
East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

135 | This work is licensed under a Creative Commons Attribution 4.0 International License.

East African Journal of Information

Technology
eajit.eanso.org

Volume 6, Issue 1, 2023

Print ISSN: 2707-5346 | Online ISSN: 2707-5354
Title DOI: https://doi.org/10.37284/2707-5354

EAST AFRICAN
NATURE &
SCIENCE

ORGANIZATION

Original Article

Development of Pi Sigma Neural Network Model for the Prediction of
Software Reliability Using 5 NASA Failure Datasets

Barka Piyinkir Ndahi12*, Dr. Opeyemi Aderike Abisoye, PhD1, Dr. Hamzat Olanrewaju Aliyu, PhD1 &

Dr. Oluwaseun Adeniyi Ojerinde, PhD1

1 Federal University of Technology, P. M. B. 65, Minna, Niger State, Nigeria.
2 University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria.

* Correspondance ORCID ID: https://orcid.org/0000-0002-0632-7368; Email: ndahibarka@yahoo.com

Article DOI: https://doi.org/10.37284/eajit.6.1.1366

Date Published:

13 August 2023

Keywords:

Software

Reliability,

Feedforward

Neural Networks,

 Pi Sigma Neural

Networks,

Software Fault,

Soft Computing,

Ensembles.

ABSTRACT

Software reliability models are usually used to model the failure of software

systems and prediction of its reliability potential. These models are however

plagued with less accuracy, efficiency, and resource-effectiveness. Some soft

computing methods have not yet been implemented to investigate their

effectiveness and robustness for software fault prediction. Pi Sigma Neural

Network (PSNN) software reliability prediction model was developed in this

study for a better understanding of the modelling of software systems defects

and reliability validated on 5 NASA promise datasets after carrying out data

analysis using Seaborn on Python, working with raw data, pre-processed data

with min-max normalization, Synthetic Minority Oversampling Technique

(SMOTE) to overcome class imbalance problem between defective and non-

defective modules, and then correlational analysis with varying thresholds (0.8,

0.85, 0.9 and 0.95) to reduce noise and get key features. The results obtained

using the PSNN model showed for all the datasets good average performance

for recall being highest at 79.8% based on no threshold, precision at 76.2% on

0.9 threshold, f1-score with 75.6% on 0.95 threshold and accuracy at 74.8% with

the same 0.95 threshold. A model based on recall is good at fault finding.

Modifying the structure and architecture of the PSNN, like using a voting

ensemble algorithm of varied combinations of PSNNs and using a firefly

algorithm to optimize in the future, will improve the Neural Network technique.

APA CITATION

Ndahi, B. P., Abisoye, O. A., Aliyu, H. O. & Ojerinde, O. A. (2023). Development of Pi Sigma Neural Network Model for

the Prediction of Software Reliability Using 5 NASA Failure Datasets. East African Journal of Information Technology,

6(1), 135-148. https://doi.org/10.37284/eajit.6.1.1366

CHICAGO CITATION

Ndahi, Barka Piyinkir, Opeyemi Aderike Abisoye, Hamzat Olanrewaju Aliyu and Oluwaseun Adeniyi Ojerinde. 2023.

“Development of Pi Sigma Neural Network Model for the Prediction of Software Reliability Using 5 NASA Failure

Datasets”. East African Journal of Information Technology 6 (1), 135-148. https://doi.org/10.37284/eajit.6.1.1366.

HARVARD CITATION

Ndahi, B. P., Abisoye, O. A., Aliyu, H. O. & Ojerinde, O. A. (2023) “Development of Pi Sigma Neural Network Model for

the Prediction of Software Reliability Using 5 NASA Failure Datasets”, East African Journal of Information Technology,

6(1), pp. 135-148. doi: 10.37284/eajit.6.1.1366.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0632-7368
https://doi.org/10.37284/eajit.6.1.1366

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

136 | This work is licensed under a Creative Commons Attribution 4.0 International License.

IEEE CITATION

B. P. Ndahi, O. A. Abisoye, H. O. Aliyu & O. A. Ojerinde, “Development of Pi Sigma Neural Network Model for the

Prediction of Software Reliability Using 5 NASA Failure Datasets”, EAJIT, vol. 6, no. 1, pp. 135-148, Aug. 2023.

