FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGERIA
 SCHOOL OF ELECTRICAL ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHATRONICS ENGINEERING
 SECOND SEMESTER 2018/2019 B.Eng. DEGREE MID-SEMESTER EXAMINATION
 COURSE: MCE 325(Signal Processing and Communication)
 INSTRUCTION: Attempt All Questions
 TIME ALLOWED: 2 Hours.

Question 1 (15 Marks)

Given the sequence of the two signals, $x[n]$ and $h[n]$, perform convolution on the given signals,
$x[n]=\left[\begin{array}{llllllll}0 & 0 & 0 & \underbrace{-2} 0 & 1-1 & 3 & 0 & 0\end{array}\right], h[n]=\left[\begin{array}{lllllllll}0 & 0 & 0 & \underset{\sim}{1} & 2 & 0 & -1 & 0 & 0\end{array}\right]$, For $\mathrm{n} \leq 7$
i. Using graphical method with appropriate equations and graphs. [8 Marks]
ii. Using tabular method and plot all the necessary graphs.
[7 Marks]

Question 2 (15 Marks)

Table 1 shows the data sequence obtained from a sensor, use the data to answer questions (i) to (iii)

Table 1:

N	0	1	2	3	4	5	6	7	8	9
$\mathrm{x}(\mathrm{n})$	3	2	3	4	4	3	2	4	4	3

a) Use the data to compute the output of a system given by
i. $\quad y(n)=0.2 x(n)-0.25 x(n-1)-0.5 x(n-2)$
[3 Marks]
ii. $\quad y(n)=0.1 y(n-1)-0.03 x(n-1)-0.3 x(n)$ [3 Marks]
iii. $\quad y(n)=0.1 y(n-1)-0.2 y(n-2)-0.3 x(n)-0.2 x(n-1) \quad$ [3 Marks]
b) Plot $y(n)$ for each of the equations.
c) Draw the schematic Diagram for each of the equations.

Question 3 (15 Marks)

a. Given

$$
x(n)=\left(\frac{1}{5}\right)^{n}[u(n)-u(n-3)]
$$

Determine $\mathrm{X}(\mathrm{z})$ and its ROC
b. The system characteristic equation is given by the difference equation

$$
y(n)=3.5 y(n-1)-1.5 y(n-2)+x(n)-5 x(n-1)+6 x(n-2)
$$

i) Determine the system transfer function.
ii) Determine the unit sample response of the system.
iii) Determine the response of the system to $x(n)=\partial(n)-0.5 \partial(n-1)$ [3 Marks]

Question 4 (15 Marks)

a. You are to design a causal discrete-time LTI system with the property that input is $x(n)=\left(\frac{1}{2}\right)^{n} u(n)-\frac{1}{4}\left(\frac{1}{2}\right)^{n-1} u(n-1)$ and the output is $y(n)=\left(\frac{1}{3}\right)^{n} u(n)$
i. Determine the impulse $h(n)$ and the system function $H(z)$ of a system that satisfies the design conditions.
ii. Find the difference equation that characterizes this system.
iii. Determine a realization of the system that requires the minimum possible amount of memory.
[3 Marks]
iv. Determine if the system is stable
b. Determine the zero-state response of the system $y(n)=\frac{1}{2} y(n-1)+4 x(n)+$ $3 x(n-1)$ to the input $x(n)=e^{j w_{0} n} u(n)$. What is the steady-state response of the system?
[4 Marks]

