and MQTT Protocol. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012069.
[CrossRef]

10. Tu, M.; Chung, W.-H.; Chiu, C.-K.; Chung, W.; Tzeng, Y. A Novel IoT-Based Dynamic Carbon Footprint Approach to Reducing
Uncertainties. In Proceedings of the 2017 4th International Conference on Industrial Engineering and Applications, Nagoya,
Japan, 21–23 April 2017; pp. 249–256.

11. Vargas-Solar, G.; Khalil, M.; Espinosa-Oviedo, J.A.; Zechinelli-Martini, J.-L. GREENHOME: A Household Energy Consumption
and CO2 Footprint Metering Environment. ACM Trans. Internet Technol. 2022, 22, 1–31. [CrossRef]

12. Zhang, H.; Zhang, J.; Wang, R.; Huang, Y.; Zhang, M.; Shang, X.; Gao, C. Smart carbon monitoring platform under IoT-Cloud
architecture for small cities in B5G. Wirel. Netw. 2021, 2, 1–17. [CrossRef]

13. Zen, I.S.; Al-Amin, A.Q.; Alam, M.; Doberstein, B. Magnitudes of households’ carbon footprint in Iskandar Malaysia: Policy
implications for sustainable development. J. Clean. Prod. 2021, 315, 128042. [CrossRef]

https://azure.microsoft.com
www.epa.ie
https://doi.org/10.1155/2020/6138637
https://doi.org/10.1016/j.glt.2020.09.004
https://doi.org/10.1088/1757-899X/1096/1/012069
https://doi.org/10.1145/3505264
https://doi.org/10.1007/s11276-021-02756-2
https://doi.org/10.1016/j.jclepro.2021.128042


Sustainability 2023, 15, 15016 27 of 32

14. Chagnon-Lessard, N.; Gosselin, L.; Barnabe, S.; Bello-Ochende, T.; Fendt, S.; Goers, S.; Da Silva, L.C.P.; Schweiger, B.; Simmons,
R.; Vandersickel, A.; et al. Smart Campuses: Extensive Review of the Last Decade of Research and Current Challenges. IEEE
Access 2021, 9, 124200–124234. [CrossRef]

15. Attour, A.; Baudino, M.; Krafft, J.; Lazaric, N. Determinants of energy tracking application use at the city level: Evidence from
France. Energy Policy 2020, 147, 111866. [CrossRef]

16. Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol.
Forecast. Soc. Change 2018, 138, 139–154. [CrossRef]

17. Zheng, H.; Song, M.; Shen, Z. The evolution of renewable energy and its impact on carbon reduction in China. Energy 2021,
237, 121639. [CrossRef]

18. Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon
emissions: Evidence from developing countries. J. Clean. Prod. 2019, 247, 119122. [CrossRef]

19. Lopez-Ruiz, H.G.; Crozet, Y. Sustainable Transport in France. Transp. Res. Rec. J. Transp. Res. Board 2010, 2163, 124–132.
[CrossRef]

20. Long, Y.; Guan, D.; Kanemoto, K.; Gasparatos, A. Negligible impacts of early COVID-19 confinement on household carbon
footprints in Japan. One Earth 2021, 4, 553–564. [CrossRef] [PubMed]

21. Elgaaied-Gambier, L.; Bertrandias, L.; Bernard, Y. Cutting the Internet’s Environmental Footprint: An Analysis of Consumers’
Self-Attribution of Responsibility. J. Interact. Mark. 2020, 50, 120–135. [CrossRef]

22. Song, K.; Baiocchi, G.; Feng, K.; Hubacek, K.; Sun, L. Unequal household carbon footprints in the peak-and-decline pattern of U.S.
greenhouse gas emissions. J. Clean. Prod. 2022, 368, 132650. [CrossRef]

23. Hernández, C.; Vita, G. Carbon footprint analysis of household consumption in greater Guadalajara reveal stark socio-spatial
inequalities. Ecol. Econ. 2022, 199, 107495. [CrossRef]

24. Hoffmann, S.; Lasarov, W.; Reimers, H. Carbon footprint tracking apps. What drives consumers’ adoption intention? Technol. Soc.
2022, 69, 101956. [CrossRef]

25. Jones, C.M.; Wheeler, S.M.; Kammen, D.M. Carbon Footprint Planning: Quantifying Local and State Mitigation Opportunities for
700 California Cities. Urban Plan. 2018, 3, 35–51. [CrossRef]

26. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning
Models. arXiv 2020, arXiv:2007.03051.

