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Development of an Order (k+3) Block-Hybrid Linear Multistep Method for
the Direct Solution of General Second Order Initial Value Problems

A. A. OYEDEJI AND R. MUHAMMAD*

ABSTRACT

Block hybrid linear multistep method was proposed to overcome
the Dahlquist order barrier for linear multistep methods. We are
interested in answering questions relating to the convergence, ac-
curacy and effectiveness of block hybrid method when utilized to
solve Initial Value Problems. In this research work, we presented
an order (k+3) block hybrid method for the direct solution of
initial value problems of ordinary differential equations. The
zero stability, consi stency, convergence and the accuracy of
the method are improved by collocating and interpolating the
power series at finely selected off-grid points. To illustrate the
accuracy and efficiency of the proposed method, linear and
system of initial value problems are considered and the results
obtained are compared with the existing methods in literature.

1. INTRODUCTION

In this paper, we consider an approximate solution of general second order initial value
problem (IVP) of the form:

(1.1) y'(x) = f(2,9,9); y(w0) = Yo,y w0 = yo

where fis continuously differentiable on the given interval [a, b] Ordinary Differential Equa-
tion is an equation in which the dependent variable is a function of a single independent
variable [8]. Equation (1.1) has a wide range of application because many problems that
are encountered in sciences, real life, control theory and engineering are modeled into
Differential Equations. This is why the numerical solution of (1.1) is of great interest
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to researchers. [13] and only few can be solved analytically. Hence, the need to study
numerical methods and their solution [6].

Conventionally, we often reduce (1.1) to system of first order ordinary differential equations
and then use appropriate numerical methods such as Euler method to solve the resultant
system [9]. The reduction process and the setbacks of this approach has been discussed
by numerous author among them is [10].

In order to speed up computation, achieve better accuracy, reduce computational time and
eliminate overlapping of solution model, Block methods for approximating the numerical
solution of (1.1) has been vastly explored in literature [2]. Block-Hybrid methods were
first introduced according to [5] and later by [14], while hybrid methods were initially
introduced to overcome zero stability barrier occurred in block methods mentioned by [4].
The method of interpolation and collocation of the power series approximation to generate
continuous LMM has been adopted by many scholars [3]. Meanwhile, some scholars such
as, [1] proposed a single-step hybrid block method of order five for the direct solution of
second order ordinary differential equation. We were motivated to develop an order (k+3)
block hybrid method for the direct solution of general second order initial value problems
which can solve general second order initial value problem more accurately and efficiently.

2. DERIVATION OF THE METHOD

We consider power series of a single variable as an approximate solution to the general
second order initial value problem of the form (1.1) to be

r+s—1

(2.1) y@) = 3
j=0

where ojare the real unknown parameters to be determined and r + s is the sum of the
number of interpolation and number of collocation points.
The first and second derivatives of (2.1) are given as;

r4+s—1 ‘
(2.2) y(x)= > jajal™!
j=1
r+s—1 .
(2.3) y (x)= Y (- Daya?™?
j=2

The comparison of (2.3) and (1.1) gives rise to below expression

r+s—1

(2.4) flayy) =Y jli—aa’™?

Jj=2
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Interpolating (2.1) at xp4j,j = 1,% and collocating (2.4) at zp4,j = O,%,l,g, 2, 3,4
give rise to a system of nonlinear equation Az = b as given below:

(2.5)
(1 @pa Thy Tpg Tpgg Tpt1 Tt Ty it 1T an ] [
1z 5 2? 3 xt 0 20 x’ 8 0
nty  Tn4l n+32 n+§ n+§ n+§ n+§ n+§ o1
0 0 2 6z, 12;% 203:)6,1 SOicn 42g:n 566xn as
0 0 2 6xn+% 12xn+% 20xn+% 30xn+§ 42xn+§ 56:cn+§ as
0 0 2 6xpq 12:5; 1 20x§ 1 30;5% ‘1 42mgi ‘1 56m§ i1 g | =
0 0 2 6mn+g 12$n+% 20:17n+§ 30xn+% 42xn+% 56xn+% 35
0 0 2 6mpqo 1222, 2023, 30xh,, 4220, 5628, aﬁ'
0 0 2 6znys 12x§ 13 203:2 43 303:% +3 4237;; 43 563:2 43 a;
L0 0 2 6xnta 12254 202y, 30x,,, 42x),.4 O56x,,4 1 L - L

