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ABSTRACT 

Traditionally, the error and order constant of block linear multistep methods were analyzed by 

examining each block members separately. This paper proposes a block-by-block analysis of the 

schemes as they appear for implementation. Specifically, cases when k= 2, 3, 4, and 5 for Adams 

Moulton (implicit) are reformulated as continuous schemes in order to generate a sufficient number of 

schemes required for the methods to be self-starting. The derivation was accomplished through the 

continuous collocation technique utilizing power series as the basis function, and the property of order 

and error constants is examined across the entire block for each case of the considered step number. 

The findings of the study generated error constants in block form for Adams Bashforth and Adams 

Moulton procedures at steps 2,3,4,5k  .  Furthermore, the relevance of the study demonstrates that 

calculating all members' error constants at once, reduces the amount of time necessary to run the 

analysis. The new approach, for examining the order and error constants of a block linear multistep 

method, is highly recommended for application in solving real-world problems, modelled as ordinary 

and partial differential equations. 

Keywords: Block linear multistep method, error computation. 

INTRODUCTION 

Typically, numerical methods for solving 

initial value problems (IVPs) of the first 

order are classified as either linear 

multistep methods (LMM) or Runge-Kutta 

methods (Akinfenwa et al., 2011). 

Methods can be separated into explicit and 

implicit categories. Adams – Bashforth 

methods and any Runge-Kutta method 

with a lower diagonal Butcher tableau are 

explicit linear multistep methods. 

Backward Differentiation Formula (BDF) 

and Adams-Moulton methods are 

examples of implicit linear multistep 

methods. In the integral range, linear 

multistep methods require less evaluation 

of the derivative function than one-step 

methods. For this reason, they have been 

immensely popular and are essential for 

numerically solving ordinary differential 

equations (Muhammad et al. 2014). 

However, these methods have limitations, 

including the overlap of solution models 

and the need for a starting value. Another 

limitation is that they produce discrete 

solution values, which renders them 

uneconomical for mass production. In this 

regard, a continuous formulation is 

desirable. The collocation method is likely 

the most essential numerical technique for 

the development of continuous methods – 

(Lie and Norsett, 1989; Onumanyi et al., 

1994; 1999). The continuous method 

preserves the Runge-Kutta traditional 

advantage as it allows the generation of a 

necessary and sufficient number of 

schemes, which makes the method self-

starting and is more accurate since it is 

implemented as a block method, as 

reported by Yahaya (2004). Block methods 

were first introduced by Milne (1953) for 

the purpose of obtaining starting values for 

predictor-corrector algorithms (Sarafyan, 

1965). However, Rosser (1967), developed 

Milne’s idea into algorithms for general 

use. Block methods have also been 

considered by Shampine and Watts (1969), 

Musa et al. (2012), Jator and Li, (2012), 

Akinfenwa et al., 2013; Mohammed and 

Adeniyi, (2014), Badmus, et al. (2015), 

Omar and Adeyeye (2016), Akinfenwa et 

al., (2017).  Furthermore, error analysis of 

numerical methods is crucial; an 

acceptable linear multistep method (LMM) 

must be convergent. Consistency and zero 

stability are, however, the necessary and 

sufficient conditions for the convergence 

of a LMM. According to (Musa et al., 
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2012), consistency controls the magnitude 

of the local truncation error while zero 

stability controls the manner in which the 

error is propagated at each step of the 

computation. A method which is not both 

consistent and zero stable is rejected 

outright and has no practical interest. In 

recent times, analysis of these properties 

has been carried out on the individual 

members of a block linear multistep 

method (Ibrahim et al., 2011; Muhammad 

et al. 2014), whose results may not be 

assumed for the entire block method. 

 However, in this research paper, we 

reformulate the existing Adams Moulton 

methods (for cases when k=2,3,4 and 5) 

into continuous methods and generate the 

corresponding sufficient number of 

schemes to make each of them self-starting 

and carry out the analysis of their local 

truncation errors as one entity rather than 

the individual scheme in the block.

  

METHODOLOGY 

Derivation of Continuous Forms of Adams Moulton Methods  

A power series of a single variable x in the form: 

0

( ) j

j

j

p x a x




          (1)  

is used as the basis or trial function, to produce the approximate solution given as 
1
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            (2)  

where a j   are unknown coefficients to be determined, r and s are 

the numbers of interpolation and collocation points respectively.  

