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Abstract. Spatio-temporal models suffer from comparability problems of relative risks
(RRs) based on the removal of the covariate effect as a confounding factor on the risk esti-
mate of the study population through distribution of standardized mortality ratios (SMRs).
Two spatio-temporal models with two-level spatial structure with different approaches are
considered in this study for comparison. The first model followed SMRs procedure by re-
moval of the effect of the confounding factors on the risk estimate in the study population
through distribution standardization., while the second model included covariate effect as
confounding factors on the risk estimate in the study population. The two models were
fitted within a hierarchical Bayesian framework with integrated nested Laplace approxi-
mation (INLA) estimation procedures. The objectives of this study are to compare both
models in terms of their performance and identify the age-group(s) of women with sig-
nificant higher risk due to breast cancer disease. The models are applied to female breast
cancer mortality data in Nigeria.
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1. Introduction

Research into spatial and spatio-temporal disease mapping has been carried
out within a hierarchical Bayesian framework, with generalized linear mixed
models (GLMM) playing a major role. A variety of spatio-temporal models
dealing with single-level and two-level spatial random effects have been de-
veloped for the analysis of spatio-temporal areal data Librero et al. (2017)).
Spatio-temporal models with a single level of spatial grouping are the para-
metric models with linear time trend proposed by Bernardinelli et al. (1995b)
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and the non-parametric model including different types of space-time interac-
tions between the spatial and temporal main effects described by Knorr-Held
(2000). Duncan et al. (2016) developed Bayesian models for analysing spatio-
temporal data in order to understand the temporal patterns of mammography
screening service utilisation in Brisbane. Melkamu et al. (2018) fitted differ-
ent spatio-temporal models within Bayesian hierarchical framework allowing
different space-time interaction for mortality mapping with integrated nested
Laplace approximations to analyse mortality data extracted from the health and
demographic surveillance system in Kersa District in Hararege, Oromia Region,
Ethiopia. Nurul et al. (2019) used generalized linear mixed models for spatio-
temporal study, the models incorporated spatially correlated random effects as
well as temporal effects. They used two different spatial random effects and
compared them. The first model was based on Leroux spatial model, while the
second model was based on the stochastic partial differential equation (SPDE)
approach. Naresh et al. (2021) recently studied the spatio-temporal variation in
annual Lyme disease cases in Virginia from 2001-2016 and modeled the disease
with a spatio-temporal hierarchical Bayesian model using observed ecological
and environmental covariates.
The first study dealing with a two-level spatial random effect in spatio-temporal
disease mapping was proposed by Schrödle et al. (2011) to analyse reported
cases of bovine viral diarrhea in Switzerland. Ugarte et al. (2016) proposed a
new family of spatio-temporal models where the spatial effect has a two-level
structured to analyse brain cancer mortality data in the municipalities of Navarre
and the Basque Country. In addition, Ugarte et al. (2017) used one-dimensional,
two-dimensional, and three-dimensional B-splines to specify space-time inter-
actions in Bayesian disease mapping: model fitting and model identifiability. Li-
brero et al. (2017) developed hierarchical Bayesian spatio-temporal models in
capturing two spatial structures in order to explain hospital risk variations using
three different disease conditions: Percutaneous Coronary Intervention (PCI),
Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary
Disease (COPD). et al. (2019) proposed a novel two-stage approach to estimate
and map disease risk in the presence of such local discontinuities and clusters.
They proposed approaches in both spatial and spatio-temporal domains, where
for the latter the clusters can either be fixed or allowed to vary over time. Win
et al. (2020) reviewed the types and applications of fully Bayesian (FB) spatial-
temporal models and covariates used to study cancer incidence and mortality
This review highlighted the need for Bayesian spatial-temporal models to in-
corporate patient-level prognostic characteristics through the multi-level frame-
work and forecast future cancer incidence and outcomes for cancer prevention
and control strategies. These models adjusted for covariates at the patient, area
or temporal level, and through standardization procedure. In other study, Su-
jit and Dankmar (2021) proposed a two-stage hierarchical Bayesian model as
a joint bivariate model for the number of cases and Covid-19 death observed
weekly for the different local authority administrative regions in England. Be-
sides that, in different study, Nushrat et al. (2022) conducted a systematic liter-
ature search of spatial studies of COVID-19 published in English from Embase,
Scopus, Medline, and Web of Science databases. In this study, the methodolog-
ical approaches used to identify the spatial and spatio-temporal variations of
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COVID-19 and the socioeconomic, demographic and climatic drivers of such
variations were reviewed. This review highlighted the need for more local-level
advanced Bayesian spatio-temporal modelling through the multi-level frame-
work for COVID-19 prevention and control strategies.
However, these spatio-temporal models suffer from the comparability problems
of relative risks (RRs) as a result of the removal of the covariate effect as a
confounding factor on the risk estimate of the study population through distri-
bution of standardized mortality ratios (SMRs). This paper is aimed at fitting
a spatio-temporal Bayesian model with two-level spatial structure that includes
covariate effect as an alternative to the traditional use of SMRs in these types of
models. We shall evaluate the effect of covariate in terms of model performance
and detect the female age-group with higher risk on breast cancer.

