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Abstract: The COVID-19 pandemic has had a significant impact on countries worldwide, including
the United Kingdom (UK). The UK has faced numerous challenges, but its response, including the
rapid vaccination campaign, has been noteworthy. While progress has been made, the study of
the pandemic is important to enable us to properly prepare for future epidemics. Collaboration,
vigilance, and continued adherence to public health measures will be crucial in navigating the path
to recovery and building resilience for the future. In this article, we propose an overview of the
COVID-19 situation in the UK using both mathematical (a nonlinear differential equation model)
and statistical (time series modeling on a moving window) models on the transmission dynamics
of the COVID-19 virus from the beginning of the pandemic up until July 2022. This is achieved by
integrating a hybrid model and daily empirical case and death data from the UK. We partition this
dataset into before and after vaccination started in the UK to understand the influence of vaccination
on disease dynamics. We used the mathematical model to present some mathematical analyses and
the calculation of the basic reproduction number (R0). Following the sensitivity analysis index, we
deduce that an increase in the rate of vaccination will decrease R0. Also, the model was fitted to
the data from the UK to validate the mathematical model with real data, and we used the data to
calculate time-varying R0. The homotopy perturbation method (HPM) was used for the numerical
simulation to demonstrate the dynamics of the disease with varying parameters and the importance
of vaccination. Furthermore, we used statistical modeling to validate our model by performing
principal component analysis (PCA) to predict the evolution of the spread of the COVID-19 outbreak
in the UK on some statistical predictor indicators from time series modeling on a 14-day moving
window for detecting which of these indicators capture the dynamics of the disease spread across
the epidemic curve. The results of the PCA, the index of dispersion, the fitted mathematical model,
and the mathematical model simulation are all in agreement with the dynamics of the disease in the
UK before and after vaccination started. Conclusively, our approach has been able to capture the
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dynamics of the pandemic at different phases of the disease outbreak, and the result presented will
be useful to understand the evolution of the disease in the UK and future and emerging epidemics.

Keywords: SARS-CoV-2; sensitivity index; homotopy perturbation method (HPM); data fitting;
numerical simulation; principal component analysis (PCA); index of dispersion; statistical modeling

1. Introduction

Coronavirus disease, also known as COVID-19, is an infectious disease that is caused
by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the
family of viruses that cause illnesses in humans and animals. It is believed that SARS-
CoV-2 officially originated in bats and spread to humans through a host known as the
pangolin [1]. It became a pandemic as it spread, affecting the world in a destructive way
and causing unrestrained infections and deaths globally. Ever since the pandemic started
affecting the world, the United Kingdom (UK) was severely hit by the impact of the virus,
with millions of cases and a high mortality rate, causing millions of deaths compared to
other European countries, with a mortality rate of 1.46% up until 3 April 2023 [2]. The
significant risk factor that was primarily identified as causing severe illness and death
from COVID-19 is primarily age, as well as older individuals and others who have other
health conditions who are also known to be at higher risk. Other factors like insufficient
medical resources and personnels have contributed to the rapid spread of the disease in
the UK, which has pressurized its healthcare system. The UK government sought out and
implemented various control measures as intervention strategies to control the transmission
of the disease, such as face masking, social distancing, lockdowns, and vaccination.

Over the years, mathematical modeling has played a major role in predicting incidence
and mortality rates for infectious diseases such as COVID-19 [3]. Mathematical modeling
has been shown to be a very effective technique for tracking and managing many dis-
eases, such as tuberculosis, [4], malaria, and smoking-related diseases, suggesting possible
government interventions [5,6]. Epidemiological and statistical modeling and analysis
have been used for predicting incidence and mortality rates and to consider the impact
that non-pharmaceutical intervention (NPI) control measures such as lockdowns, social
distancing, and travel bans have had. The Response Team of Imperial College formulated a
COVID-19 model that was used to predict the mortality rate of COVID-19 in the UK [7].
It was found that the NPI control measures, although very effective in reducing mortality
rates, were only short term. The model was then used to predict the likely occurrence of
a second wave of the disease in the UK and a possible significant increase in mortality
rates without the implementation of adequate and effective control measures. One of the
most effective measures for controlling the mortality rates of COVID-19 in the UK was
vaccination, which was made available to all adults. The UK government ensured that
people were vaccinated since it had been shown to be a more effective strategy for reducing
illnesses and mortality rates from COVID-19 in the UK. Policymakers are responsible
for ensuring the implementation of the most effective control measures for mitigating
COVID-19 transmission.

Factors that underline the increase in health problems in the UK are gender and age;
these have been seen to increase the rate of mortality in the UK. In the world, the UK is
known to have one of the highest COVID-19 mortality rates. In total, 126,000 deaths have
occurred from COVID-19 cases since inception as of March 2021 [8]. Various studies were
carried out in the UK on modeling the rates of mortality from COVID-19; for instance,
Ref. [9] estimated the cases and number of deaths from COVID-19 in the UK by using the
Bayesian model. The authors research shows that implementing NPI control measures like
face masking and social distancing reduces the number of deaths. Ref. [10] used a cohort
study design to investigate some factors, such as males and older age, being responsible for
the high rate of mortality in the UK. The authors study pointed out that such factors have



COVID 2024, 4 291

worsened health problems such as obesity and diabetes and increased the rate of mortality
from COVID-19. During the first wave of the COVID-19 pandemic, non-pharmaceutical
interventions (NPIs) were very effective in reducing the transmission of COVID-19.

The Imperial College Response Team on COVID-19 researched and found that NPIs,
such as school closures and social distancing, were used as effective control measures in
reducing COVID-19 spread in the UK. In their study, they used a mathematical model to
estimate the NPIs’ impact on the reproductive number, R0, of the COVID-19 virus and
found that without NPIs, the R0 value would have been excessively higher [11]. Ref. [11]
used a mathematical model to estimate the effect of vaccination on COVID-19 cases in the
UK and their hospitalization. Vaccines were found to be highly significant and effective
in reducing COVID-19 cases. The London School of Hygiene in [12] performed a study
that used mathematical modeling to estimate how school closures impacted the spread
and reduction of the value R0 of the virus. Although, in their study, they found out that
school closures impacted the spread and reduction of the value R0 of the virus, it was not
enough for the value of R0 to be less than 1. The Scientific Pandemic Influenza Group on
Modeling (SPI-M) in [13] performed a study using mathematical modeling to estimate and
find out the impact that the value R0 of the Delta variant had on COVID-19 transmission.
They found out that the value of R0 caused a higher risk of hospitalization in the Delta
variant. The University of Warwick, Ref. [14] carried out a study to understand the impact
of the COVID-19 pandemic on the rate of mortality in the UK and discovered that the
pandemic has had a highly significant impact on the rate of mortality in the UK, particularly
among older adults. Their study estimated the excess rate of mortality in the UK through
a mathematical model. They discovered that the mortality rate was highest among those
aged 85 and over.

