Special Issue in Honor of Prof. J. A. Gbadeyan's Retirement

Development of an Order ($k+3$) Block-Hybrid Linear Multistep Method for the Direct Solution of General Second Order Initial Value Problems

A. A. Oyedeji and R. Muhammad*

Abstract

Block hybrid linear multistep method was proposed to overcome the Dahlquist order barrier for linear multistep methods. We are interested in answering questions relating to the convergence, accuracy and effectiveness of block hybrid method when utilized to solve Initial Value Problems. In this research work, we presented an order $(k+3)$ block hybrid method for the direct solution of initial value problems of ordinary differential equations. The zero stability, consi stency, convergence and the accuracy of the method are improved by collocating and interpolating the power series at finely selected off-grid points. To illustrate the accuracy and efficiency of the proposed method, linear and system of initial value problems are considered and the results obtained are compared with the existing methods in literature.

1. Introduction

In this paper, we consider an approximate solution of general second order initial value problem (IVP) of the form:

$$
\begin{equation*}
y^{\prime \prime}(x)=f\left(x, y, y^{\prime}\right) ; y\left(x_{0}\right)=y_{0}, y^{\prime} x_{0}=y_{0}^{\prime} \tag{1.1}
\end{equation*}
$$

where f is continuously differentiable on the given interval [a, b] Ordinary Differential Equation is an equation in which the dependent variable is a function of a single independent variable [8]. Equation (1.1) has a wide range of application because many problems that are encountered in sciences, real life, control theory and engineering are modeled into Differential Equations. This is why the numerical solution of (1.1) is of great interest

[^0]to researchers. [13] and only few can be solved analytically. Hence, the need to study numerical methods and their solution [6].
Conventionally, we often reduce (1.1) to system of first order ordinary differential equations and then use appropriate numerical methods such as Euler method to solve the resultant system [9]. The reduction process and the setbacks of this approach has been discussed by numerous author among them is [10].
In order to speed up computation, achieve better accuracy, reduce computational time and eliminate overlapping of solution model, Block methods for approximating the numerical solution of (1.1) has been vastly explored in literature [2]. Block-Hybrid methods were first introduced according to [5] and later by [14], while hybrid methods were initially introduced to overcome zero stability barrier occurred in block methods mentioned by [4]. The method of interpolation and collocation of the power series approximation to generate continuous LMM has been adopted by many scholars [3]. Meanwhile, some scholars such as, [1] proposed a single-step hybrid block method of order five for the direct solution of second order ordinary differential equation. We were motivated to develop an order ($k+3$) block hybrid method for the direct solution of general second order initial value problems which can solve general second order initial value problem more accurately and efficiently.

2. Derivation of the Method

We consider power series of a single variable as an approximate solution to the general second order initial value problem of the form (1.1) to be

$$
\begin{equation*}
y(x)=\sum_{j=0}^{r+s-1} \alpha_{j} x^{j} \tag{2.1}
\end{equation*}
$$

where α_{j} are the real unknown parameters to be determined and $r+s$ is the sum of the number of interpolation and number of collocation points.
The first and second derivatives of (2.1) are given as;

$$
\begin{gather*}
y^{\prime}(x)=\sum_{j=1}^{r+s-1} j \alpha_{j} x^{j-1} \tag{2.2}\\
y^{\prime \prime}(x)=\sum_{j=2}^{r+s-1} j(j-1) \alpha_{j} x^{j-2} \tag{2.3}
\end{gather*}
$$

The comparison of (2.3) and (1.1) gives rise to below expression

$$
\begin{equation*}
f\left(x, y, y^{\prime}\right)=\sum_{j=2}^{r+s-1} j(j-1) \alpha_{j} x^{j-2} \tag{2.4}
\end{equation*}
$$

Interpolating (2.1) at $x_{n+j}, j=1, \frac{5}{3}$ and collocating (2.4) at $x_{n+j}, j=0, \frac{2}{3}, 1, \frac{5}{3}, 2,3,4$ give rise to a system of nonlinear equation $A x=b$ as given below:

