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Abstract 

Flooding is one of the most devastating natural disasters, occurring annually in many 

parts of the world. It remains a significant natural hazard despite recent advances in the 

scientific mechanisms causing it and increased expenditure on flood defenses. 

Floodplains are a desirable location for communities in the areas with the highest 

concentrations of people and property; they have been utilized globally for food 

production, frequently under the control of physical infrastructure (such as levees or 

dams), and have reduced these advantages and made agricultural production and related 

human settlements vulnerable to flood damage. As a result of the abundance of barriers 

that are utilised for hydropower generation, irrigation, and fish farming, the risk is always 

significant for individuals who reside in floodplains. Developing flood models is 

imperative for policymakers to make timely decisions about emergency responses and 

future planning. However, the accuracy of such models relies on the nature of the 

resolution of the Digital Elevation Models (DEM) used in their development. The study 

investigates the impacts of 1 m resolution Unmanned Aerial Vehicle (UAV)-derived 

DEM, 10 m resolution Interferometric Synthetic Aperture Radar (InSAR)-derived DEM, 

and 30 m resolution Shuttle Radar Topographic Mission (SRTM)-derived DEM) in flood 

modelling along the floodplain of Shiroro Dam, Niger State, Nigeria. The performance 

of the three DEMs for flood modelling was examined with the aid of flood inundation 

modelling (3D analyst) tools in the ArcScene environment of ArcGIS 10.4, using results 

obtained from the Shallow Water Equation (SWE) as initial input. The choice of materials 

and methods used is in parts of this work. Using the shallow-water equation (evaluated 

using MATLAB by integrating obtained river channel bathymetric information and 

topographic information from the three DEMs as input), the study determined the 

discharge volume, discharge rate, and flow velocity at some identified nodes along the 

river channel and its tributaries, thus providing a basis for determining possible flood 

levels within the study area. The flood levels were identified for each of the three DEMs 

using the start and end nodes as major identification points along the 12 river channels in 

the study area. Flood levels of 150 m and 250 m were identified for the UAV-derived 

DEM, while for the InSAR 10 m DEM, 160 m and 270 m were identified. The flood 

levels SRTM 30 m DEM were 200 m and 280 m. Flood events covering the two flood 

levels were then simulated in the ArcScene environment of ArcGIS 10.4 software to 

estimate the vulnerability of settlements within the study area. Comparing the impacts of 

the UAV-derived 1 m resolution data with InSAR 10 m resolution and SRTM 30 m 

resolution data yields Root Mean Square Errors (RMSE) of 0.249 m, 0.352 m, and 0.455 

m, respectively. The analysis, however, showed that the UAV-derived 1 m DEM reliably 

predicted the flood risk situation due to its high resolution of the other two DEMs, InSAR 

10 m and SRTM 30 m, which produced higher estimate of the the flood risk situation in 

the study area. Thus, the accuracy of the DEM plays a significant role in generating flood 

inundation maps by adequately presenting the topographic data of the river channel and 

the floodplain. DEMs with higher resolution and accuracy provide more reliable maps for 

flood simulations. The study recommends that low-resolution derived DEMs from InSAR 

10 m and SRTM 30 m are insufficient for flood hazard estimation; higher-resolution 

UAV-derived 1 m DEM. 
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CHAPTER ONE 

1.0                INTRODUCTION 

1.1 Background to the Study 

 

Natural factors like river overflow from precipitation, severe occurrences like hurricanes 

and earthquakes, and artificial factors like dam failures and expansion on floodplains are 

all potential causes of flooding (Mishra and Satapathy, 2021; Almoradie et al., 2020). 

Floodplains are a desirable location for communities in the areas with the highest 

concentrations of people and property (Fang et al., 2020). These floodplains have been 

utilized globally for food production, frequently under the control of physical 

infrastructure (such as levees or dams), which has reduced these advantages and made 

agricultural production and related human settlements vulnerable to flood damage. As a 

result of the existence of dams that are utilised for hydropower generation, irrigation, and 

fish farming, the risk is always significant for individuals who reside in floodplains 

(Adesina et al., 2021). 