Differentiating (2),  
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            (3)   

Interpolating (2) and collocating (3) at specified points lead to a system of nonlinear 

equations of the form  

AX B           (4) 

When the matrix inversion technique is used to solve equation (4), the values are returned to 

equation (2) and substituted in order to produce the following continuous Adams method 

scheme:      1 1

0

k

k n k j n j

j

y x x y h x f    



         (5) 

The continuous scheme is evaluated at the non-interpolating points in order to obtain the 

necessary number of equations for solving an ODE. Using k=2, 3, 4 and 5, we get the 

following block forms of the Adams Moulton methods in (6) through (9): 
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5 2 1
1 1 212 3 12

51 2
2 1 1 212 3 12

n n n n n

n n n n n

y y hf hf hf

y y hf hf hf

  

   

    


    
     (6) 

13 131 1
1 2 1 2 324 24 24 24

1 4 1
2 1 23 3 3

5 19 31
3 2 1 2 324 24 24 8

n n n n n n

n n n n n

n n n n n n

y y hf hf hf hf

y y hf hf hf

y y hf hf hf hf

    

  

    

     


    


     

    (7) 

17 19 171 1
1 3 1 2 3 490 45 15 45 90

37 19 173 1911
2 3 1 2 3 4720 360 30 360 720

27 51 9 321
3 1 2 3 480 40 10 40 80

19 53
4 3 1720 360

n n n n n n n

n n n n n n n

n n n n n n n

n n n n

y y hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf

     

     

    

  

     

     

     

    323 25111
2 3 430 360 720n n nhf hf hf  






  

 (8) 

3 69 87 87 69 3
1 4 1 2 3 4 5160 160 80 80 160 160

17 19 171 1
2 4 1 2 3 4 590 45 15 45 90

77 43 511 637 311
3 4 1 2 3 41440 1440 240 720 1440 160

n n n n n n n n

n n n n n n n

n n n n n n n

y y hf hf hf hf hf hf

y y hf hf hf hf hf

y y hf hf hf hf hf hf

      

      

     

      

     

       5

64 8 6414 14
4 1 2 3 445 45 15 45 45

3 173 133 1427 95241
5 4 1 2 3 4 5160 1440 720 240 1440 288

n

n n n n n n n

n n n n n n n n

y y hf hf hf hf hf

y y hf hf hf hf hf hf



    

      






     

       

 (9) 

NUMERICAL EXPERIMENTS AND RESULTS 

Block Error Analysis of Adams Methods 

Following Nwachukwu and Okor (2018), the individual scheme of a linear multistep method 

can be written as: 

      
0 0

;
k k

j j

j j

L y x h y x jh h y x jh 
 

 
       

 
      (10) 

Expanding (10) in Taylor series, the local truncation error associated with (5) is the linear 

difference operator 

      
0 0

;
k k

j j

j j

L y x h y x jh h y x jh 
 

 
       

 
      (11) 

Assuming that  y x  is sufficiently differentiable, we can expand the terms in (3.34) as a 

Taylor series about the point x  to obtain the expression  

       ( )

0 1; ... ...q q

qL y x h c y x c hy x c h y x            (12) 

where the constant , 0,1,...qc q   are given as follows 
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      (13) 

If the error constant of a linear multistep method is known, it is said to be of the order of 

accuracy (Akinfenwa et al., 2015). However, this method is typically used to determine the 

order of the block's members. In order to determine the order of the entire block, this method 

is extended further. Block linear multistep method is expressed in the following form to 

achieve this goal 

 

0 0
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ij n j ij n j

i j

y h f  

 

          (14) 

Equation (14) is expanded to give the following system of equation.  
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Extending (12) to the vector form in (15),  

      
0

; ,
k

j j

j

L y x h y x jh h y x jh y y jh 


              (16) 

where,   y x  exactly  satisfies     ,y x f x y x  . Using Taylor's series expansion of (16) 

as a starting point, concerning x yields 
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qq

qL y x h C y x C hy x C h y x C h y x           (17) 

where    

01 11 1

02 12 2

03 13 30 1

0 1

,

p

p

pp

p p pp

c c c

c c c

c c cC C C

c c c

     
     
     
       
     
     
     
     

       (18) 

The block linear multistep technique is of order if and only if the local truncation error can be 

expressed as (Chollom et al., 2007). 

Local Truncation Error of two-step Adams Moulton Block Method 

 

A simple two-step method of Adams Moulton block analysis in (6) can be found by 

following the steps outlined above. The results are summarized as follows: 

 

0 0 1 2

1 1 0 0

0 1 1 0
C   

       
             

       
      (19) 

 1 1 2 0 1 2

25 1

1 0 0312 12
2 2

1 1 1 2 5 0

12 3 12

C     

     
          

                    
                 

     

 (20) 

 2 2

2 1 2 1 2

2 1

1 0 01 1 3 12
2 2 2 2

1 1 2 5 02! 2!

3 12

C    

    
          

                                
   
   

   (21)  

 3 3 2

3 1 2 1 2

2 1

1 0 01 1 1 1 3 12
2 2 2 2

1 1 2 5 03! 2! 3! 2!