27. Samara, F.; Ibrahim, S.; Yousuf, M.E.; Armour, R. Carbon Footprint at a United Arab Emirates University: GHG Protocol.
Sustainability 2022, 14, 2522. [CrossRef]

28. Liu, Z.; Wang, G.; Zhao, L.; Yang, G. Multi-Points Indoor Air Quality Monitoring Based on Internet of Things. IEEE Access 2021, 9,
70479–70492. [CrossRef]

29. Bagus, I.; Purwania, G.; Kumara, I.N.S.; Sudarma, M. Application of IoT-Based System for Monitoring Energy Consumption. Int.
J. Eng. Emerg. Technol. 2020, 5, 81–93.

30. Benammar, M.; Abdaoui, A.; Ahmad, S.H.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality
Monitoring. Sensors 2018, 18, 581. [CrossRef] [PubMed]

31. Nayak, J. Round the Clock Vehicle Emission Monitoring using IoT for Smart Cities. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 616–619.
[CrossRef]

32. Ma, L.; Wang, D. Construction of Game Model between Carbon Emission Minimization and Energy and Resource Economy
Maximization Based on Deep Neural Network. Comput. Intell. Neurosci. 2022, 2022, 4578536. [CrossRef]

33. Sruthi, M.S.; Rajkumar, M.N.; Kumar, V.V. Smart IoT Based System for CO2 Monitoring and Forest Fire Detection
with Effective Alert Mechanism. Researchgate.Net, Volume 3, June 2019, pp. 256–258. 2017. Available online: https:
//www.researchgate.net/profile/Sruthi_Ms/publication/333650806_Smart_IoT_Based_System_For_CO_2_Monitoring_and_
Forest_Fire_Detection_with_Effective_Alert_Mechanism/links/5cf9fa4e4585157d1598c4e7/Smart-IoT-Based-System-For-CO-
2-Monitoring-and-Forest-F (accessed on 5 July 2023).

34. Xu, J.; Pan, W.; Teng, Y.; Zhang, Y.; Zhang, Q. Internet of Things (IoT)-Integrated Embodied Carbon Assessment and Monitoring
of Prefabricated Buildings. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 02203. [CrossRef]

35. Ytreberg, N.S.; Alfnes, F.; van Oort, B. Mapping of the digital climate nudges in Nordic online grocery stores. Sustain. Prod.
Consum. 2023, 37, 202–212. [CrossRef]

36. Heydarian, A.; Golparvar-Fard, M. A Visual Monitoring Framework for Integrated Productivity and Carbon Footprint Control of
Construction Operations. In Proceedings of the Congress on Computing in Civil Engineering, Miami, FL, USA, 19–22 June 2011.
[CrossRef]

37. Zaman, N.; Jhanjhi, J. A New Platform Based on Various Sensors Offers Smart Contracts to Reduce Carbon Emissions Data
Visualization, Industrial Control, and Activity. 2022. Available online: https://www.researchsquare.com/article/rs-2164843/v1
.pdf (accessed on 5 July 2023).