 

The dams are often constructed with concrete or natural materials like rock and dirt, but 

they are occasionally severely built, poorly maintained, and situated close to human 

settlements. At the peak of rainy seasons, they have the potential to overflow, causing 

torrents of water to inundate floodplain communities. The water released by dam 

authorities also has a major when the floodplain of the reservoir is flooded. A strategy 

that would have reduced losses and suffering in the long term could have been undertaken 

if the extent and likely severity of the damages were understood. Unfortunately, poverty 

is widespread in emerging nations like Nigeria, where people heavily depend on the 

floodplains for their financial stability. 
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Consequently, it is impossible to expect the people who live in floodplains to relocate to 

other areas; hence, strategies must be developed to lessen the suffering caused by such 

occurrences. Yin et al. (2020), on the other hand, proposed a successful method of 

controlling flood risks, which is flood forecasting and early warning. This plan may 

include flood prevention, monitoring, recovery, readiness, and risk control (Wang et al., 

2020). In industrialized nations, studies on flood modelling are becoming more and more 

popular (Puno et al., 2018). The use of higher resolution DEMs in flood inundation 

mapping, which results in more precise flood maps, has been the subject of several 

research (Puno et al., 2015; Adesina et al., 2021). The amount of ground surface area 

each cell in a DEM covers is known as its spatial resolution. Therefore, a higher-

resolution digital elevation model (DEM) better represents topography since it has more 

cells per unit area than a lower-resolution DEM (ESRI, 2014a).  

 

The utilisation of remote sensing technology has revolutionised the ability to monitor and 

comprehend the dynamic nature of the Earth's surface, offering valuable insights for 

various applications, including flood modelling (Jafarzadegan and Merwade, 2017; 

Hawker et al., 2018; Bhuyian and Kalyanapu, 2018). Floods are natural disasters that 

cause widespread economic and environmental damage across the globe (Sanders et al., 

2020). Accurately predicting and modelling floods are crucial for effective disaster 

management, risk assessment, and mitigation strategies (Jones et al., 2020). In recent 

years, researchers have increasingly emphasised the use of high-resolution Digital 

Elevation Models (DEMs) derived from remote sensing data to enhance the precision of 

flood models (Jafarzadegan and Merwade, 2017; Hawker et al., 2018; Bhuyian and 

Kalyanapu, 2018). 
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Rainfall patterns, climatic changes, and global warming are a few factors that affect the 

occurrence and intensity of floods (Sanders et al., 2020). Climate change-induced 

alterations in precipitation patterns, including increased rainfall intensity and frequency, 

have been observed in many regions (Jones et al., 2018). Nigeria, for instance, 

encountered devastating flood events in 2012 that resulted in damages exceeding $16.9 

billion, impacting property, oil production, agriculture, and other sectors (Komolafe, 

2021; Egbenta et al., 2015). These changes have heightened the risk of flooding in various 

areas, necessitating the development of reliable flood models capable of capturing the 

intricate dynamics of water movement and inundation. In flood modelling, the influence 

of DEM resolution on flood property estimation has been an ongoing area of research. 

DEMs serve as vital inputs by providing detailed information about the topography and 

elevation of the terrain (Jafarzadegan and Merwade, 2017). Higher resolution DEMs 

enable a more accurate representation of the land surface, which is essential for precise 

simulation of flood behaviour, such as flow pathways, floodplain extent, and flood depths 

(Hawker et al., 2018). Various remote sensing techniques have been employed over the 

years to acquire DEM data at different resolutions, including Unmanned Aerial Vehicles 

(UAVs), Interferometric Synthetic Aperture Radar (InSAR), and the Shuttle Radar 

Topography Mission (SRTM), among others (Bhuyian and Kalyanapu, 2018). 

 

UAVs are versatile and cost-effective tools for collecting high-resolution data. With 

advanced imaging sensors and LiDAR technology, UAVs can capture detailed 

topographic information at resolutions ranging from centimeters to meters (Jawak et al., 

2019). This fine-grained spatial resolution identifies small-scale topographic features, 

such as ditches, culverts, and artificial structures, significantly influencing flood flow 

patterns (Gupta et al., 2020). 
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InSAR, another remote sensing technique, uses satellite-based radar systems to measure 

changes in surface elevation. Particularly in regions where complex terrain or cloud cover 

limits traditional topographic mapping techniques, inSAR has demonstrated its efficacy 

in producing accurate and high-resolution DEMs (Li et al., 2020). The application of 

InSAR in deriving DEMs for flood modelling has led to an improved understanding of 

flood dynamics on a regional scale (Zhang et al., 2019). 

 

Shuttle Radar Topography Mission (SRTM) is a spaceborne radar mission that offers 

global DEM coverage with a relatively coarse resolution of approximately 30 meters (Farr 

et al., 2007). Despite its coarse resolution, SRTM data has been extensively employed in 

flood modelling due to its global coverage and consistent data quality (Bhuyian and 

Kalyanapu, 2018). It has proven valuable for large-scale flood risk assessments and initial 

flood model development in regions with limited data availability (Jafarzadegan and 

Merwade, 2017). Other remote sensing methods, like airborne LiDAR, aerial 

photogrammetry, and satellite-based optical imagery, offer different resolutions and 

capabilities for DEM acquisition (Hawker et al., 2018). Each technology presents unique 

advantages and limitations, influencing the suitability of DEM data for flood modelling 

purposes.  