$$
\left[\begin{array}{ccccccccc}
1 & x_{n+1} & x_{n+1}^{2} & x_{n+1}^{3} & x_{n+1}^{4} & x_{n+1}^{5} & x_{n+1}^{6} & x_{n+1}^{7} & x_{n+1}^{8} \tag{2.5}\\
1 & x_{n+\frac{5}{3}} & x_{n+\frac{5}{3}}^{2} & x_{n+\frac{5}{3}}^{3} & x_{n+\frac{5}{3}}^{4} & x_{n+\frac{5}{3}}^{5} & x_{n+\frac{5}{3}}^{6} & x_{n+\frac{5}{3}}^{7} & x_{n+\frac{5}{3}}^{8} \\
0 & 0 & 2 & 6 x_{n} & 12 x_{n}^{2} & 20 x_{n}^{3} & 30 x_{n}^{4} & 42 x_{n}^{5} & 56 x_{n}^{6} \\
0 & 0 & 2 & 6 x_{n+\frac{2}{3}} & 12 x_{n+\frac{2}{3}}^{2} & 20 x_{n+\frac{2}{3}}^{3} & 30 x_{n+\frac{2}{3}}^{4} & 42 x_{n+\frac{2}{3}}^{5} & 56 x_{n+\frac{2}{3}}^{6} \\
0 & 0 & 2 & 6 x_{n+1} & 12 x_{n+1}^{2} & 20 x_{n+1}^{3} & 30 x_{n+1}^{4} & 42 x_{n+1}^{5} & 56 x_{n+1}^{6} \\
0 & 0 & 2 & 6 x_{n+\frac{5}{3}} & 12 x_{n+\frac{5}{3}}^{2} & 20 x_{n+\frac{5}{3}}^{3} & 30 x_{n+\frac{5}{3}}^{4} & 42 x_{n+\frac{5}{3}}^{5} & 56 x_{n+\frac{5}{3}}^{6} \\
0 & 0 & 2 & 6 x_{n+2} & 12 x_{n+2}^{2} & 20 x_{n+2}^{3} & 30 x_{n+2}^{4} & 42 x_{n+2}^{5} & 56 x_{n+2}^{6} \\
0 & 0 & 2 & 6 x_{n+3} & 12 x_{n+3}^{2} & 20 x_{n+3}^{3} & 30 x_{n+3}^{4} & 42 x_{n+3}^{5} & 56 x_{n+3}^{6} \\
0 & 0 & 2 & 6 x_{n+4}^{4} & 12 x_{n+4}^{2+} & 20 x_{n+4}^{3} & 30 x_{n+4}^{4} & 42 x_{n+4}^{5} & 56 x_{n+4}^{6}
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right]=\left[\begin{array}{c}
y_{n+1} \\
y_{n+\frac{5}{3}} \\
f_{n} \\
f_{n+\frac{2}{3}} \\
f_{n+1} \\
f_{n+\frac{5}{3}} \\
f_{n+2} \\
f_{n+3} \\
f_{n+4}
\end{array}\right]
$$

By solving for $\alpha_{j}, j=018$ in equation (2.5) above using the matrix inversion and then substituting into the proposed formulae from (2.1) gives the continuous formulae;

$$
\begin{equation*}
y(x)=\sum_{j=0}^{k-1} \alpha_{j}(x) y_{n+j}+h^{2}\left(\sum_{j=0}^{k} \beta_{j}(x) f_{n+j}+\beta_{v}(x) f_{n+v}\right) \tag{2.6}
\end{equation*}
$$

where $y(x)$ is the approximate solution of the initial value problem and $v=\frac{2}{3}, \frac{5}{3} . \quad \alpha_{j}$ and β_{j} are coefficients that are continuously differentiable. Since (2.6) is continuous and differentiable, then α_{0} and β_{0} are not both zero.
Given the block method which is presented a single r-point multistep method of the form:

$$
\begin{equation*}
A^{(0)} Y_{m}=\sum_{i=1}^{k} A^{i} Y_{m-i}+h^{2} \sum_{i=0}^{k} B^{i} F_{m-i} \tag{2.7}
\end{equation*}
$$

where $Y_{m}=\left[y_{n+1}, y_{n+2}, \ldots, y_{n+r}\right]^{T}, Y_{m-1}=\left[y_{n-1}, y_{n-2}, \ldots, y_{n}\right]^{T}, F_{m}=\left[f_{n+1}, f_{n+2}, \ldots, f_{n+k}\right]^{T}$, $Y_{m-1}=\left[f_{n-1}, f_{n-2}, \ldots, f_{n}\right]^{T}$.