MLA CITATION

Ndahi, Barka Piyinkir, Opeyemi Aderike Abisoye, Hamzat Olanrewaju Aliyu & Oluwaseun Adeniyi Ojerinde.

“Development of Pi Sigma Neural Network Model for the Prediction of Software Reliability Using 5 NASA Failure

Datasets”. East African Journal of Education Studies, Vol. 6, no. 1, Aug. 2023, pp. 135-148, doi:10.37284/eajit.6.1.1366.

INTRODUCTION

Millions of computing devices keep on getting

sold on a yearly basis (Alsop, 2021), and the

number continues to rise, especially in the mobile

industry, with a rate higher than laptop computers

(O’Dea, 2021). There are millions of

software/applications in stores and other places

ready for the population to embrace, with Android

users alone being capable of choosing out of 3.48

million apps as of the first quarter of 2021, and

more are being developed (Ceci, 2021). Software

and computing devices are prone to failure over

time, especially as they are released and updated

and errors or faults are in them (Bharany et al.,

2022).

Software reliability can be defined as the

probability of failure-free software operation for a

specified period of time in a specified

environment (Sahu et al., 2021). Software

reliability assessment is a means of mitigating

software failure in order to safeguard devices and

their contents by making them robust (Sahu et al.,

2021). Cases of software failure have been

discussed over time, like the problems with the

Nigerian Independent National Electoral

Commission Election Result Viewing Portal

failure, which affected the credibility of Nigerian

February 2023 presidential election, various

failures in SpaceX rockets exploding when

mastering reusable spaceship/rockets, high impact

bugs which affect vehicles/tools and ships causing

accidents and losses of lives/properties and

affecting financial systems, enterprise resource

planning system which contributed to $160

million loss for Hewlett-Packard Co. in 2004, and

Advanced Automation System cancelled after

$2.6 billion is spent by U.S. Federal Aviation

Administration in year 2004 (Acheampong, 2023;

Minow, 2023; Wu et al., 2021; Charette, 2005).

Due to software failure capabilities and effects,

finding the reliability of software is a major

research problem globally (Khan et al., 2021).

Software failure poses challenging risks to users

of computers; thus, it is imperative to offer a safe

platform for users by providing reliable methods

against failures. Software reliability is very

important because quite a number of systems,

such as cars and nuclear plants, nowadays rely on

software and for them to be resilient and reliable,

it is of great necessity. It is important to minimize

failure as much as possible, and this is achievable

with the use of soft computing techniques.

Software reliability is a key part of software

quality (Sahu et al., 2021). Assumptions and

abstractions must be made to simplify the

problem, such as by using factors like failure rate

or line of code, amongst others (Kather et al.,

2021; Prasad & Sangeetha, 2012). Software

reliability modelling has matured to the point that

meaningful results can be obtained by applying

suitable models to the problem (Sahu et al., 2021).

Reliability metrics are used to quantitatively

express the reliability of the software product. The

choice of which metric to adopt depends upon the

type of system to which it applies and the

requirements of the application domain (Kather et

al., 2021; Kaur & Bahl, 2014).

Soft computing is a form of techniques and

algorithms that deal with situations where there

are uncertainties, partial truth, and ambiguity, and

helps in forecasting, optimizing, and decision-

making in real-life situations (Pandey et al., 2021;

Burney et al., 2017). Soft computing is used in

software engineering to predict and build models

that enhance software reliability (Dhavakumar et

al., 2018).

Optimization algorithms are used in minimizing

loss functions to get desired output. Some popular

optimization techniques include gradient descent,

particle swarm optimization, firefly algorithm,

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

137 | This work is licensed under a Creative Commons Attribution 4.0 International License.

and genetic algorithm. Combining soft computing

models and optimization techniques optimally

gives better and more capable models. When

constructing models like Artificial Neural

Networks, the number of neural nets and how they

are linked could impact positively and, at times,

even negatively. Using the right number of mini-

batches and learning rate contributes to giving

models that are efficient and gives output at a rate

that is desired with a high level of accuracy.

Optimization is usually started by defining the

loss/cost function and ends with minimizing it

using optimization techniques. The choice of an

optimization algorithm can make a difference

between getting good prediction accuracy in hours

or days. The applications of optimization are

limitless and are widely researched topics in

industry as well as academia (Diwekar, 2020; Gill

et al., 2019).