In [15], the authors developed a deterministic transmission model to describe the
prevalence of individuals who are PCR positive for SARS-CoV-2 in some states in the
United States. Our work is an extension of the model developed in [15] by taking into
account vaccination and the number of deaths in the population. We also used the idea
in [16] by partitioning the data into before and after vaccination started in the UK, which
helps to understand the dynamics of the disease at these different phases. We want to be
able to explain the dynamics of the disease’s spread from the beginning of the pandemic in
the UK until July 2022 by considering different phases in the epidemic curve. Also, we used
both mathematical (a non-linear differential equation model) and statistical (time series
modeling on a moving window) models to understand the COVID-19 pandemic in the UK.
To the best of our knowledge, the use of this hybrid modeling approach is new and has
not been used to understand the dynamics of the COVID-19 outbreak in the UK from the
beginning of the pandemic up until July 2022, a period which is a combination of different
phases of the pandemic.

The reminder of the article is divided as follows: in Section 2, we present the materials
and methods used in this work; in Section 3, we calculate the basic reproduction number of
the model developed and extensively study this important threshold parameter; in Section 4,
we present the numerical simulation results; in Section 5, we present the statistical modeling
approach, its analysis, and results obtained from using the method; and finally, in Section 6,
we discuss the results and some key conclusions from our analysis.

2. Materials and Methods
2.1. Materials

In this Section, we provide insight into the data that we will be using to analyze the
motivation of this study. First, we present the daily new cases and deaths of COVID-19
outbreak in the UK adapted from [17] as of year 2023 with a 3-day moving average (in blue)
in Figure 1 and the cumulative cases and deaths with their moving average as at July 2022
in Figure 2.
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(a) (b)

Figure 1. (a) Daily new cases and (b) daily deaths of COVID-19 outbreak in the UK (from [17]) as at
year 2023 with 3-day moving average (in blue and yellow, respectively).

(a) (b)

Figure 2. (a) Cumulative cases and (b) cumulative deaths with their moving average (in blue) as at
July 2022.

Secondly, we present in Figure 3 the vaccination drive in the UK in the year 2021 to
2022, which shows that nearly 9 in 10 people aged 12 years and over in the UK have received
two doses of a COVID-19 vaccine. This will help the part of our analysis that involves
vaccination in our modeling approach to better understand the influence of vaccination in
the disease dynamics.

Figure 3. Proportion of those aged 12 years and over who have received one, two, or three or more
doses of a COVID-19 vaccine in the UK from 10 January 2021 to 31 August 2022 (from [18]).
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2.2. Mathematical Model Formulation

In this section, we propose a mathematical compartmental transmission model for the
spread of the COVID-19 outbreak in the UK, consisting of susceptible S(t), vaccinated V(t),
exposed unreported E1(t), exposed reported E2(t), infected I(t), recovered unreported
R1(t), recovered reported R2(t), and death D(t). The total population (N(t) = S(t) +
V(t) + E1(t) + E2(t) + I(t) + R1(t) + R2(t) + D(t)) is assumed to be very large and open
(natural deaths and exit rates are included). Recruitment into susceptible is at rate Λ, β is
the effective contact rate, and βSI

N is the force of infection. We assumed the entire population
(N) had no prior immunity against COVID-19 regardless of their vaccination status and that
they can be re-infected. We also assume that some proportion of the vaccinated population
can be exposed to the disease and not be reported because they assume that the vaccine
makes them immune to the disease. Other parameters are defined in Table 1, and the
schematic diagram of the model Equation (1) we developed can be seen in Figure 4. The
system of non-linear differential equations for our model is as follows:

dS
dt

= Λ− βSI
N
− θ3S− µS+δ1R1 + δ2R2

dV
dt

= θ3S−(θ4 + θ5 + µ + θ1 + θ2)V

dE1

dt
=

βSI
N

+ θ4V − (σ + µ)E1

dE2

dt
= σE1 + θ5V − (α + µ)E2

dI
dt

= αE2 − (φ + γ + µ)I

dR1

dt
= γI+θ1V − (δ1 + ω + µ)R1

dR2

dt
= θ2V + ωR1 − (δ2 + µ)R2

dD
dt

= φI

(1)

where time t > 0 with the initial conditions S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, E1(0) = E10 ≥
0, E2(0) = E20 ≥ 0, I(0) = I0 ≥ 0, R1(0) = R10 ≥ 0, R2(0) = R20 ≥ 0, D(0) = D0 ≥ 0.

The mathematical analysis of model (1) such as the positivity, stability, and equilibrium
points are presented in Appendix A.

Table 1. Parameter definitions.

Parameter Description

Λ Recruitment into susceptible

β Effective contact rate

φ Death rate of infectious individuals

µ Natural death rate

γ Progression rate of infectious individuals to recovered unreported class

θ1 Progression rate of vaccinated individuals to recovered unreported class

θ2 Progression rate of vaccinated individuals to recovered reported class

θ3 Rate of vaccination

θ4 Progression rate of vaccinated individuals to exposed unreported class

θ5 Progression rate of vaccinated individuals to exposed reported class

α Progression rate of exposed reported individuals to infectious class

σ Progression rate of exposed unreported individual to exposed reported class
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Table 1. Cont.

Parameter Description

δ1 Loss of immunity by unreported recovered individual

δ2 Loss of immunity by reported recovered individual

ω Progression rate of recovered unreported individual to recovered reported class

Figure 4. Schematic diagram of the COVID-19 model.

2.3. Statistical Fitting of Model (1)

We used data from a public database from the beginning of the pandemic to July
2022 in the United Kingdom. We used initial values (choice guided by information from
[8]) S(0) = 68,195,416, V(0) = 1,000,000, E1(0) = 60,000, E2(0) = 50,000, I(0) = 20,000,
R1(0) = 15,000, R2(0) = 10,000, D(0) = 5000 for susceptible, vaccinated, exposed unre-
ported, exposed reported, infected, recovered unreported, recovered reported, and recov-
ered individuals in the population, and the values of parameters are in Table 2. Some of
the parameters were fitted in order to obtain the optimal parameters, while others were as-
sumed or taken from existing literature. The nonlinear least squares curve fitting technique
was used to fit the model to empirical daily case and death data from the UK using the
Python programming language, and the graphical result obtained is presented in Figure 5.
The result in Figure 5 shows that our model fit the real daily case data better throughout the
different phases of the epidemic curve, unlike the fitting presented in Figure 5b in which
the dynamics of the fitted data did not capture the real data properly. We also test our
model using different partitions of the data before and after vaccination started in the UK,
the results of which we did not present in this section. In general, our model fit the daily
cases from the beginning of the pandemic up to July 2022 better, as shown in Figure 5a.
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Table 2. Parameter values.