After obtaining the coefficients of y_{n+j} and f_{n+j}, i.e. $\alpha_{1}, \alpha_{\frac{5}{3}}$ and $\beta_{0}, \beta_{\frac{2}{3}}, \beta_{1}, \beta_{\frac{5}{3}}, \beta_{2}, \beta_{3}, \beta_{4}$ respectively. The parameters obtained are therefore substituted into the continuous scheme as in equation (2.6) and evaluated at non-interpolating points i.e. $x_{n}, x_{n+\frac{2}{3}}, x_{n+2}, x_{n+3}, x_{n+4}$ yields the following scheme:

$$
\begin{align*}
& y_{n}+\frac{3}{2} y_{n+\frac{5}{3}}=\frac{1}{1524096} h^{2}\left(45801 f_{n}+320180 f_{n+1}-160293 f_{n+2}\right)+ \\
& \frac{1}{1524096} h^{2}\left(8154 f_{n+3}-569 f_{n+4}+654165 f_{n+\frac{2}{3}}+402642 f_{n+\frac{5}{3}}\right)+\frac{5}{2} y_{n+1} \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
& y_{n+\frac{2}{3}}+\frac{1}{2} y_{n+\frac{5}{3}}=\frac{1}{68584320} h^{2}\left(26089 f_{n}+9132452 f_{n+1}-944013 f_{n+2}\right)+ \\
& \frac{1}{68584320} h^{2}\left(34802 f_{n+3}-2153 f_{n+4}-54675 f_{n+\frac{2}{3}}+3238218 f_{n+\frac{5}{3}}\right)+\frac{3}{2} y_{n+1} \tag{2.9}\\
& y_{n+2}-\frac{3}{2} y_{n+\frac{5}{3}}=\frac{1}{7620480} h^{2}\left(3465 f_{n}+317828 f_{n+1}-29757 f_{n+2}+3618 f_{n+3}\right)+ \\
& \frac{1}{7620480} h^{2}\left(-233 f_{n+4}-82179 f_{n+\frac{2}{3}}+1057338 f_{n+\frac{5}{3}}\right)-\frac{1}{2} y_{n+1} \tag{2.10}\\
& y_{n+3}-3 y_{n+\frac{5}{3}}=\frac{1}{59535} h^{2}\left(630 f_{n}+27398 f_{n+1}+60018 f_{n+2}+4833 f_{n+3}\right)+ \\
& \frac{1}{59535} h^{2}\left(-134 f_{n+4}-10818 f_{n+\frac{2}{3}}+2547 f_{n+\frac{5}{3}}\right)-2 y_{n+1} \tag{2.11}\\
& y_{n+4}-\frac{9}{2} y_{n+\frac{5}{3}}=\frac{-1}{362880} h^{2}\left(7119 f_{n}+73612 f_{n+1}-353283 f_{n+2}-415098 f_{n+3}\right)+ \\
& \frac{-1}{362880} h^{2}\left(-21343 f_{n+4}-76365 f_{n+\frac{2}{3}}-484722 f_{n+\frac{5}{3}}\right)-\frac{7}{2} y_{n+1} \tag{2.12}
\end{align*}
$$

The continuous scheme in equation (2.6) is differentiated with respect to x to obtain the first derivative which is evaluated at all the points i.e both interpolation points $\left(x_{n+1}, x_{n+\frac{5}{3}}\right)$ and collocation points $x_{n}, x_{n+\frac{2}{3}}, x_{n+2}, x_{n+3}, x_{n+4}$ which gives;

$$
\begin{gather*}
h y_{n}^{\prime}=\frac{-1}{3810240} h^{2}\left[724689 f_{n}-1348480 f_{n+1}-1100127 f_{n+2}+62856 f_{n+3}\right)+ \\
\frac{-1}{3810240} h^{2}\left[-4541 f_{n+4}+4407435 f_{n+\frac{2}{3}}+2338488 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.13}\\
h y_{n+\frac{2}{3}}^{\prime}=\frac{-1}{34292160} h^{2}\left[9737 f_{n}+16336768 f_{n+1}-1127175 f_{n+2}+37192 f_{n+3}\right)+ \\
\frac{-1}{34292160} h^{2}\left[-2197 f_{n+4}+3367251 f_{n+\frac{2}{3}}+4239864 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.14}\\
h y_{n+1}^{\prime}=\frac{-1}{238140} h^{2}\left[441 f_{n}+63518 f_{n+1}-11739 f_{n+2}+459 f_{n+3}\right)+ \\
\frac{-1}{238140} h^{2}\left[-29 f_{n+4}-11169 f_{n+\frac{2}{3}}+37899 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.15}\\
h y_{n+\frac{5}{3}}^{\prime}=\frac{1}{2143260} h^{2}\left[3514 f_{n}+294770 f_{n+1}-125202 f_{n+2}+4331 f_{n+3}\right)+ \\
\frac{1}{2143260} h^{2}\left[-266 f_{n+4}-80190 f_{n+\frac{2}{3}}+617463 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.16}\\
h y_{n+2}^{\prime}=\frac{1}{3810240} h^{2}\left[4095 f_{n}+429184 f_{n+1}+347151 f_{n+2}+2808 f_{n+3}\right)+ \\
\frac{1}{3810240} h^{2}\left[-211 f_{n+4}-103419 f_{n+\frac{2}{3}}+1860552 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.17}\\
h y_{n+3}^{\prime}=\frac{1}{238140} h^{2}\left[5418 f_{n}+196546 f_{n+1}+440958 f_{n+2}+77355 f_{n+3}\right)+ \\
\frac{1}{238140} h^{2}\left[-1402 f_{n+4}-87246 f_{n+\frac{2}{3}}-234729 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.18}\\
h y_{n+4}^{\prime}=\frac{-1}{3810240} h^{2}\left[410193 f_{n}+10650752 f_{n+1}+9931425 f_{n+2}-6600312 f_{n+3}\right)+ \\
\frac{-1}{3810240} h^{2}\left[-1065533 f_{n+4}-5670261 f_{n+\frac{2}{3}}-17816904 f_{n+\frac{5}{3}}\right]-\frac{3}{2} y_{n+1}+\frac{3}{2} y_{n+\frac{5}{3}} \tag{2.19}
\end{gather*}
$$