Arasteh (2018) proposed a combined method that

includes Neural Network and Naïve Bayes

algorithm to build a software fault prediction

model. The paper used five traditional fault

datasets from NASA via the Promise repository to

construct and evaluate the prediction model. The

result of the experiments shows higher prediction

accuracy and precision than other methods. On

average, the accuracy of the constructed

prediction models by Naive Bayes, ANN, SVM,

and the proposed method is 84.16%, 90.79%,

87.46%, and 96.91%, respectively. The average

precision of the constructed prediction models by

Naive Bayes, ANN, SVM, and the proposed

method are 0.72, 0.74, 0.50, and 0.99. However,

the paper recommends a combination of other

learning algorithms to build an efficient prediction

model.

Kaur and Sharma (2019) employed an ANN-

based software fault prediction (SFP) model to

classify the fault-prone modules in the work, an

ANN-based approach for SFP using object-

oriented metrics. The proposed model used the

Levenberg Marquardt algorithm for the learning

process. ANN was the reputable method for defect

module prediction based on the results of the

systems proposed. The experiments were

performed on 18 public datasets from the

PROMISE repository. Receiver operating

characteristic curve, accuracy, and mean squared

error (MSE) were taken as performance

parameters for the prediction task. Results of the

proposed systems signified that ANN provides

significant results in terms of accuracy and error

rate. In this study, values of ROC-AUC varied for

different datasets. The average ROC-AUC for this

study was approximately 0.92, which showed the

usefulness of the proposed ANN prediction

model. By the rate of error minimization, the

accuracy was increased of the SFP technique.

With great accuracy, the technique of ANN

proposed can carry out defect module prediction

after comparison of the method proposed with

existing approaches.

This research, therefore, proposes a modified pi

sigma neural network to be combined with the

Firefly algorithm to predict software reliability.

Statement of the Problem

Real-time systems tasks require robust and

accurate software that will eradicate losses of

lives, environmental disasters, and huge financial

losses. Such domain includes space exploration

life-critical systems like support systems in health

care. Soft computing algorithms for software

reliability are plagued with less accuracy,

efficiency, and resource effectiveness (Son et al.,

2019). In addition, there is a need for a

combination of learning algorithms to build an

efficient and robust software reliability prediction

model (Arasteh, 2018). Some of the machine

learning techniques have never been implemented

for software fault prediction (Pandey et al., 2021).

Extensive comparisons between search-based

techniques, machine learning techniques, and

statistical techniques have not been carried out,

and few search-based techniques like Artificial

Immune Recognition System (AIRS) and Genetic

Programming (GP) have good performance in

predicting defects, but a number of studies that

support this finding are very small (Son et al.,

2019). Additionally, machine learning and

statistical techniques, on the other hand, have

been evaluated extensively. To reach conclusions,

it is important that search-based techniques are

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

138 | This work is licensed under a Creative Commons Attribution 4.0 International License.

also extensively evaluated (Son et al., 2019;

Iftikhar et al., 2018).

To address the aforementioned limitations and

challenges, this research aims to address the

combination of a modified pi sigma neural

network with firefly algorithm to predict software

reliability. This approach would aim to improve

the accuracy, precision, recall, and f1-score (Son

et al., 2019) of soft computing.

METHODOLOGY

The field of medicine, security, the stock market,

pattern recognition, image compression etc., has

all seen the application of neural networks in their

domain to assist in solving a range of problems,

and many have seen great successes (Sharma &

Chandra, 2019). This work makes efforts to

develop better models in performance for

software reliability prediction using neural

networks.

For classifying faulty or non-faulty modules, we

use neural network classifier to handle such data.

However, in multilayered perceptron, slow

training is observed due to errors propagated

backwardly, while quick learning with little

functionality is observed in a neural network that

is fed forward due to linear threshold unit (Nayak

et al., 2020; Nayak et al., 2016). Additionally, Pi

sigma neural networks (PSNN) minimize this

problem and allow for processing information in

a faster manner, and they are usually

computationally less intensive.

This research is experimental in nature and

quantitative in approach. The area of target and

sample size is the NASA metrics data program of

promise repository found on the internet

consisting of datasets with sizes of roughly 500 to

10,000 plus. Data analysis methods include a

relplot used for understanding the relationship

between variables, bar charts, countplots, a

histogram used across variables that are

categorical and a boxplot for sketching graphs to

show groups of numerical data based on their

quartiles; using seaborn in Python.