3 12

C    

    
          

                                
   
   

 (22) 

 4 3 4 3

4 1 2 1 2

2 1 1

1 01 1 1 1 3 12 24
2 2 2 2

1 1 2 5 14! 3! 4! 3!

3 12 24

C    

      
          

                                      
     

  (23) 

Hence the two-step Adams Moulton block method is of order  3,3
T

 and the error constant is 

1 1
,

24 24

T

 
 

 
 

Local Truncation Error of three-step Adams Moulton Block Method 

According to the Adams Moulton block method in (7), the order and error constant are as 

follows: 
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0

0 1 1 0 0

1 0 1 0 0

0 0 1 1 0

C

         
         

              
                  

       (24) 

1

1 13 13
1

24 24 241 1 0 024
1 4 1

0 2 1 3 0 0 0
3 3 3

0 1 1 3 0
1 5 19

8
24 24 24

C

      
         

              
                                   

                                    
       

   (25) 

2 2

2

13 13
1

24 241 1 0 024
1 4 1

0 2 1 3 0 2 3 0 0
2! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
       

              
                                

                                  
     

  (26) 

3 3 2 2

3

13 13
1

24 241 1 0 024
1 1 4 1

0 2 1 3 0 2 3 0 0
3! 2! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
       

              
                                

                                  
     

  (27) 

4 4 3 3

4

13 13
1

24 241 1 0 024
1 1 4 1

0 2 1 3 0 2 3 0 0
4! 3! 3 3

0 1 1 3 0
5 19

8
24 24

C

    
       

              
                                

                                  
     

  (28) 

5 5 4 4

5

1113 13
1

72024 241 1 0 24
1 1 4 1 1

0 2 1 3 0 2 3 0
5! 4! 3 3 90

0 1 1 3
5 19 19

8
24 24 720

C

      
         

               
                                 

                                        







 (29) 

As a result, the three-step Adams Moulton block method is ordered  4,4,4
T

, and the error 

constant is 

 
11 1 10

, ,
720 90 720

T

 
   
 

 

 

Local Truncation Error of four-step Adams Moulton Block Method 
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The order and error constant of the four-step Adams Moulton block method in (8) is 

presented as thus: 

0

0 1 0 1 0

0 0 1 1 0

1 0 0 1 0

0 0 0 1 0

C

         
         


             
         
         

         

       (30) 

1

1 17 19

90 45 15
1 0 1 11 37 19

0 1 1 720 360 30
2 3

0 0 1 27 51 9

80 40 100 0 1

19 53 11

720 360 30

C

     
       

                         
                            
           
            
     
      
     

17 1

45 90
0173 19

0360 720

21 3 0

40 80 0

323 251

360 720

    
    
    

       
    

      
       

      
    
    

    

 (31) 

2 2

2

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 360 30 360
2 3 2 3

0 0 1 51 9 212!

40 10 400 0 1

53 11 323

360 30 360

C

     
       
                       
                         
          
           
    
    
     

1

90
019

0720
4

3 0

80 0

251

720

  
  
   

    
 

   
     
      

     
   
   

  

   (32) 

3 3 2 2

3

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 1 360 30 360
2 3 2 3

0 0 1 51 9 213! 2!

40 10 400 0 1

53 11 323

360 30 360

C

    
      
                       
                         
          
           
   
   
    

2

1

90
019

0720
4

3 0

80 0

251

720

   
   
   

    
 

   
     
      

     
    
    

   

 (33) 

4 4 3 3

4

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 1 360 30 360
2 3 2 3

0 0 1 51 9 214! 3!

40 10 400 0 1

53 11 323

360 30 360

C

    
      
                       
                         
          
           
   
   
    

3

1

90
019

0720
4

3 0

80 0

251

720
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5 5 4 4

5

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 1 360 30 360
2 3 2 3

0 0 1 51 9 215! 4!

40 10 400 0 1

53 11 323

360 30 360

C

    
      
                       
                         
          
           
   
   
    

4

1

90
019

0720
4

3 0

80 0

251

720

   
   
   

    
 

   
     
      

     
    
    

   

  (35) 

6 6 5 5

6

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 1 360 30 360
2 3 2 3

0 0 1 51 9 216! 5!

40 10 400 0 1

53 11 323

360 30 360

C

    
      
                       
                         
          
           
   
   
    

5

1
0

90
11

19
1440

720
4 3

3
160

80
3

251
160

720

   
    
    
    
    
     
         
             

   

  (36) 

7 7 6 6

7

17 19 17

45 15 45
1 0 1 37 19 173

0 1 11 1 360 30 360
2 3 2 3

0 0 1 51 9 217! 6!