The proposed Block-Hybrid method is given as

$$
\begin{gathered}
y_{n+\frac{2}{3}}=\frac{1}{1071630} h^{2}\left(104083 f_{n}-335272 f_{n+1}-108318 f_{n+2}+6596 f_{n+3}\right) \\
+\frac{1}{1071630} h^{2}\left(-485 f_{n+4}+365580 f_{n+\frac{2}{3}}+205956 f_{n+\frac{5}{3}}\right)+\frac{2}{3} h y_{n}^{\prime}+y_{n} \\
y_{n+1}=\frac{1}{282240} h^{2}\left(45199 f_{n}-159180 f_{n+1}-51807 f_{n+2}+3146 f_{n+3}\right) \\
+\frac{1}{282240} h^{2}\left(-231 f_{n+4}+205335 f_{n+\frac{2}{3}}+98658 f_{n+\frac{5}{3}}\right)+h y_{n}^{\prime}+y_{n} \\
y_{n+\frac{5}{3}}=\frac{25}{4572288} h^{2}\left(52479 f_{n}-146300 f_{n+1}-68775 f_{n+2}+4050 f_{n+3}\right) \\
+\frac{25}{4572288} h^{2}\left(-295 f_{n+4}+274095 f_{n+\frac{2}{3}}+138762 f_{n+\frac{5}{3}}\right)+\frac{5}{3} h y_{n}^{\prime}+y_{n} \\
y_{n+2}=\frac{1}{4410} h^{2}\left(1547 f_{n}-3864 f_{n+1}-2100 f_{n+2}+124 f_{n+3}\right) \\
+\frac{1}{4410} h^{2}\left(-9 f_{n+4}+8262 f_{n+\frac{2}{3}}+4860 f_{n+\frac{5}{3}}\right)+2 h y_{n}^{\prime}+y_{n}
\end{gathered}
$$

$$
\begin{align*}
& y_{n+3}= \tag{2.20}\\
& \frac{3}{31360} h^{2}\left(5761 f_{n}-8484 f_{n+1}+2583 f_{n+2}+1310 f_{n+3}-57 f_{n+4}+29889 f_{n+\frac{2}{3}}+16038 f_{n+\frac{5}{3}}\right) \\
& +3 h y_{n}^{\prime}+y_{n} y_{n+4}= \\
& \frac{8}{2205} h^{2}\left(196 f_{n}-504 f_{n+1}-21 f_{n+2}+332 f_{n+3}+15 f_{n+4}+1215 f_{n+\frac{2}{3}}+972 f_{n+\frac{5}{3}}\right)+ \\
& 4 h y_{n}^{\prime}+y_{n} y_{n+\frac{2}{3}}^{\prime}= \\
& \frac{1}{2143260} h\left(407029 f_{n}-1779568 f_{n+1}-548373 f_{n+2}+33032 f_{n+3}-2417 f_{n+4}+2268729 f_{n+\frac{2}{3}}+1050408 f_{n+\frac{5}{3}}\right)+ \\
& y_{n}^{\prime} y_{n+1}^{\prime}= \\
& \frac{1}{141120} h\left(26579 f_{n}-87584 f_{n+1}-33789 f_{n+2}+2056 f_{n+3}-151 f_{n+4}+169857 f_{n+\frac{2}{3}}+64152 f_{n+\frac{5}{3}}\right)+ \\
& y_{n}^{\prime} y_{n+\frac{5}{3}}^{\prime}= \\
& \frac{5}{6858432} h\left(263137 f_{n}-296800 f_{n+1}-476175 f_{n+2}+25400 f_{n+3}-1805 f_{n+4}+1535355 f_{n+\frac{2}{3}}+1237032 f_{n+\frac{5}{3}}\right)+ \\
& y_{n}^{\prime} y_{n+2}^{\prime}= \\
& \frac{1}{8820} h\left(1687 f_{n}-2128 f_{n+1}-1743 f_{n+2}+152 f_{n+3}-11 f_{n+4}+9963 f_{n+\frac{2}{3}}+9720 f_{n+\frac{5}{3}}\right)+y_{n}^{\prime} \\
& y_{n+3}^{\prime}=\frac{3}{15680} h\left(1113 f_{n}+2464 f_{n+1}+8169 f_{n+2}+1784 f_{n+3}-37 f_{n+4}+4131 f_{n+\frac{2}{3}}-1944 f_{n+\frac{5}{3}}\right)+y_{n}^{\prime} \\
& y_{n+4}^{\prime}=\frac{2}{2205} h\left(91 f_{n}-3472 f_{n+1}-3192 f_{n+2}+1928 f_{n+3}+307 f_{n+4}+2916 f_{n+\frac{2}{3}}+5832 f_{n+\frac{5}{3}}\right)^{\prime}+y_{n}^{\prime}
\end{align*}
$$