On such basis, we organize our research in four

stages: (1) developing a Pi Sigma Neural Network

Software Reliability Prediction Model, (2)

developing a voting technique based on the

combination of varied pi sigma neural networks,

(3) optimizing voting technique based on the

combination of the varied pi sigma neural

networks using firefly algorithm, (4) evaluating

the model.

The final step will give a good solution for

software reliability modelling based on the pi

sigma neural network. All models are evaluated

on data coming from the Promise repository

(Shirabad & Menzies, 2005).

Data Collection

To understand the applicability of our model, we

have already performed an initial validation of the

pi sigma neural network model on CM1, PC1,

KC1, KC2, and JM1. Data was collected from the

internet; the Promise dataset (Shirabad &

Menzies, 2005) was downloaded from the NASA

repository. This is a PROMISE Software

Engineering Repository data set made publicly

available in order to encourage repeatable,

verifiable, refutable, and/or improvable predictive

models of software engineering. The data was

used for software defect prediction. The dataset

was created by NASA, then the NASA Metrics

Data Program in the year 2004.

Table 1: Dataset description

Dataset Language Instances Attributes Faulty modules (%)

CM1 C 498 21 9.83

PC1 C 1109 21 6.94

KC1 C++ 2109 21 15.45

KC2 C++ 522 21 20.49

JM1 C 10885 21 19.35

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

139 | This work is licensed under a Creative Commons Attribution 4.0 International License.

The dataset represents defects occurring in the

software system. Accuracy, precision, recall, and

f1-score were used for measurement.

Data comes from McCabe and Halstead features

extractors of source code. These features were

defined in the 70s in an attempt to objectively

characterize code features that are associated with

software quality. The McCabe and Halstead

measures are “module”-based where a “module”

is the smallest unit of functionality. In C or

Smalltalk, “modules” would be called “function”

or “method”, respectively. CM1 is a NASA

spacecraft instrument that characterizes code

features that are associated with software quality

and are written in “C”. PC1 is flight software for

an Earth-orbiting satellite that characterizes code

features that are associated with software quality

and are written in “C”. KC1 is a “C++” system

implementing storage management for receiving

and processing ground data that characterizes

code features that are associated with software

quality. KC2 has data from C++ functions.

Science data processing is another part of the

same project as KC1; different personnel than

KC1. Shared some third-party software libraries

with KC1, but no other software overlap. It

characterizes code features that are associated

with software quality. JM1 is written in “C” and

is a real-time predictive ground system: that uses

simulations to generate predictions and

characterizes code features that are associated

with software quality. Table 2 below shows the

data structure of the datasets.

Table 2: Data structure of the datasets.

Attribute Name Attribute description

Loc McCabe’s line count of code

v(g) McCabe’s “cyclomatic complexity.”

ev(g) McCabe’s “essential complexity.”

iv(g) McCabe's “design complexity.”

N Halstead total operators + operands

V Halstead “volume”

L Halstead “program length.”

D Halstead “difficulty”

I Halstead “intelligence”

E Halstead “effort”

B Halstead

T Halstead’s time estimator

lOCode Halstead’s line count

lOComment Halstead’s count of lines of comments

lOBlank Halstead’s count of blank lines

lOCodeAndComment

uniq_Op unique operators

uniq_Opnd unique operands

total_Op total operators

total_Opnd total operands

branchCount of the flow graph

Defects module has/has not one or more reported defects

Data Analysis

From Figure 1, it was found that the data have a

common/similar distribution for all the

independent features plotted against each other

except when an independent feature is plotted

against ‘l’ like in Fig. 2 or against

‘locCodeAndComment’ like in Figure 3. Figure 2

shows there is an inverse relationship between ‘l’

and Figure all the other independent variables

except when plotted against

‘locCodeAndComment’ like in Figure 3.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

140 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Figure 1: Relationship between ‘v(g)’ and ‘loc’

Figure 2: Relationship between ‘l’ and ‘loc’

Figure 3: ‘l’ vs ‘locCodeAndComment’

Figure 4: ‘loc’ vs ‘locCodeAndComment’

Figure 1 shows that relationships between

independent variables and other independent

variables, except for the relationship with ‘l’ and

‘locCodeAndComment’, have a

direct/proportional relationship. It shows that in

the relationship of most of the independent

features, with the exception of ‘l’ and

‘locCodeAndComment’, when one increases, the

others also increase. Figure 4 shows that when

‘loc’ or other independent variables is close to 0

on the x-axis, ‘locCodeAndComment’ has most of

its values on the line relative to the independent

variable or very close to it, with a few exceptions

that are scattered.