38. Carmeli, C.; Knyazeva, M.G.; Innocenti, G.M.; De Feo, O. Assessment of EEG synchronization based on state-space analysis.
NeuroImage 2005, 25, 339–354. [CrossRef]

39. Zhao, L.; Zhou, H.; Chen, R.; Shen, Z. Efficient Monitoring and Adaptive Control of Indoor Air Quality Based on IoT Technology
and Fuzzy Inference. Wirel. Commun. Mob. Comput. 2022, 2022, 4127079. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3109516
https://doi.org/10.1016/j.enpol.2020.111866
https://doi.org/10.1016/j.techfore.2018.08.015
https://doi.org/10.1016/j.energy.2021.121639
https://doi.org/10.1016/j.jclepro.2019.119122
https://doi.org/10.3141/2163-14
https://doi.org/10.1016/j.oneear.2021.03.003
https://www.ncbi.nlm.nih.gov/pubmed/35497090
https://doi.org/10.1016/j.intmar.2020.02.001
https://doi.org/10.1016/j.jclepro.2022.132650
https://doi.org/10.1016/j.ecolecon.2022.107495
https://doi.org/10.1016/j.techsoc.2022.101956
https://doi.org/10.17645/up.v3i2.1218
https://doi.org/10.3390/su14052522
https://doi.org/10.1109/ACCESS.2021.3073681
https://doi.org/10.3390/s18020581
https://www.ncbi.nlm.nih.gov/pubmed/29443893
https://doi.org/10.14569/IJACSA.2018.091186
https://doi.org/10.1155/2022/4578536
https://www.researchgate.net/profile/Sruthi_Ms/publication/333650806_Smart_IoT_Based_System_For_CO_2_Monitoring_and_Forest_Fire_Detection_with_Effective_Alert_Mechanism/links/5cf9fa4e4585157d1598c4e7/Smart-IoT-Based-System-For-CO-2-Monitoring-and-Forest-F
https://www.researchgate.net/profile/Sruthi_Ms/publication/333650806_Smart_IoT_Based_System_For_CO_2_Monitoring_and_Forest_Fire_Detection_with_Effective_Alert_Mechanism/links/5cf9fa4e4585157d1598c4e7/Smart-IoT-Based-System-For-CO-2-Monitoring-and-Forest-F
https://www.researchgate.net/profile/Sruthi_Ms/publication/333650806_Smart_IoT_Based_System_For_CO_2_Monitoring_and_Forest_Fire_Detection_with_Effective_Alert_Mechanism/links/5cf9fa4e4585157d1598c4e7/Smart-IoT-Based-System-For-CO-2-Monitoring-and-Forest-F
https://www.researchgate.net/profile/Sruthi_Ms/publication/333650806_Smart_IoT_Based_System_For_CO_2_Monitoring_and_Forest_Fire_Detection_with_Effective_Alert_Mechanism/links/5cf9fa4e4585157d1598c4e7/Smart-IoT-Based-System-For-CO-2-Monitoring-and-Forest-F
https://doi.org/10.1088/1755-1315/1101/2/022031
https://doi.org/10.1016/j.spc.2023.02.018
https://doi.org/10.1061/41182(416)62
https://www.researchsquare.com/article/rs-2164843/v1.pdf
https://www.researchsquare.com/article/rs-2164843/v1.pdf
https://doi.org/10.1016/j.neuroimage.2004.11.049
https://doi.org/10.1155/2022/4127079


Sustainability 2023, 15, 15016 28 of 32

40. Han, J.; Tan, Z.; Chen, M.; Zhao, L.; Yang, L.; Chen, S. Carbon Footprint Research Based on Input–Output Model—A Global
Scientometric Visualization Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11343. [CrossRef]

41. Liao, H.-T.; Pan, C.-L.; Zhang, Y. Smart digital platforms for carbon neutral management and services: Business models based on
ITU standards for green digital transformation. Front. Ecol. Evol. 2023, 11, 1134381. [CrossRef]

42. Lin, X.; Luo, J.; Liao, M.; Su, Y.; Lv, M.; Li, Q.; Xiao, S.; Xiang, J. Wearable Sensor-Based Monitoring of Environmental Exposures
and the Associated Health Effects: A Review. Biosensors 2022, 12, 1131. [CrossRef] [PubMed]

43. Guzman, L.; Makonin, S.; Clapp, R.A. CarbonKit: A Technological Platform for Personal Carbon Tracking. 2016. Available online:
https://www.researchgate.net/publication/306187365_CarbonKit_a_technological_platform_for_personal_carbon_tracking (ac-
cessed on 5 July 2023).