3. Analysis of the Block

3.1. Order and Error constant of the Block. Let the Linear Difference Operator L defined on the method be given by:

$$
\begin{equation*}
L[y(x) ; h]=\sum_{i=0}^{k}\left[\alpha_{i} y(x+i h)-h^{2} \beta_{i} y^{\prime \prime}(x+i h)\right] \tag{3.1}
\end{equation*}
$$

where $y(x)$ is an arbitrary function that is continuously differentiable many times on closed interval $[a, b]$. Expanding (3.1) using Taylor series about $y(x)$ and if the coefficients of power of h are gathered we have:

$$
\begin{equation*}
L[y(x) ; h]=c_{0} y(x)+c_{1} h y^{\prime}(x)+c_{2} h^{2} y^{\prime \prime}(x)+\cdots+c_{q} h^{q} y^{q}(x)+0\left(h^{q+1}\right) \tag{3.2}
\end{equation*}
$$

whose coefficients $c_{q} \forall q=0,1,2, \ldots$ are constants and given as:

$$
\begin{gather*}
c_{0}=\sum_{i=0}^{k} \alpha_{i}=\alpha_{0}+\alpha_{1}+\alpha_{2}+\cdots \cdots+\alpha_{k} \\
c_{1}=\sum_{i=0}^{k} i \alpha_{i}=\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\cdots+k \alpha_{k}\right)-\left(\beta_{0}+\beta_{1}+\beta_{2}+\cdots+\beta_{k}\right) \\
c_{2}=\sum_{i=0}^{k} \frac{1}{2!} i^{2} \alpha_{i}-\sum_{i=0}^{k} \beta_{i}=\left\{\begin{array}{c}
\frac{1}{2!}\left(\alpha_{1}+2^{2} \alpha_{2}+3^{2} \alpha_{3}+\cdots+k^{2} \alpha_{k}\right) \\
-\left(\beta_{1}+2 \beta_{2}+3 \beta_{3}+\cdots+k \beta_{k}\right)
\end{array}\right\} \\
c_{q}=\sum_{i=0}^{k}\left\{\frac{1}{q!} i^{q} \alpha_{i}-\frac{1}{(q-2)!} i^{q-2} \beta_{i}\right\} \\
\text { 3) } c_{q}=\left\{\begin{array}{c}
\frac{1}{q!}\left(\alpha_{1}+2^{q} \alpha_{2}+3^{q} \alpha_{3}+\cdots+k^{q} \alpha_{k}\right) \\
-\frac{1}{(q-2)!}\left(\beta_{1}+2^{(q-2)} \beta_{2}+3^{(q-2)} \beta_{3}+\cdots+k^{(q-2)} \beta_{k}\right)
\end{array}\right\} \tag{3.3}
\end{gather*}
$$

Thus (3.1) is said to be order p if and only if $c_{0}=c_{1}=c_{2}=\ldots c_{p+1}=0$ and $c_{p+2} \neq$ 0. c_{p+2} is called the error constant. It implies that the local truncation error is given as $T_{n+k}=c_{p+2} h^{p+2} y^{p+2}(x)+0\left(h^{p+3}\right)$.
Comparing the coefficients of h , the order of the block is $p=7$ with the error constants

$$
C_{p+2}=\left[-\frac{50473}{16665989760},-\frac{10369}{3333197952},-\frac{3340}{26040609}, \frac{432493}{793618560}\right]^{T}
$$

3.2. Consistency. A linear Multistep method is said to be consistent if the order $p \geq 1$ and obeys the following axioms;
(1) $\sum_{i=0}^{k} \alpha_{i}=0$
(2) $\rho(r)=\rho^{\prime}(r)=0$
(3) $\rho^{\prime \prime}(r)=2!\sigma(r)$
where $\rho(r)$ and $\sigma(r)$ are the first and second characteristics polynomial of our method respectively.