2. Materials and Method

2.1 Description of Data
Over the past 3 decades, the Institute of Human Virology, Nigeria, the Nigerian
National System of Cancer Registries (NSCR) and the Nigerian Federal Min-
istry of Health have collaborated on training and streamlining the activities of
cancer registries in Nigeria. In view of this, the Nigerian National System of
Cancer Registries (NSCR) since 2009 has been involved in coordinating cancer
registration in Nigeria (Elima et al. 2015). During this period, 21 institutions
have been trained and provided support for cancer registration. Of these, nine-
teen (19) met the definition of Hospital-Based Cancer Registries (HBCRs) and
two (2) met the criteria for Population-Based Cancer Registries (PBCRs).
The NSCR requested for data from the director of the cancer registries for
the period under review, 2009 to 2016. Most, 16 of the 19 HBCRs (84%) re-
sponded. The NSCR received data from 16 HBCRs namely; University of Nige-
ria Teaching Hospital, Enugu (UNTH), University of Ilorin Teaching Hospital,
Ilorin (UITH), University of Port Harcourt Teaching Hospital, Port Harcourt
(UPTH), Federal Medical Centre, Ekiti (FMC Ido-Ekiti), University of Cal-
abar Teaching Hospital, Calabar (UCTH), Obafemi Awolowo University Teach-
ing Hospital, Ile-Ife, (OAUTH) Nnamdi Azikiwe University Teaching Hospital,
Nnewi (NAUTH), Lagos State University Teaching Hospital, Ikeja(LASUTH),
Lagos University Teaching Hospital, Suru-Lere (LUTH), Jos University Teach-
ing Hospital, Jos (JUTH), Aminu Kano Teaching Hospital, Kano (AKTH), Fed-
eral Medical Centre, Gombe, University of Benin Teaching Hospital, Benin
(UBTH) University of Abuja Teaching Hospital Gwagwalada (UATH), and the
Ahmadu Bello University Teaching Hospital, Zaria (ABUTH). However, 3 reg-
istries did not respond to the call for data despite several reminders namely:
Federal Medical Centre, Keffi, Federal Medical Centre, Lokoja and University
of Uyo Teaching Hospital, Uyo (UUTH).
All these registries used CanReg5 software by the International Agency for
Research on Cancer (IARC) for data entry and management and International
Classification of Disease for Oncology, third edition (ICD-O-3) for coding the
site. Data abstracted by the HBCRs included information on name, age, mor-
phology and topography of tumor, tribe, address, treatment, education level,
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marital status, religion and cause of death. However, the data for this study was
extracted from the NSCR from 2009 to 2016. The data consist of female breast
cancer mortality from 16 hospital-based cancer registries (HBCRs). A total of
4,437 female breast cancer deaths were recorded throughout the study period.
The data for each case on individual-level characteristics (that is, age, occu-
pation, marital status, and religion at the time of diagnosis) were obtained at
individual hospital-based cancer registry.

