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Abstract

Block hybrid linear multistep method was proposed to overcome

the Dahlquist order barrier for linear multistep methods. We are

interested in answering questions relating to the convergence, ac-

curacy and effectiveness of block hybrid method when utilized to

solve Initial Value Problems. In this research work, we presented

an order (k+3) block hybrid method for the direct solution of

initial value problems of ordinary differential equations. The

zero stability, consi stency, convergence and the accuracy of

the method are improved by collocating and interpolating the

power series at finely selected off-grid points. To illustrate the

accuracy and efficiency of the proposed method, linear and

system of initial value problems are considered and the results

obtained are compared with the existing methods in literature.

1. Introduction

In this paper, we consider an approximate solution of general second order initial value
problem (IVP) of the form:

(1.1) y
′′
(x) = f(x, y, y

′
); y(x0) = y0, y

′
x0 = y

′
0

where f is continuously differentiable on the given interval [a, b] Ordinary Differential Equa-
tion is an equation in which the dependent variable is a function of a single independent
variable [8]. Equation (1.1) has a wide range of application because many problems that
are encountered in sciences, real life, control theory and engineering are modeled into
Differential Equations. This is why the numerical solution of (1.1) is of great interest
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to researchers. [13] and only few can be solved analytically. Hence, the need to study
numerical methods and their solution [6].
Conventionally, we often reduce (1.1) to system of first order ordinary differential equations
and then use appropriate numerical methods such as Euler method to solve the resultant
system [9]. The reduction process and the setbacks of this approach has been discussed
by numerous author among them is [10].
In order to speed up computation, achieve better accuracy, reduce computational time and
eliminate overlapping of solution model, Block methods for approximating the numerical
solution of (1.1) has been vastly explored in literature [2]. Block-Hybrid methods were
first introduced according to [5] and later by [14], while hybrid methods were initially
introduced to overcome zero stability barrier occurred in block methods mentioned by [4].
The method of interpolation and collocation of the power series approximation to generate
continuous LMM has been adopted by many scholars [3]. Meanwhile, some scholars such
as, [1] proposed a single-step hybrid block method of order five for the direct solution of
second order ordinary differential equation. We were motivated to develop an order (k+3)
block hybrid method for the direct solution of general second order initial value problems
which can solve general second order initial value problem more accurately and efficiently.

2. Derivation of the Method

We consider power series of a single variable as an approximate solution to the general
second order initial value problem of the form (1.1) to be

(2.1) y(x) =

r+s−1∑
j=0

αjx
j

where αjare the real unknown parameters to be determined and r + s is the sum of the
number of interpolation and number of collocation points.
The first and second derivatives of (2.1) are given as;

(2.2) y
′
(x) =

r+s−1∑
j=1

jαjx
j−1

(2.3) y
′′
(x) =

r+s−1∑
j=2

j(j − 1)αjx
j−2

The comparison of (2.3) and (1.1) gives rise to below expression

(2.4) f(x, y, y
′
) =

r+s−1∑
j=2

j(j − 1)αjx
j−2
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Interpolating (2.1) at xn+j , j = 1, 53 and collocating (2.4) at xn+j , j = 0, 23 , 1,
5
3 , 2, 3, 4

give rise to a system of nonlinear equation Ax = b as given below:

(2.5)

1 xn+1 x2n+1 x3n+1 x4n+1 x5n+1 x6n+1 x7n+1 x8n+1

1 xn+ 5
3

x2
n+ 5

3

x3
n+ 5

3

x4
n+ 5

3

x5
n+ 5

3

x6
n+ 5

3

x7
n+ 5

3

x8
n+ 5

3

0 0 2 6xn 12x2n 20x3n 30x4n 42x5n 56x6n
0 0 2 6xn+ 2

3
12x2

n+ 2
3

20x3
n+ 2

3

30x4
n+ 2

3

42x5
n+ 2

3

56x6
n+ 2

3

0 0 2 6xn+1 12x2n+1 20x3n+1 30x4n+1 42x5n+1 56x6n+1

0 0 2 6xn+ 5
3

12x2
n+ 5

3

20x3
n+ 5

3

30x4
n+ 5

3

42x5
n+ 5

3

56x6
n+ 5

3

0 0 2 6xn+2 12x2n+2 20x3n+2 30x4n+2 42x5n+2 56x6n+2

0 0 2 6xn+3 12x2n+3 20x3n+3 30x4n+3 42x5n+3 56x6n+3

0 0 2 6xn+4 12x2n+4 20x3n+4 30x4n+4 42x5n+4 56x6n+4





α0

α1

α2

α3

α4

α5

α6

α7

α8


=



yn+1

yn+ 5
3

fn
fn+ 2

3

fn+1

fn+ 5
3

fn+2

fn+3

fn+4


By solving for αj , j = 018 in equation (2.5) above using the matrix inversion and then
substituting into the proposed formulae from (2.1) gives the continuous formulae;