According to [12], the sufficient condition for associated block method to be consistent is that $p \geq 1$. Since the proposed method is of order $p=7$. Hence the proposed method is consistent.
3.3. Zero Stability. Given block method as a single block r-point multistep method of the form:

$$
\begin{equation*}
A^{(0)} Y_{m}=\sum_{i=1}^{k} A^{i} Y_{m-i}+h^{2} \sum_{i=0}^{k} B^{i} F_{m-i} \tag{3.4}
\end{equation*}
$$

Applying the block in equation (2.20) we have:

$$
\begin{aligned}
& \left|\operatorname{det}\left[? I-A_{1}^{(1)}\right]\right|=\left|\left[\begin{array}{cccccc}
\Omega & 0 & 0 & 0 & 0 & 0 \\
0 & \Omega & 0 & 0 & 0 & 0 \\
0 & 0 & \Omega & 0 & 0 & 0 \\
0 & 0 & 0 & \Omega & 0 & 0 \\
0 & 0 & 0 & 0 & \Omega & 0 \\
0 & 0 & 0 & 0 & 0 & \Omega
\end{array}\right]-\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right|=0 \\
& \Omega^{5}(\Omega-1)=0 \rightarrow
\end{aligned}
$$

Since no root has modulus greater than one and $|\Omega|=1$ is simple. This implies zerostability, That is the Block Hybrid Method derived is zero stable.
3.4. Convergence. According to Fatunla 1973, the necessary and sufficient condition for a linear multistep method to be convergent is that it must be consistent and zero stable. Hence the proposed method is convergent.

4. Implementation of method

The performance of the method is tested on some linear problem, real life problem and system of equations of second order initial value problems. The absolute error of the approximate solutions is therefore compared with the existing methods. Specifically, we compared the proposed method with the method of [12], [11] and Abhulimen and Aigbiremhon (2018).

4.1. Numerical problems.

4.1.1. Cooling of a Body. The temperature y degrees of a body, t minutes after being placed in a certain room, satisfies the differential equation $3 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}=0$. By using the substitution $z=\frac{d y}{d t}$, or the otherwise, find y in terms of t given that $y=60$ when $t=0$ and $y=35$ when $t=6 \operatorname{In} 4$. Find after how many minutes the rate of cooling of the body will have fallen below one degree per minute, giving your answer correct to the nearest minute.

Formulation of the Problem

$$
\begin{equation*}
y^{\prime \prime}=\frac{-y^{\prime}}{3}, y(0)=60, y^{\prime}(0)=\frac{-80}{9}, h=0.1 \tag{4.1}
\end{equation*}
$$

Exact Solution

$$
y(x)=\frac{80}{3} e^{-\frac{1}{3} x}+\frac{100}{3}
$$

4.1.2. System of equations. Consider the Stiefel and Bettis Problem

$$
\begin{gather*}
y_{1}^{\prime \prime}+y_{1}=0.001 \cos x, \quad y_{1}(0)=1, \quad y_{1}^{\prime}(0)=0 \quad h=\frac{1}{320} \\
y_{2}^{\prime \prime}+y_{2}=0.001 \sin (x), y_{2}(0)=1, \quad y_{2}^{\prime}(0)=0.9995 \tag{4.2}
\end{gather*}
$$

Exact solutions are given as;

$$
\begin{aligned}
& y_{1}(x)=\cos (x)+0.0005(x) \sin (x), \\
& y_{2}(x)=\sin (x)-0.0005(x) \cos (x) .
\end{aligned}
$$

Table 1. The result of test problem 1 (Real-life Problem)