 

Given the crucial role of accurate and high-resolution DEMs in flood modelling, this 

study aims to explore the impact of DEMs derived from different remote sensing 

platforms with varying resolutions on the development of flood models. By comparing 

and evaluating their impacts on flood models using DEMs of different resolutions, the 

aim is to enhance the understanding of the relationship between DEM resolution and flood 

modelling accuracy (Jafarzadegan and Merwade, 2017; Hawker et al., 2018; Bhuyian and 

Kalyanapu, 2018). This research will contribute to advancing flood prediction and 
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mitigation strategies, ultimately assisting in improved disaster management and planning 

for flood-prone regions. 

 

1.2 Statement of the Research Problem  

A DEM's spatial resolution is defined as the amount of ground surface area that each cell 

covers. Hence, a higher-resolution DEM contains more cells per unit area than a low-

resolution DEM, which more accurately depicts topography (ESRI, 2014a). The 

development of flood models heavily relies on the accuracy and resolution of Digital 

Elevation Models (DEMs) derived from remote sensing data (Jafarzadegan and Merwade, 

2017; Hawker et al., 2018; Bhuyian and Kalyanapu, 2018). While the availability of 

different remote sensing platforms and techniques offers varying resolution DEMs, the 

impact of these resolutions on the accuracy and reliability of flood models remains to be 

determined (Jones et al., 2020). 

 

 Recent literature has shown instances where flood models produced from various DEM 

sources, such as the SRTM and InSAR, have resulted in overprediction (Hawker et al., 

2018; Bhuyian and Kalyanapu, 2018). However, the literature needs more discussion 

regarding the flood models produced by these DEM sources that have demonstrated 

accuracy or optimal prediction capabilities. The impact of DEMs derived from UAVs, 

InSAR, SRTM, and other remote sensing mediums on the development of flood models 

and their influence on the accuracy of flood predictions and mitigation strategies 

investigated.  

 

To provide a contextual background for the study, Niger State in Nigeria is selected as a 

relevant location due to its frequent exposure to flooding. The state experiences many 

natural catastrophes and significant damage caused by flooding, according to the National 

Emergency Management Agency (NEMA, 2019). However, the state's disaster 
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preparedness efforts could be improved by the need for baseline data and coordinated 

measures to mitigate the effects (Komolafe et al., 2020; Komolafe et al., 2021). This study 

problem arises from the need for more accurate and detailed flood models in the face of 

increasing rainfall intensities, changing climate patterns, and the potential influence of 

global warming on flood dynamics.  

 

Understanding how different DEM resolutions obtained from various remote sensing 

platforms affect flood model accuracy is crucial for effective flood prediction, risk 

assessment, and mitigation strategies. The study investigated the impact of DEM 

resolution on flood modelling accuracy using UAVs, InSAR, and SRTM DEMs. The 

findings improved flood prediction, risk assessment, and mitigation strategies, not only 

in Niger State but also in similar regions facing similar challenges internationally. 

 

1.3 Research Questions 

The study answered the following questions: 

i. What are the topographic accuracies of UAV 1 m, InSAR 10 m, and SRTM 30 m 

DEMs? 

ii. How can the topographic accuracy of a high-resolution DEM of the study area be 

determined from the UAV data?  

iii. How can the flood extent of the study area be modelled accurately from UAV, 

InSAR, and SRTM DEMs? 

iv. Compared to UAV-derived data, how reliable are the DEMs from InSAR 10 m 

and SRTM 30 m for flood modelling? 
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1.4      Aim and Objective of the Study 

The purpose of this study is to investigate the impact of resolution DEM topographic data 

requirements for the development of an optimal flood vulnerability model in the 

communities downstream of the Shiroro dam in Nigeria to improve future flood risk 

assessment for the area and other areas with similar physical characteristics. 

 

The specific objectives of achieving the research goal are to:  

i. determine the topographic accuracies of the UAV 1 m, InSAR 10 m DEM and the 

open-source SRTM 30 m DEM. 

ii. generate a high-resolution DEM of the study area from primary UAV data and 

ascertain its topographic accuracy. 

iii. develop an accurate flood extent modelling approach using UAV, InSAR 10 m, 

and SRTM 30 m DEMs for enhanced flood prediction in the study area. 

iv. examine the accuracy of flood modelling using the various DEM sources 

(objectives 1–3) using NSEMA data. 