Parameter References Values Best Fit Unit

Λ Estimated 20,000 20,000 Fixed

β Estimated 0.1 0.1 1/day

φ Assumed 1/4 0.245 1/day

µ Assumed 1/2 0.489 1/day

γ [15] 0.1 0.1 1/day

θ1 Varied (0, 1) 0.67 1/day

θ2 Varied (0, 1) 0.72 1/day

θ3 Varied (0, 1) 0.84 1/day

θ4 Varied (0, 1) 0.51 1/day

θ5 Varied (0, 1) 0.611 1/day

α Fitted 1/2 0.5 1/day

σ Fitted 1/2 0.5 1/day

δ1 Assumed 0.9 0.91 1/day

δ2 Assumed 0.1 0.111 1/day

ω Fitted 1/11 0.1 1/day

(a) (b)

Figure 5. (a) Graph of fitted cases vs. real COVID-19 cases in the UK from the beginning of the
pandemic till 31 July 2022. (b) Graph of fitted deaths vs. real COVID-19 deaths in the UK from the
beginning of the pandemic till 31 July 2022.

2.4. Statistical Predictors and Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technique widely used for dimensionality
reduction, feature extraction, and data visualization [19] commonly used in the field of
machine learning and statistics. It is used to transform high-dimensional data into a lower-
dimensional representation while retaining as much of the original data’s variability as
possible. PCA achieves this by finding a set of orthogonal axes, called principal components,
along which the data varies the most. The principal component analysis can be applied
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in the statistical modeling of infectious diseases to help analyze and understand complex
datasets related to disease dynamics, transmission patterns, and other epidemiological
factors [20]. The first principal component explains the most variance in the data, the second
principal component explains the second most, and so on. The kth principal component
of a data (for instance UK COVID-19 cases) vector x(i) can therefore be given as a score
tk(i) = x(i) · w(k) in the transformed coordinates or as the corresponding vector in the space
of the original variables, x(i) · w(k)w(k), where w(k) is the kth eigenvector of XTX [21].

The distribution of data along its principal components is known as skewness. The
distributional characteristics of this data require appropriate preprocessing steps to ensure
that PCA results accurately capture the underlying structure of the data. If data contains
significant outliers or skewness that cannot be easily addressed through data preprocessing,
one might consider using robust PCA techniques that are less sensitive to extreme values
and skewed distributions.

Kurtosis, on the other hand, in the context of principal component analysis (PCA),
refers to the distribution of data points in terms of their peakedness or the presence of heavy
tails in the data’s probability distribution. It measures the degree to which the data deviates
from a normal distribution (Gaussian distribution). There are several different measures
of kurtosis, but they all essentially assess the tails of the distribution relative to a normal
distribution. Kurtosis can have an impact on PCA in the following ways: interpretability
of principal components, robustness to outliers, data transformation, and so on. If your
data exhibits high kurtosis due to extreme outliers, you might consider using robust PCA
techniques that are less sensitive to outliers and heavy-tailed distributions. In as much
as kurtosis can impact the results of PCA by affecting the distributional characteristics of
the data, appropriate data preprocessing techniques and transformations can help address
these issues and lead to more reliable and interpretable principal components.

In summary, skewness and kurtosis are both important measures of a distribution’s
shape. Skewness measures the asymmetry of a distribution, while kurtosis measures the
heaviness of a distribution’s tails relative to a normal distribution [22].

The coefficient of variation (CV) is a statistic used to measure the relative variabil-
ity or spread of data points in a dataset. It is expressed as a percentage and is calcu-
lated as the ratio of the standard deviation (σ) to the mean (µ) of the data, multiplied by
100
(

CV = ( σ
µ )× 100

)
. The coefficient of variation is often used to compare the variation

in datasets with different units or scales. A higher CV indicates greater relative variability,
while a lower CV indicates less relative variability. The coefficient of variation can be a
helpful tool in the context of PCA for data preprocessing, feature selection, and interpreting
the significance of individual variables in the principal components. It helps ensure that
PCA is applied appropriately, especially when dealing with datasets with varying scales
and levels of variability.

In PCA, the concept from information theory that measures the uncertainty or ran-
domness in a dataset or information source is known as entropy. It is used to gain and
interpret information and is also useful in making decisions about splitting data at each
node in the (decision trees/forests).

In the broader context of data analysis and preprocessing, especially when assessing
the normality of data distributions, the Kolmogorov–Smirnov (KS) test is a statistical test
used to compare the distribution of a sample data set with a known distribution or to com-
pare two sample data sets. It assesses whether a sample is drawn from a particular distribu-
tion, such as a normal distribution [23]. While the KS test itself is not typically used directly
within principal component analysis (PCA). It can be used to identify potential outliers.

The first principal component explains the most variance, the second explains the
second most, and so on. Measures of variance, such as the eigenvalues of the covariance
matrix, are crucial for understanding the importance of each principal component. The
measures of dispersion (dispersion index (ID)), particularly variance and explained vari-
ance, play a crucial role in the technique of PCA. PCA aims to maximize the variance of the
data along its principal components, and the analysis often involves assessing how much
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variance is retained or explained by each component to make informed decisions about
dimensionality reduction.

Further mathematical formulation of these statistical predictors and PCA can be found
in [24,25].

3. Basic Reproduction Number
3.1. Derivation of Basic Reproduction Number of Model (1)

We shall compute the reproduction number R0 using the next generation matrix
(NGM) method [4,5]. The basic reproduction number R0 is the dominant eigenvalue
(spectral radius) of the next generation matrix G i.e., R0 = ρ(FV−1), where E1, E2, and I are
the disease classes. We shall assemble the matrix for the model (1) by splitting the model
into a new infection matrix F and the transfer matrix V. Thus, we have:

F =


0 0 βΛ

(µ+θ3)

0 0 0

0 0 0

,

and

V =


−(σ + µ) 0 0

σ −(α + µ) 0

0 α −(φ + γ + µ)

.

Then,

V−1 =


− 1

σ+µ 0 0

− σ
(σ+µ)(α+µ)

− 1
α+µ 0

− ασ
(σ+µ)(α+µ)

− α
(α+µ)(φ+γ+µ)

− 1
φ+γ+µ

,

such that

FV−1 =


− ασΛβ

(θ3+µ)(σ+µ)(α+µ)(φ+γ+µ)
− ασβ

(θ3+µ)(α+µ)(φ+γ+µ)
− Λβ

(θ3+µ)(φ+γ+µ)

0 0 0

0 0 0


To obtain the spectral radius ρ(FV−1), we need to determine the eigenvalues of the matrix
FV−1. Hence, by calculation, we have the following

λ1 = λ2 = 0 and λ3 =
ασΛβ

(θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ)
.

Therefore
R0 =

ασΛβ

(θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ)
.
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3.2. Time Varying Reproduction Number

It is a known fact that the basic reproduction number varies across the daily count
cases, so we plotted an effective time-varying reproduction number and an average effective
reproduction number across the data from the beginning of the pandemic to July 2022 in the
United Kingdom, which is presented in Figure 6. The Epyestim [26] package in Python was
used, which estimates the effective reproduction number from a time series of reported case
numbers of epidemics, and the aggregate of these estimates for the reproduction number is
obtained by bootstrap aggregation. This helps us understand how the disease is spread
across the epidemic period considered.

