C41: LINEAR AND NON-LINEAR MATHEMATICAL MODEL TO PREDICT THE ONSET OF RETINAL HAEMORRHAGE	70
C42: THE MATHEMATICS OF SCIENTIFIC COMPUTATION AS APPLIED IN BIOLOGICAL PROBLEM (BACTERIAL CULTURE)	
C43: THE EFFECT OF COMORBIDITY OF DIABETES MELLITUS ON DIABETICS' POPULATION FROM SIMPLE MATHEMATICAL MODEL	
C44: PARAMETER WITH THE GREATEST IMPACT ON THE MATHEMATICAL MODEL OF TRANSMISSION DYNAMICS OF SARS – COV – 2 (COVID – 19) WITH VACCINE PREVENTIVE MEASURES AMONG NIGERIAN POPULACE	72
C45: MATHEMATICAL MODEL SHOWING PREVENTIVE MEASURE AS A KEY TO REDUCING CORONAVIRUS DISEASE 19 (COVID-19) SPREAD	73
C46: MATHEMATICAL ANALYSIS OF A CO-INFECTION MODEL FOR HPV-SYPHILIS	74
C47: MATHEMATICAL MODEL FOR THE TRANSMISSION DYNAMICS AND CONTROL OF HIV/AID INCORPORATING DRUGS RESISTANT COMPARTMENT	
C48: MODELLING AND SIMULATION OF HBV DISEASE WITH INFECTIOUS LATENT	75
C49: A PERIODICALLY-FORCED MATHEMATICAL MODEL FOR SEASONAL DYNAMICS OF LASSA FEVER IN NIGERIA	
C50: MATHEMATICAL MODEL SHOWING PREVENTIVE MEASURE AS A KEYTO REDUCING CORONAVIRUS DISEASE 19 (COVID-19) SPREAD	76
C51: PARAMETER WITH THE GREATEST IMPACT ON THE MATHEMATICAL MODEL OF TRANSMISSION DYNAMICS OF SARS – COV – 2 (COVID – 19) WITH VACCINE PREVENTIVE MEASURES AMONG NIGERIAN POPULACE	77
C52: ESTIMATING THE IMPACTS OF CONTROL MEASURES FOR A TYPHOID FEVER UNDER SOCI ECONOMIC CONDITIONS	
C52: A MATHEMATICAL MODEL FOR THE FERTILITY DYNAMICS OF A FARM FIELD	78
C53: STABILITY ANALYSIS OF PNEUMONIA INFECTION MODEL WITH SCREENING, TREATMENT AND VACCINATION	
C54: MATHEMATICAL MODELING AND OPTIMAL CONTROL APPLICATION ON LASSA FEVER DISEASE WITH THE CONTROLS OF VACCINATION, EARLY DIAGNOSIS AND RODENTICIDE	79
C55: STOCHASTIC SIR HOUSEHOLD EPIDEMIC MODEL WITH MISSPECIFCATION AND MISCLASSIFCATION	80
D: Fluid Dynamics and Other Flow models	81
D1: MHD NATURAL CONVECTION FLUID FLOW BETWEEN TWO INFINITELY VERTICAL POROUS PLATES IN THE PRESENCE OF INDUCED MAGNETIC FIELD WITH HEAT SOURCE EFFECT	
D2: UNSTEADY GENERALIZED COUETTE FLOW IN A HORIZONTAL CHANNEL WITH SUDDEN APPLICATION OR REMOVAL OF A POROUS MATERIAL	82

D3: MAGNETIC FIELD EFFECT ON TIME PERIODIC NATURAL CONVECTION FLOW IN A VERTICAL MICROANNULUS WITH HEAT SOURCE/SINK
D4: ANALYSING CHEMICAL AND MECHANICAL HEAT SOURCES IN THERMAL EXPLOSION
D5: EFFECT OF RADIATIVE HEAT TRANSFER ON MHD FLOW WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE
D6: MATHEMATICAL MODELING FOR PREDICTING FIRE SPREAD IN A REAL-TIME COUPLED ATMOSPHERIC-WILDLAND FIRES
D7: A SEMI – ANALYTICAL SOLUTION OF ONE - DIMENSIONAL CONTAMINANT FLOW PROBLEM INCORPORATING THE ZERO ORDER SOURCE PARAMETER
D8: ANALYTICAL STUDY OF THE EFFECTS OF CHANGE THE DECAY PARAMETER IN THE CONTAMINANT FLOW MODEL UNDER THE NEUMAN BOUNDARY CONDITIONS
D9: IMPACT OF CHANGE IN ZERO ORDER SOURCE PARAMETER ON THE FATE OF CONTAMINANT IN A FLOW OF ONE-DIMENSION VIA A HOMOGENEOUS POROUS MEDIUM
D10: STEADY STATE TWO DIMENSIONAL FLOW OF A HYDRODYNAMIC SECOND GRADE FLUID AND HEAT TRANSFER WITH SORET AND DUFOUR EFFECTS
D11: THERMO-DIFFUSION EFFECTS ON HEAT AND MASS TRANSFER OF MAGNETOHYDRODYNAMICS FLUID FLOW IN POROUS MEDIA
D12: ANALYSIS OF LEAKAGE OF NON-VISCOUS FLOW IN A PIPE USING METHOD OF PRESSURE DROP
D13: AVAILABILITY MODELLING AND EVALUATION OF A SERIAL FULL CAPACITY EXTRUDER MACHINE
D14: DERIVATION AND ANALYTICAL SOLUTION OF MATHEMATICAL MODELS VIA DECAY SUBSTANCE, HEAT PROBLEM AND ELECTRICAL CIRCUIT USING BERNOULLI METHOD
D15: OSCILLATORY FLOW IN A VERTICAL DOUBLE-PASSAGE CHANNEL
D16: MODELING HEAT AND MASS TRANSFER OF A CONVECTIVE-DIFFUSION TEXTILE DRYING PROCESS
D17: FLOW-INDUCED MURMURS IN THE VASCULATURE AND CARDIAC VALVES
D18: G-JITTER INDUCED NATURAL CONVECTION FLOW BEHAVIOUR IN EXISTENCE OF LORENTZ FORCES IN A VERTICAL MICROCHANNEL
D19: A THREE LAYERED PULSATILE MAGNETOHYDRODYNAMIC (MHD) THIRD GRADE BLOOD FLOW IN A STENOSED ARTERY
D20: ROLE OF HYDRAULIC CONDUCTIVITY ON GROUNDWATER FLOW IN RIVERBANK FILTRATION SYSTEM
D21: EFFECT OF THERMAL AND SOLUTAL GRASHOF NUMBERS ON UNSTEADY MHD COUETTE FLOW THROUGH A PARALLEL POROUS PLATE WITH CONSTANT PRESSURE GRADIENT