44. Resch, E.; Lausselet, C.; Brattebø, H.; Andresen, I. An analytical method for evaluating and visualizing embodied carbon
emissions of buildings. Build. Environ. 2020, 168, 106476. [CrossRef]

45. Magtibay, O.B.M.; Cabrera, R.H.; Roxas, J.P.; De Vera, M.A. Green switch: An IoT based energy monitoring system for mabini
building in De La Salle Lipa. Indones. J. Electr. Eng. Comput. Sci. 2021, 24, 754–761. [CrossRef]

46. Ming, F.X.; Habeeb, R.A.A.; Nasaruddin, F.H.B.M.; Bin Gani, A. Real-Time Carbon Dioxide Monitoring Based on IoT & Cloud
Technologies. In Proceedings of the 2019 8th International Conference on Software and Computer Applications, Cairo, Egypt,
9–12 April 2019; pp. 517–521. [CrossRef]

47. Zhang, A.; Li, S.; Tan, L.; Sun, Y.; Yao, F. Intelligent Measurement and Monitoring of Carbon Emissions for 5G Shared Smart
Logistics. J. Sens. 2022, 2022, 8223590. [CrossRef]

48. Mao, C.; Tao, X.; Yang, H.; Chen, R.; Liu, G. Real-Time Carbon Emissions Monitoring Tool for Prefabricated Construction:
An IoT-Based System Framework. In Proceedings of the ICCREM 2018: Sustainable Construction and Prefabrication—
International Conference on Construction and Real Estate Management 2018, Charleston, SC, USA, 9–10 August 2018;
pp. 121–127. [CrossRef]

49. Bilotta, S.; Nesi, P. Estimating CO2 Emissions from IoT Traffic Flow Sensors and Reconstruction. Sensors 2022, 22, 3382. [CrossRef]
[PubMed]

50. Malmodin, J.; Lundén, D. The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015. Sustainability 2018,
10, 3027. [CrossRef]

51. Steen-Olsen, K.; Wood, R.; Hertwich, E.G. The Carbon Footprint of Norwegian Household Consumption 1999–2012. J. Ind. Ecol.
2016, 20, 582–592. [CrossRef]

52. Khatun, R.; Antor, S.A.; Ullah, A.; Hossain, A. Vehicle Fuel Activities Monitoring System Using IoT. Adv. Internet Things 2019, 9,
63–71. [CrossRef]

53. Yousif, O.S.; Zakaria, R.; Aminudin, E.; Shamsuddin, S.M.; Rahman, M.F.A.; Gara, J.; Ahmad, N.F. Integration Method for Web
based Visualization Framework of Green Highway Index and Carbon Footprint Calculator. IOP Conf. Ser. Earth Environ. Sci. 2022,
1067, 012016. [CrossRef]

54. Tsokov, T.; Petrova-Antonova, D. EcoLogic: IoT Platform for Control of Carbon Emissions. In Proceedings of the 12th International
Conference on Software Technologies, Madrid, Spain, 24–26 July 2017; pp. 178–185. [CrossRef]

55. Darniss, R.; Jivthesh, M.; Gaushik, M.; Shibu, N.S.; Sethuraman, N.R. Blockchain and IoT-Powered Carbon Credit Exchange for
Achieving Pollution Reduction Goals. Reasearch Sq. 2020, 1, 1–16.