(a) (b)

Figure 6. Graph of (a) time-varying reproduction number and (b) average effective
reproduction number.

3.3. Sensitivity Index

Taking the partial derivative of the basic reproduction number with respect to each of
its parameters gives the sensitivity analysis. It tells us the parameters that have the greatest
impact on the spread of the disease and evaluates how the uncertainty of the parameters
can affect the dynamics of the epidemic [27]. The sensitivity index of the basic reproduction
number with respect to parameter p is given by:

SR0
p =

∂R0

∂p
· p

R0

Five of the sensitivity indices are negative, while others are positive, as can be seen in
Table 3. The sensitivity analysis of the basic reproduction number shows that there is a
direct relationship between R0 and the recruitment into the susceptible class, the contact
rate, and the progression rate of exposed reported individuals to the infectious class,
which is positively correlated. The progression rate of infectious individuals to recovered
unreported classes, the progression rate of exposed unreported individuals to exposed
reported classes, the natural death rate, the death rate of infectious individuals, and the
rate of vaccination have an inverse relation with R0; hence, they are negatively correlated.
Table 3 and Figure 7 present the sensitivity indices as they relate to R0.

What can be deduced from the sensitivity analysis is that if the rate of vaccination is
increased, the threshold parameter R0 will decrease, which means the spread of the disease
will be curtailed.

Table 3. Parameters Sensitivity Index.

Parameters Λ β φ µ γ σ α θ3

Sensitivity Index 1.00 1.00 −0.6944 −0.1932 −0.2778 −0.0208 0.0196 −0.8333



COVID 2024, 4 299

Figure 7. Graph of parameters and their sensitivity indices.

4. Numerical Simulation

We used the homotopy perturbation method (HPM) for the numerical simulation
of model (1). The description and the analytical solution of the method are presented
in the Appendix A. We present the numerical simulation of our mathematical model by
varying some of the model parameters to see the behaviour of the epidemic curve over an
8-week period. The visualisation of the results of the simulation with varying parameters
is presented in Figures 8–11.

Figure 8a shows that even if we have a high vaccination rate, it does not change
the fact that the population is not still susceptible to the COVID-19 virus. It affirms that
individuals are not immune to the disease and can be reinfected, which has been the case
with COVID-19 dynamics. In Figure 8b, we could say that if more people are exposed to
the disease and are infectious, there will be exponential growth in the infected population,
which will lead to rapid spread within the population. Figure 9a explains how deaths
can be reduced in the population, and our model was able to capture low death rates as
observed in the real data of COVID-19 spread in the UK and by extension globally. We
demonstrate in Figure 9a that after a time period, most especially when vaccination starts,
it can reduce death due to the disease as can be seen in the green line demonstrating a sharp
reduction in the death population if we increase the time step. Figures 9b and 10 show
that more people recover, whether it is reported or not, if there is an aggressive vaccination
campaign leading to more people being vaccinated in the population. This leads to what
we have observed in the global COVID-19 recovery count: we have more people recovering
from the disease, which is also observed in the UK.

Figure 11a shows that more vaccinated individuals are exposed to the disease and
they are unreported, affirming that most COVID-19 cases are unreported while a smaller
proportion of the population that is vaccinated and exposed to the disease is reported as
shown in Figure 11b.
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(a) (b)

Figure 8. (a) Susceptible human population against time (t is in months) for various θ3 and (b)
infected human population against time (t is in months) for various α.

(a) (b)

Figure 9. (a) Death population against time (t is in months) for various φ and (b) recovered unreported
human population against time (t is in months) for various ω.
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(a) (b)

Figure 10. (a) Recovered reported human population against time (t is in months) for various θ2 and
(b) recovered reported human population against time (t is in months) for various ω.

(a) (b)

Figure 11. (a) Exposed unreported human population against time (t is in months) for various θ4 and
(b) exposed reported human population against time (t is in months) for various θ5.

5. Statistical Modeling and Analysis
5.1. Statistical Analysis of the Entire Dataset

In this section, we present some time-series modeling that is statistically predictive of
the evolution of the spread of the COVID-19 outbreak in the UK.

These statistical predictor indicators calculated in a moving window of 14 days are
the coefficient of variation (CV), the entropy of the stationary empirical measure, the third
and fourth standardized moments of the empirical distribution (respectively, skewness and
kurtosis), the uniformity index, which is the index of dispersion (ID), and the normality
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index, which is the Kolmogorov–Smirnov test (KStest) of adequacy to the normal distribu-
tion, showing, respectively, expectation and standard deviation. We normalized the index
of dispersion (normalized ID) to remove outliers. Using the principal component analysis
(PCA), a score is built from these statistical indicators, and the prediction performance is
estimated from the ability to predict the epidemic exponential growth phase.

All the predictor indicators are calculated in the same moving window, respecting the
following rules:

• Choose the same length of moving window for the predictor indicator calculation
(14 days).

• Use the same time step as for moving the window (1 day).
• Move the window from the start to the end of the COVID-19 outbreak observed

between January 2020 and July 2022 for both daily cases and daily deaths.

A way to obtain an important score is to use the first principal component of the
principal component analysis (PCA), which explains in general a sufficient percentage of
the variance of the daily new cases and deaths from the UK COVID-19 data empirical
distribution. In Figure 12, we observe in the UK the evolution of all six statistical predictor
indicators for daily new cases and deaths data.

The precision of the forecasting character of both the first PCA principal component,
PC0, and the index of dispersion (see Figure 12) can be easily explained by the fact that the
ID is often the main weight in the linear combination expressing PC0 on the breakdown
coefficients, as calculated for example for the first moving window in the UK daily new
cases during early January 2020, the breaking coefficients calculated for the first moving
windows of 14 days in Table 4, and the breakdown of principal components (PCs) in Table 5.

PC0 = 0.000054Kurtosis + 0.0000043Entropy + 0.0000017Skewness + 0.0000063CV
+ 1.00ID + 0.0000000000000031KStest + 0.00019NormalizedID.

(a) (b)

Figure 12. Various statistical predictor indicators for the COVID-19 pandemic in the UK for (a) daily
new cases and (b) daily deaths.

We plotted ID separately over the daily new cases and deaths because it is the only
indicator that captured the disease spread dynamics well as seen in Figure 13a even though
there is a shift in the daily death dynamics as shown in Figure 13b. It is not surprising that
higher moments like skewness and kurtosis are not capturing the disease dynamics well
and have smaller weights in the linear combination of PC0 because it has been statistically
proven that higher moments are not good predictor variables.
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(a) (b)

Figure 13. The Index of dispersion (in blue) as a predictor of the epidemic waves for the UK COVID-
19 outbreak, with (a) daily new cases superimposed (in green) and (b) daily deaths superimposed
(in green).

Table 4. Values of the breakdown coefficients during the first 14-day moving windows (0 to 4).

