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A B S T R A C T   

The availability of affordable and reliable power supply fosters social and economic growth and raises the 
standard of living. In most developing nations, there is a considerable gap between energy supply and demand, 
often resulting in load shedding and blackouts. Integrating two or more renewable power sources is a potential 
solution for the inconsistent nature of renewable energy, thereby supplying clean and sustainable electricity. 
However, proper component sizing and operation planning for different system components are necessary for a 
reliable and cost-effective system. This paper compares the performance of three widely used optimisation 
techniques (Artificial Bee Colony (ABC), Genetic Algorithm (GA), and Particle Swarm Optimisation (PSO)) in 
determining the size of a hybrid renewable energy system (HRES) with the lowest levelised cost of energy (LCOE) 
to meet the energy needs of a dairy farm in a rural settlement. PSO is observed to be the best-performed algo-
rithm proposing a system with an LCOE of $0.162 per kWh, a net present cost (NPC) of 2.05 million dollars and a 
payback period of 5 years and 7 months when compared with the existing power system. The proposed HRES is 
determined to reduce annual diesel usage by 96%. Therefore, significantly decreasing greenhouse gas (GHG) 
emissions. The PSO algorithm performs satisfactorily in terms of results and convergence time compared to the 
results from commercially available hybrid optimisation software (HOMER Pro).   

1. Introduction 

With the ever-increasing world population, there has been contin-
uous industrial and household energy growth. Nigeria’s energy crisis has 
become the main impediment to economic growth. Despite several at-
tempts, like most sub-Saharan African countries, Nigeria needs a more 
reliable energy supply [1]. Nigeria’s outdated electricity infrastructure 
is unable to consistently fulfil customers’ ever-increasing demand, 
resulting in regular load shedding. According to World Bank data [2], 
Sub-Saharan Africa is home to 90% of the 650 million people who will 
still be without electricity in 2030. Industrial operations require con-
stant supply, and even minor disruptions might cost millions of dollars. 
During power outages, most affected customers in the industrial and 
commercial sectors turn on diesel generators (DG) as a dependable 
backup source of electricity. DG has a lower initial capital cost per kWh 
than most renewable energy sources (RESs). Hence, DG is the most 
affordable option to meet the energy demand during grid outages. 
However, since diesel generators require expensive fuel, their operating 

expenses are substantially greater. Therefore, RESs are cost-effective in 
the long run [3]. 

Nigeria, a tropical country, has ample sunshine and agricultural ac-
tivity. Hence, the country has abundant renewable energy resources 
(RERs), including solar, biomass, hydropower, and wind (in the coastal 
regions). There is a good potential for harnessing these RERs to sup-
plement the national grid’s energy supply and satisfy the country’s 
urban and rural electricity demand [4,5]. Therefore, HRESs have 
received significant attention in most recent studies. However, the 
power production of energy systems such as solar photovoltaics (PV) or 
wind turbines (WT) is dependent on the availability of resources such as 
sunshine or wind. As a result, the nature of the power output is inter-
mittent; hence, it must be used when available or stored [6]. The reli-
ability of renewable energy systems can be improved by combining 
different yet complementary RESs, sometimes paired with a dis-
patchable energy source, such as a diesel, gasoline, or biogas generator, 
as a backup. According to research by Sanni et al. [4], a dispatchable 
biogas generator (BG) fuelled by methane from organic waste obtained 
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from a central slaughterhouse in Ado-Ekiti, Nigeria, can be used to 
improve the reliability of HRES connected to an unreliability grid. 

With proper component sizing and an efficient energy dispatch 
strategy, an HRES can be a sustainable, cost-effective, and reliable 
alternative to meet the energy demands of developing countries. 
Although using a DG in a hybrid system presents financial and envi-
ronmental issues, it may be necessary to incorporate it to improve the 
reliability of an off-grid HRES or in a case where the grid is unreliable. 
DG can also offset the peak demand in a location with a low power 
factor, improving the capacity factor of RESs. In some cases, HRES may 
require some sort of energy storage, particularly in off-grid systems, to 
absorb excess renewable energy. A battery bank is the most popular 
storage technique. However, supercapacitor and fuel cell technology 
have also been adopted in recent studies to capture surplus renewable 
energy [7,8]. Akinyele et al. [3] proposed the electrification of 100 
off-grid homes in Nigeria utilising mini-hydro, solar PV, and diesel 
generators. The author introduced technological, environmental, eco-
nomic, and policy (TEEP) analytical procedures in the study. The tech-
nical analysis of the study considers component sizing, energy 
production, unmet load demand, and loss of power probability; the 
environmental portion evaluates the emissions generated by the 
generator relative to when only a diesel-based generator is used to ser-
vice the load; and the economic perspective is based on the evaluation of 
NPC and LCOE. The obtained results show that including a backup diesel 
generator in the proposed HRES strengthens the complementing abilities 
of supply and lowers the system’s fuel costs, LCOE, and GHG emissions. 

A hybrid system’s lifespan and cost are significantly influenced by 
the choice of energy generation sources, component combinations, and 
energy dispatch strategy [9–11]. This choice involves a thorough tech-
nical and economic examination of the HRES configurations to satisfy a 
given site’s energy requirements based on the availability of RERs [12, 
13]. It is crucial to correctly size the generating system and choose the 
combination of energy sources in accordance with the electricity de-
mand and RERs available at a specific site location in order to increase 
the system’s efficiency while lowering its cost; only then will the system 
be efficient and cost-effective [14,15]. 

HRES component sizing is a continuous-type optimisation problem. 
When there are a large variety of possible design points, the standard 
iterative approaches are less efficient and take an exceptionally long 
computational time [16]. Therefore, numerous studies have employed 
various meta-heuristic algorithms to solve these kinds of optimisation 
problems. These techniques mimic problem-solving procedures utilised 
by organisms, making them more adaptable and providing a better so-
lution than deterministic methods when solving optimisation problems. 
However, a particular meta-heuristic optimisation method may produce 
encouraging results when addressing one type of optimisation issue, but 
it may produce poor results when tackling a different kind of optimi-
sation problem [17]. Shara and Elmekkawy [18] carried out a study, 

