

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY DEPARTMENT OF INFORMATION AND MEDIA TECHNOLOGY

SECOND SEMESTER 2014/2015 EXAMINATION

COURSE CODE: CIT 224

COURSE TITLE: DISCRETE MATHEMATICS

CREDIT UNITS:

TIME ALLOWED: 2HRS 45MIN

COURSE LECTURER(S): Mrs Stella O. Etuk

NUMBER OF QUESTIONS: 4

NUMBER OF PAGES: 2 (INCLUDING THIS PAGE)

INSTRUCTIONS

- Answer all questions
- Do not use red pen
- · Rease use a clear handwriting
- This exam is closed book, closed notes, closed laptop and closed cell phone
- Please use non-programmable calculators only

1. a) Show that $[p - (q \wedge r)] \equiv [(p - q) \wedge (p - r)]$

5mks

- b) Let p, q and r be the propositions:
 - p: You have the flu
 - q: You miss the final examination
 - r: You pass the course

Express the following compound propositions as English statements

- $q \rightarrow \neg r$ ii. $(p \land \neg q) \rightarrow r$
- iii ¬q → r

3mks

c) Use the technique of Mathematical Induction to prove that $1+2+3+\cdots+n=\frac{n(n+1)}{2},\ n\geq 1$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2},\ n\geq 1$$

7mks

- 2. a) Let $A = \{x, y\}$ and $B = \{1, 2, 3\}$ be sets. Find the following
 - i. $A \times B$
- ii. B
- iii. P(A)
- iv. P(B)

 $V. A \cup B$

5mks

- b) Consider the "divides" relation on the set $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - i. Show that this relation is a partial order on A.
 - ii. Draw a Hasse diagram for the "divides" relation.
 - iii. List the maximum elements, minimum elements, greatest element and least element

- 3. a) Define the following terms:
 - i. Function ii. Injective Function iii. Surjective Function iv. Bijective Function
 - v. Inverse Function

- b) Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x - 3 and g(x) = 3x - 4. Find:
- i. The composite $(f \circ g)(x)$
- ii. The composite $(g \circ f)(x)$

4mks

- c) Use K-maps to minimize the following sum-of-products Boolean expressions
- (a) $xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$
- (b) $x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$

6mks

- 4. a) Define the following terms:
 - i. Simple graph
- ii. Loops
- iii. Directed graph iv. Multigraph
- v. Degree of a vertex

5mks

b) Determine the degree of each vertex in the undirected graph below

10mks