 

1.5      Justification for the Study    

The justification for conducting this study lies in the critical need for accurate flood 

modelling in the face of increasing rainfall intensities, changing climate patterns, and the 

potential influence of global warming on flood dynamics. By investigating the impact of 

high-resolution DEMs derived from various remote sensing platforms on flood 

modelling, researchers can better understand how to improve flood predictions and 

mitigation strategies. Previous studies have explored the impact of DEM resolution on 

flood property estimation (Jafarzadegan and Merwade, 2017; Hawker et al., 2018; 

Bhuyian and Kalyanapu, 2018), research by Azizian and Brocca (2020) has highlighted 
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the importance of optimal resolution DEMs rather than solely relying on the highest 

resolution. 

 

Evaluating remote sensing technologies such as Unmanned Aerial Vehicles (UAVs), 

Interferometric Synthetic Aperture Radar (InSAR), and the Shuttle Radar Topography 

Mission (SRTM), as well as other mediums like airborne LiDAR, aerial photogrammetry, 

and satellite-based optical imagery, will contribute to understanding their suitability and 

limitations in flood modelling applications. By comparing and evaluating the 

performance of flood models using different resolution DEMs, this study aims to uncover 

the relationship between DEM resolution and flood modelling accuracy. These insights 

will aid researchers and practitioners in selecting the most appropriate remote sensing 

platforms for acquiring DEMs based on specific project requirements and resource 

constraints. 

 

The significance of accurate and high-resolution DEMs in flood modelling cannot be 

overstated (Jafarzadegan and Merwade, 2017; Hawker et al., 2018; Bhuyian and 

Kalyanapu, 2018). These DEMs provide crucial topographic information that enables 

precise simulation of flood behaviour, including flow pathways, floodplain extent, and 

flood depths. By improving flood model accuracy by evaluating high-resolution DEMs, 

this research will advance flood prediction and mitigation strategies, enabling better 

disaster management and planning for regions prone to flooding.  

 

This study's findings will enhance flood prediction accuracy and support effective disaster 

management, risk assessment, and mitigation strategies. It will lead to better preparedness 

and response strategies, potentially saving lives and minimising economic and 

environmental damage caused by floods (Jafarzadegan and Merwade, 2017; Hawker et 

al., 2018; Bhuyian and Kalyanapu, 2018). 
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Flood risk assessment and management rely on accurate flood models to understand the 

spatial extent, intensity, and potential impacts of flooding (Azizian and Brocca, 2020). 

This study will provide more robust flood risk assessment and management tools by 

improving flood model accuracy by evaluating high-resolution DEMs. Based on these 

enhanced models, policymakers, urban planners, and emergency response teams can 

make informed decisions and implement proactive measures to reduce flood risks. 

 

In conclusion, the justification for this study is rooted in its potential to enhance flood 

prediction accuracy, address climate change challenges, evaluate remote sensing 

technologies, guide data collection strategies, and support flood risk assessment and 

management. The practical implications of the findings will benefit flood modelling 

practitioners, researchers, and decision-makers, ultimately contributing to more effective 

flood disaster planning, response, and mitigation efforts. 

 

1.6      Scope of the Study 

The scope of this study encompasses a specific geographical area, namely Niger State in 

Nigeria, known for its frequent exposure to flooding. The study's which are the 

settlements to be covered are situated downstream of the Shiroro Dam in Shiroro Local 

Government Area of Niger State, Nigeria, between longitudes 60 20' and 60 50' and 

latitudes 90 50' and 100 10' north, with a population of 404,200 people and a total land 

area of 4,700 km2 National Population Commission (NPC, 2006). The study covered 50 

km by 40 km in length and breadth from the spillway gate of the dam to the downstream, 

which comprises all the vulnerable settlements. 

 

The study focused on evaluating the impact of the resolution of Digital Elevation Models 

(DEMs) derived from various remote sensing platforms, such as Unmanned Aerial 
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Vehicles (UAVs), Interferometric Synthetic Aperture Radar (InSAR), and shuttle radar 

topography missions (SRTM), on flood modelling accuracy. 