applying particle swarm optimisation (PSO) algorithm, on the best 
design for a stand-alone HRES comprising PV/wind/battery/H2 tank/-
fuel cell/DG system to deliver power to a remote location in Zaragoza, 
Spain. An examination of the sensitivity of various parameters to the 
proposed model. Hazem and Hazem [19] implemented PSO 
algorithm-based HRES optimisation to reduce energy costs in a remote 
area in Brittany, France. The total NPC was introduced as the fitness 
function in the particle swarm process, taking into account the minimal 
fitness values. The PSO performed better when compared with previous 
algorithms. It presented a faster and more accurate result while also 
lowering total costs. Ajewole et al. [20] also performed a comparative 
analysis of three meta-heuristic algorithms in calculating the cost of a 
HRES. Bonferroni– Holm approach was utilised to ascertain the statis-
tical significance among the algorithms. Using GA, PSO, and ABC, the 
optimum sizes of solar, battery storage (BS), and DGs that could be 
hybridised to satisfy the energy demand of a remote settlement in 
Nigeria were identified. It was concluded that ABC developed the 
optimal design consisting of 427 units of solar PV panels, 19 units of 
battery, and a 163.2 kW-rated DG. With this, a total annualised cost of 
$167,284 and 0.2443 LCOE was obtained. These were the lowest when 
compared with PSO and GA. Gharibi et al. [21] discovered the Pareto 
front of the multi-objective optimisation of an on-grid DG-PV-fuel cell 
HRES using a multi-objective crow search algorithm (MOCSA) for a 
town in Kerman, Iran. To maximise power flow between the hybrid 
system and the grid, two more choice factors are introduced to the study: 
the selling coefficient and purchasing coefficient. However, a few 
studies in Nigeria have been published on grid-connected hybrid sys-
tems using meta-heuristic techniques. Also, the popularity of application 
software like HOMER for HRES analysis, particularly in Nigeria, is 
evident from observed literature [4,22–24]. HOMER is a user-friendly 
software application that employs iterative approaches to analyse 
every potential system configuration, choose the best one, and. Never-
theless, it gives few options for power management techniques; as a 
result, it is hard to assess how well energy systems operate when using 
sophisticated power management strategies. Furthermore, since these 
software applications are "black-box" models, users cannot alter the 
control algorithm to address a particular situation. 

Therefore, this study primarily focuses on optimising an HRES linked 
to an unstable utility grid and supported by a DG to increase the system’s 
reliability while taking full advantage of locally available RERs. The key 
contribution of this study can be summed up as follows:  

• Mathematical modelling of solar/wind/biogas/battery/diesel/grid 
hybrid power system. 

• Developing an appropriate operational strategy for the HRES con-
nected to an unreliable grid to cost-effectively and continuously meet 
the load profile of the case study. 

Fig. 1. Aerial view of Maizube Farm, Sabon Daga, Niger State, Nigeria. (Source: earth.google.com).  
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• Conducting a techno-economic analysis of the HRES utilising ABC, 
GA, and PSO algorithms to examine the possibility of harnessing 
locally accessible RERs to satisfy the energy requirements of a case 
study.  

• Performing comparative analysis of the best result from the ABC/ 
GA/PSO algorithm to the result obtained from HOMER Pro software.  

• Comparing the cost and GHG emissions of the proposed HRES with 
that of the pre-existing energy system configuration of the case study. 

This paper is divided into seven sections. Section 2 contains infor-
mation on the case study and available energy resource data. Section 3 
presents the mathematical modelling of various system components. 
Section 4 covers the problem formulation and proposed operational 
strategy. Section 5 briefly introduces the metaheuristic techniques 
employed in this study. Section 6 presents and discusses the obtained 
results. Section 7 is the conclusion. 

2. Description of the case study site 

The Maizube farm was chosen for this study because of its high po-
tential for biomass and solar energy resources. The farm is located in 

Sabon Dagah (9∘25′35′′N 6∘22′42′′E), a rural village on the outskirts of 
Minna, Niger state, Nigeria. The farm is divided into several sections or 
units, including the Cowshed, Feed processing centre, Milking parlour, 
Milk processing unit, Orchard, and Administrative department. The 
farm is connected to an unreliable grid and has standby diesel gen-
eratorss for power outages. An overhead perspective of the farm centre is 
presented in Fig. 1. Table 1 also contains additional information about 
the case study farm. 

2.1. Case study farm load profile 

The farm operates on a daily routine. Activities start from 8 a.m. to 5 
p.m. on weekdays; however, milk is pumped from lactating cows at 4.30 
a.m. and 4.30 p.m. every day (including Sundays) for about an hour. The 
farm electrical load, maximum power rating, and average daily usage 
are presented in Table 2. The load demand data was gathered via 
questionnaires and semi-formal interviews with dairy farm workers and 
engineers. Most of the electric loads are small-scale industrial loads such 
as ac fans, pumps, compressors, and light bulbs. The farm has an average 
daily electrical energy usage of 982.86 kWh/day (average load demand 
40.95 kW), a peak power of 83 kW, and a load factor of 0.49. 

Throughout the year, the case study area experiences three distinct 
seasons: the dry season (February to April), the rainy season (May to 
November), and the harmattan season (December to January) brought 
on by the cold, dry Harmattan winds from the Sahara Desert. During the 
dry season, the community’s energy consumption is higher because 
loads such as air conditioners, fans, and water pumps are utilised more 
often to mitigate the impacts of the heat [25]. On the other hand, the 
relatively colder harmattan seasons have the lowest energy consump-
tion. Fig. 2 shows the daily load requirement for each season. 

2.2. National grid supply 

The studied farm is connected to the public electricity grid. However, 
the electricity supply, like most of the country, is highly erratic, with an 
average grid supply of 7 h per day and a 70.8% probability of an energy 
blackout [25]. Fig. 3 illustrates the farm’s grid power supply during a 
typical week. 

Table 1 
Information on Maizube farm.  

Information on Maizube farm 
Farm Name Maizube Farms Nigeria Limited 

Latitude and Longitude 9∘25′ 35′′N 6∘22′ 42′′ E(9.433821∘N 6.375634∘E)
Elevation 191 m ASL 
Distance from Minna 26 km 
Area of farm site 500-hectares 
Farm Products Milk, Yoghurt, and fruit juice 
Quantity of Milk processed 

daily 
1000 litres 

Types of non-grazing Cows on 
farm 

Red Friesians and Holstein Friesian 

Number of non-grazing Cows 
farm 

126 

Types of grazing Cows on farm Sokoto Godali and white Fulani (Yankanaji) 
Number of grazing Cows on 

farm 
191  

Table 2 
Breakdown of the studied location’s daily energy demand for different seasons of the year.  