(2.6) y(x) =

k−1∑
j=0

αj (x) yn+j + h2

 k∑
j=0

βj (x) fn+j+βv (x) fn+v


where y(x) is the approximate solution of the initial value problem and v = 2

3 ,
5
3 . αj

and βj are coefficients that are continuously differentiable. Since (2.6) is continuous and
differentiable, then α0 and β0 are not both zero.
Given the block method which is presented a single r-point multistep method of the form:

(2.7) A(0)Ym =

k∑
i=1

AiYm−i + h2
k∑

i=0

BiFm−i

where Ym = [yn+1, yn+2, . . . , yn+r]
T , Ym−1 = [yn−1, yn−2, . . . , yn]T , Fm = [fn+1, fn+2, . . . , fn+k]T ,

Ym−1 = [fn−1, fn−2, . . . , fn]T .

After obtaining the coefficients of yn+j and fn+j , i.e. α1, α 5
3

and β0, β 2
3
, β1, β 5

3
, β2, β3, β4

respectively. The parameters obtained are therefore substituted into the continuous scheme
as in equation (2.6) and evaluated at non-interpolating points i.e. xn, xn+ 2

3
, xn+2, xn+3, xn+4

yields the following scheme:

(2.8)
yn + 3

2yn+ 5
3

= 1
1524096h

2 (45801fn + 320180fn+1 − 160293fn+2) +

1
1524096h

2
(

8154fn+3 − 569fn+4 + 654165fn+ 2
3

+ 402642fn+ 5
3

)
+ 5

2yn+1
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(2.9)
yn+ 2

3
+ 1

2yn+ 5
3

= 1
68584320h

2 (26089fn + 9132452fn+1 − 944013fn+2) +

1
68584320h

2
(

34802fn+3 − 2153fn+4 − 54675fn+ 2
3

+ 3238218fn+ 5
3

)
+ 3

2yn+1

(2.10)
yn+2 − 3

2yn+ 5
3

= 1
7620480h

2 (3465fn + 317828fn+1 − 29757fn+2 + 3618fn+3) +

1
7620480h

2
(
−233fn+4 − 82179fn+ 2

3
+ 1057338fn+ 5

3

)
− 1

2yn+1

(2.11)
yn+3 − 3yn+ 5

3
= 1

59535h
2 (630fn + 27398fn+1 + 60018fn+2 + 4833fn+3) +

1
59535h

2
(
−134fn+4 − 10818fn+ 2

3
+ 2547fn+ 5

3

)
− 2yn+1

(2.12)
yn+4 − 9

2yn+ 5
3

= −1
362880h

2 (7119fn + 73612fn+1 − 353283fn+2 − 415098fn+3) +

−1
362880h

2
(
−21343fn+4 − 76365fn+ 2

3
− 484722fn+ 5

3

)
− 7

2yn+1

The continuous scheme in equation (2.6) is differentiated with respect to x to obtain
the first derivative which is evaluated at all the points i.e both interpolation points
(xn+1, xn+ 5

3
) and collocation points xn, xn+ 2

3
, xn+2, xn+3, xn+4 which gives;

(2.13)
hy
′
n = −1

3810240h
2 [724689fn − 1348480fn+1 − 1100127fn+2 + 62856fn+3) +

−1
3810240h

2
[
−4541fn+4 + 4407435fn+ 2

3
+ 2338488fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.14)
hy
′

n+ 2
3

= −1
34292160h

2 [9737fn + 16336768fn+1 − 1127175fn+2 + 37192fn+3) +

−1
34292160h

2
[
−2197fn+4 + 3367251fn+ 2

3
+ 4239864fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.15)
hy
′
n+1 = −1

238140h
2 [441fn + 63518fn+1 − 11739fn+2 + 459fn+3) +

−1
238140h

2
[
−29fn+4 − 11169fn+ 2

3
+ 37899fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.16)
hy
′

n+ 5
3

= 1
2143260h

2 [3514fn + 294770fn+1 − 125202fn+2 + 4331fn+3) +

1
2143260h

2
[
−266fn+4 − 80190fn+ 2

3
+ 617463fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.17)
hy
′
n+2 = 1