Individual patient characteristics of interest
(i) Age group(AGE) — Age at time of diagnosis was collapsed into fifteen-

year age groups from: (0-14 years) as Puberty age group and (15 – 29
years), (30-49 years), (50 – 69 years) and (70 and above) as adult’s age
groups, resulting in five age groups.

(ii) Occupation(OCCUP) —Three categories of occupation are skilled,
semi-skilled and unskilled.

(iii) Marital status (MARITAL) — Women’s marital status includes sin-
gle/never married, married, widowed, and separated.

(iv) Region(RIG) — Women’s region includes south east, south west south
south, north east, north south and north center.

Figure 1: Map of the n = 36 States of Nigeria showing distribution of cancer
registries.

2.2 Statistical Methods
Two spatio-temporal models with two-level spatial structure with different ap-
proaches are considered in this paper for comparison. The first model followed
standardised mortality ratios (SMRs) procedure by removal of the effect of the
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confounding factors on the risk estimate in the study population through dis-
tribution standardization., while the second model included covariate effect as
confounding factors on the risk estimate in the study population. Two-level spa-
tial structure modeled by Ugarte et al. (2016) formed the basis of the proposed
model. The model has a State-level spatial random effect as first-level areas
(FLAs) and a health area-level spatial effect as second-level areas (SLAs). In
addition to covariate effect, spatial random effects, temporal random effect and
space-time interaction effect were studied. These two models are built in the
form of hierarchy and involve Gaussian Markov random fields (GMRF) model
with the integrated nested Laplace approximation (INLA) for estimation (Rue et
al., 2009) which is computationally more efficient than the well-known Markov
chain Monte Carlo approach. (Schrodle Held (2011); Rue et al. (2009) and
Blangiardo (2013)).

2.3 Model I: Spatio-temporal model with two-level spatial structure using
standardised mortality ratios (SMRs) procedure

Suppose we have a region with non-overlapping small areas divided into q first-
level areas (FLAs) labeled as i = 1, 2, ...q that can be aggregated into p second-
level areas (SLAs) labeled as j = 1, 2, ..p where p < q For each area i, data are
available for different time periods labeled by t = 1, 2, ..T . A spatio-temporal
model that accounts for two-level spatial structure of dependence of the SLAs
which are in FLAs and for the temporal dependence assumes that, conditional
on the underlying relative risk rit the number of deaths counts in each area and
time period, it, follows a Poisson distribution with mean the number of deaths
counts in each area and time period, yit it, follows a Poisson distribution with
mean µit = ritEit for area i and time t written as:

yit|rit ∼ Poisson(µit = ritEit) (1)

log(µit) = log(rit) + log(Eit) (2)

Here, log(Eit) is an offset and depends on the specification of log(rit) In this
study, the log-risk (rit) is modeled taking into account the need of distinguishing
between space organised in two-level structure (that is, FLAs and SLAs) and
time components, and including interaction in space and time.
Using direct or indirect ‘age’ standardisation mortality ratio procedures, the
number of expected deaths Eit in Equation (2), an be performed using Equations
(3) and (4) respectively:

Eit =

L∑
i=1

Nigt

∑q
i=1 yigt∑q
i=1Nigt

i = 1, 2, ..., q t = 1, 2, ..., T (3)
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where yg and Ng are respectively the observed deaths and the population size in
“age” groups g ∈ {1, ...G}

Eit =

G∑
g=1

(
Nigt

yg
Ng

)
i = 1, 2, ..., q t = 1, 2, ..., T (4)

so that,

yg =

q∑
i

T∑
t

yigt Ng =

q∑
i

T∑
t

Nigt (5)

then Eit represents the number of deaths we would expect if the area i in time
point t behaves as the whole region during the studied period. The log-risk can
be modelled as:

log(rit) = b0 + αi + βj(i) + ηt + δj(t) (6)

where b0 is an overall risk level, αi represents the spatial level for the ithState
areas,βj(i) represents the spatial level for the jth Health areas which are in State
ith area, ηi represents temporal structured effect, and δj(t) are space-time inter-
action effects.