S/N Load Type Quantity Power rating (kW) Feb. to Apr. 
(Dry season) 

May to Nov. 
(Rainy Season) 

Dec.& Jan. 
(Harmattan Season)     

hrs/day kWh/day hrs/day kWh/day hrs/day kWh/day 

A. Milking Parlour         
1 Milk pumps 13 5 2 130 2 130 2 130 
2 Compressor 1 2.5 2 5 2 5 2 5 
3 Water heater 1 4.5 1 4.5 1 4.5 1 4.5 
4 Water pump 1 5 2 10 2 10 2 10 
5 Fans 10 0.5 2 10 2 10 0 0 
B. Milk Processing Unit         
1 Homogenizer 1 30 3 90 3 90 3 90 
2 Pasteurizers 20 1.5 6 180 6 180 6 180 
3 Separator 3 3 3 27 3 27 3 27 
4 Water heater 2 4.5 3 27 3 27 2 18 
5 Water pump 1 5 2 10 1 5 2 10 
C. Milk Cooling Unit         
1 Compressor 1 1 12 22 264 20 240 20 240 
2 Compressor 2 1 6 22 132 21 126 20 120 
D. Cow Shed         
1 Fans 15 0.5 18 135 14 105 6 45 
2 Halogen lamps 34 0.4 8 109 10 136 10 136 
3 Water Pump 1 3 1.5 4.5 1 3 1 3 
E. Feed Processing Unit         
1 Elevator 1 5 3 15 3 15 3 15 
2 Grinder 2 5 3 30 3 30 3 30 
3 Feed processing machine 1 10 3 30 2 20 2 20 
F. Miscellaneous loads  8 8 64 7 56 6 48  

Total Daily Demand    1277  1219.5  1131.5  
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2.3. Solar resources 

Nigeria is located within the tropical region and thus receives ample 
solar radiation all year [26]. Fig. 4 depicts the annual solar irradiance for 
the studied site obtained from the national aeronautics and space 
administration (NASA) solar energy and surface meteorology database 
[27]. 

Solar radiation is well distributed throughout the year at the site, 

with an average of 5.49 kWh/m2/day and peaking at 6.26 kWh/m2/day 
in March. The total solar energy potential of 2003.85 kWh/m2/year 
available to be converted to electricity. This indicates that the solar 
energy system is an appealing power source for the area. Fig. 5 repre-
sents the annual average temperature. The power production of solar PV 
is slightly negatively affected by its operating temperature [28]. 

2.4. Wind resources 

The wind turbine’s power production is highly dependent on wind 
speed, wind speed data is, therefore, an essential resource in the HRES 
study. Because wind speed statistics for the examined site were not 
accessible, wind speed information from NASA’s renewable energy 
resource website [27] was utilised and is presented in Fig. 6. The 
monthly average wind speed ranges from 3.6 metres per second in 
December to 2.1 metres per second in October. The yearly average wind 
speed is 2.6 m/s, indicating a modest potential for wind power harvest. 

2.5. Biogas resources 

Cow dung and other organic matter can be used to produce biogas 
through anaerobic digestion and the biogas can then be used as fuel for 
generating heat and/or electricity. The farm also has over 300 cows on 

Fig. 2. Seasonal variation in the daily load profile of the case study location (a) load profile for weekdays and (b) load profile for weekends.  

Fig. 3. Grid supply outages for the case study site in a typical week.  

Fig. 4. Annual solar irradiance of the case study.  
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site, as presented in Table 1. Each cow produces an average of 15 kg of 
dung a day. That is about 4500 kg of potential biogas resource daily at 
little or no cost. 

This study proposes collecting the organic waste from the cow shed 
and utilising it as feedstock in a bio-digester to produce biogas. The main 

constituent of biogas produced is methane gas, which accounts for 60% 
to 70% of the total, with the rest being carbon dioxide (CO2) and traces 
of hydrogen sulphide (H2S), ammonia (NH3), oxygen (O2), nitrogen 
(N2), and carbon monoxide (CO) [4]. 

Fig. 5. Annual average temperature of case study location.  

Fig. 6. Wind speed (m/s) at the studied location, 10 m above sea level.  

Fig. 7. The proposed hybrid energy system configuration.  
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3. Mathematical modelling of HRES components 

The proposed grid-connected HRES is made up of various compo-
nents such as solar photovoltaic (PV), wind turbine (WT), power con-
verters (PC), utility grid (GD), battery storage (BS), biogas generator 
(BG) and diesel generator (DG) as illustrated in Fig. 7. DG is only utilized 
as a last resort and is only activated when other sources are insufficient 
to supply the load demand at a particular period. The power output of 
renewable sources is considered to be constant over the course of one 
hour. This section presents the mathematical modelling of the proposed 
in order to analyse its performance. 

3.1. Solar PV model 

Solar irradiance and ambient temperature at a given moment are two 
important input factors that might impact the power output of solar PV, 
and both were considered in this study. The mathematical model 
employed in this work to compute the power output of solar PV is based 
on the model described in [29,30]. 

Ppv(t) = Ppv r × drf ×
G(t)
GSTC

[1+ψT((Tamb +(0.0256 ×G(t))) − TSTC)]

(1)  

Where, Ppv(t) is the output power (W) of the solar PV at time t, Ppv r 
represents the rated power (W) of the solar PV at standard test condi-
tions (STC), drf is the derating factor of the solar panel, G(t) is the hourly 
solar irradiance (W/m2) incident at the surface of solar PV panel, GSTC is 
the solar irradiance at STC (1000 W/m2), ψT is the temperature coeffi-
cient of the solar PV ( − 3.7× 10− 3 oC− 1 ), Tamb symbolizes the ambient 
temperature (oC), and TSTC indicates the PV cell’s temperature at STC 
(25oC). 

3.2. Wind turbine model 

Wind turbines are propelled by the wind’s kinetic energy to produce 
electricity. Wind speed is the key determinant of a wind turbine’s power 
production. Because wind speed varies with altitude, the wind speed at 
the recorded height must first be converted to the desired hub height 
using the wind profile power law equation expressed in Eq. (2) [31]. 

Vhub(t) = Vref (t)
(
Hhub

Href

)α

(2)  

Where, Vhub(t) is the wind speed (m/s) at the WT’s hub height Hhub (m) 
and Vref (t) is the reference wind velocity (m/s) at the anemometer height 
Href (m), α denotes the friction coefficient (also called the Hellmann 
exponent). The value of α depends on factors such as wind velocity, 
temperature, terrain contour, and height above ground. The typical 
value of α is 1/7 for well-exposed locations with low surface roughness 
[6]. 

The hourly power generated by the WT (PWT(t)) is determined using 
the power curve equation [32]. 