X	Exact-solution	Computed-solution	Error in our pro- posed method	Error in $[12]$
0	60	60	0	0
0.1	59.125762679520157388	59.125762679520157532	$1.44 \mathrm{E}-16$	$3.55 \mathrm{E}-11$
0.2	58.280186267509806339	58.280186267509806686	$3.47 \mathrm{E}-16$	$4.58 \mathrm{E}-11$
0.3	57.462331147625588618	57.462331147625589314	$6.96 \mathrm{E}-16$	$7.00 \mathrm{E}-11$
0.4	56.671288507811932107	56.671288507811932127	$2.00 \mathrm{E}-17$	$6.50 \mathrm{E}-12$
0.5	55.906179330416375308	55.906179330416372921	$2.39 \mathrm{E}-15$	$3.33 \mathrm{E}-11$
0.6	55.166153415412849564	55.166153415412844904	$4.66 \mathrm{E}-15$	$4.20 \mathrm{E}-11$
0.7	54.450388435647511050	54.450388435647504326	$6.72 \mathrm{E}-15$	$4.38 \mathrm{E}-11$
0.8	53.758089023057298472	53.758089023057288864	$9.61 \mathrm{E}-15$	$1.07 \mathrm{E}-10$
0.9	53.088485884845809762	53.088485884845795829	$1.39 \mathrm{E}-14$	$6.58 \mathrm{E}-11$
1.0	52.440834948634380011	52.440834948634361944	$1.80 \mathrm{E}-14$	$1.69 \mathrm{E}-10$

Table 2a. Shown the results for problem 4.1.2

X	y_{1} - Exact-Solution	y_{1}-Approximate- Solution	Error in the Proposed Method	Error in $[11]$
0	1	1	0	0
0.003125	0.99999512207427819441	0.99999512207427819441	$5.66851 \mathrm{E}-22$	$1.64 \mathrm{E}-18$
0.006250	0.99998048834470104865	0.99998048834470104865	$9.22820 \mathrm{E}-22$	$2.87 \mathrm{E}-18$
0.009375	0.99995609895403291149	0.99995609895403291149	$2.05284 \mathrm{E}-22$	$1.26 \mathrm{E}-18$
0.012500	0.99992195414021281668	0.99992195414021281668	$3.01769 \mathrm{E}-21$	$5.73 \mathrm{E}-18$
0.015625	0.99987805423635216164	0.99987805423635216164	$2.63888 \mathrm{E}-21$	$4.10 \mathrm{E}-18$
0.018750	0.99982439967073145770	0.99982439967073145770	$1.88479 \mathrm{E}-22$	$8.60 \mathrm{E}-18$
0.021875	0.99976099096679615186	0.99976099096679615186	$4.59462 \mathrm{E}-21$	$6.97 \mathrm{E}-18$
0.025000	0.99968782874315152015	0.99968782874315152015	$3.80667 \mathrm{E}-21$	$1.14 \mathrm{E}-17$
0.028125	0.99960491371355663261	0.99960491371355663261	$3.92052 \mathrm{E}-21$	$9.83 \mathrm{E}-18$
0.031250	0.99951224668691738996	0.99951224668691738996	$1.20963 \mathrm{E}-21$	$1.43 \mathrm{E}-17$

Table 2b. Shown the results for problem 4.1.2

X	y_{2}-Exact-Solution	y_{2}-Approximate-Solution	Error in the Proposed Method	Error in $[11]$
0	0	0	0	0
0.003125	0.00312343242136885101	0.0031234324213688510154	$1.029194 \mathrm{E}-23$	$7.20 \mathrm{E}-21$
0.006250	0.00624683437101026369	0.0062468343710102636872	$2.885345 \mathrm{E}-23$	$2.10 \mathrm{E}-21$
0.009375	0.00937017537749407687	0.0093701753774940768711	$4.672538 \mathrm{E}-23$	$4.33 \mathrm{E}-20$
0.012500	0.01249342496998468092	0.012493424969984680920	$3.866963 \mathrm{E}-22$	$6.30 \mathrm{E}-20$
0.015625	0.01561655267853828619	0.015616552678538286185	$3.006767 \mathrm{E}-22$	$1.09 \mathrm{E}-19$
0.018750	0.01873952803440182810	0.018739528034400182811	$4.670196 \mathrm{E}-22$	$1.15 \mathrm{E}-19$
0.021875	0.02186232057030198893	0.021862320570301988933	$1.492241 \mathrm{E}-22$	$1.85 \mathrm{E}-19$
0.025000	0.02498489982075888438	0.024984899820758884380	$1.541913 \mathrm{E}-22$	$1.81 \mathrm{E}-19$
0.028125	0.02810723532236682696	0.028107235322366826964	$1.336198 \mathrm{E}-22$	$2.79 \mathrm{E}-19$
0.031250	0.0312292966140997484	0.031229296614099748484	$1.882721 \mathrm{E}-22$	$2.61 \mathrm{E}-19$

Discussion of Results. The results of the proposed method with step number four and order of accuracy seven were compared with other methods. The accuracy of the method developed was tested with two test problems and their corresponding results are discussed below;
Table 1 shows the exact solution, approximate solution, error of proposed scheme and error of [12]. The proposed method is more accurate than that of [12].
From Table 2a It was observed that the maximum absolute error of the proposed method is $9.22820 \mathrm{E}-22$ which is (smaller) and more accurate than $1.64 \mathrm{E}-18$ of [11]. The proposed method performed better than [11]. Also, the accuracy comparison in table 2 b shows that the proposed method is substantially more accurate than that of [11].