 

Regarding the study population, the research considered the entire communities 

downstream of Shiroro Dam, Niger State, and its associated river channels prone to 

flooding (NEMA, 2019). The coverage encompassed areas with known flood risk and 

historical flood events, focusing on rivers and their surrounding regions. The study 

acquired relevant data and DEMs that cover the selected study area, emphasizing 

obtaining comprehensive coverage to ensure a representative sample of the terrain. Data 

acquisition involves utilising remote sensing technologies to collect the necessary 

information. It includes obtaining high-resolution DEMs from UAVs, InSAR, and low-

resolution SRTM. The data acquisition methods and platforms are determined based on 

their suitability for capturing accurate topographic information in the study area.  

 

The acquired data have undergone processing to generate the high-resolution DEMs 

required for flood modelling purposes. The hydrological data for 20 years include rainfall, 

temperature, inflow, water level, and outflow (water discharge). The study's findings, 

based on analysed and compared different spatial resolution DEMs for flood models, look 

at how accurate and reliable this model is at simulating flood behaviour, such as flow 

paths, floodplain size, and flood depths. The study assessed the impact of DEM resolution 

on flood modelling accuracy and identified the limitations and strengths of each remote 

sensing platform for flood modelling. 

 

The overall scope of this study is limited to the Shiroro downstream community area. The 

study emphasises data acquisition, processing, and analysis, aiming to provide insights 

into the relationship between DEM resolution and flood modelling accuracy and the 
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suitability and limitations of different remote sensing technologies in flood modelling 

applications. 

 

1.7      Study Area 

The study area was divided into the following themes: location, climate, rainfall, relief 

and drainage, hydrology, economic activities, vegetation, and land use, which were 

discussed in subsections 1.8.1 to 1.8.8. 

 

1.7.1   Description of the study area 

Shiroro Dam is 550,235 meters downstream of the Kaduna River's main tributary, the 

River Dinya. The River Kaduna, which originates in the western and northern portions of 

the Jos Plateau in north-central Nigeria and flows west and southwest from there, is the 

source of the dam. The rivers Koriga, Maarigna, and Durimi are the principal tributaries 

of the River Kaduna (Ikusemoran et al., 2014). 

 

The study's vulnerable villages were situated in Niger State, Nigeria, downstream of the 

Shiroro Dam, between longitudes 60 20' and 60 50' and latitudes 90 50' and 100 10' north. 

The map of the study area is presented in Figures 1.1 to 1.3, where Figure 1.1 shows the 

map of Nigeria where the map of Niger State was extracted, Figure 1.2 displays the map 

of Niger State where the map of the study area was extracted, and Figure 1.3 depicts the 

map of the study area. With a population of over 4 million, Niger State has a total land 

area of 72,397.81 km2. The Niger Valley terrain covers 18,007.38 km2 (24.94%), the 

plains cover 24,181.04 km2 (33.49%), the upland is 20616.09 km2 (28.55%), and the 

remaining 9593.3 km2 (13.02%) are made up of highlands (Mayomi et al., 2014).  
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Figure 1.1: Nigeria map 

Source: Niger State Ministry of Lands and Survey Department, Minna, 2017 
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Figure 1.2: Niger State map 

Source: Niger State Ministry of Lands and Survey Department, Minna, 2017 
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Figure 1.3: Study area map 
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1.7.2   Climate of the study area 

According to Koppen's classification system, the study region's climate falls under the 

wet and dry (AW) group. The year-round minimum temperature often occurs between 

December and January, while the highest temperature, about 35°C, is recorded between 

March and June (Niger State, 2012). In addition, the study area is generally hot all year 

round, lying within the tropical zone with variation between winter and summer, the wet 

season from April to October, and the dry season from November until March (Yakubu, 

2012). January through March sees very little rainfall, with an average of 5 mm in January 

and 40 mm in the far southwest in March.  

 

The extreme Northwest experienced the least precipitation, 40 mm, with the North Central 

section of the study area receiving 70 mm or more by April. During May and July, the 

Shiroro Lake Watershed gets more than 100 mm, with a high of about 280–300 mm in 

July. All sections of the North Central Watershed get between 180 and 200 mm of 

precipitation during the study area's peak wet months of July, August, and September.  

In the western portion of the region, rainfall totals exceed 300 mm. In a typical rainy year, 

September should see the highest rainfall totals of around 400 mm; in a dry year, that total 

may dip as low as 130–150 mm. The length of the rainy season (LRS), which runs from 

April 20 through May 20, lasts between 161 and 200 days. 