PWT(t)={

0Vhub<Vcut− in or Vhub≥Vcut− out

PWT R
(

V3
hub

V3
R − V

3
cut− in

)

− PWT R
(

V3
cut− in

V3
R − V

3
cut− in

)

Vcut− in≤Vhub<VR

PWT RVR≤Vhub(t)<Vcut− out

(3)  

Where, PWT R (kW) is the WT’s rated power, Vhub (m/s) signifies the 
wind velocity at WT’s hub height, VR(m/s) represents the rated wind 
speed of the WT, Vcut− in and Vcut− out denotes the cut-in and cut-out wind 
speed of the WT, respectively. 

3.3. Biogas generator model 

The availability of cattle manure at the case study location (dairy 
farm) ensures the continuous supply of biogas resources that can pro-
duce heat or/and electricity for the case study location. Waste-to-energy 
has the potential to be both a long-term carbon-neutral and ecologically 
friendly energy source and a feasible alternative to conventional fuels 
[4]. A biodigester and a biogas engine make up a biogas generation 
system. The gas engine is linked to the gas pipeline and receives biogas 
from the biodigester’s gas tank. Like a traditional diesel engine, the 
biogas engine uses an integrated generator to convert biogas into elec-
tricity. The digester tank is fed with organic materials, and the gas 
burner and gas generator are linked to the biogas pipe’s outlet. The 
volume of biogas (m3) the system can create in a day is a measure of its 
capability [33,34]. 

Energy can be released when the methane in the biogas is burned or 
oxidized with oxygen. Hence, the direct burning of biogas for heating or 
its use in gas engines to produce heat and power. About 25% of the 
energy is saved when converting biogas to electricity, and 55% is saved 
when burning it to provide heat [34]. 

Eq. (4) is used to determine the amount of electric energy (EBG) 
measures in KWh that can be generated from the available organic waste 
[33]. 

EBG = PBG × hyrBGG (4)  

where PBG (kW) and hyr
BGG the BG’s power rating and the annual opera-

tion hours of BG (hr/year), respectively. Eq. (5) determines the 
maximum BG power rating (Pmax

BG ) for the proposed system in kW. 

PmaxBG =
MBM × VBG × 1000 × CVBG × ηBGG

860 × hyrBGG
(5)  

Where MBM denotes the total amount of biomass (ton/yr) available for 
electricity production in a year, VBG the specific biogas volume from the 
organic waste (m3/ton). CVBG represents the calorific value (kcal/m3) of 
biogas, and ηBGG is the overall BGG conversion efficiency. 

3.4. Diesel generator model 

Diesel generators are compression ignition engines combined with 
an alternator. The generator converts chemical energy (diesel) to elec-
trical energy. The fuel consumption of a DG is determined by the gen-
erator’s size and the load under which it operates. Most generators 
operate at 80% to 100% of their rated power. Eq. (6) may be used to 
calculate the fuel usage (Fc) of a DG in litre/kWh [21]. 

Fc = APo(t) + BPr (6)  

Where Po and Pr indicate DG’s operational power output in kW at time t 
and DG power rating (in kW), respectively. A and B are the chosen DG’s 
fuel curve gradient in litre/kWh, and the DG’s fuel curve intercept co-
efficient in litre/kWh, respectively. For the selected generator, A and B 
have values of 0.246 and 0.0842, respectively [35]. 

3.5. Battery storage model 

Batteries are used in HRES to store excess energy and discharge it 
when renewable energy is insufficient or unavailable. The battery 
bank’s capacity is determined by the electrical load requirement and the 
number of days the BS is expected to supply power to the load when the 
RES output is insufficient to meet the energy demand (known as au-
tonomy days Da). Since the HRES consists of DG that can be dispatched 
in the worst-case scenario when no other power source is available, the 
Daconsidered is one day. The required cumulative rating of the battery 
bank (RBS) in ampere-hour (Ah) can be calculated as follows. 

S.A. Adetoro et al.                                                                                                                                                                                                                              



e-Prime - Advances in Electrical Engineering, Electronics and Energy 4 (2023) 100140

7

RBS =
PLoad × hBS × Da

ηBS × DoDmax × VBS
× 1000 (7) 

Where PLoad is the load required (kW) to be met by the BS, hBS denotes 
the number of hours per day the BS supplies power (hr/day), Dasignifies 
the autonomy days, ηBS represents the battery’s round-trip efficiency, 
DoDmax is the battery’s maximum depth of discharge, and VBS is the 
battery bank’s normal voltage. 

The number of batteries required can be determined as follows: 

NBS =
RBS
R1 BS

(8)  

Where R1 BAT is the rated capacity of a single battery in ampere-hours 
(Ah). 

To produce the required bus voltage, batteries are linked in series. 
(Vbus). The number of series-connected batteries (NS

BS) can be calculated 
as follows: 

NS
BS =

Vbus

V1 BS
(9)  

Where V1 BS is the nominal voltage rating of the battery unit. 
The battery behaviour is mainly characterized by the state of charge 

(SOC) at an instance t, measured in percentage of the battery-rated ca-
pacity. SOC is the reciprocal of DOD (i.e. SOC = 1 − DOD) and can be 
determined using Eq. (10) as given by [36,37]. 

SOC(t) = SOC(t − 1) +
∑
NiPi(t) − Pload(t)
VBATCBAT

(10)  

Where i is the power generator indicator, Ni is the number of generator 
units i and Pi is the power output for generator unit i at time t. Where i ∈
{PV, WT,GD,DG, BG}

3.6. Power converter model 

When both alternating current (AC) and direct current (DC) com-

Fig. 8. Flow chart of the proposed operational strategy for system component size optimisation.  
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ponents are in the system, DC/AC and AC/DC power converters are 
required. Solar PV, WT, and BS provide DC power, whereas the 
considered load requires an AC power supply. Also, AC power from DG, 
BG, and grid can be required to be converted to DC needed to charge the 
battery storage. The converter capacity (Pmax

PC ) is determined by the peak 
load demand (Pmax

L ). 

PmaxPC =
1.2 PmaxL

ηPC
(11)  

Where, ηPC is the converter efficiency. 

4. Optimisation problem formulation 

As earlier stated, this study aims to design a reliable and affordable 
HRES. The main deciding factors are the optimal capacity sizing of PV, 
WT, BS, DG and BG. This section contains information about the sys-
tem’s energy dispatch strategy, reliability, objective function, and sys-
tem constraints. A brief overview of the algorithms used is also provided. 