By solving for «;, j = 018 in equation (2.5) above using the matrix inversion and then
substituting into the proposed formulae from (2.1) gives the continuous formulae;

k—1 k
(2.6) y(@) = a; (@) ynij + B2 [ DB (@) farj B (2) frso
j=0 §=0
where y(z) is the approximate solution of the initial value problem and v = %, % a;

and J; are coefficients that are continuously differentiable. Since (2.6) is continuous and
differentiable, then oy and Sy are not both zero.
Given the block method which is presented a single r-point multistep method of the form:

k k
(2.7) AOY,, =3 AV, i+ b)Y By
1=1 =0
_ T _ T o T
where Ym - [yn+1, Yn+25-- -, yn+r] ’ mel - [ynfla Yn—2,- - - ayn] ) Fm - [fn+17 fn+2’ RN fn—i—k] )

mel — [fnfla fnf27 o 7fn]T'

After obtaining the coefficients of y,4; and f,.4j, i.e. oy, as and [y, 5§,Bl,ﬁg,ﬁ2,ﬂg, B4

respectively. The parameters obtained are therefore substituted into the continuous scheme

as in equation (2.6) and evaluated at non-interpolating pointsi.e. Zp,Z, 2, Zn12, Tnt3, Tnia
3

yields the following scheme:

Yn + SYnss = Tszio6 1> (45801 fr + 320180 frnpy — 160293 fria) +

(2.8)
e5t556 1% (8154 fnts — 569 fria + 654165 f, L2 +402642f, +%) + Syni1
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Yor2 + 5Ynss = ussmalt’ (26080f, + 913245211 — 944013, 12) +

(2.9) . (34802fn+3 — 2158 f,14 — 54675, 2 + 3238218fn+g> + 3yt
(2.10) Yn+2 = SY15 = moadasoh” (3465 + 317828 fu1 — 20757 frra + 3618 f15) +
Toa0as Y <_233fn+4 — 821791, 2 + 1057338fn+%> — Ly
yn+3 = Wy = ougz 12 (630, + 27398 fro 1 + 60018 fo 0 + 4833 frs3) +
210 59535 h? (‘134fn+4 — 10818fn+§ + 2547fn+§) — 21
(2.12) y”+4 - %ym% = segaegh? (T119f, + 73612511 — 353283 f,42 — 415098 f,143) +

ol <_21343fn+4 - 76365fn+§ - 484722fn+g) — Tynta

The continuous scheme in equation (2.6) is differentiated with respect to x to obtain
the first derivative which is evaluated at all the points i.e both interpolation points
(Tn+1,7,,5) and collocation points xp, T, 2,%Tnt2, Tnis, Tnta Which gives;

3 3

(213) hys, = sgiogaoh? 724689 f, — 1348480 f,41 — 1100127 fr0 + 62856 fris) +
‘ e Lk T 4541 frva + 4407435, 2 + 2338488, ] — 3Unt1+ SYpys
o1 hy, 2 = smostgoh” 19737 fn + 16336768 1 — 1127175 fpo + 37192 43) +
' 34292160h2 (2197 + 3367251, 2 + 42398641, 5| — $ps1 + Sy
2.15) hyp i1 = gamih’ [441f, + 63518 fo i1 — 11739fn+2 + 459 fn+3)
' 23§1140 f 29 fpya — 11169fn+2 +37899f, } — gyn—H + gyn+%
10 hy' s = srasao 12 13514 f, + 204770 frpq — 12520242 + 4331 fris) +

sibaoh? | 266 nss — 80190, 2 +617463f, 5| — $vns1 + 0y

razioh? [4095 f, + 429184 f, 41 + 347151 f, 42 + 2808 fn43) +

(2 17) h/y;L+2 =
. h? f 211 frqq — 103419fn+2 + 1860552f ] — %ynH + %yn+§
3

3810240

(2.18) hy;L 3= g3gra/t” [P418f + 196546 fro1 + 440958 friyo + T7355 frys) +
. 2 r