2.4 Model II: Spatio-temporal models with two-level spatial structure that
includes covariate effect

Suppose that the region under study is divided into q first-level areas (FLAs)
labeled asi = 1, 2, .., q that can be aggregated into p second-level areas (SLAs)
labeled as j = 1, 2, ..., p where p < q For each area i data are available for dif-
ferent time periods t = 1, 2, ..., T let yikt denote the number of counts of the kth
individual in the FLA ith region at the tth time interval, with individual char-
acteristics of interest xit =

(
x
(1)
ik , ..., x

(r)
ik

)
where i = 1, 2, ..., n, k = 1, 2, ..., K

and t = 1, 2, ..., T . Here, yikt is the number of counts that follows a Poisson
distribution. This model assumed that, the mean µit is defined in terms of a rate
rit and the patient age Pait as µit = ritPait for area i and time t, which can be
written as:

yikt|ritk ∼ Poisson(µitk = ritkPaitk) (7)

log(µikt) = log(ritk) + log(Paitk) (8)

The individual risk is modelled via a regression model with inclusion of pa-
tient’s age, spatial and temporal random effects and spatio-temporal interaction
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term. The log-risk is modelled as:

log(rit) = b0 +
∑
r

ωrx
r
ik + αi + βj(i) + ηt + δjt (9)

where b0 is an overall risk level, ωr is the coefficients of covariates on the re-
sponse, xit is the value of the rth covariate for the ith area,αi represents the FLA
for the ith area,βj(i) represents the SLA for the jth Heath areas which are in
FLAs ith area, ηt denotes temporal effects and δjt is the SLA space-time inter-
action effect.

2.5 Modeling the prior distributions for covariate, spatial, temporal and
spatio-temporal effects

2.5.1 Covariate effect
In modeling the covariate effect, univariate normal priors with mean zero
and precision σω are assigned to each of the regression effects ω =
(ω1 + ω2+, , ,+ωr) The precision parameter σω is assigned a Gamma distribu-
tion σω ∼ Gamma (aω, bω) with a and b representing the shape and scale of the
Gamma distribution (Bernardinelli et al. 1995a).

2.5.2 Two-level spatial effects
For the spatial random effects, the conditional autoregressive (CAR) prior by
Leroux et al. (1999) (LCAR) was adopted for FLA spatial random effect given
by:

α = (α1 + αq=37)
′
∼ N

(
0, [σα (λαRα + (1− λα)) Iq=37]

−1
)

(10)

where λα is a spatial smoothing parameter taking values between 0 and 1, Iq is
an identity matrix of dimension 37×37, and Rα is the 37×37 spatial neighbor-
hood matrix with diagonal elements equal to the number of neighbours of each
State and non-diagonal element:

(Rα) =

{
−1, if State i and j are neigbours
0, if otherwise

(11)

Here, two States are considered as neighbours if they share a common border.
The SLA spatial random effect is given by:

β = (β1 + βq=16)
′
∼ N

(
0,
[
σβ

(
λβRβ +

(
1− λβ

))
Iq=16

]−1
)

(12)

where Rβ is the 16×16 spatial neighbourhood matrix of the SLAs and Iq is an
identity matrix of dimension 16×16. This means that in space, each HA may
have its own risk, but all HA within a State region share a common spatial
effect.
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2.5.3 Temporal effect

For structured temporal effects η = (η1, ..., ηT )
′

a random walk of first order
(RW1) is considered

RW1 = ηt|ηt−1 ∼ N
(
ηt−1, σ

2
)

(13)

η = (η1, ..., ηT )
′
∼ N

(
0, [ση, Rη]

−1
)

(14)

Rη denotes the temporal structure matrix of a RW1 and the symbol “-“denotes
the Moore-Penrose generalised inverse. That is, in time each year has two neigh-
bors, the previous point and the following one, except for the first and last year,
which only depends on one.