Kurtosis Entropy Skewness CV ID KStest NormalizedID

0 −1.560422 2.277053 −0.429678 0.744472 8.788635 3.225218× 10−9 0.000163

1 −1.147522 2.368861 −0.656162 0.639084 7.410055 1.320401× 10−11 0.000137

2 −0.494423 2.438590 −0.913383 0.543306 6.030124 1.320401× 10−11 0.000110

3 0.607783 2.505568 −1.222075 0.441749 4.432511 8.637110× 10−15 0.000080

4 2.486025 2.569515 −1.497753 0.327226 2.676923 1.989779× 10−23 0.000046

Table 5. Values of the breakdown of PCs during the first 14-day moving windows (0 to 4).

PC0 PC1 PC2

0 −3657.958091 −0.418547 0.040527

1 −3659.336674 −0.259834 0.478428

2 −3660.716608 0.073121 1.083968

3 −3662.314227 0.725743 2.000770

4 −3664.069825 1.998592 3.358590

The epidemic peaks are consistently preceded by the PC0 minima and ID maxima, and
therefore it makes sense that the empirical distribution of the new cases has changed (losing
stationarity). The index of dispersion ID is, in fact, the logarithm of the ratio between the
second and first (mean) moments of the empirical distribution of new cases. Variations in
the index of dispersion ID show the loss of stationarity prior to an exponential growth of
new cases, which is one of the primary characteristics of the early dynamics of an epidemic
peak. The statistical predictors used exhibit the same predicted behavior with PC0. Index
of dispersion ID waves take place out of phase with PC0, but they also accurately predict
future cases.

5.2. Statistical Analysis before Vaccination Started

In this section, we present the epidemic dynamics of how these statistical predictor
indicators behave before the introduction of vaccination in the population.

In Figure 14, we observe in the UK the evolution of all six statistical predictor indicators
for daily new cases and deaths data before vaccination was introduced to the population.
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The index of dispersion captured the disease spread dynamics and peaks in the
epidemic curve well as seen in Figure 15a even though there is a shift for the daily deaths
dynamics as shown in Figure 15b.

(a) (b)

Figure 14. Various statistical predictor indicators for the COVID-19 pandemic in the UK before
vaccination started for (a) daily new cases and (b) daily deaths.

(a) (b)

Figure 15. The index of dispersion (in blue) as a predictor of the epidemic waves for the UK COVID-19
outbreak before vaccination was introduced in the population, with (a) daily new cases superimposed
(in green) and (b) daily deaths superimposed (in green).

In Figure 16, we normalized the cumulative cases and deaths so as to be on the same
scale with first principal component and index of dispersion when considering daily new
cases and daily deaths before vaccination, respectively, which will help us compare the
epidemic waves in the different curves.
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(a) (b)

Figure 16. PC0 and ID for (a) new cases and (b) deaths before vaccination.

5.3. Statistical Analysis after Vaccination Has Started

Here, we present the epidemic dynamics of how these statistical predictor indicators
behave after vaccination started in the UK.

In Figure 17, we observe in the UK the evolution of all six statistical predictor indicators
for daily new cases and deaths data after vaccination was introduced in the population.

(a) (b)

Figure 17. Various statistical predictor indicators for the COVID-19 pandemic in the UK after
vaccination has started for (a) daily new cases and (b) daily deaths.

The index of dispersion captured the disease spread dynamics and peaks in the
epidemic curve well as seen in Figure 18 for both the daily cases and daily deaths. This
phenomenon observed in this case might be due to the effect of the vaccination of the
population, which enables this statistical predictor indicator to better capture the disease
dynamics appropriately.
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(a) (b)

Figure 18. The index of dispersion (in blue) as a predictor of the epidemic waves for the UK COVID-
19 outbreak after vaccination campaign has started, with (a) daily new cases superimposed (in green)
and (b) daily deaths superimposed (in green).

In Figure 19, we normalized the cumulative cases and deaths so as to be on the same
scale with first principal component and index of dispersion when considering daily new
cases and daily deaths after vaccination, respectively, which will help us compare the
epidemic waves in the different curves.

(a) (b)

Figure 19. PC0 and ID for (a) new cases and (b) deaths after vaccination.

6. Concluding Remarks

We have shown the nexus between the two approaches we used in this research by
predicting the COVID-19 cases and deaths from the beginning of the pandemic in the UK
up until July 2022 using a hybrid (mathematical and statistical) model demonstrating high
predictive power that shows an alignment with the empirical COVID-19 case and deaths
data. The prediction from the fitting of the mathematical model to real data (Figure 5), the
simulated results (Figure 8b) that simulated 8 weeks of the epidemic trend, the first principal
component curve, and the index of dispersion (see Figure 6b) captured the dynamics of the
disease across different exponential and endemic phases in the epidemic curve, showing
similarity in trends.

Also, comparing the vaccination trend (see Figure 3) with the results we presented in
Figures 17–19 explains the influence of vaccination on the epidemic waves (both daily new
cases and deaths) after vaccines were introduced to the population.
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In this paper, we have been able to use a nonlinear mathematical model to perform
some mathematical analysis, fit the model to real data, and also perform some numerical
simulation by varying some epidemic parameters. We also calculated the threshold parame-
ter (R0) and the time-varying R0 across the pandemic period we considered. We showed the
importance of vaccinating individuals in the population, which will help increase recovery
among those infected with the virus. Furthermore, we used some statistical predictor
indicators to infer how the index of dispersion fit well with the observed data from the
UK, used PCA to generate scores, and then used the first principal component, which is
the most important in principal component analysis, to capture the trends in the epidemic
curve. Our hybrid modeling approach and the consideration of a long epidemic period
allow us to demonstrate the robustness of our results, which will be useful for modelers
and researchers.

To conclude, the COVID-19 pandemic has been a transformative event with pro-
found implications for global health, society, and the economy. It has challenged us in
unprecedented ways but has also brought out our resilience and capacity for innovation.
By learning from this experience, we can build a stronger, more equitable world that is
better equipped to confront future epidemics. From this paper, we know that integrating
mathematical and statistical models with daily empirical case and death data is a valuable
approach to understanding and modeling the spread of COVID-19. By combining these
two components, researchers and policymakers can gain insights into the dynamics of
the disease, enhance the accuracy of models, allow for the estimation of key parameters,
predict future trends, evaluate intervention strategies, and facilitate the development of
monitoring systems. A future research direction could be considering the age stratifica-
tion in the UK with the number of doses of vaccine shots received by individuals in the
population using a spatial modeling approach at a small spatial scale, which will enable
us to understand the local or community spread of the disease and to understand how to
deploy resources to mitigate its spread. Another future work could be to look at the disease
variants during different peaks of the pandemic and align this with the demographic
structure of the population.
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Appendix A

Appendix A.1. Mathematical Analysis of Model (1)

Appendix A.1.1. Positivity of Model (1)