investigated. Also the inform of the frictional contribution on the rate of reaction and ignition time have been investigated.

Keywords: Thermal Explosion, Internal friction, ignition time, Semenov Parameter. Stationary theory, Frank-Kamenetskii.

D5: EFFECT OF RADIATIVE HEAT TRANSFER ON MHD FLOW WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

¹Okedoye, A.M (Ph.D) and ² Panya, A.L.

¹ Mathematics Department, Federal University of Petroleum Resources, Effurun

² Mathematics Department, College of Education, Warri

Abstract

An analysis has been carried out to discuss the nonlinear MHD, steady, two dimensional, laminar boundary layer flows with heat transfer characteristics of an incompressible, viscous, electrically conducting and radiating fluid with variable viscosity over a surface stretching with power-law velocity in the presence of a variable magnetic field and nonlinear radiation effects. The fluid is assumed to be a gray, emitting, absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. Then the resulting nonlinear ordinary differential equations are solved numerically using the Nachtsheim-Swigert iteration shooting technique for satisfaction of asymptotic boundary conditions by Runge-kutta fourth order method. The numerical results for velocity and temperature distribution are obtained for different values of viscosity measuring parameter, velocity exponent parameter, magnetic interaction parameter, surface temperature parameter, radiation parameter and Prandtl number. Values for skin friction coefficient and dimensionless rate of heat transfer are also obtained numerically for variation of physical parameters.

Keywords: Nonlinear Radiation, MHD flow, Stretching surface, power-law velocity & variable viscosity.

D6: MATHEMATICAL MODELING FOR PREDICTING FIRE SPREAD IN A REAL-TIME COUPLED ATMOSPHERIC-WILDLAND FIRES

^{*}Zhiri, A. B. and Olayiwola, R. O. Department of Mathematics Federal University of Technology, Minna. Nigeria ^{*}a.zhiri@futminna.edu.ng olayiwola.rasaq@futminna.edu.ng

Abstract

This paper presents a mathematical model for predicting fire spread in a real-time coupled Atmospheric-wild land fires. The model equations are solved analytically using direct integration and eigenfunction expansion technique. The results of the simulation are presented graphically using MAPLE package and discussed. It is observed that the parameter involved played a crucial role in the propagation of wild land fires.

Keywords and Phrases: Wildland, Fire spread, Crown fires, Prediction, Combustion

D7: A SEMI – ANALYTICAL SOLUTION OF ONE - DIMENSIONAL CONTAMINANT FLOW PROBLEM INCORPORATING THE ZERO ORDER SOURCE PARAMETER

Shuaibu, B. N and Jimoh, O. R Department of Mathematics, Federal University of Technology Minna e-mail- nafisatbarde1987@gmail.com ; phone no: 08031526602

Abstract

A semi – analytical study for a time dependent one – dimensional advection – dispersion equation (ADE) with Neumann homogenous boundary conditions for studying contaminants flow in a homogenous porous media is presented. The governing equation which is a partial differential equation includes terms like advection, hydrodynamic dispersion, and first order decay processes incorporating a zero order source effects. The velocity of the flow is considered exponential in nature. The solution was obtained using Eigen function expansion technique after a suitable transformation. The results which investigate the effect change in the parameters on the concentration were discussed and represented graphically. The study revealed that as the zero order source coefficient increases, the contaminant concentration decreases.

Keywords: Contaminants, zero order source, advection, dispersion, homogenous, Eigen functions.

D8: ANALYTICAL STUDY OF THE EFFECTS OF CHANGE THE DECAY PARAMETER IN THE CONTAMINANT FLOW MODEL UNDER THE NEUMAN BOUNDARY CONDITIONS

Adebayo, A¹. and Jimoh, O. R².

^{1,2}Department of Mathematics, Federal University of Technology, Minna, Nigeria. Email address: razaq.jimoh@futminna.edu.ng Phone: 08162934661, 08035930247

Abstract

The advection-dispersion equation is commonly employed in studying solute migration in a flow. This study presents an analytical solution of a two-dimensional advection-dispersion equation for evaluating groundwater contamination in a homogeneous finite medium which is initially assumed to be contaminant free. In deriving the model equation, we assume that there