2.5.4 Spatio-temporal effects

A completely structured interaction terms δ = (δ11, ..., δnT )
′
by Knorr-Hel

(2000) are adopted and assumed to be distributed normally for the FLA and
SLA interactions in Equation (9) given by:
δit ∼ N

(
0, σδ (Rα ⊗Rη)

−) and δjt ∼ N
(
0, σδ

(
Rβ ⊗Rη

)−) The parameters
of interest are thus θ = (b0, ω, α, β, η, δ) with hyper-parameters represented by:

φ =
(
σα, ωi, λα, ββ.λβ, ση, σδ

)
(15)

Then, to estimate the marginal posterior distribution of all parameters in Equa-
tion (15), the method of approximation, INLA is used. In the INLA approach,
the deviance information criterion (DIC) can be evaluated for the best model
selection.

2.6 Model selection
The best model is chosen based on the lowest DIC value. According to Spiegel-
halter et al. (2002), DIC is the summation of the deviance posterior mean, and
the effective parameters number, pD. The deviance posterior mean is a mea-
sure for model fit while the effective parameters number is a measure for model
complexity. The lowest DIC value provides a balance between model fit and
model complexity given as:

DIC = D̄ + pD (16)
http://www.bjs-uniben.org/
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3. Results and Discussion for model I and II.

3.1 Results
The first step in these analyses is the preliminary analyses of the four covariate

effects using combination method
(
n
r

)
to fit the possible combinations of the

four covariates . That is, all the combinations of four covariates
(
4
4

)
= 1

model, three covariates
(
4
3

)
= 4 models, two covariates

(
4
2

)
= 6 models,

and one covariate
(
4
1

)
= 4 models. A total of 15 models were fitted to the

female breast cancer data. The spatial and temporal effects were not included in
the model in these preliminary analyses.

Table 1: DIC values of 15 model combinations for the selection of the covariate
effect.

Model AGE DIC OCCU DIC MARIT DIC RIG DIC
4 covariates 1 * 544.1 * 548.3 * 547.7 * 550.2
3 covariates 1 * 582.6 * 588 * 586

2 * 660.4 * 659.7 * 662.7
3 * 693.3 * 681.4 * 685.5
4 * 699.5 * 711.2 * 710.4

2 covariates 1 * 708.1 * 716.7
2 * 729.5 * 723.4
3 * 741.1
4 * 734.5
5 * 736.7 * 742.2
6 * 738 * 743.9 * 744.1

1 covariate 1 * 527.8
2
3 * 534.5
4 * 541.6

∗This model has the smallest DIC value and parameter estimates that do not contain zero in
the 97.5% credible interval.

The combinations of the covariates are shown in Table 1. The DIC values were
examined and were in the range (527.80, 744.16) The model with one (1) co-
variate AGE appeared to have the smallest DIC value. The difference between
the smallest DIC value and the second smallest DIC value is 6.67, which sug-
gested a significant improvement in the model with AGE. The study proceeded
with further analyses using the model in Equation (9) as,

log(rit) = b0 +
∑
r

ωrAGEit + αi + βj(i) + ηt + δj(t) (17)

The second step in the analyses is by fitting regression model of the covariate
effect (patient’s age) as a factor categorized into five age-groups as in Section
2.1. The result of the regression analysis is presented in Table 2.
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Table 2: Result of Regression Model of the Covariate Effect (Patients’ age
group).

