FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGERIA SCHOOL OF ELECTRICAL ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHATRONICS ENGINEERING FIRST SEMESTER 2019/2020 B.Eng. DEGREE EXAMINATION COURSE: MCE 534: Real-Time Systems

INSTRUCTION: Answer Atleast Two Questions From Each Section, All Questions Carry Equal Marks

TIME ALLOWED: 2 Hours

SECTION A **Question One**

- (a) Show how a user interacts with hardware (support your answer with diagram) [4 Marks]
- (b) Explain the term "failed system" as it relates to real-time systems [2 Marks]
- (c) Present a block diagram illustration for an n-input, m-output system [2 Marks]
- (d)Expatiate on the acronym IDE, as it is utilized in real-time systems [4 Marks]
- (e) Explain briefly, the associated terms; text editor, linker and compiler respectively [3 Marks]

SECTION B Question One

- 3a) Define the following Real time System (RTS) terminologies and give an example:
 - i. Timing constrains 1 Mark
 - ii. Relative deadlineiii. Absolute deadline1 Mark1 Mark
 - iv. Response time. 1 Mark
- b) State three (3) classes of RTS and give atleast three (3) examples of each. **3 Marks**
- c) Briefly explain two (2) primary techniques use in RTS design.
- d) differentiate between a human brain and computer.

2 Marks

2a) A single job has a release time of 3msec, absolute deadline of 10msec and its completes its execution at 9msec. what is the relative deadline and its response time of the job. **5 Marks**

- b) state the most intelligent computer?
- c) What do you understand by the term computer architecture?.
- d) Draw the Gantt chart illustrating the execution of these processes with rate monotonic Algorithms.

Processes	Burst time	Arrival time	Period
P1	2	0	10
P2	1	0	5
P3	5	0	30
P4	2	0	15

3a)

Draw a Gantt chart illustrating the execution of a CPU tasks using Earlest Deadline First (EDF). Also compute the CPU utilization by each task. **5 Marks**

Task	Capacity	Deadline	Period
T1	3	8	5
T2	3	2	15
T3	2	4	10