4.1. Proposed energy dispatch strategy 

Getting all the HRES components to operate wholistically can be 
challenging. Therefore, in addition to component sizing, the energy 
management of the HRES must be optimal for a reliable and cost- 
effective system [38,39]. In this study, the diesel generator is given 
the least priority. It is only activated when the RESs and the BS cannot 
match the load requirement, and there is no power supply from the grid. 
Taking into account places with intermittent grid supply, the grid 
availability was considered stochastic, with a 30% chance of being 
available [40]. 

The algorithm monitors load demand and electrical energy available 
at each time step. The netload is the difference between the total power 

obtainable from RERs and the load demand 
(

PNet(t) =
PLoad(t)

ηpc 
− PPV(t) −

PWT(t)). Fig. 8 depicts a simplified flowchart of the proposed dispatch 
strategy. The following modes are used to resolve the netload in order to 
cover all possible operating conditions and supply energy to the load at 
all times.  

• Mode 1 - Battery charging strategy: if the total energy provided by 
renewable energy sources exceeds the load requirement at a given 
time interval (PNet(t) < 0) and the SOC of the battery has not attained 
the predetermined maximum (SOC(t) < SOCmax), the battery storage 
is used to absorb the surplus power else, Mode 2 is activated.  

• Mode 2 – Energy dumping strategy: There are no policies in place that 
support the exporting of energy to the national grid in Nigeria. As a 
result, when the sum of energy provided by RESs exceeds the load 
demand at a given moment, and the SOC of the battery bank is at 
maximum, then the surplus energy is supplied to the dump loads. 
Dump loads are typically deferrable loads like water pumps and 
heaters. This strategy aids in the prevent the battery bank from being 
damaged due to overcharging.  

• Mode 3 - Battery discharging strategy: In a specific time interval, if the 
RESs are insufficient to meet the energy required by the load (PNet(t)
> 0) and the SOC is higher than the predetermined minimum level 
(SOC(t) > SOCmin) then, energy stored in the BS is dispatched to 
supply energy shortage.  

• Mode 4 - Biogas generator supply strategy: When RESs and energy 
stored in battery banks are unable to fulfil the energy requirement of 
the load, then the BG is engaged to meet the netload.  

• Mode 5 – grid supply strategy: When the load demand is higher than 
the total energy produced by Solar PV, WT, BS, and BG, then power is 
supplied from the national grid, if the grid power supply is 
available (PGD(t) > 0), else Mode 6 is activated.  

• Mode 6 – Diesel generator supply strategy: Finally, if the energy 
generated by the combined RESs and the energy stored in the battery 

is insufficient to meet demand and there is no grid power supply, 
then the DG is dispatched to meet the energy shortfall. 

4.2. Objective function 

The objective function of this Optimisation problem is the mini-
misation of the LCOE to determine the optimal size of the HRES 
component that will reliably meet the farm’s energy requirement at the 
lowest cost. LCOE is the average cost per kWh of the energy produced by 
the system over its determined lifespan. The LCOE value allows the 
comparison of different energy system configurations on a similar scale. 
LCOE can be expressed as a ratio of the annualised system cost (ASC) ($ 
yr) to the average annual energy generated by the sys-
tem Eann (kWh /yr) . The objective function is expressed in Eq. (12). 

Minimise : LCOE($ / kWh) =

( ∑
NjCj

)
+ PGrdCGrd

Eann
(12)  

Where the number of component j (NJ) is the decision variable consid-
ered in this study and includes the number of Solar PV (NPV), number of 
WT (NWT), number of BS (NBS), number of BG (NBGG), number of DG 
(NDG). 

Cj = CACAPj + CAO&M
j + CAREPj − CASLVj (13)  

Cj is the annualised cost of a unit of component j, PGrd is the annual 
amount of energy bought from the national grid (kWh/yr) and CGD is the 
unit cost of electricity from the grid in $/kWh.The overall cost of each 
component unit (Cj) includes the annualised capital cost (CACAP

j ), 
annualised operational and maintenance costs (CAO&M

j ), annualised 
replacement cost (CAREP

j ), and salvage value (CASLV
j ) which is subtracted 

from the total system cost as expressed in Eq. (13). 

4.2.1. Annualised capital cost 
The annualised capital cost is the component’s principal cost, which 

includes the procurement and installation cost of the components. The 
annualised capital cost of each system component can be computed 
using the capacity recovery factor (CRF), which is a coefficient used to 
compute the equivalent annual cost as shown in Eq. (14): 

CACAPj = CCAPj × CRF (14)  

Where CCAP
j is the upfront capital cost of component j. 

Given the component j’s lifespan in years (Lj) and interest rate r, the 
CRF can be determined as thus [41]: 

CRF =
r(1 + r)Lj

(1 + r)Lj − 1
(15)  

4.2.2. Operation and maintenance cost 
The cumulative cost of O&M a unit of component j (CAO&M

j ) includes 
labour costs as well as the cost of consumables (fuel, engine oil, spare 
parts, etc.) required to keep the component operational. The annualised 
value can be expressed as in Eq. (16). 

CAO&M
j = HjCO&M/h

j × CRF (16)  

Where Hj is the number of operational hours of component j throughout 
its lifespan and CO&M/h

j is the hourly operational and maintenance 
(O&M) cost of component j. For DG, the fuel cost is included in the O&M 
cost and is equal to the average amount of diesel consumed by the 
generator in a year (in litres) multiplied by the cost of one litre of diesel. 
The total fuel cost (Cf

DG) can be calculated as: 

CfDG = EDGCfF(t) × CRF (17) 
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Where EDG is the total energy produced by DG. Cf is the cost of a litre of 
diesel ($/litres) and F(t) is the fuel consumption rate of the DG in litres/ 
kWh. 

4.2.3. Replacement cost 
If the project’s lifespan exceeds the component lifespan, re-

placements are necessary. The replacement cost of any system compo-
nent is the cost of replacing the component at the end of its lifespan. The 
annualised replacement cost, CAREP

j , throughout the project’s duration 
can be expressed as: which took place over a project’s duration might be 
expressed as 

CAREPj = CREPj × CRF×
1

(1 + r)Lj
(18)  

Where CREP
j is the cost of replacing component j. In the case of DC and 

BG, lifespan is the total number of operating hours. The life span in years 

of a diesel/BG (LGen) can be computed as expressed in Eq. (19). 

LGen =
HGen

hGen/y
(19)  

Where HGen and hGen/y are the diesel/BG’s lifespan (hours) and the 
number of hours of operation in a year, respectively. 

Fig. 9. Simplified process of the optimal sizing algorithm using ABC technique.  