Coefficients:
Estimate Std. Error t-value Pr(> |t|)

(Intercept) 0.03834 0.2177 0.48 0.638848
Age group in years
(0 - 14) -0.09882 0.23359 -0.423 0.678686
(15 - 29) 0.94255 0.17799 5.296 0.000113
(20 - 29) 1.03678 0.02997 34.598 5.81e−15

(50 - 69) 0.97809 0.02369 41.289 5.00e−16

≥ 70 0.97112 0.05 19.423 1.60e−11

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999, F-statistic:
3.643e+04 on 5 and 14, DF p− value :<2.2e-16

The result of fitted regression model on covariate effect (patients age) in Table
2 shows that, the Puberty age group had no positive effect on cancer mortality.
While, the adult age groups all had positive effects on cancer mortality. Their
p-values were significant and explained 99% of variability in the regression
model. Examining the p − value of each age-group, the most significant age
group is (50 – 69 years) with the smallest p−value (5.00e−16 < 0.05); followed
by (30 – 49 years) with p− value (5.81e−15 < 0.05), and then (70years +) with
p-value (1.60e−11). The significant age group was (15-29 years) with p− value
(0.000113). The multiple R-squared implies that 99.99% of variation in patients
age was well explained by the fitted model and the regression model fit the
sample data. Adjusted R-squared (:9999), implies 99.99% of goodness of fit of
the model.
The model in Equation (16) can be reformulated as:

log(ritk) = b0 +
∑
i

ωiAdultsageit + αi + βj(i) + ηt + δjt (18)

The third step in the analyses is by fitting the model in Equations (6) and
(18) based on SMRs and patient’s covariate as an alternative to the traditional
method.
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Table 3: Posterior estimates and DIC for two-level model without and with co-
variate:

Parameters Mean SD 2.50% 50% 97.50%
log(rit) = b0 + αi + βj(i) + ηt + δj(t)
Without covariate DIC= 1516.507

b0 0.0371 0.3597 0.0324 0. 0587 0.0734
σα 12.3924 4.4137 3.846 12.3252 21.3264
λα 0.9667 0.3641 0.262 0.961 1.7044
σβ 69.3504 10.0996 49.8092 69.188 89.8324
λβ 2.1298 0.3625 1.4285 2.124 5.8647
ση 77.0241 20.1195 35.1063 73.7112 114.7685
σδ 106.4027 74.5801 38.1419 105.346 257.0629
log(ritk) = b0 +

∑
i ωiAdultsageit + αi + βj(i) + ηt + δjt

With covariate DIC= 1516.493
b0 0.0383 0.2177 0.3084 0.0597 0.0766

ω(15−29)years 0.2264 -0.3832 -0.8113 -0.0709 0.7043
ω(30−49)years 0.6041 0.3659 0.6029 1.3054 2.0522
ω(50−69)years 0.8286 0.3798 -0.6387 0.0938 0.8637
ω(70+)years 0.5902 0.372 -0.1146 0.6008 1.3579

σα 12.2461 4.2674 3.7003 12.1789 21.1901
λα 0.9988 0.3962 0.2941 0.9931 1.7365
σβ 69.3599 10.1091 49.8187 69.1975 89.8419
λβ 2.1307 0.3634 1.4294 2.1249 2.8656
ση 76.813 19.9084 35.2574 74.0669 116.0051
σδ 106.2911 74.1643 37.1219 104.5275 256.0429

Table 3 shows the estimated posterior means and quantiles intervals for the
model parameters implemented with SMRs and with covariate effect. The fixed
effects b0, ω(15−29)years, ω(30−49)years, ω(50−69)year and ω(70year+) estimated
as relative risks: an increase of age in the adult’s age groups is associated re-
spectively with an increase of around 22.64%, 60.41%, 82.86%, and 59.02%
in the risk of female breast cancer mortality. It is observed that, age group
(15− 29) years, (30− 49) years, (50− 69) year, (70year+) is the most sig-
nificant with higher risk of breast cancer mortality. This means that, there is
evidence of breast cancer effectiveness for women from 50 years of age.
Considering the DIC values presented in Table 3 as a criterion for evaluating
the fit of the model, suggested that the model with covariate effect is better
suited for the data (with a DIC of 1516.507 against 1516.493 obtained). Though
the two DIC values are almost identical, and their posterior estimates for the
parameters do not change considerably between the two models.
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Figure 2: Map of the spatial pattern of mortality risks and Map of posterior
probabilities of the spatial pattern of mortality risk using (b) model I and (c)
model II.