3 3
sioh? | —1402f, 4 — 87246, > — 234729, +g] — Sy + By s

(2.19) W = sgrooms 2 410193 f, + 10650752 frn 1 + 9931425 f,, 42 — 6600312 fn+3)
‘ ss1osi f 1065533 fn4 — 5670261f, 2 — 17816904f, %} — 31 + ayn+g
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The proposed Block-Hybrid method is given as

_ 2
Ung2 = mh (104083 f,, — 335272 f, 11 — 108318 f,, 10 + 6596 f,, 1 3)

2
+ B2 ( 485 fn 4+ 3653801, 2 + 205956, , ) + S+ o

1071630

h2 (45199 f, — 159180541 — 51807 furo + 3146 fni3)

Int1 = 989940
+ B2 ( 231 fosa + 205335, 2 + 98658, , ) + hy, +

282240
25

2
Unis = JEraggal (52479 — 14630041 — 68775 furz + 4050/, 3)

25 5
h2( 995 fu 14 -+ 274095 138762 ) oh .
b 12 (<295 fuya + 24095, 2 + 138762, ) + Shyj, +
Unta = mfﬂ (1547 f, — 3864 fp41 — 2100 f 42 + 124 f,13)
+mh (—9fn+4 + 8262, 2 + 4860 fn+g) + 2hy, + yn
(2.20)
Yn+3 =

Bh? (5761 fo = 8484 f 41 + 2583 fua + 1310 fuss — 57fopa + 29889, 2 + 16038 fn+g)
+3hyn + YnYnta =

SSoh? (196fn 504 1 — 21 fnsa + 332furs + 15 ura + 1215f, 2 + 972f, | )

Ahy, + Yn y

— (407029 fon = 1TT9568 fn 1 — BAS3TS foys + 33032 fn s — 2417 frrpa + 2268729, » + 1050408, , )

ynyn—i-l
141mh (26579 Ju = 87584 a1 — 33789 frsn + 2056 g — 151 frrpa + 169857, 2 + 64152, , )

ynyn+o -
5 - <263137 Fn = 296800 fn41 — AT6175fn 42 + 25400 fy 3 — 1805 fua + 1535355, 2 + 1237032, )

ynyn+2 -
ash (1687fn — 2128 f1 — 1743 fur2 + 152fuss — 11fura + 9963, 2 +9720f, | ) oy

- (1113 fo+ 2464 fn 1+ 8169 o + 1784 fys — 3Tfnra + 4131, , 2 — 1944f, g) e
e (91 foo = 3472 1 — 3192 fuss + 1928 frss + 307 frra + 2916, , 2 + 5832f,,, ) e
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3. ANALYSIS OF THE BLOCK

3.1. Order and Error constant of the Block. Let the Linear Difference Operator L
defined on the method be given by:

k
(3.1) Lly(x);h] = Y loi y(a+ih)—h*8;y (z +ih)]
i=0
where y (z) is an arbitrary function that is continuously differentiable many times on
closed interval [a, b]. Expanding (3.1) using Taylor series about y(x) and if the coefficients
of power of h are gathered we have:

(3.2)  Lly(z); h] = coy(x) + crhy (x) + coh®y” (@) + - - - + cgh%y?(x) + 0(hIHY)

whose coefficients ¢, V ¢ = 0,1,2,... are constants and given as:
k
co :Zai =oap +ta; +ay + ...+ o
i=0
k
c1 :Ziai =(a1 +2a2 +3a3 +---+kap )—(Bo +51 +B2 +--+Bk)
i=0

k k
_ 1 9 S %(al +22a2 +32a3 +"'+k2ak )
“ _Z v Zﬁl _{ _(61 + 2039 +3/83+..._|_k6k)

1, 1 s
Cq :Z{az % = Bi }
g !