Fig. 10. Simplified process of the optimal sizing algorithm using GA technique.  
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4.2.4. Salvage value 
The salvage value is the component’s projected resale value at the 

end of the project’s lifespan. The annualised net present salvage value of 
a component j (CASLV

j ) can be determined as a fraction of the replacement 
cost as shown in Eq. (20). 

CASLVj = CREPj
LRemj

Lj
×

1
(1 + r)Lj

CRF (20)  

Where, CREP
j is the replacement cost of the component j, LRem

j is the 
remainder of the component’s lifespan (in years) of component j at the 
end of the HRES lifespan and Lj is the total lifespan (in years) of 
component j. 

4.2.5. Grid supply cost 
Aside from system component-related costs, the cost of power ex-

change between the HRES and the utility grid is another key economic 
component to consider in grid-connected systems. Due to Nigerian leg-
islative limits, the proposed HRES is designed to only purchase elec-

tricity from the grid. Grid purchase cost is the average annual cost of 
energy drawn from the national grid over the lifetime of the HRES. The 
total amount of electricity acquired from the grid, EGD is expressed in 
Eq. (21). 

EGD =
∑8760

0
PGD(t) (21) 

Therefore, the total price of energy bought from the grid in a year 
(CGD) can be expressed as in Eq. (22). 

CGD = EGDC/kWh
GD (22)  

Where, C/kWh
GD is the unit cost of electricity ($/kWh) purchased from the 

grid. 

4.3. System constraints 

This system’s optimisation is subjected to practical or/and technical 
constraints that must be met in order to generate viable solutions. The 
first constraint expressed in Eq. (23), is the energy balance between the 

Fig. 12. Simplified process of the optimal sizing algorithm using 
PSO technique. 

Fig. 11. Dynamic of particles in PSO.  

Table 3 
Optimisation control parameters.  

ABC algorithm PSO algorithm GA algorithm 

Parameter Value Parameter Value Parameter Value 

Dimension of 
the problem 
(D) 

5 Dimension of 
the problem 
(D) 

5 Dimension of the 
problem (D) 

5 

Employed bees 50 Dimension of 
the problem 
(D) 

5 Population size 
(N) 

50 

onlooker bees 50 Population size 
(N) 

50 Distribution 
index for 
crossover 

20 

Colony size 
(NP) 

20 Minimum 
weight (Wmin) 

0.2 Distribution 
index for 
mutation 

20 

Food number 50 Maximum 
weight 
(Wmax): 

0.9 Crossover 
probability 

0.8 

Limit (No of 
food × dim) 

250 Maximum 
iterations 
(Itmax) 

100 Mutation 
probability 

0.2 

Maximum 
iterations 
(Itmax) 

100 Maximum 
iterations 
(Itmax) 

100 Maximum 
iterations (Itmax) 

100  
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power sources and the farm’s load demand at all times. 
∑

NjPj(t) ≥ Pload(t) (23)  

Where Pj(t) is the power output of a unit component j 
The lower and upper constraints of the variables are presented in Eq. 

(24). 

Decision variables =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ≤ NPV ≤ 2000
1 ≤ NWT ≤ 500
1 ≤ NBS ≤ 2000
1 ≤ NBGG ≤ 100
1 ≤ NDG ≤ 300

(24) 

The third constraint is the maximum and minimum charge level at 
which batteries may be charged or drained without compromising the 
longevity of the battery life cycle. This boundary is expressed in the 
following equation. 

SOCmin ≤ SOC(t) ≤ SOCmax (25)  

5. Optimisation techniques 

In this study, ABC, GA and PSO optimisation techniques were 
adopted for the HRES sizing. The author directly picked optimisation 
approaches with the best performance and shortest operation time. 

5.1. Artificial bee colony (ABC) algorithm 

ABC is inspired by honey bee intelligence and can be used to solve 
various kinds of optimisation problems. This method imitates the co-
ordinated social structure of the honeybee colonies. There are three 
main categories of honeybees in a colony; employed bees, onlooker bees, 
and scout bees [6]. The bees’ search process can be summarised as fol-
lows and shown in Fig. 9:  

1 At first, the employed bees will randomly choose a series of food 
source locations. The quantity of nectar the location produce will be 
evaluated, and they can store where food sources in their memory. 

Table 4 
Economics and technical specification of various components of the proposed system.  

S/N Component Parameter Value Unit 

1. Grid Grid capital cost 0 $ 
Import energy tariff 0.07 $/kWh 
Export energy tariff 0 $/kWh 

2. Solar PV Capital cost 1200 $/kW 
Replacement cost 1000 $/kW 
Operation and Maintenance cost 5 $/yr 
Lifetime 25 years 
Efficiency 20 % 
De-rating factor 88 % 
Temperature coefficient − 038 %/oC 

3. Wind turbine Power output type AC  
Initial cost per unit 5000 $/kW 
Replacement cost 5500 $/kW 
Operation and Maintenance cost 50 $/yr 
Hub height 24 m 
Lifetime 20 years 

4. Battery Storage Type Lead-Acid  
Capacity 1 kWh 
Initial cost per unit 300 $ 
Replacement cost 250 $ 
Operation and Maintenance cost 5 $/yr 
Maximum Depth of Discharge 20 % 
Throughput 800 kWh/yr 

5. Converter Capital cost 300 $/kW 
Replacement cost 250 $/kW 
Operation and Maintenance cost 5 $/yr 
Lifetime 15 year 
Inverter efficiency 95 % 
Rectifier efficiency 95 % 

6. Biogas Generator Rated capacity 5 kW 
Calorific value of cow dung 860.4 Cal/kg 
Conversion efficiency 25 % 
Initial cost 600 $/kW 
Replacement cost 600 $/kW 
O&M cost 0.1 $/hr 
Operation life 15,000 hour 

7. Diesel Generator Initial cost per unit 195 $/kW 
Replacement cost 190 $/kW 
Operation and Maintenance cost 0.03 $/hr 
Lifetime 15,000 hours 
Conversion efficiency 30 % 
Diesel price 2 $/L 
Fuel curve slope 0.236 L/hr/kW 

8. Control parameters Project lifespan 25 year 
Simulation time step 1 hour 
Annual capacity shortage 0 % 
Expected Inflation rate 12 % 
Interest rate 10 % 
Dispatch strategy Cycle Charging (CC)   
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2 Afterwards, the employed bees return to the bee hive with speci-
alised dances to communicate with the other bees about these food 
sources.  

3 Based on the information provided by the employed bees, the 
onlooker bees go on to investigate the food sources.  

4 Finally, after the food sources are abandoned, the employed bees 
become scout bees and randomly search the area to find new food 
sources. 