Figures 2 shows the spatial patterns of mortality risk due to breast cancer at each
hospital-based cancer registry and their posterior probabilities that the spatial
risk is greater than one (1) using the two methods. In spatio-temporal disease
mapping studies, usually the regions with probabilities above 0.8 and 0.9 are
considered as high-risk regions, similar to Ugarte et al. (2009a) suggested. In
this study, a reference threshold equal to 1 and a cut-off value of 0.8 is consid-
ered. From Figures (b) and (c) it can be used to detect the health areas where
the posterior probability of breast cancer mortality is exceeding 0.8 and hence,
the focus should be given to those health areas.

Figure 3: (a) Map of the spatial pattern of mortality risks without covariate effect
(b) with covariate effect.

Figures 3 further shows the map of posterior means of the spatial pattern of
http://www.bjs-uniben.org/
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mortality risks of the two-level model without and with covariate effect. From
both Figures (3b) and (3b), it can be seen that the health areas showing red
colour are Kaduna, Kano, Lagos, Cross River and Rivers as the health areas of
high risk of mortality due to breast cancer disease. Besides that, health areas
that having tendency to become a high value of risk are health areas in Abuja,
Jos, Gombe, Ile Ife and Enugu showing in light red colour. Other health areas
having low risk are health areas in Ado Ekiti, Nnewi, Benin, Kwara and Borno.

Figure 4: Map of temporal trend of breast cancer mortality relative risk exp (η̂t)

Figure 4 is the temporal pattern common to all heath areas and it can be shown
that these times increase in the female breast cancer mortality throughout the
period.

Table 4: Deviance information criterion (DIC) for the two-level models.
Two-level Model D̄ pD DIC

Without covariate 1506.646 10.3404 1516.507
With covariate 1509.407 11.1017 1516.493

Table 4 shows summary of the posterior mean of the deviance, the number of
effective parameters and the deviance information criterion (DIC) as a measure
of trade-off between model fit and complexity for the two models. This also
confirmed the result obtained in Table 3 suggesting that two-level model with
covariate effect is the best model and displayed the best fit for the data.

3.2 Discussion
This study fitted an alternative spatio-temporal Bayesian model with two-level
spatial structure that included covariate effect to evaluate the effect of covari-
ate in terms of model performance and estimation through integrated nested
Laplace approximation (INLA) procedures.
The result of fitted regression model on covariate effect suggested that, adult
age groups all had positive effects on cancer mortality. Their p − values were
significant and explained 99 of variability in the regression model. The study
found that, the posterior summary statistics of the model parameters imple-
mented with and without covariate effect do not change considerably between
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the two models and their DIC values are almost identical, though the model im-
plemented with covariate effect produced the smallest DIC value of (1516.493
against 1516.507). In the model with covariate effect, the fixed effects estimated
as relative risks revealed that adult’s age group (50 – 69 years) are those with
high risk. The study also showed that there is no substantial difference between
the map of posterior means of the spatial pattern of mortality risk (a) without
covariate effect (b) with covariate effect.

4. Conclusion

The study has found that, model II does not suffer from the comparability prob-
lems of RRs based on the SMRs. Though the DIC values for both models are
almost identical, and their posterior estimates for the parameters do not change
considerably between the two models. It can be concluded that both models are
very beneficial for spatio-temporal study evolution. However, the most suitable
model only can be chosen and determined by the nature of the data and also
based on the objective of the study.
Besides that, the regression analysis of the covariate effect (patients’ age group)
female breast cancer mortality in Nigeria shows that the gap of the relative
risks between the age groups under study is identified. Women of 50-69 years
age group is identified as most significant high risk of breast cancer mortality.
Hence, primary health care workers should teach self-examination to women
aged 30 years and above. In addition, the national primary health care should
also, establish policy for more than 80 of women aged 50-69 years to be
screened for mammography programmes once every 2-3years.
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