In a similar manner, using a bar chart, it was

revealed that defect modules had a higher count

compared to all the other independent features

like in Figure 5, except when plotted against ‘l’

like in Figure 6. Figure 5 shows how the defective

modules have higher values in all the independent

features (except for ‘l’) compared to non-

defective modules. Countplot showed in Figure 7

there is a class imbalance, with non-defective

modules being a lot higher than defective

modules.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

141 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Figure 5: Bar chart of ‘loc’ and defects

Figure 6: Bar chart of ‘l’ and defects

Figure 7: Countplot showing number of non-defective modules compared to defective ones

Boxplot, on the other hand, showed that the

median, interquartile range and total distribution

of quantitative data within whiskers of defective

modules in relationship to other features is

higher/highest in all (like in Figure 8): this

indicates higher values of independent features

usually result in faults. Exceptions are of features’

l’ (see Figure 9), which was the opposite because

of the inverse relationship, and

‘locCodeAndComment’ (Figure 10), which had

0

100

200

300

400

500

FALSE TRUE

lo
c

defects

0

100

200

300

400

500

FALSE TRUE

l

defects

0

100

200

300

400

500

FALSE TRUE

co
u

n
t

defects

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

142 | This work is licensed under a Creative Commons Attribution 4.0 International License.

equal measures, which shows most of the values

are at 0 except outliers. Additionally, the boxplots

have wide outliers.

Figure 8: Boxplot of ‘loc’ against defects

Figure 9: Boxplot of ‘l’ against defects

Figure 10: Boxplot of ‘locCodeAndComment’ against defects

SIMULATION AND RESULTS

Comparison of raw data with pre-processed data

was carried out while using CM1 dataset with

PSNN using back propagation gradient descent

(Shin & Ghosh, 1991; Nayak et al., 2016; Nayak

et al., 2020) for training with epoch of 1001 with

linear activation for 3 hidden neurons and sigmoid

as activation for the output in this research. Data

was split with 70% for training and 30% for

testing, while MSE was used for training the

model. With raw data, we got roughly 10%

accuracy for both training and testing; while with

pre-processed data using min-max normalization

(Henderi et al., 2021), the accuracy rose to 90%

roughly for both the training and testing set, but it

was observed that other performance metrics

(precision, recall, f1-score) reflected imbalance

based on reporting and the report for the defective

module was poor.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

143 | This work is licensed under a Creative Commons Attribution 4.0 International License.

To solve the imbalance problem, SMOTE

oversampling (Prasetiyo et al., 2021) was used to

oversample the defective instances to balance up

with the non-defective module. Upon simulation,

accuracy for the training set was 73%, while for

the testing set, 65%. Additionally, there was a

great improvement in the other performance

metrics.

To further improve accuracy and the other

performance metrics, correlational analysis (Son

et al., 2019) was performed using thresholds of

0.8, 0.85, 0.9 and 0.95. Figure 11 shows the

results for CM1.

Figure 11: Results of various thresholds indicating performance measure for CM1 (in %)

Accuracy at the 0.9 threshold had the highest

value at 75%, while precision at the 0.9 threshold

had the highest value at 78%. Recall at no

threshold had the highest value at 77%, while the

F1 score at 0.9 threshold had the highest value at

75%.

Similar data analysis for CM1 was carried out for

PC1, KC1, KC2 and JM1, and it was found they

shared a common distribution with that of CM1.

In likewise the same manner, similar validation

was carried out using PC1, as can be seen in

Figure 12.

Figure 12: Results of various thresholds indicating performance measure for PC1 (in %)

0

20

40

60

80

100

no threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 threshold

accuracyTraining accuracy Testing Precision non-defective
Precision defective Recall non-defective Recall defective
F1-score non-defective F1-score defective

0

20

40

60

80

100

120

no threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 threshold

accuracyTraining accuracy Testing Precision non-defective

Precision defective Recall non-defective Recall defective

F1-score non-defective F1-score defective

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

144 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Accuracy for no threshold has a maximum value

of 85%; Precision has the highest score of 84% for

the threshold of 0.9. The recall had the highest

score of 96% for both no threshold and 0.95. On

the other hand, the F1 score at no threshold and

0.95 gave the best value of 86%.