Conclusion: We explored an approach for solving second order ordinary differential equations by proposing an accurate implicit Block-Hybrid method that yields approximate solutions at suitable points when applied to solve Initial Value Problems (IVPs). The method is consistent, convergent ad zero stable. The proposed method performed efficiently when applied to solve second order Initial Value Problems as can be seen in the low error constant and hence better approximation when compared with the existing methods as can be seen in table 1-2.

Acknowledgement: The authors are grateful to Federal University of Technology, Minna, Nigeria for the supports they received during the compilation of this work.

Competing interests: The content of the manuscript was approved by all authors. Therefore, no competing interest between authors.

Funding: The Authors received no financial support for the research, authorship, and/or publication of this article.

References

[1] Abdelrahim R. F. \& Omar Z. (2016). Direct solution of second order ordinary differential equation using a single-step hybrid block method of order five. Mathematical and Computational Applications. 21, 1-12.
[2] Adeniran A. O.\& Ogundare B. S. (2015). An Efficient Hybrid Numerical Scheme for Solving General Second Order Initial Value Problems (IVPs). International Journal of Applied Mathematical Research. 4 (2), 411-419. www.sciencepubco.com/index.php/IJAMR.
[3] Anake A. T., Awoyemi D. O. \& Adesanya A. A. (2012). A One-Step Method for the Solution of General Second Order Ordinary Differential Equations. International Journal of Science and Technology. 2 (4). http//:www.wjournalofsciences.org.
[4] Dahlquist G. (1979). Some properties of linear multistep methods and one leg methods for ordinary differential equations. Report TRITA-NA-7+04, Department of Computer Science, Royal institute of Technology, Sockholm.
[5] Henrici P. (1962). Discrete Variable methods in ordinary differential equations. John Wiley \& sons. New York.
[6] Hussain K., Ismail F. \& Senu N. (2016). Solving directly special Fourth-order ordinary differential equations using runge-kutta type method. Journal of Computer and Applied Mathematics. 306, 179199.
[7] Lambert J. D. (1973). Computational Methods in Ordinary Differential Equations. John Wiley and Sons, New York.
[8] Muhammad R. \& Yahaya Y. A. (2012). A Sixth Order Implicit Hybrid Backward Differentiation Formulae (HBDF) for Block Solution of Ordinary Differential Equations. American Journal of Mathematics and Statistics. 2 (4), 89-94.
[9] Muhammad R., Yahaya Y. A. \& Abdulkareem A. S. (2015). Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem. International Journal of Science and Technology. 4 (4), 190-195.
[10] Muhammad R. (2016). Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Solution of Ordinary Differential Equation. Unpublished Doctoral Dissertation (Federal University of Technology, Minna).
[11] Olabode B. T. \& Momoh A. L. (2016). Continous Hybrid Multistep Methods with Legendre Basis Function for Direct Treatment of Second Order Stiff ODEs. American Journal of Computational and Applied Mathematics. 6 (2), 38-49. DOI:10.5923/j.ajcam.20160602.03.
[12] Omole E. O. \& Ogunware B. G. (2018). 3-Point Single Hybrid Block Method (3PSHBM) for Direct Solution of General Second Order Initial Value Problem of Ordinary Differential Equations. Journal of Scientific Research and Reports. 20 (3), 1-11. Article No. JSSR.19862. ISSN:2320-0227.
[13] Skwame Y., Sabo J. \& Mathew M. (2019). The Treatment of Second Order Ordinary Differential Equations Using Equidistant One-Step Block Hybrid. Asian Journal of Probability and Statistics. 5 (3), 1-9. Article no. AJPAS.51978. ISSN:2582-0230.
[14] Yahaya Y. A. \& Badmus A. M. (2009). A class of collocation methods for general second order ordinary differential equations. African Journal of Mathematics \& Computer Science Research. 2 (04), 069-070.

[^0]: Received: 04/08/2022, Accepted: 10/09/2022, Revised: 29/09/2022. * Corresponding author.
 2015 Mathematics Subject Classification. 65L05 \& 65D05.
 Keywords and phrases. Four-step, Block, Hybrid, LMM, Second order IVPs, Collocation,
 Power series, Off-step
 Department of Mathematics, Federal University of Technology, Minna, Nigeria
 E-mails of the corresponding author: r.muhd@futminna.edu.ng
 ORCID of the corresponding author: 0000-0003-3412-0206