 

1.7.3   Drainage pattern and relief in the study area 

Shiroro Lake has an 8 x 10 m3 inflow capacity aided by about twelve smaller tributaries, 

with the Kaduna River serving as the primary source and constituting more than 70% of 

the overall capacity (Eze et al., 2018). The tributaries feeding Kaduna's main rivers are 

the Muye, Sarkin Pawa, Guni, Koriga, Durumi, and Mariga rivers. 
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Unlike other rivers in northern Nigeria, the river is perennial. The upper and middle 

stretches of the river have a primarily straight channel, though some of them have 

extended sections with a low gradient in between a series of valley steps with a steep 

gradient. When it passes through hard rocks, its course is changed, and vast canyons have 

been cut across the region of the valley's more evident steeps. Height-variant and highly 

undulating landscapes can be found. Lowlands as low as 50 meters are common in the 

study region, as are solitary hills 600 meters or higher. Schist and gneiss predominate in 

the lower terrain, while granite rocks comprise most nearby highlands (Eze et al., 2018). 

 

1.7.4   Hydrology of the study area 

The Niger and Kaduna Rivers are the two main rivers that flow through Niger State. The 

River Kaduna, a major tributary of the Niger River in central Nigeria, rises in the Jos 

Plateau and travels for over 350 km before emptying into the reservoir (Garba et al., 

2016). Before turning northwest to a curve 35 kilometers northeast of the Kaduna 

metropolis, it traverses across the Jos Plateau at Vom for 29 kilometers (Eze et al., 2018). 

From there, it travels in a southerly and south-westerly direction for the remainder of its 

550 km (340 mi) journey to the Niger at Muregi, where Shiroro Lake was built on the 

Kaduna River. 

 

The presence of wet and dry seasons determines the river's flow regime. The reservoir is 

approximately 12.8 kilometers wide. While the dry season usually lasts from November 

to March, the rainy season extends from April to October and peaks in August and 

September (Eze et al., 2018). 
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1.7.5   Economic activities in the study area 

The main economic activities in the study area's southern lowlands, which constitute 

Nupe land, include the production of rice, sugarcane, and fish. At the same time, the 

Gbagyi villages cultivate rice in the upper floodplains of the River Kaduna. However, due 

to natural irrigation, rice farming is the main economic activity around Bida, Edozhigi, 

and Badeggi. At the same time, the Shiroro Dam's floodplain is mainly used to cultivate 

yam, cassava, sugar cane, and Guinea maize (Niger State, 2012). 

 

1.7.6   Vegetation of the study area 

The surrounding environment resembles a savannah, with isolated areas of mostly tree-

lined woodlands and sparse patches of shrubs and grasses. The trees are short, broad-

leaved plants that may grow to 16.5 m, while the grasses are between 1.5 m and 3.5 m 

tall. The grasses have underground solid root systems that allow them to regenerate even 

after being destroyed during dry season bushfires until the rains arrive the following year, 

in contrast to the trees that shed their leaves during the dry season to limit water loss 

through transpiration (Eze et al., 2018). 

 

1.7.7   Soil of the study area 

Impermeable soils and rocks such as clay or shale are the most common soil types in the 

study area. It has a moderately high runoff potential (50 percent sand and 20 to 40 percent 

clay), is well-drained and shallow to moderately deep, and ranges from dark greyish 

brown to dark or intense brown to yellow-red (Shiroro Local Government, 1999). 
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1.7.8   Land use of the study area 

The region is abundant in natural resources, including water, land, and producers of rice, 

yams, maize, cotton, groundnuts, millet, and guinea corn, with many farmers and some 

fishing communities (Shiroro Local Government, 1999). 
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1      Theoretical Framework 

The condition where river discharge exceeds the allowable bank total limits is known as 

a flood. Rivers typically run in clearly defined channels, but banks are overtopped in 

situations of excessive flow, and floodplains are submerged. Fluvial flooding is the term 

for this form of flooding, the type considered in this thesis. Other frequent types of 

flooding include coastal and pluvial flooding, resulting from coastal water inundating land 

due to high tides, storm surges, and excessive rainfall in metropolitan areas that run off 

impervious surfaces. Storm surges or significant rainfall are two causes of floods (Wahl 

et al., 2015; Leonard et al., 2014). Table 2.1 provides definitions for the major flood 

constituents. 
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Table 2.1: Definitions of the main elements of a flood  

Component Definition 

Annual Flood Maximum daily flow during a year 

Bank full Discharge Discharge at which a river channel is full to capacity. 

Flood Event A series of flows that comprise of a progressive rise, culminating in a peak and then receding to a 

normal flow 

Flood Extent The areal extent of flood water on a floodplain 

Flood Peak Highest elevation reached by the flood waters during a flood event 

Flood Stage Elevation of the Water Surface 

Return Period Statistical occurrence of a flood of a particular magnitude at a location. e.g. A return period of 50 

years means on average a flood of that magnitude occurs once every 50 years 

River flood Excessive water over channel capacity causes flooding 

Coastal flood Oceanic impacts cause floods in the inland 

Urban flood Rapid runoff exceeds storm drainage capacity 

Flash flood Unpredictable, local rainfall-related disasters occur 

Fluvial flood Floods occur on floodplains due to overflowing streams and embankments. 