Similar validation was carried out using KC1, as

can be seen in Figure 13.

Figure 13: Results of various thresholds indicating performance measure for KC1 (in %)

Accuracy at 0.85 and 0.95 thresholds have the best

value of 73%, while precision at 0.85 thresholds

has the best value of 70%. Recall, on the other

hand, no threshold has the best value of 84%, and

lastly, F1 score at no threshold, 0.85 and 0.95

thresholds give the maximum value of 74%.

In likewise the same manner, a similar simulation

was carried out using KC2, as can be seen in

Figure 14.

Figure 14: Results of various thresholds indicating performance measure for KC2 (in %)

Accuracy at 0.85 and 0.95 thresholds give the best

value of 80%; Precision max value is 83% at the

0.9 threshold. Recall on the other hand at no

threshold has the highest value at 86% while F1

score at .85 threshold give best value of 81%.

0

20

40

60

80

100

no threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 threshold

accuracyTraining accuracy Testing Precision non-defective

Precision defective Recall non-defective Recall defective

0

20

40

60

80

100

no threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 threshold
accuracyTraining accuracy Testing Precision non-defective
Precision defective Recall non-defective Recall defective
F1-score non-defective F1-score defective

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

145 | This work is licensed under a Creative Commons Attribution 4.0 International License.

In the same manner, similar validation was carried

out using JM1, as can be seen in Figure 15.

Figure 15: Results of various thresholds indicating performance measure for JM1 (in %)

Accuracy at 0.9 threshold gives the best value of

66% while precision is max at 0.8 threshold

having 71%. Lastly, recall has 70% for a 0.95

threshold, while F1 score at 0.95 threshold gives

the best value of 67%.

Performance Metrics

Recall happens to be the most popular

performance measure (Son et al., 2019) for

software defect prediction. Recall helps the model

to evaluate how many defects or non-defects are

predicted correctly out of the total number of

defects or non-defects. Precision is also one of the

most popular performance measures, followed by

accuracy and f1-score (Son et al., 2019). Precision

helps a model evaluate how many defects or non-

defects are correctly predicted out of a total

number of predicted defects or non-defects.

Accuracy tells us how correctly a model predicts

the overall defective and non-defective models in

relationship to all instances (Son et al., 2019).

Lastly, F1-score gives the harmonic mean based

on precision and recall.

DISCUSSION

Considering recall, the most popular performance

metric (Son et al., 2019) in software fault

prediction, no threshold performed best for the

four datasets (value of 77% for CM1, 84% for

KC1, 86% for KC2, 96% for PC1) with one out

the four being a tie with .95 threshold (PC1) while

for the last dataset JM1, it performed the 4th best

out of all the thresholds with a value of 56%

unlike the higher values gotten for the other

datasets. This could be because JM1 is a huge

dataset consisting of roughly 11,000 samples

while the rest consist of samples less than 2200.

This shows that recall gives us a good and useful

model. The average value for the recall is 79.8%.

On the other hand, considering precision, the 0.9

threshold performed the best, having maximum

value for three datasets with values of 78% for

CM1, 83% for KC2 and, 84% for PC1, 68% for

both KC1 and JM1. In likewise the same manner,

precision gives us a good and useful model. The

average is 76.2%.

Accuracy for the testing set had maximum value

for CM1 at 75% and 0.9 threshold, PC1 at 85%

with no threshold, KC1 at 73% with 0.85 and 0.95

threshold, KC2 at 80% with 0.85 and 0.95

threshold while JM1 at 66% with 0.9 threshold.

Since 0.85 and 0.95 are the most re-occurring,

they are going to be further considered. Using

0.85 threshold for CM1, accuracy is 67%, PC1 is

70%, KC1 is 73%, KC2 is 80% and JM1 is 65%.

While using threshold of 0.95, CM1 accuracy is

0

20

40

60

80

100

no threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 threshold
accuracyTraining accuracy Testing Precision non-defective
Precision defective Recall non-defective Recall defective
F1-score non-defective F1-score defective

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

146 | This work is licensed under a Creative Commons Attribution 4.0 International License.