Theorem A1. Let S(0) = S0, V(0) = V0, E1(0) = E10, E2(0) = E20, I(0) = I0, R1(0) =
R10, R2(0) = R20 and D(0) = D0 be the initial values of the state variables. Thus, if S0, V0,
E10, E20, I0, R10, R20 and D0 are positive, then it implies that S(t), V(t), E1(t), E2(t), I(t), R1(t),
R2(t) and D(t) are positive for all t > 0.
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Proof. Suppose S0, V0, E10, E20, I0, R10, R20 and D0 are positive, then we want to show that
the state variables S(t), V(t), E1(t), E2(t), I(t), R1(t), R2(t) and D(t) are positive for all
t > 0. From the model (1), we have

dS
dt

= Λ− βSI
N
− θ3S− µS + δ1R1 + δ2R2

which can be re-written as

dS
dt

+

(
βI
N

+ θ3 + µ

)
S = Λ + δ1R1 + δ2R2

This implies

dS
dt

+

(
βI
N

+ θ3 + µ

)
S ≥ 0

dS
dt

+

(
βI
N

+ θ3 + µ

)
S ≥ 0

dS
S
≥
(

βI
N

+ θ3 + µ

)
dt

S(t) ≥ S(0) exp

(
−
(

βI
N

+ θ3 + µ

)
t

)

Since S(0) = S0 > 0, then S(t) ≥ 0, for all t > 0, which is also true for other state variables,
which shows that V(t), E1(t), E2(t), I(t), R1(t), R2(t) and D(t) are positive for all t > 0.

Appendix A.1.2. Equilibrium Points

Here, we shall discuss both the COVID-19 free equilibrium (E0) and the endemic
equilibrium (E1).

Disease Free Equilibrium

The COVID-19 free equilibrium E0 =
(
S∗, V∗, E∗1 , E∗2 , I∗, R∗1 , R∗2 , D∗

)
is defined as the

point at which no disease is present within the population, which implies that all the
exposed and infected class will be zero.

Thus, the disease free equilibrium for COVID-19 satisfies

E0(κ0) :≡
(

Λ
(µ + θ3)

,
θ3Λ

(µ + θ3)(µ + θ1 + θ2 + θ4 + θ5)
, 0, 0, 0, 0, 0, 0

)
(A1)

Endemic Equilibrium

Let E1 =
(
S∗∗, V∗∗, E∗∗1 , E∗∗2 , I∗∗, R∗∗1 , R∗∗2 , D∗∗

)
be defined as the point where there is

still COVID-19 within the population, which implies that all the infected class are nonzero.
Then, the equilibrium state under the scenario known as the endemic equilibrium is
obtained as:
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S∗∗ =
σ2

σ1

(
(µ + θ1 + θ2 + θ4 + θ5

)
,

V∗∗ =
σ2

σ1
θ3,

E∗∗1 =
Λµ2θ3θ4 + Λδ1δ2θ3θ4 + Λδ1µθ3θ4 + Λδ2µθ3θ4 + Λδ2ωθ3θ4 + Λµωθ3θ4

(µ + σ)σ1
,

E∗∗2 = 1
(α+µ)(µ+σ)σ1

(
Λµ3θ3θ5 + Λδ1µ2θ3θ5 + Λδ2µ2θ3θ5 + Λµ2ωθ3θ5 + Λµ2σθ3θ4 + Λµ2σθ3θ5 + Λδ1δ2µθ3θ5 + Λδ1δ2σθ3θ4+

Λδ1δ2σθ3θ5 + Λδ2µωθ3θ5 + Λδ1µσθ3θ4 + Λδ1µσθ3θ5 + Λδ2µσθ3θ4 + Λδ2µσθ3θ5 + Λδ2ωσθ3θ4 + Λδ2ωσθ3θ5 + Λµωσθ3θ4 + Λµωσθ3θ5

)

I∗∗ = Λδ1µσθ3θ5+Λδ2µσθ3θ4+Λδ2µσθ3θ5+Λδ2ωσθ3θ4+Λδ2ωσθ3θ5+Λδ1δ2µθ3θ5+Λδ1δ2σθ3θ4
µ(α+µ)(µ+σ)σ1

,

R∗∗1 =
Λ(δ2θ1θ3 + µ ∗ θ1θ3)

σ1
,

R∗∗2 =
Λ(δ1θ2θ3 + µθ2θ3 + ωθ1θ3 + ωθ2θ3)

σ1
,

D∗∗ =
Λαθ3(δ2 + µ)(µθ5 + σθ4 + σθ5)(δ1 + µ + ω)

(µ(α + µ)(µ + σ)σ1

(A2)

where
σ1 = δ1µ3 + δ2µ3 + µ3ω + µ3θ1 + µ3θ2 + µ3θ3 + µ3θ4 + µ3θ5 + µ4 + δ2µ2ω + δ1µ2θ1 +
δ1µ2θ2 + δ2µ2θ1 + δ1µ2θ3 + δ2µ2θ2 + δ1µ2θ4 + δ2µ2θ3 + δ1µ2θ5 + δ2µ2θ4 + δ2µ2θ5 + µ2ωθ1 +
µ2ωθ2 + µ2ωθ3 + µ2ωθ4 + µ2ωθ5 + µ2θ1θ3 + µ2θ2θ3 + µ2θ3θ4 + µ2θ3θ5 + δ1δ2µ2 + δ1δ2µθ1 +
δ1δ2µθ2 + δ1δ2µθ3 + δ1δ2µθ4 + δ1δ2µθ5 + δ1δ2θ3θ4 + δ1δ2θ3θ5 + δ2µωθ1 + δ2µωθ2 + δ2µωθ3 +
δ2µωθ4 + δ2µωθ5 + δ1µθ2θ3 + δ2µθ1θ3 + δ1µθ3θ4 + δ1µθ3θ5 + δ2µθ3θ4 + δ2µθ3θ5 + δ2ωθ3θ4 +
δ2ωθ3θ5 + µωθ1θ3 + µωθ2θ3 + µωθ3θ4 + µωθ3θ5
σ2 = Λµ2 + Λδ1δ2 + Λδ1µ + Λδ2µ + Λδ2ω + Λµω.

Appendix A.1.3. Stability Analysis

To determine the stability of the disease-free equilibrum, we compute the Jacobian
matrix of the system (1) and compute the eigenvalues. If all the eigenvalues have a negative
real part, then we could say the system is stable. So, the Jacobian matrix evaluated at the
disease free equilibrium E0 is expressed as

J =



−θ3 − µ 0 0 0 − Λβ
(θ3+µ)

δ1 δ2 0
θ3 −m2 0 0 0 0 0 0
0 θ4 −(σ + µ) 0 Λβ

(θ3+µ)
0 0 0

0 θ5 σ −(α + µ) 0 0 0 0
0 0 0 α −(φ + γ + µ) 0 0 −µ
0 θ1 0 0 γ −(δ1 + ω + µ) 0 0
0 θ2 0 0 0 ω −(δ2 + µ) 0
0 0 0 0 φ 0 0 0


where

m2 = (θ4 + θ5 + µ + θ1 + θ2).