Fig. 13. Comparison of the convergence rate of ABC, GA, and PSO algorithm.  

Table 5 
Optimum system configurations for various techniques.  

Proposed capacity Economics 

Technology 
Algorithm 

PV (kW) WT 
(kW) 

BS 
(kWh) 

PC 
(kW) 

BG 
(kW) 

DG 
(kW) 

Grid 
(kW) 

NPC 
($) 

LCOE 
($/kWh) 

PSO 116 2 569 105 8 61 999.9 2.05M 0.162 
GA 122 2 635 105 8 73 999.9 2.06M 0.163 
ABC 135 3 643 105 10 88 999.9 2.11M 0.166 
HOMER 119 2 574 100 10 64 999.9 2.08M 0.165  

Fig. 14. Monthly energy production of various system units and load demand.  
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5.2. Genetic algorithm (GA) algorithm 

John Holland proposed the Genetic Algorithm (GA) in 1960–1970 
[42]. It is a search algorithm modelled around the idea of evolution by 
natural selection. Typically, a population of randomly created in-
dividuals serves as the starting point for evolution. A generation is a term 
used to describe the population during each iteration of the operation. 
Fitness is assessed for each generation and population individually [43]. 
The fitness value represents the value of the objective function of the 
optimisation problem. The fittest members of the existing population are 
randomly selected, and their genomes are modified, recombined, or 
otherwise randomly altered to create a new generation. The algorithm 
then employs probable solutions from the following generation in its 
subsequent iteration. Usually, the process ends when the population has 
reached a desirable fitness level or the maximum number of generations 

have been generated [44]. An array of bits provides a standard repre-
sentation of each proposed solution. A simplified flow chart of the GA 
process is presented in Fig. 10.  

1 Selection: In this process, solutions with a high fitness value from 
each previous generation are chosen and used to form a new popu-
lation. The fitness value of the function, which is the optimal func-
tion value, is used in the selection.  

2 Crossover: In this procedure, the population with the highest fitness 
value is chosen from each subsequent generation. The crossover 
operation is performed by altering the bits of each population solu-
tion. This results in a new population with the highest fitness value, 
which can lead to improved solutions. 

3 Mutation: is an operation that is used to distinguish the new gener-
ation from previous generations by modifying the bits of the current 

Fig. 15. Breakdown of the net present cost of various system components.  

Fig. 16. Power contribution by various system components to meet the load demand for the fourth week in March.  
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generation if they are the same as the previous generation’s 
population. 

5.3. Particle swarm optimisation (PSO) 

PSO is a meta-heuristic optimisation approach developed in 1995 by 
James Kennedy (Social-Psychologist), and Russell Eberhart (Electrical 
Engineer) is modelled after the social navigation of swarm organisms 
like a flock of birds or a school of fish First, a random number of particles 
or a population is formed using random location vectors and velocity 
vectors. The fitness value of each particle in the initial population is 
computed to evaluate its present location, which is then compared to its 
prior best experience (value). The personal best fitness values are 
compared to determine the global best value [45]. A simplified flow 
chart of the PSO algorithm is shown in Fig. 12. 

If a particle’s current position fitness value is better (i.e. greater for 
maximisation problems and lower for minimisation problems) than the 

best prior value attained, the particle’s value is updated with the new 
value; otherwise, it is kept unchanged. In addition, the particle’s ve-
locity is changed based on the global best particle (Gbest) and its per-
sonal best experience (Pbest) [45,46].In each iteration, particles tend to 
gravitate toward the best global particle. The best global particle is then 
updated. Fig. 11 is a vector diagram exhibiting particle dynamics in PSO. 

Each particle modifies its position by using the following information  

• Their present positions (Xt
i ).  

• Their present velocities, (Vt
i ).  

• The difference between their present position and their personal best 
value, often known as Pbest (Pt

i).  
• The difference between their present position and their global best 

value, often known as Pbest (Gt). 

The following equations can modify the velocity and position of each 
particle. 

Fig. 17. Weekly comparison of power contribution by various components of the HRES (a) load weekly demand profile (b) combined power output from power 
generators (c) power output from the battery (d) power input to the battery (e) battery SOC (f) dump load. 
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Xt+1
i = Xti + Vt+1

i (26)  

Vt+1
i = ωVt

i + c1r1
(
Pti − X

t
i

)
+ c2r2

(
Gt − Xti

)
(27)  

Where: Xt+1
i is the particle’s position in the subsequent iteration, Vt+1

i is 
the velocity for the next iteration, ω is the inertia weight or coefficient, 
c1 and c2 are the respective acceleration factors (weights) for the 
cognitive and social factors, r1 and r2 are two uniform random numbers 
between 0 and 1 and are used to preserve the population’s diversity 
[45]. 

6. Result and discussion 

The optimal sizing of the proposed HRES using ABC, GA and PSO 
algorithms was carried out in a MATLAB 2020a environment on a per-
sonal computer fitted with an Intel Core i3–7100 Processor and 8GB 
RAM. The results of these metaheuristic techniques were then compared 
with those obtained from HOMER Pro software. The simulation is done 
on a year’s worth of data with an hourly time step to meet energy de-
mand. Table 3 presents the control parameter for the three metaheuristic 
techniques and Table 4 shows the technical data of various system 
components selected in this study (Fig. 12). 

For the sake of comparison of findings, the highest and lowest 
number of solar PV panels, wind turbines, batteries, biogas generators, 
and diesel generators have been regarded as identical for all the algo-
rithms. The size of the inverter is not a factor in the decision variable. 
Using Eq. (11), the inverter’s rating is determined to be 105 kW based on 
the peak load demand. The optimal size of the system’s component is 
determined based on the LCOE. Fig. 13 shows the convergence rates for 
PSO, GA, and ABC. It shows that PSO and GA converge to almost the 
same global minimum LCOE values. However, PSO performs better than 

Fig. 18. GHG emission comparison: (a): CO2 emissions (b): Other gases.  

Fig. 19. The power contribution by base case system (national grid and backup DG) to meet the load demand for the last week in March.  

Table 6 
System configurations and cost comparison of the base and proposed power system.  