3810240h
2 [4095fn + 429184fn+1 + 347151fn+2 + 2808fn+3) +

1
3810240h

2
[
−211fn+4 − 103419fn+ 2

3
+ 1860552fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.18)
hy
′
n+3 = 1

238140h
2 [5418fn + 196546fn+1 + 440958fn+2 + 77355fn+3) +

1
238140h

2
[
−1402fn+4 − 87246fn+ 2

3
− 234729fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3

(2.19)
hy
′
n+4 = −1

3810240h
2 [410193fn + 10650752fn+1 + 9931425fn+2 − 6600312fn+3) +

−1
3810240h

2
[
−1065533fn+4 − 5670261fn+ 2

3
− 17816904fn+ 5

3

]
− 3

2yn+1 + 3
2yn+ 5

3
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The proposed Block-Hybrid method is given as

yn+ 2
3

=
1

1071630
h2 (104083fn − 335272fn+1 − 108318fn+2 + 6596fn+3)

+
1

1071630
h2
(
−485fn+4 + 365580fn+ 2

3
+ 205956fn+ 5

3

)
+

2

3
hy
′
n + yn

yn+1 =
1

282240
h2 (45199fn − 159180fn+1 − 51807fn+2 + 3146fn+3)

+
1

282240
h2
(
−231fn+4 + 205335fn+ 2

3
+ 98658fn+ 5

3

)
+ hy

′
n + yn

yn+ 5
3

=
25

4572288
h2 (52479fn − 146300fn+1 − 68775fn+2 + 4050fn+3)

+
25

4572288
h2
(
−295fn+4 + 274095fn+ 2

3
+ 138762fn+ 5

3

)
+

5

3
hy
′
n + yn

yn+2 =
1

4410
h2 (1547fn − 3864fn+1 − 2100fn+2 + 124fn+3)

+
1

4410
h2
(
−9fn+4 + 8262fn+ 2

3
+ 4860fn+ 5

3

)
+ 2hy

′
n + yn

(2.20)
yn+3 =

3
31360h

2
(

5761fn − 8484fn+1 + 2583fn+2 + 1310fn+3 − 57fn+4 + 29889fn+ 2
3

+ 16038fn+ 5
3

)
+3hy

′
n + ynyn+4 =

8
2205h

2
(

196fn − 504fn+1 − 21fn+2 + 332fn+3 + 15fn+4 + 1215fn+ 2
3

+ 972fn+ 5
3

)
+

4hy
′
n + yn y

′

n+ 2
3

=

1
2143260h

(
407029fn − 1779568fn+1 − 548373fn+2 + 33032fn+3 − 2417fn+4 + 2268729fn+ 2

3
+ 1050408fn+ 5

3

)
+

y
′
ny
′
n+1 =

1
141120h

(
26579fn − 87584fn+1 − 33789fn+2 + 2056fn+3 − 151fn+4 + 169857fn+ 2

3
+ 64152fn+ 5

3

)
+

y
′
ny
′

n+ 5
3

=

5
6858432h

(
263137fn − 296800fn+1 − 476175fn+2 + 25400fn+3 − 1805fn+4 + 1535355fn+ 2

3
+ 1237032fn+ 5

3

)
+

y
′
ny
′
n+2 =

1
8820h

(
1687fn − 2128fn+1 − 1743fn+2 + 152fn+3 − 11fn+4 + 9963fn+ 2

3
+ 9720fn+ 5

3

)
+ y

′
n

y
′
n+3 = 3

15680h
(

1113fn + 2464fn+1 + 8169fn+2 + 1784fn+3 − 37fn+4 + 4131fn+ 2
3
− 1944fn+ 5

3

)
+ y

′
n

y
′
n+4 = 2

2205h
(

91fn − 3472fn+1 − 3192fn+2 + 1928fn+3 + 307fn+4 + 2916fn+ 2
3

+ 5832fn+ 5
3

)
+ y

′
n
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3. Analysis of the Block

3.1. Order and Error constant of the Block. Let the Linear Difference Operator L
defined on the method be given by:

(3.1) L [y (x) ;h] =

k∑
i=0

[αi y (x+ ih)− h2βi y
′′
(x+ ih)]

where y (x) is an arbitrary function that is continuously differentiable many times on
closed interval [a, b]. Expanding (3.1) using Taylor series about y(x) and if the coefficients
of power of h are gathered we have:

(3.2) L[y(x);h] = c0y(x) + c1hy
′
(x) + c2h

2y
′′
(x) + · · ·+ cqh

qyq(x) + 0(hq+1)

whose coefficients cq ∀ q = 0, 1, 2, . . . are constants and given as:

c0 =

k∑
i=0

αi = α0 + α1 + α2 + . . . · · ·+ αk

c1 =
k∑

i=0

iαi = (α1 + 2α2 + 3α3 + · · ·+ kαk )− (β0 + β1 + β2 + · · ·+ βk)

c2 =
k∑

i=0

1

2!
i2αi −

k∑
i=0

βi =

{
1
2!