 

Source: Wahl et al. (2015) 
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The description of floods above relates to the physical aspect of a flood, or more 

specifically, the flood hazard. When assets or people are exposed to a condition known 

as exposure, a flood turns destructive (Arnell et al., 2018). Vulnerability is the ability of 

the exposed to foresee, manage, and withstand the impact of the hazard. It is associated 

with a complex interplay of socio-cultural, political-institutional, and economic aspects 

(Winsemius et al., 2015). Flood risk, which is described as the likelihood that a flood of 

a given magnitude and a given loss will occur within a given period (Hanington et al., 

2017; Njoku et al., 2020), is the result of the combination of these variables. 

 

2.1.1   Impact of flooding 

Among natural disasters, flooding is one of the significant contributors to economic losses 

and deaths, with the frequency of its occurrences rising annually (Sayers et al., 2018); 

hence, flooding is a severe issue that should not be underestimated (Wing et al., 2018). 

According to UNISDR (2015), flooding has impacted 2.3 billion people over the past 20 

years, killing 157,000. The nations with higher incomes typically experience the most 

significant economic losses because a relatively small number of major events can have 

a significant impact.  

 

Despite the already high and globally devastating impacts of floods, increasing flood 

events are anticipated to have more disastrous implications for several reasons. One such 

reason is the global warming of the environment (Hirabayashi et al., 2013; Dottori et al., 

2018; Kundzewicz et al., 2014; Winsemius et al., 2015; Arnell et al., 2018; Arnell and 

Gosling, 2016). Additionally, as the world's population continues to rise, people are 

anticipated to construct residential buildings in more at-risk regions due to land pressures 

and marginalization, increasing their vulnerability to flooding (Jongman et al., 2012). It 
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is anticipated that those most susceptible to inundation will be disproportionately more 

impacted by it in the future (Sayers et al., 2018). 

 

Flooding has continued to be a significant environmental issue in Nigeria. Available 

studies have shown that there is a frequent occurrence of flooding (Ishaya et al., 2009; 

Kolawole et al., 2011; Olajuyigbe et al., 2012; Ejenma et al., 2014; Komolafe et al., 2015; 

Nkwunonwo and Whitworth, 2019; Adetuji and Oleyele, 2018; Onwuemele, 2018; 

Bamidele and Badiora, 2019). The studies emphasized that flooding harms people's 

ability to maintain their way of life and carry on their social and economic activities. 

Flooding has caused the loss of thousands of lives and properties in previous decades. 

 

According to available studies, poor planning and policy implementation, indiscriminate 

waste disposal practices, and human activities in floodplains are the leading causes of 

flooding in Nigeria (Ekpoh, 2015; Udoh, 2015; Evans et al., 2017). Flooding has 

specifically affected the livelihood of several people, property values, and the 

sustainability of the ecosystem. Notably, flooding as a natural hazard has detrimental 

effects on the ecosystem, both from the perspective of eco-biodiversity and from an 

economic standpoint. These factors have led authors to predict increased damages and 

fatalities from flooding in the future (Hirabayashi et al., 2013; Dottori et al., 2018; Sayers 

et al., 2018; Winsemius et al., 2015; Wing et al., 2018; Alfieri et al., 2017). Therefore, it 

is evident that accurate flood prediction is required to prepare for and control the risk of 

flooding in the present and the future. 

 

Hydrodynamic models have been crucial for identifying present and potential flood 

hazards (Sampson et al., 2015; Teng et al., 2017; Wing et al., 2018). Many flood-related 

applications and tools have been used, such as flood risk mapping (Wing et al., 2017), 

flood damage evaluation (Merz et al., 2010), real-time flood forecasting (Barthelemy et 
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al., 2018), flood-related engineering (Gallegos et al., 2009), and water resource planning 

(Hanington et al., 2017). However, most parts of the world do not have the required height 

data or a dense network of hydrologic measurements to drive hydrodynamic models, so 

the model results are subject to substantial uncertainties. In other words, information 

about the topography (obtained from a digital elevation model) is a crucial input into a 

hydrodynamic model and majorly influences the length of anticipated floods (Horritt and 

Bates, 2002; Beven and Westerberg, 2011). 