56. Lu, L.; He, B.; Man, C.; Wang, S. Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Math. Biosci. 2015, 262, 80–87. [CrossRef]

57. Jo, J.; Jo, B.; Kim, J.; Kim, S.; Han, W. Development of an IoT-Based indoor air quality monitoring platform. J. Sens. 2020,
2020, 8749764. [CrossRef]

58. Akpan, G.E.; Akpan, U.F. Electricity consumption, carbon emissions and economic growth in Nigeria. Int. J. Energy Econ. Policy
2012, 2, 292–306.

59. Gordic, D.; Nikolic, J.; Vukasinovic, V.; Josijevic, M.; Aleksic, A.D. Offsetting carbon emissions from household electricity
consumption in Europe. Renew. Sustain. Energy Rev. 2023, 175, 113154. [CrossRef]

60. Lee, J.; Taherzadeh, O.; Kanemoto, K. The scale and drivers of carbon footprints in households, cities and regions across India.
Glob. Environ. Change 2021, 66, 102205. [CrossRef]

61. Lin, J.; Hu, Y.; Cui, S.; Kang, J.; Ramaswami, A. Tracking urban carbon footprints from production and consumption perspectives.
Environ. Res. Lett. 2015, 10, 054001. [CrossRef]

62. Mneimneh, F.; Ghazzawi, H.; Ramakrishna, S. Review Study of Energy Efficiency Measures in Favor of Reducing Carbon
Footprint of Electricity and Power, Buildings, and Transportation. Circ. Econ. Sustain. 2022, 3, 447–474. [CrossRef]

63. Peng, Y.; Yang, L.E.; Scheffran, J.; Yan, J.; Li, M.; Jiang, P.; Wang, Y.; Cremades, R. Livelihood transitions transformed households’
carbon footprint in the Three Gorges Reservoir area of China. J. Clean. Prod. 2021, 328, 129607. [CrossRef]

64. Verma, P.; Kumari, T.; Raghubanshi, A.S. Energy emissions, consumption and impact of urban households: A review. Renew.
Sustain. Energy Rev. 2021, 147, 111210. [CrossRef]

65. Yin, X.; Hao, Y.; Yang, Z.; Zhang, L.; Su, M.; Cheng, Y.; Zhang, P.; Yang, J.; Liang, S. Changing carbon footprint of urban household
consumption in Beijing: Insight from a nested input-output analysis. J. Clean. Prod. 2020, 258, 120698. [CrossRef]

https://doi.org/10.3390/ijerph191811343
https://doi.org/10.3389/fevo.2023.1134381
https://doi.org/10.3390/bios12121131
https://www.ncbi.nlm.nih.gov/pubmed/36551098
https://www.researchgate.net/publication/306187365_CarbonKit_a_technological_platform_for_personal_carbon_tracking
https://doi.org/10.1016/j.buildenv.2019.106476
https://doi.org/10.11591/ijeecs.v24.i2.pp754-761
https://doi.org/10.1145/3316615.3316622
https://doi.org/10.1155/2022/8223590
https://doi.org/10.1061/9780784481738.015
https://doi.org/10.3390/s22093382
https://www.ncbi.nlm.nih.gov/pubmed/35591078
https://doi.org/10.3390/su10093027
https://doi.org/10.1111/jiec.12405
https://doi.org/10.4236/ait.2019.94005
https://doi.org/10.1088/1755-1315/1067/1/012016
https://doi.org/10.5220/0006462201780185
https://doi.org/10.1016/j.mbs.2015.01.012
https://doi.org/10.1155/2020/8749764
https://doi.org/10.1016/j.rser.2023.113154
https://doi.org/10.1016/j.gloenvcha.2020.102205
https://doi.org/10.1088/1748-9326/10/5/054001
https://doi.org/10.1007/s43615-022-00179-5
https://doi.org/10.1016/j.jclepro.2021.129607
https://doi.org/10.1016/j.rser.2021.111210
https://doi.org/10.1016/j.jclepro.2020.120698


Sustainability 2023, 15, 15016 29 of 32

66. Adeyeye, D.; Olusola, A.; Orimoloye, I.R.; Singh, S.K.; Adelabu, S. Carbon footprint assessment and mitigation scenarios: A
benchmark model for GHG indicator in a Nigerian University. Environ. Dev. Sustain. 2023, 25, 1361–1382. [CrossRef]

