DEPARTMENT OF CHEMISTRY SCHOOL OF NATURAL AND APPLIED SCIENCES FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA FIRST SEMESTER EXAMINATION 2012/2013 SESSION

COURSE CODE: CHM313

UNITS: 2

COURSE TITLE: MOLECULAR PROPERTIES

TIME ALLOWED: 2 HOURS

INSTRUCTIONS: Answ

CTIONS: Answer any three (3) Questions

- 1. (a). Briefly explain the theory of infrared absorption and hence enumerate its limitations as a molecular spectroscopic technique.
 - (b). What are the various types of vibrations in infrared spectroscopy?
 - (c) (i) Why is the total number of observed absorption bands generally different from the total number of fundamental vibrations?
 - (ii) What are the basic components of IR dispersive spectrometer and hence explain the relevance of the monochromator
 - (iii) What are the major advantages of Fourier Transform Spectrometers over dispersive instruments?
 - (d). Enumerate common applications of Infrared spectroscopy.
- 2. (a). Briefly explain nuclear spin and splitting of energy levels in a magnetic field
 - (b). Explain the following:
 - (i) Resonance phenomenon
 - (ii) Diamagnetic shielding
 - (iii) Chemical shifts
 - (iv) Calculation of transition energy
 - (v) Absorption of radiation by a nucleus in a magnetic field.
 - (c). Distinguish between spin-lattice and spin-spin relaxation
- 3. (a). Briefly explain your understanding of Raman spectroscopy and hence give reason for the popular use of anti-stokes lines in molecular analysis
 - (b). Write down an equation to represent the following in Roman spectroscopy:
 - (i) Energy related to harmonic oscillator
 - (ii) Number of peaks related to the degrees of freedom
 - (c). With relevant illustrations, explain infrared, Rayleigh scattering, stokes and antistokes scattering lines
 - (d). Briefly distinguish between elastic and inelastic scattering

- (a). Briefly explain the theory of microwave spectroscopy and explain why it is possible
 to determine the bond distances and bond angles in a molecule from measured
 rotational frequencies.
 - (b). What do you understand by rotational stark effect and explain its origin
 - (c). Give the rotational classification of molecules with respect to type, molecular and macroscopic examples.