(¢
(3.3) . %(al + 2%y +3%3 +---+Kklag )
: A (q32)! (B + 223, 4324 ... 4 ]{;(4*2)5]6)
Thus (3.1) is said to be order p if and only if ¢ = ¢1 = c2 = ...cp41 = 0 and ¢y #

0. cpy2 is called the error constant. It implies that the local truncation error is given as
Tn—‘,—k = cp+2hp+2yp+2 (.%) +0 (hp+3) .
Comparing the coefficients of h, the order of the block is p = 7 with the error constants
o 50473 10369 3340 432493 17
P2 | T 166659897607 33331979527 26040609’ 793618560

3.2. Consistency. A linear Multistep method is said to be consistent if the order p > 1
and obeys the following axioms;

(1) Eigai=0

() p(r) =p(r) =0

3) p (r) =2lo(r)
where p(r) and o(r) are the first and second characteristics polynomial of our method
respectively.
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According to [12], the sufficient condition for associated block method to be consistent is
that p > 1. Since the proposed method is of order p = 7. Hence the proposed method is
consistent.

3.3. Zero Stability. Given block method as a single block r-point multistep method of
the form:

k k
(3.4) AOY,, =N AV, i+ b By
i=1 i=0
Applying the block in equation (2.20) we have:
2 0 0 0 0 0] [0OOOOGO 1]
0O £ 0 0 0 O 0 00 0 O01
or a4 _[lO 0 200 0| [000001][_
det[? — A7) 00 02 0 0 000001/ ~Y
0O 0 0 0 £ 0 0 00 001
000000 2|] [00000T1 |
P OQ-1H)=0 — 70 =0,7 =0,73 =0, 74, =0,75=0,7 =1
Since no root has modulus greater than one and [£2| = 1 is simple. This implies zero-

stability, That is the Block Hybrid Method derived is zero stable.

3.4. Convergence. According to Fatunla 1973, the necessary and sufficient condition for
a linear multistep method to be convergent is that it must be consistent and zero stable.
Hence the proposed method is convergent.

4. IMPLEMENTATION OF METHOD

The performance of the method is tested on some linear problem, real life problem and
system of equations of second order initial value problems. The absolute error of the
approximate solutions is therefore compared with the existing methods. Specifically, we
compared the proposed method with the method of [12], [I1] and Abhulimen and Aig-
biremhon (2018).

4.1. Numerical problems.

4.1.1. Cooling of a Body. The temperature y degrees of a body, ¢ minutes after being

placed in a certain room, satisfies the differential equation 3% + % = 0. By using the
substitution z = %’, or the otherwise, find y in terms of ¢ given that y = 60 when t = 0
and y = 35 when ¢t = 6In 4. Find after how many minutes the rate of cooling of the body
will have fallen below one degree per minute, giving your answer correct to the nearest

minute.
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Formulation of the Problem

" — / —80
(4.1) v == y(0) =60, ' (0) = =, h=0.1
Exact Solution
(z) = 80 —1p 100
Y=g 3

4.1.2. System of equations. Consider the Stiefel and Bettis Problem

(4.2)

yl +y1 = 0.00Lcosz, y1(0)=1, y,(0)=0 h=

1

320

Yo + 1o = 0.001sin (z) , y2 (0) =1, 1y, (0) = 0.9995

Exact solutions are given as;

y1 ()
Y2 ()

cos () + 0.0005 (x) sin
sin (x) — 0.0005 (x) cos

()
(x) .

Table 1. The result of test problem 1 (Real-life Problem)

207

X | Exact-solution Computed-solution Error in our pro- | Error in
posed method [12]

0 |60 60 0 0

0.1 | 59.125762679520157388| 59.125762679520157532| 1.44E-16 3.55E-11
0.2 | 58.280186267509806339| 58.280186267509806686| 3.47E-16 4.58E-11
0.3 | 57.462331147625588618| 57.462331147625589314| 6.96E-16 7.00E-11
0.4 | 56.671288507811932107| 56.671288507811932127| 2.00E-17 6.50E-12
0.5 | 55.906179330416375308| 55.906179330416372921| 2.39E-15 3.33E-11
0.6 | 55.166153415412849564| 55.166153415412844904| 4.66E-15 4.20E-11
0.7 | 54.450388435647511050| 54.450388435647504326| 6.72E-15 4.38E-11
0.8 | 53.758089023057298472| 53.758089023057288864| 9.61E-15 1.07E-10
0.9 | 53.088485884845809762| 53.088485884845795829| 1.39E-14 6.58E-11
1.0 | 52.440834948634380011| 52.440834948634361944| 1.80E-14 1.69E-10
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Table 2a. Shown the results for problem 4.1.2