67. Li, J.; Zhang, J.; Zhang, D.; Ji, Q. Does gender inequality affect household green consumption behaviour in China? Energy Policy
2019, 135, 111071. [CrossRef]

68. Niamir, L.; Ivanova, O.; Filatova, T.; Voinov, A.; Bressers, H. Demand-side solutions for climate mitigation: Bottom-up drivers of
household energy behavior change in the Netherlands and Spain. Energy Res. Soc. Sci. 2020, 62, 101356. [CrossRef]

69. Parker, J.A.; Schild, J.; Erhard, L.; Johnson, D. Household Spending Responses to the Economic Impact Payments of 2020. National
Bureau of Economic Research. 2022. Available online: https://www.nber.org/papers/w29648%0Ahttps://www.nber.org/
system/files/working_papers/w29648/w29648.pdf (accessed on 8 July 2023).

70. Stelmach, G.; Zanocco, C.; Flora, J.; Rajagopal, R.; Boudet, H.S. Exploring household energy rules and activities during
peak demand to better determine potential responsiveness to time-of-use pricing. Energy Policy 2020, 144, 111608.
[CrossRef]

71. Wang, X.; Chen, S. Urban-rural carbon footprint disparity across China from essential household expenditure: Survey-based
analysis, 2010–2014. J. Environ. Manag. 2020, 267, 110570. [CrossRef]

72. Chau, C.; Leung, T.; Ng, W. Corrigendum to “A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life
Cycle Carbon Emissions Assessment on buildings” [Appl. Energy 143 (2015) 395–413]. Appl. Energy 2015, 158, 395–413.
[CrossRef]

73. Ghaemi, Z.; Smith, A.D. A review on the quantification of life cycle greenhouse gas emissions at urban scale. J. Clean. Prod. 2020,
252, 119634. [CrossRef]

74. Joensuu, T.; Leino, R.; Heinonen, J.; Saari, A. Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing
methods for assessing carbon footprint of reusable components. Sustain. Cities Soc. 2022, 77, 103499. [CrossRef]

75. Leonzio, G.; Bogle, I.D.L.; Foscolo, P.U. Life cycle assessment of a carbon capture utilization and storage supply chain in Italy and
Germany: Comparison between carbon dioxide storage and utilization systems. Sustain. Energy Technol. Assess. 2023, 55, 102743.
[CrossRef]

76. Rowley, H.V.; Lundie, S.; Peters, G.M. A hybrid life cycle assessment model for comparison with conventional methodologies in
Australia. Int. J. Life Cycle Assess. 2009, 14, 508–516. [CrossRef]

77. Sangwan, K.S.; Bhakar, V.; Arora, V.; Solanki, P. Measuring Carbon Footprint of an Indian University Using Life Cycle Assessment.
Procedia CIRP 2018, 69, 475–480. [CrossRef]

78. Weidema, B.P.; Thrane, M.; Christensen, P.; Schmidt, J.; Løkke, S. Carbon Footprint: A catalyst for life cycle assessment? J. Ind.
Ecol. 2008, 12, 3–6. [CrossRef]

79. Asopa, P.; Purohit, P.; Nadikattu, R.R.; Whig, P. Reducing Carbon Footprint for Sustainable development of Smart Cities using
IoT. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile
Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 361–367. [CrossRef]

80. Lukyanov, A.; Donskoy, D.; Vernezi, M.; Karev, D. Estimation of the carbon footprint of IoT devices based on ESP8266 microcon-
trollers. E3S Web Conf. 2021, 279, 1002. [CrossRef]

81. Mudaliar, M.D.; Sivakumar, N. IoT based real time energy monitoring system using Raspberry Pi. Internet Things 2020, 12, 100292.
[CrossRef]

82. Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113.
[CrossRef]
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