Capacity Economics 

Technology 
System 

PV 
(kW) 

WT 
(kW) 

BS 
(kW) 

PC 
(kW) 

BG 
(kW) 

GD 
(kW) 

DG 
(kW) 

Diesel usage (L/ 
yr) 

Initial cost 
($) 

ASC ($) NPC 
($) 

Payback Period 
(yr) 

Base System – – – – – 999 250 84,351 31.5k 229.8k 9.56M 5.6 
Proposed System 116 2 569 105 8 999 61 7.592 825.7k 82.3k 2.05M   
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GA in terms of convergence time. Therefore, Therefore, the PSO algo-
rithm’s outputs are selected as the ideal combination for the case study 
and are compared with the result obtained from HOMER Pro for 
validation. 

Table 5 shows the optimal component sizes obtained from PSO, GA, 
ABC, and HOMER to meet the total load demand of the studied location. 
The PSO algorithm proposes an HRES comprising 116 kW solar PV, 2 kW 
wind turbine, 569 kWh batteries, 8 kW biogas generator, and 61 kW 
diesel generator, which results in a system with an NPC of 2.05 million 
dollars and an LCOE of 0.162$/kWh. 

The performance of the PSO algorithm is satisfactory in terms of 
result and convergence time when compared with HOMER Pro. 
Although HOMER pro converges a few minutes faster than the PSO al-
gorithm, PSO slightly outperforms HOMER Pro in terms of optimal 
results. 

Fig. 14 depicts the monthly energy contribution of various system 
units in meeting the load demand. The biggest portion of the energy 
generated comes from solar PV, accounting for about 64% of the annual 
energy production. In contrast, the lowest fraction comes from wind 
turbines, contributing less than 2%. This power production is consistent 
with the available RERs available at the case study location. The overall 
renewable fraction of the proposed system is 67.2%. Biogas contributes 
a significant 11% of the generation, demonstrating biogas’s potential for 
generating reliable energy in an area with an abundance of organic 
waste. 

Fig. 15 shows the net present cost of various system components. The 
studied location is already connected to the national grid; thus, the only 
cost constituent for the grid is the operating cost (cost of energy pur-
chased from the grid). The battery storage needs to be replaced every 
five years. Therefore, it will be replaced four times in the project’s 25 
years, hence the high replacement cost. System components, wind tur-
bines, BGs, DG, and converters that have not reached the end of their life 
span at the end of the project life can be sold at a salvage cost subtracted 
from the total system cost. 

The power contribution by various components of the system to meet 
the load requirement for the fourth week in March, when the load de-
mand is highest, is presented in Fig. 16. As described in the operational 
strategy, the DG is activated when power from renewable sources and 
batteries are insufficient to meet load demand, and there is no power 
supply from the national grid. In that week in March, the chart shows 
that solar, wind, and biogas power output is lower than load demand for 
a few hours (000–005); hence the battery is discharged to meet the 
energy deficit. At 005 h, the power supply from the grid is restored just 
in time for cow milking. However, the supply lasted only about one 
hour; hence, the DG is activated to supply the energy needed during cow 
milking. Between the hours of 008 and 014, owing to the increased 
availability of the solar resource, the power output from the solar PV in 
combination with the WT exceeds what is needed to meet the energy 
demand for milk processing. Thus, there is no need to run the DG and 
excess energy stored in the battery bank when energy output from RESs 
is low. 

Fig. 17 shows the load demand profile for the entire week, combined 
power output from power generators, power output from the battery to 
meet renewable energy generation shortfall, and power input to the 
battery to absorb excess energy during surplus renewable power pro-
duction. Hence, the battery’s SOC varies throughout the week between 
the defined maximum of 100% and a minimum of 20%. It is observable 
from Fig. 17 that the SOC remains within the predetermined limit. It can 
be noted that there is a significant amount of excess energy from solar 
PV to be stored in the battery bank during the weekends due to little or 
no activities on the farm. Since there is currently no facility or policy in 
Nigeria that permits the sale of surplus energy to the grid, when the SOC 
of the battery reaches 100%, the surplus energy, if any, is used to power 
deferred load like pumping water to a reservoir or for irrigation. 

6.1. Economic comparison 

A comparative analysis of the proposed system and existing system 
(grid backed up with 250kVA DG) is carried out. With the base case as 
the control, it is computed that the initial cost of the proposed optimal 
system is 25 times that of the base system. However, with relatively low 
O&M cost, the NPC of the proposed optimal system is 78.5% less the that 
of the base system. 

Making the proposed system cost-effective in the long run. The 
Payback Period was computed to be 5 years and 7 months. This is when 
the difference between the cumulative cash flow of the proposed system 
and the base case system turns negative to positive. The payback shows 
how long it would take to make up the investment cost difference be-
tween the proposed system and the existing one. This demonstrates 
unequivocally that the proposed system has a clear economical advan-
tage over the existing energy system for the 25-year project life span. 

6.2. Emission comparison 

Gas emission from fossil fuel combustion has been recognized as a 
worldwide problem due to global warming and its associated effects. 
The comparison of CO2 emissions and other GHG gases of the base and 
proposed power system is presented in Fig. 18. The base case system 
created higher emissions than the proposed HRES for every pollutant 
considered. The high frequency of grid outages significantly increases 
the run time of the backup DG to meet energy demand in the base case, 
as shown in Fig. 19. From the results presented in Table 6, deploying the 
proposed HRES reduces the annual diesel fuel usage from 84,351 litres 
per year to 3110 litres per year. Therefore, decreasing the CO2 emission 
by 86%, the CO emission by 96%, sulphur dioxide by 81%, and nitrogen 
oxides by 58%. This is significate, considering the present amount of 
GHG emissions worldwide. Implementing systems like this will go a long 
way toward increasing energy and environmental sustainability. 

7. Conclusion 

This study focuses on HRES optimisation to demonstrate the viability 
of harnessing energy resources available on farms to reliably satisfy the 
farm environment’s energy demands. An extensive analysis of an 
autonomous HRES comprising PV/WT/BG/BS/GD/DG was carried out. 
An economic dispatched strategy was developed to suit the peculiarity 
of the local energy status. A comparative analysis for optimal sizing of 
the HRES based on three popular metaheuristic algorithms, namely 
ABC, GA, and PSO algorithms, has been presented. The sizing of the 
HRES is performed to fully meet the energy demand of a dairy farm in 
north-central Nigeria without violating any of the predetermined con-
straints. PSO was determined to be the best-performed algorithm with a 
good balance between exploitation and exploration, attaining the lowest 
LCOE with the least amount of iteration. PSO algorithm was then 
compared with a popular commercially available (HOMER Pro) appli-
cation. Finally, the proposed HRES was compared with the existing 
power system in the case study. The obtained results demonstrate that 
incorporating solar PV and BG into the existing power system can 
significantly reduce GHG emissions and affordably provide the long- 
term energy needs of developing countries. 
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