(
α1 + 22α2 + 32α3 + · · ·+ k2αk

)
−(β1 + 2β2 + 3β3 + · · ·+ kβk)

}

cq =

k∑
i=0

{ 1

q!
iqαi −

1

(q − 2)!
iq−2βi }

(3.3) cq =

{
1
q! (α1 + 2qα2 + 3qα3 + · · ·+ kqαk )

− 1
(q−2)!(β1 + 2(q−2)β2 + 3(q−2)β3 + · · ·+ k(q−2)βk)

}
Thus (3.1) is said to be order p if and only if c0 = c1 = c2 = . . . cp+1 = 0 and cp+2 6=
0. cp+2 is called the error constant. It implies that the local truncation error is given as
Tn+k = cp+2h

p+2yp+2 (x) + 0
(
hp+3

)
.

Comparing the coefficients of h, the order of the block is p = 7 with the error constants

Cp+2 =

[
− 50473

16665989760
,− 10369

3333197952
,− 3340

26040609
,

432493

793618560

]T
3.2. Consistency. A linear Multistep method is said to be consistent if the order p ≥ 1
and obeys the following axioms;

(1)
∑k

i=0 αi = 0

(2) ρ(r) = ρ
′
(r) = 0

(3) ρ
′′

(r) = 2!σ(r)

where ρ(r) and σ(r) are the first and second characteristics polynomial of our method
respectively.
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According to [12], the sufficient condition for associated block method to be consistent is
that p ≥ 1. Since the proposed method is of order p = 7. Hence the proposed method is
consistent.

3.3. Zero Stability. Given block method as a single block r-point multistep method of
the form:

(3.4) A(0)Ym =

k∑
i=1

AiYm−i + h2
k∑

i=0

BiFm−i

Applying the block in equation (2.20) we have:

∣∣∣det[?I −A(1)
1 ]
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣


Ω 0 0 0 0 0
0 Ω 0 0 0 0
0 0 Ω 0 0 0
0 0 0 Ω 0 0
0 0 0 0 Ω 0
0 0 0 0 0 Ω

−


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Ω5 (Ω−1) = 0 → ?1 = 0, ?2 = 0, ?3 = 0, ?4 = 0, ?5 = 0, ?6 = 1

Since no root has modulus greater than one and |Ω | = 1 is simple. This implies zero-
stability, That is the Block Hybrid Method derived is zero stable.

3.4. Convergence. According to Fatunla 1973, the necessary and sufficient condition for
a linear multistep method to be convergent is that it must be consistent and zero stable.
Hence the proposed method is convergent.

4. Implementation of method

The performance of the method is tested on some linear problem, real life problem and
system of equations of second order initial value problems. The absolute error of the
approximate solutions is therefore compared with the existing methods. Specifically, we
compared the proposed method with the method of [12], [11] and Abhulimen and Aig-
biremhon (2018).

4.1. Numerical problems.

4.1.1. Cooling of a Body. The temperature y degrees of a body, t minutes after being

placed in a certain room, satisfies the differential equation 3d2y
dt2

+ dy
dt = 0. By using the

substitution z = dy
dt , or the otherwise, find y in terms of t given that y = 60 when t = 0

and y = 35 when t = 6In 4. Find after how many minutes the rate of cooling of the body
will have fallen below one degree per minute, giving your answer correct to the nearest
minute.
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Formulation of the Problem

(4.1) y
′′

=
−y′

3
, y(0) = 60, y

′
(0) =

−80

9
, h = 0.1

Exact Solution

y (x) =
80

3
e−

1
3
x +

100

3

4.1.2. System of equations. Consider the Stiefel and Bettis Problem

y
′′
1 + y1 = 0.001 cosx, y1(0) = 1, y

′
1(0) = 0 h =

1

320
.

(4.2) y
′′
2 + y2 = 0.001sin (x) , y2 (0) = 1, y

′
2 (0) = 0.9995

Exact solutions are given as;

y1 (x) = cos (x) + 0.0005 (x) sin (x) ,

y2 (x) = sin (x) − 0.0005 (x) cos (x) .