40 10 400 0 1

53 11 323

360 30 360

C

    
      
                       
                         
          
           
   
   
    

6

1 1

90 756

19 241

720 15120
4

3 19

80 560

251 641

720 15120

     
     

     
     
     

      
     
     
      
      

     

 (37) 

As a result, the four-step Adams Moulton block method is of order  6,5,5,5
T

, and the error 

constant is constant.  

1 11 3 3
, , ,

756 1440 160 160

T

 
   
 

 

 

Local Truncation Error of five-step Adams Moulton Block Method 

The order and error constant of the five-step Adams Moulton block method are presented in 

(9) as follows: 

0

0 1 0 0 1 0 0

0 0 1 0 1 1 0

0 0 0 1 1 0 0

1 0 0 0 1 0 0

0 0 0 0 1 1 0

C
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1

3 69

360 160

11 11 0 0 1 0
1440 900 1 0 1 1
14 77

2 3 4 50 0 1 1 0
45 1440

0 0 0 1 0
3 64

0 0 0 1 1
160 45

251 173

720 1

C

 
 

 
          
          

           
                 
          
          

                      
 

 
 

87 87 69

80 80 160

17 19 17

45 15 45

43 511 637

240 720 1440

8 64 14

15 45 45

241 133 1427

440 720 240 1440

       
         

       
         
       
       
           
       
       
       
       
      

      
       

3

160
01

090

3 0

160 0

0 0

95

288

 
  
  
        
    
         
    
    

   
    

   
 

  

(39) 

2 2 2 2

2

69

160

11 0 0 1 0
900 1 0 1 1

1 77
2 3 4 50 0 1 1 0

2! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                        
 

 

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
288

720 240 1440

     
        

     
             
     

          
     
     
     
     
     

       
     

0

0

0

0

0

 
 
 
      
   

        
    
    

   
   

 
 

 (40) 

3 3 3 3

3

69

160

11 0 0 1 0
900 1 0 1 1

1 1 77
2 3 4 50 0 1 1 0

3! 2! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                      


 

2 2 2 2

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
28

720 240 1440

     
       

     
       
     
     
          
     
     

      
      
      

      
     

0

0

0

0

0

8
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4 4 4 4

4

69

160

11 0 0 1 0
900 1 0 1 1

1 1 77
2 3 4 50 0 1 1 0

4! 3! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                      


 

3 3 3 3

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
28

720 240 1440

     
       

     
       
     
     
          
     
     

      
      
      

      
     

0

0

0

0

0

8

 
  
  
        
    
        
    
    

   
   

  
 

  (42) 

5 5 5 5

5

69

160

11 0 0 1 0
900 1 0 1 1

1 1 77
2 3 4 50 0 1 1 0

5! 4! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                      


 

4 4 4 4

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
28

720 240 1440

     
       

     
       
     
     
          
     
     

      
      
      

      
     

0

0

0

0

0

8

 
  
  
        
    
        
    
    

   
   

  
 

  (43) 

6 6 6 6

6

69

160

11 0 0 1 0
900 1 0 1 1

1 1 77
2 3 4 50 0 1 1 0

6! 5! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                      


 

5 5 5 5

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
28

720 240 1440

     
       

     
       
     
     
          
     
     

      
      
      

      
     

0

0

0

0

0

8

 
  
  
        
    
        
    
    

   
   

  
 

  (44) 

7 7 7 7

7

69

160

11 0 0 1 0
900 1 0 1 1

1 1 77
2 3 4 50 0 1 1 0

7! 6! 1440
0 0 0 1 0

64
0 0 0 1 1

45

173

1440

C

 
 

 
            
           

            
                 
           
           

                      


 

6 6 6 6

87 87 69
3

80 80 160
160

17 19 17
1

45 15 45
90

43 511 637
2 3 4 5 3

240 720 1440
160

8 64 14
0

15 45 45
95

241 133 1427
28

720 240 1440

     
       

     
       
     
     
          
     
     

      
      
      

      
     

13

2240

1

756

271

60480

8

945

863
8

60480

   
    

    
        
    
         
    
    
    
          

  

 (45) 
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As a result, the five-step Adams Moulton block method is of order  6,6,6,6,6
T

, and the 

error constant is 

 
13 1 271 8 863

, , , ,
2240 756 60480 945 60480

T

 
     
 

 

 

CONCLUSION 

In this paper, a method is proposed for 

analyzing the order and error constants of 

linear multistep methods in a way that 

works well. For cases where k = 2, 3, 4, 

and 5, the continuous formulation of 

Adams-Moulton schemes is found using 

the collocation technique and a power 

series as the basis function. Instead of 

using the usual method of getting the order 

and error constants of each member in the 

block method, this research suggested 

using block analysis to get the error 

constants of all the members at once, 

which saved time on the computer. 
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