To obtain the eigenvalues, we determine det(J − λI) = 0, where
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J − λI =



−θ3 − µ− λ 0 0 0 − Λβ
(θ3+µ)

δ1 δ2 0
θ3 −m2 − λ 0 0 0 0 0 0
0 θ4 −(σ + µ)− λ 0 Λβ

(θ3+µ)
0 0 0

0 θ5 σ −(α + µ)− λ 0 0 0 0
0 0 0 α −(φ + γ + µ)− λ 0 0 −µ
0 θ1 0 0 γ −(δ1 + ω + µ)− λ 0 0
0 θ2 0 0 0 ω −(δ2 + µ)− λ 0
0 0 0 0 φ 0 0 −λ


From the matrix above, we could observe that since all the parameters are positive,

the diagonal element of the matrix is negative. Then, we obtained the eigenvalues of the
8× 8 matrix, which are given as:

λ1 = −(θ3 + µ)

λ2 = −(φ + γ + µ)

λ3 = −(δ1 + ω + µ)

λ4 = −(θ4 + θ5 + µ + θ1 + θ2)

λ5 = − (σ + µ)(α + µ)(φ + γ + µ)−
√
(α + µ)2(φ + γ + µ)2 − 4ασΛβ(θ3 + µ)

2(θ3 + µ)

λ6 = − (σ + µ)(α + µ)(φ + γ + µ) +
√
(α + µ)2(φ + γ + µ)2 − 4ασΛβ(θ3 + µ)

2(θ3 + µ)

λ7 =− ασΛβ−(θ3+µ)(σ+µ)(α+µ)(φ+γ+µ)+(α+µ)(σ+µ)(φ+γ+µ)δ−
√

M
2(θ3+µ)

λ8 =− ασΛβ−(θ3+µ)(σ+µ)(α+µ)(φ+γ+µ)+(α+µ)(σ+µ)(φ+γ+µ)δ+
√

M
2(θ3+µ)

(A3)

where

M = (α + µ)2(σ + µ)2(φ + γ + µ)2δ2 − ασΛβ(θ3 + µ)− (σ + µ)2(α + µ)2(φ + γ + µ)2.

From (A3), we could observe that all the eigenvalues are either negative or have negative
real parts. Hence, the disease-free equilibrium is asymptotically stable if:

− ασΛβ− (θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ) + (α + µ)(σ + µ)(φ + γ + µ)δ−
√

M
2(θ3 + µ)

< 0 (A4)

Then,

− (ασΛβ− (θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ) + (α + µ)(σ + µ)(φ + γ + µ)δ−
√

M) < 0

− (ασΛβ− (θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ) < −(α + µ)(σ + µ)(φ + γ + µ)δ +
√

M

− (ασΛβ− (θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ) < 0

ασΛβ < (θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ)

which implies that
ασΛβ

(θ3 + µ)(σ + µ)(α + µ)(φ + γ + µ)
< 1

Hence,
R0 < 1.

Appendix A.1.4. Analytical Solution of Model (1) Using Homotopy Perturbation
Method (HPM)

The homotopy perturbation method (HPM) was first discovered by the author in [28].
The homotopy perturbation method (HPM), which provides an analytically approximate
solution, is applied to various linear and non-linear equations. The homotopy perturbation
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method (HPM) is a series expansion method used in the solution of nonlinear partial
differential equations. Given the initial conditions:

S(0) = S0, V(0) = V0, E1(0) = E10, E2 = E20,

I(0) = I0, R1(0) = R10, R2(0) = R20, D(0) = D0

 (A5)

Let
S = a0 + ha1 + h2a2 + . . .

V = b0 + hb1 + h2b2 + . . .

E1 = c0 + hc1 + h2c2 + . . .

E2 = d0 + hd1 + h2d2 + . . .

I = e0 + he1 + h2e2 + . . .

R1 = f0 + h f1 + h2 f2 + . . .

R2 = g0 + hg1 + h2g2 + . . .

D = n0 + hn1 + h2n2 + . . .



(A6)

Applying HPM to (1), we obtain the following equations.

h0 : a1
0 = 0

h1 : a′1 + Ka0e0 + (θ3 + µ)a0 − δ1 f0 − δ2g0 −Λ = 0

h2 : a′2 + K(a0e1 + a1e0) + (θ3 + µ)a1 − δ1 f0 − δ2g0 = 0


(A7)

h0 : b1
0 = 0

h1 : b′1 + (θ4 + θ5 + θ1 + θ2 + µ)b0 − θ3a0 = 0

h2 : b′2 + (θ4 + θ5 + θ1 + θ2 + µ)b1 − θ3a1 = 0


(A8)

h0 : c′0 = 0

h1 : c′1 + (σ + µ)c0 − θ4b0 − Ka0e0 = 0

h2 : c′2 + (σ + µ)c1 − θ4b1 − K(a0e1 + a1e0) = 0


(A9)

h0 : d′0 = 0

h1 : d′1 + (α + µ)d0 − σc0 − θ5b0 = 0

h2 : d′2 + (α + µ)d1 − σc1 − θ5b1 = 0


(A10)

h0 : e′0 = 0

h1 : e′1 + (φ + γ + µ)e0 − αd0 = 0

h2 : e′2 + (φ + γ + µ)e0 − αd1 = 0


(A11)
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h0 : f ′0 = 0

h1 : f ′1 + (ω + δ1 + µ) f0 − θ1b0 − γe0 = 0

h2 : f ′2 + (ω + δ1 + µ) f1 − θ1b1 − γe1 = 0


(A12)

h0 : g′0 = 0

h1 : g′1 + (δ2 + µ)g0 − θ2b0 −ω f0 = 0

h2 : g′2 + (δ2 + µ)g1 − θ2b1 −ω1 f1 = 0


(A13)

h0 : n′0 = 0

h1 : n′1 − φe0 = 0
h2 : n′2 − φe1 = 0


(A14)

Solving (A7)–(A14) by direct integrating method for h0, we obtain the following

a0 = S0

b0 = V0

c0 = E10

d0 = E20

e0 = I0

f0 = R10

g0 = R20

n0 = D0



(A15)

where S0, V0, E10, E20, I0, R10, R20, D0 are all constants.
Substituting (A15) into (A7)–(A14) and solving by direct integration method for h1,

we obtain the following equations.

a1 =
(
Λ + δ2R20 + δ1R10 − KS0 I0 − (θ3 + µ)S0

)
t

b1 =
(
θ3S0 − (µ + θ2 + θ1 + θ5 + θ4)V0

)
t

c1 =
(
KS0 I0 + θ4V0 − (µ + σ)E10

)
t

d1 =
(
θ5V0 + σE10 − (µ + α)E20

)
t

e1 =
(
αE20 − (γ + µ + φ)I0

)
t

f1 =
(
γI0 + θ1V0 − (ω + δ1 + µ)R10

)
t

g1 =
(
ωR10 + θ2R20 − (δ2 + µ)R20

)
t

n1 = φI0t



(A16)
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Similarly, substituting (A15) and (A16) into (A7)–(A14) and solving by direct integration
for h2, we obtain the following equations.