Table 1. The result of test problem 1 (Real-life Problem)
X Exact-solution Computed-solution Error in our pro-

posed method
Error in
[12]

0 60 60 0 0
0.1 59.125762679520157388 59.125762679520157532 1.44E-16 3.55E-11
0.2 58.280186267509806339 58.280186267509806686 3.47E-16 4.58E-11
0.3 57.462331147625588618 57.462331147625589314 6.96E-16 7.00E-11
0.4 56.671288507811932107 56.671288507811932127 2.00E-17 6.50E-12
0.5 55.906179330416375308 55.906179330416372921 2.39E-15 3.33E-11
0.6 55.166153415412849564 55.166153415412844904 4.66E-15 4.20E-11
0.7 54.450388435647511050 54.450388435647504326 6.72E-15 4.38E-11
0.8 53.758089023057298472 53.758089023057288864 9.61E-15 1.07E-10
0.9 53.088485884845809762 53.088485884845795829 1.39E-14 6.58E-11
1.0 52.440834948634380011 52.440834948634361944 1.80E-14 1.69E-10
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Table 2a. Shown the results for problem 4.1.2
X y1− Exact-Solution y1−Approximate-

Solution
Error in the
Proposed
Method

Error in
[11]

0 1 1 0 0
0.003125 0.99999512207427819441 0.99999512207427819441 5.66851E-22 1.64E-18
0.006250 0.99998048834470104865 0.99998048834470104865 9.22820E-22 2.87E-18
0.009375 0.99995609895403291149 0.99995609895403291149 2.05284E-22 1.26E-18
0.012500 0.99992195414021281668 0.99992195414021281668 3.01769E-21 5.73E-18
0.015625 0.99987805423635216164 0.99987805423635216164 2.63888E-21 4.10E-18
0.018750 0.99982439967073145770 0.99982439967073145770 1.88479E-22 8.60E-18
0.021875 0.99976099096679615186 0.99976099096679615186 4.59462E-21 6.97E-18
0.025000 0.99968782874315152015 0.99968782874315152015 3.80667E-21 1.14E-17
0.028125 0.99960491371355663261 0.99960491371355663261 3.92052E-21 9.83E-18
0.031250 0.99951224668691738996 0.99951224668691738996 1.20963E-21 1.43E-17

Table 2b. Shown the results for problem 4.1.2
X y2−Exact-Solution y2−Approximate-Solution Error in the

Proposed
Method

Error in
[11]

0 0 0 0 0
0.003125 0.00312343242136885101 0.0031234324213688510154 1.029194E-23 7.20E-21
0.006250 0.00624683437101026369 0.0062468343710102636872 2.885345E-23 2.10E-21
0.009375 0.00937017537749407687 0.0093701753774940768711 4.672538E-23 4.33E-20
0.012500 0.01249342496998468092 0.012493424969984680920 3.866963E-22 6.30E-20
0.015625 0.01561655267853828619 0.015616552678538286185 3.006767E-22 1.09E-19
0.018750 0.01873952803440182810 0.018739528034400182811 4.670196E-22 1.15E-19
0.021875 0.02186232057030198893 0.021862320570301988933 1.492241E-22 1.85E-19
0.025000 0.02498489982075888438 0.024984899820758884380 1.541913E-22 1.81E-19
0.028125 0.02810723532236682696 0.028107235322366826964 1.336198E-22 2.79E-19
0.031250 0.0312292966140997484 0.031229296614099748484 1.882721E-22 2.61E-19

Discussion of Results. The results of the proposed method with step number four and
order of accuracy seven were compared with other methods. The accuracy of the method
developed was tested with two test problems and their corresponding results are discussed
below;
Table 1 shows the exact solution, approximate solution, error of proposed scheme and
error of [12]. The proposed method is more accurate than that of [12].
From Table 2a It was observed that the maximum absolute error of the proposed method
is 9.22820E-22 which is (smaller) and more accurate than 1.64E-18 of [11]. The proposed
method performed better than [11]. Also, the accuracy comparison in table 2b shows that
the proposed method is substantially more accurate than that of [11].
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Conclusion: We explored an approach for solving second order ordinary differential equa-
tions by proposing an accurate implicit Block-Hybrid method that yields approximate so-
lutions at suitable points when applied to solve Initial Value Problems (IVPs). The method
is consistent, convergent ad zero stable. The proposed method performed efficiently when
applied to solve second order Initial Value Problems as can be seen in the low error con-
stant and hence better approximation when compared with the existing methods as can
be seen in table 1-2.
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