X y1— Exact-Solution y1—Approximate- Error in the | Error in
Solution Proposed [11]
Method

0 1 1 0 0

0.003125 | 0.99999512207427819441| 0.99999512207427819441 | 5.66851E-22 1.64E-18
0.006250 | 0.99998048834470104865| 0.99998048834470104865 | 9.22820E-22 2.87E-18
0.009375 | 0.99995609895403291149 | 0.99995609895403291149 | 2.05284E-22 1.26E-18
0.012500 | 0.99992195414021281668| 0.99992195414021281668 | 3.01769E-21 5.73E-18
0.015625 | 0.99987805423635216164 | 0.99987805423635216164 | 2.63888E-21 4.10E-18
0.018750 | 0.99982439967073145770| 0.99982439967073145770 | 1.88479E-22 8.60E-18
0.021875 | 0.99976099096679615186 | 0.99976099096679615186 | 4.59462E-21 6.97E-18
0.025000 | 0.99968782874315152015| 0.99968782874315152015 | 3.80667E-21 1.14E-17
0.028125 | 0.99960491371355663261| 0.99960491371355663261 | 3.92052E-21 9.83E-18
0.031250 | 0.99951224668691738996 | 0.99951224668691738996 | 1.20963E-21 1.43E-17

Table 2b. Shown the results for problem 4.1.2
X y2—Exact-Solution yo—Approximate-Solution | Error in the | Error in
Proposed [11]
Method

0 0 0 0 0

0.003125 | 0.00312343242136885101| 0.0031234324213688510154| 1.029194E-23 | 7.20E-21
0.006250 | 0.00624683437101026369| 0.0062468343710102636872| 2.885345E-23 | 2.10E-21
0.009375 | 0.00937017537749407687| 0.0093701753774940768711| 4.672538E-23 | 4.33E-20
0.012500 | 0.01249342496998468092 | 0.012493424969984680920 | 3.866963E-22 | 6.30E-20
0.015625 | 0.01561655267853828619| 0.015616552678538286185 | 3.006767E-22 | 1.09E-19
0.018750 | 0.01873952803440182810| 0.018739528034400182811 | 4.670196E-22 | 1.15E-19
0.021875 | 0.02186232057030198893 | 0.021862320570301988933 | 1.492241E-22 | 1.85E-19
0.025000 | 0.02498489982075888438 | 0.024984899820758884380 | 1.541913E-22 | 1.81E-19
0.028125 | 0.02810723532236682696 | 0.028107235322366826964 | 1.336198E-22 | 2.79E-19
0.031250 | 0.0312292966140997484 | 0.031229296614099748484 | 1.882721E-22 | 2.61E-19

Discussion of Results. The results of the proposed method with step number four and
order of accuracy seven were compared with other methods. The accuracy of the method
developed was tested with two test problems and their corresponding results are discussed

below;

Table 1 shows the exact solution, approximate solution, error of proposed scheme and
error of [12]. The proposed method is more accurate than that of [12].
From Table 2a It was observed that the maximum absolute error of the proposed method
is 9.22820E-22 which is (smaller) and more accurate than 1.64E-18 of [11]. The proposed
method performed better than [11]. Also, the accuracy comparison in table 2b shows that
the proposed method is substantially more accurate than that of [11].
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Conclusion: We explored an approach for solving second order ordinary differential equa-
tions by proposing an accurate implicit Block-Hybrid method that yields approximate so-
lutions at suitable points when applied to solve Initial Value Problems (IVPs). The method
is consistent, convergent ad zero stable. The proposed method performed efficiently when
applied to solve second order Initial Value Problems as can be seen in the low error con-
stant and hence better approximation when compared with the existing methods as can
be seen in table 1-2.
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