a2 =


δ2(θ2R20 + ωR10 − (µ + δ2)R20) + δ1(γI0 + θ1V0 − (µ + ω + δ1)R10)−

(θ3 + µ)(Λ + δ2R20 + δ1R10 − (θ3 + µ)S0 − KS0 I0)−

K(Λ + δ2R20 + δ1R10 − (θ3 + µ)S0 − KS0 I0)I0 − KS0(αE20 − (γ + φ + µ)I0)


t2

2
(A17)

b2 =

 θ3(Λ + δ2R20 + δ1R10 − (θ + µ)S0 − KS0 I0)−

(θ4 + θ5 + θ1 + θ2 + µ)(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)

 t2

2
(A18)

c2 =


K(Λ + δ2R20 + δ1R10− (θ3 + µ)S0 − KS0 I0)I0+

KS0(αE20 − (γI0 − µ− φI0)I0) + θ4(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)−

((σ + µ))(KS0 I0 + θ4V0 − (σ + µ)E10)


t2

2
(A19)

d2 =

 σ(KS0 I0 + θ4V0 − (σ + µ)E10) + θ5(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)−

(α + µ)(θ5V0 + σE10 − (α + µ)E20)

 t2

2
(A20)

e2 =
(

α(θ5V0 + σE10 − (α + µ)E20)− (φ + γ + µ)(αE20 − (γ + µ + φ)I0)
) t2

2
(A21)

f2 =

 γ(αE20− (γ + µ + φ)I0) + θ1(θ3S0 − (θ1 + θ2 + θ4 + θ5 + µ)V0)−

(ω + δ1 + µ)(γI0 + θ1V0 − (ω + δ1 + µ)R10)

 t2

2
(A22)

g2 =

 θ2(θ3S0 − (θ1 + θ2 + θ4 + θ5 + µ)V0)−ω(γI0 + θ1V0 − (δ1 + ω + µ)R10)−

(δ1 + µ)(θ2R20 + ωR10 − (δ2 + µ)R20)

 t2

2
(A23)

n2 =
(

φ(αE20 − (γ + µ + φ)I0)
) t2

2
(A24)
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But, from (A28), if we let:

limh→1 S(t) = limh→1(a0 + ha1 + h2a2 + . . .) = a0 + a1 + a2 + . . .

limh→1 V(t) = limh→1(b0 + hb1 + h2b2 + . . .) = b0 + b1 + b2 + . . .

limh→1 E1(t) = limh→1(c0 + hc1 + h2c2 + . . .) = c0 + c1 + c2 + . . .

limh→1 E2(t) = limh→1(d0 + hd1 + h2d2 + . . .) = d0 + d1 + d2 + . . .

limh→1 I(t) = limh→1(e0 + he1 + h2e2 + . . .) = e0 + e1 + e2 + . . .

limh→1 R1(t) = limh→1( f0 + h f1 + h2 f2 + . . .) = f0 + f1 + f2 + . . .

limh→1 R2(t) = limh→1(g0 + hg1 + h2g2 + . . .) = g0 + g1 + g2 + . . .

limh→1 D(t) = limh→1(n0 + hn1 + h2n2 + . . .) = n0 + n1 + n2 + . . .



(A25)

Then, we have:

S(t) = limh→1 S(t) = limh→1(a0 + ha1 + h2a2 + . . .) = a0 + a1 + a2 + . . .

S(t) = S0 + (Λ + δ2R20 + δ1R10 − KS0 I0 − (θ3 + µ)S0)t+
δ2(θ2R20 + ωR10 − (µ + δ2)R20) + δ1(γI0 + θ1V0 − (µ + ω + δ1)R10)−

(θ3 + µ)(Λ + δ2R20 + δ1R10 − (θ3 + µ)S0 − KS0 I0)−

K(Λ + δ2R20 + δ1R10 − (θ3 + µ)S0 − KS0 I0)I0 − KS0(αE20 − (γ + φ + µ)I0)

 t2

2

(A26)

V(t) = limh→1 V(t) = limh→1(b0 + hb1 + h2b2 + . . .) = b0 + b1 + b2 + . . .

V(t) = V0 + (θ3S0 − (µ + θ2 + θ1 + θ5 + θ4)V0)t+ θ3(Λ + δ2R20 + δ1R10 − (θ + µ)S0 − KS0 I0)−

(θ4 + θ5 + θ1 + θ2 + µ)(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)

 t2

2

(A27)

E1(t) = limh→1 E1(t) = limh→1(c0 + hc1 + h2c2 + . . .) = c0 + c1 + c2 + . . .

E1(t) = E10 + (KS0 I0 + θ4V0 − (σ− µ)E10)t+
K(Λ + δ2R20 + δ1R10− (θ3 + µ)S0 − KS0 I0)I0+

KS0(αE20 − (γI0 − µ− φI0)I0) + θ4(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)−

((σ + µ))(KS0 I0 + θ4V0 − (σ + µ)E10)

 t2

2

(A28)
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E2(t) = limh→1 E2(t) = limh→1(d0 + hd1 + h2d2 + . . .) = d0 + d1 + d2 + . . .

E2(t) = E20 + (θ5V0 − σE10 − (α + µ)E20)t+ σ(KS0 I0 + θ4V0 − (σ + µ)E10) + θ5(θ3S0 − (θ4 + θ5 + θ1 + θ2 + µ)V0)−

(α + µ)(θ5V0 + σE10 − (α + µ)E20)

 t2

2

(A29)

I(t) = limh→1 I(t) = limh→1(e0 + he1 + h2e2 + . . .) = e0 + e1 + e2 + . . .

I(t) = I0 + (αE20 − (γ + µ + φ)I0)t+(
α(θ5V0 + σE10 − (α + µ)E20)− (φ + γ + µ)(αE20 − (γ + µ + φ)I0)

)
t2

2

(A30)

R1(t) = limh→1 R1(t) = limh→1( f0 + h f1 + h2 f2 + . . .) = f0 + f1 + f2 + . . .

R1(t) = R10 + (γI0 + θ1V0 − (ω + µ + δ1)R10)t+ γ(αE20− (γ + µ + φ)I0) + θ1(θ3S0 − (θ1 + θ2 + θ4 + θ5 + µ)V0)−

(ω + δ1 + µ)(γI0 + θ1V0 − (ω + δ1 + µ)R10)

 t2

2

(A31)

R2(t) = limh→1 R2(t) = limh→1(g0 + hg1 + h2g2 + . . .) = g0 + g1 + g2 + . . .

R2(t) = R20 + (ωR10 + θ2R20)t+ θ2(θ3S0 − (θ1 + θ2 + θ4 + θ5 + µ)V0)−ω(γI0 + θ1V0 − (δ1 + ω + µ)R10)−

(δ1 + µ)(θ2R20 + ωR10 − (δ2 + µ)R20)

 t2

2

(A32)

D(t) = limh→1 D(t) = limh→1(n0 + hn1 + h2n2 + . . .) = n0 + n1 + n2 + . . .

D(t) = D0 + φI0t + (φ(αE20 − (γ + µ + φ)I0))
t2

2

(A33)
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