72%, PC1 is 84%, KC1 is 73%, KC2 is 80%, and

JM1 is 65%. From analysis, it can be concluded

that 0.95 threshold gives the best predictive model

based on accuracy. The average is 74.8%.

Lastly, considering f1 score, CM1 at 0.9 threshold

gives 75%, PC1 at no threshold and 0.95 threshold

gives 86%, KC1 at no threshold, 0.85 and 0.95

threshold gives 74%, KC2 at 0.85 threshold gives

81% while JM1 at 0.95 threshold gives 67%. As

the 0.95 threshold is the max appearing in three

datasets for PC1 at 86%, KC1 at 74% and JM1 at

67%, based on analysis, this threshold gives the

best predictive model based on f1-score.

Additionally, for the same threshold, CM1 has a

value of 72%, while KC2 is 79%. The average is

75.6%.

But these results are from the simple pi sigma

neural network model without any significant

modification to its structure/nature, unlike the

next stages.

CONCLUSION

This paper showed the development of a software

reliability model using a neural network approach,

in particular, the pi sigma neural network. Results

show that this model has moderate to good

performance.

The average values as reported for recall is 79.8%,

precision is 76.2%, f1-score is 75.6% and lastly,

accuracy is 74.8%. Based on the value, theory,

data and desires of the software project, the best

predictive model that can show a good measure of

faults in the system is recall, followed by the

others based on their value and needs of software

developers as reported. The developed reliability

prediction model for software helps the software

testers to focus their effort on the error-prone

modules instead of the modules as a whole. With

cost minimal, the developers of the software can

build projects that are even better in reliability.

Future Work

The first and simple stage has shown moderate to

good results in prediction abilities. The second

stage is developing a voting technique based on

the varied combination of pi-sigma neural

networks, which is going to be applied to the

software reliability prediction modelling. The

third stage is optimizing the voting technique

based on the varied combination of pi-sigma

neural networks using the Firefly algorithm. The

firefly algorithm has shown good results on

optimization problems in the literature. The fourth

stage is evaluating the model. The combination of

these approaches and the developed model,

theoretically, will give better results on the above-

mentioned dataset and other similar ones from

NASA/promise repository.

REFERENCES

Acheampong, M. (2023). Overpromising and

Underdelivering? Digital Technology in

Nigeria’s 2023 Presidential Elections.

Alsop, T. (2021). Global PC unit shipments 2006-

2020. https://www.statista.com

Arasteh, B. (2018). Software Fault-Prediction

using Combination of Neural Network and

Naive Bayes Algorithm. Journal of

Networking Technology, 9(3), 94-101. DOI:

10.6025/jnt/2018/9/3/94-101

Bharany, S., Sharma, S., Khalaf, O. I.,

Abdulsahib, G. M., Al Humaimeedy, A. S.,

Aldhyani, T. H., ... & Alkahtani, H. (2022). A

systematic survey on energy-efficient

techniques in sustainable cloud

computing. Sustainability, 14(10), 6256.

Burney, S. A., Ali, S. M., and Burney, S. (2017).

A survey of soft computing applications for

decision making in supply chain

management. In IEEE 3rd International

Conference on Engineering Technologies and

Social Sciences (pp. 1–6).

https://doi.org/10.1109/ICETSS.2017.83241

58

Ceci, L. (2021). Number of apps available in

leading app stores 2021.

https://www.statista.com/

Charette, R. N. (2005). Why software fails. IEEE

spectrum, 42(9), 36.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

147 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Dhavakumar, P., Shankar, S., Vikram, P. M.

(2018, April). Soft computing techniques for

enhancing software reliability. International

Journal of Latest Trends in Engineering and

Technology, 133-140. https://www.ijltet.org

Diwekar, U. M. (2020). Introduction to applied

optimization (Vol. 22). Springer Nature.

Gill, P. E., Murray, W., & Wright, M. H. (2019).

Practical optimization. Society for Industrial

and Applied Mathematics.

Henderi, H., Wahyuningsih, T., & Rahwanto, E.

(2021). Comparison of Min-Max

normalization and Z-Score Normalization in

the K-nearest neighbor (kNN) Algorithm to

Test the Accuracy of Types of Breast

Cancer. International Journal of Informatics

and Information Systems, 4(1), 13-20.

Iftikhar, A., Musa, S., Alam, M., Su’ud, M. M.,

Ali, S. M. (2018, October). Application of

Soft Computing Techniques in Global

Software Development: state-of-the-art

Review. International Journal of Engineering

& Technology, 7(4.15), 304-310. DOI:

10.14419/ijet.v7i4.15.23015

Kather, P., Duran, R., & Vahrenhold, J. (2021).

Through (tracking) their eyes: Abstraction

and complexity in program

comprehension. ACM Transactions on

Computing Education (TOCE), 22(2), 1-33.

Kaur, G., & Bahl, K. (2014, May). Software

Reliability, Metrics, Reliability Improvement

Using Agile Process. IJISET - International

Journal of Innovative Science, Engineering &

Technology, 1(3). http://www.ijiset.com

Kaur, R., & Sharma, S. (2018, July). An ANN

based approach for software fault prediction

using object-oriented metrics.

In International Conference on Advanced

Informatics for Computing Research (pp.

341-354). Springer, Singapore.

Khan, A. W., Hussain, I., & Zamir, M. (2021).

Analytic hierarchy process‐based

prioritization framework for vendor’s

reliability challenges in global software

development. Journal of Software: Evolution

and Process, 33(3), e2310.

Minow, J. I. Spacecraft Anomalies and Failures

Workshop 2023: NASA Introductory

Comments. In Spacecraft Anomalies and

Failures 2023 Workshop.

Nayak, J., Naik, B., & Behera, H. S. (2016). A

novel nature inspired firefly algorithm with

higher order neural network: performance

analysis. Engineering Science and

Technology, an International Journal, 19(1),

197-211.

Nayak, J., Naik, B., Pelusi, D., & Krishna, A. V.

(2020). A comprehensive review and

performance analysis of firefly algorithm for

artificial neural networks. Nature-Inspired

Computation in Data Mining and Machine

Learning, 137-159.

O’Dea, S. (2021). Global smartphone sales to end

users 2007-2021. Retrieved from

https://www.statista.com

Pandey, S. K., Mishra, R. B., & Tripathi, A. K.

(2021). Machine learning based methods for

software fault prediction: A survey. Expert

Systems with Applications, 172, 114595.

Prasad, R. S., & Sangeetha, Y. (2012). SPC for

Software Reliability using Inflection S-

Shaped Model. International Journal of

Computer Applications, 60(2).

Prasetiyo, B., Muslim, M. A., & Baroroh, N.

(2021, June). Evaluation performance recall

and F2 score of credit card fraud detection

unbalanced dataset using SMOTE

oversampling technique. In Journal of

Physics: Conference Series (Vol. 1918, No. 4,

p. 042002). IOP Publishing.

Sahu, K., Alzahrani, F. A., Srivastava, R. K., &

Kumar, R. (2021). Evaluating the impact of

prediction techniques: Software reliability

perspective. Computers, Materials &

Continua, 67(2), 1471-1488.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 6, Issue 1, 2023
Article DOI: https://doi.org/10.37284/eajit.6.1.1366

148 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Shirabad, J. S., & Menzies, T. J. (2005). The

PROMISE Repository of Software

Engineering Databases. School of

Information Technology and Engineering,

University of Ottawa, Canada.

http://promise.site.uottawa.ca/SERepository

Sharma, D., & Chandra, P. (2019). A comparative

analysis of soft computing techniques in

software fault prediction model

development. International Journal of

Information Technology, 11(1), 37-46.

Shin, Y., & Ghosh, J. (1991, July). The pi-sigma

network: An efficient higher-order neural

network for pattern classification and function

approximation. In IJCNN-91-Seattle

international joint conference on neural

networks (Vol. 1, pp. 13-18). IEEE.

Son, L. H., Pritam, N., Khari, M., Kumar, R.,

Phuong, P. T. M., & Thong, P. H. (2019).

Empirical study of software defect prediction:

a systematic mapping. Symmetry, 11(2), 212.

Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., &

Mu, D. (2021). Improving high-impact bug

report prediction with combination of

interactive machine learning and active

learning. Information and Software

Technology, 133, 106530.

http://creativecommons.org/licenses/by/4.0/