 

2.2      Modelling Flood Inundation 

Knowing which locations are most vulnerable to flooding helps plan and manage flood 

risk. Hydrodynamic models are the most widely used tool for simulating and forecasting 

flood risk (Bates and De Roo, 2000; Neal et al., 2012; Sampson et al., 2015). It is possible 

to use hydrodynamic models with one, two, or even three spatial dimensions at different 

scales and levels of complexity. Hydrodynamic models provide the water depth, velocity, 

and area extent as time-dispersed outputs. To that purpose, this section will first introduce 

hydrodynamic models and various approaches to evaluating flooding. Then, it will 

explain the selection of the hydrodynamic model this thesis uses. 

 

2.2.1   Hydrodynamic models 

A hydrodynamic model is a computer program that applies the concepts of computational 

fluid dynamics to mimic water flow. A hydraulic model is another name, also widely used 

in the literature, for a hydrodynamic model. Coastal, pluvial, and riverine flooding are all 

simulated using hydrodynamic models. Water is routed along a river channel in fluvial 

applications, and it is subsequently routed onto the floodplain when the river channel 

overtops (Bates and De Roo, 2000; Sampson et al., 2015). 
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In pluvial applications, runoff from point sources such as maintenance holes (Leandro et 

al., 2009) or rainfall (Sampson et al., 2015) drives water through primarily metropolitan 

regions. Water from storm surges and tidal oscillations is directed up river channels or 

overtops coastal defenses in coastal applications (Bates et al., 2005). Flood risk managers 

and planners use the outputs of these hydrodynamic models, a map of the spatial extent 

of flood inundation along a time series, to guide planning and risk mitigation methods. 

 

Topography and friction characteristics are crucial in regulating flood predictions because 

the balance between gravitational forcing and friction controls a flood wave (Bates, 

2012). Hydrodynamic models can depict flow in one (1D), two (2D), or three (3D) 

dimensions, even though water flows in three dimensions. 1D models are the most minor 

complex, while 3D models are the most complex and computationally demanding. A 

flood risk manager has to weigh the trade-offs between knowledge, computational 

resources, and data availability. Bates and De Roo (2000) state that "the best model will 

be the simplest one that gives the information requested by the user yet reasonably fitting 

the given data," they effectively capture the decision regarding model complexity. Table 

2.2 presents the types of hydrodynamic models. 
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Table 2.2: Types of hydrodynamic models  

Type Description Computation Time Examples 

of Software 

0D No physical laws included in 

simulations 

Seconds ArcGIS 

1D Solution of 1D Saint-Venant 

equations 

Minutes HEC-RAS;  

MIKE 11 

1D+ 1D plus flood storage cell for 

floodplain flow 

Minutes to Hours HEC-RAS;  

MIKE 11 

1D/2D 1D for river channel flow and 

2D for floodplain flow 

Minutes to Hours LISFLOOD-FP; 

MIKE FLOOD; 

SOBEK; 

TUFLOW 

2D Solution of 2D shallow water 

equation 

Hours to Days CaMa-Flood; 

LISFLOOD-FP; 

MIKE21 

TELEMAC 2D 

 

2D+ 2D plus a solution for vertical 

velocities using continuity 

only 

Days TELEMAC 3D 

3D Solution of 3D Shallow Water  

Equations 

Days Delft 3D 

 

Source: Pender and Neelz (2007) 

 

2.2.2   Flow in hydrodynamic models 

The Shallow Water Equations (SWEs) are a set of mathematical formulas used in 

hydrodynamic models to determine water movement. The shallow water equations 

(SWEs) are a set of equations derived from the Navier-Stokes equations, which in turn 

are derived from Newton's second law of motion. These formulas are used in many 

computational fluid dynamics applications, including aerodynamics and climate 

modelling. Flow is calculated using various SWEs based on whether the flow is constant 

(uniform) (Vila et al., 2017). 

 

2.2.2.1 Steady flow in open channels 

To have a steady flow, an open channel's flow characteristics (such as water depth and 

velocity) must not change over time (Chaudhry, 2007). Similar in that for a given channel 
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length, uniform flow is defined by a consistent mean velocity and constant water depth 

along the flow direction (Brandimarte, 2012). The discharge, bed slope, and Manning's 

roughness must all remain consistent for a steady or uniform flow. One can use Manning's 

or Chezy's equations to represent steady and uniform flows. By multiplying the square 

roots of hydraulic radius 𝑅 and slope 𝑆 by a coefficient known as the Chezy coefficient 

𝐶, which connects channel roughness and hydraulic radius, the Chezy equation 

determines the mean velocity (Junwei et al., 2018) (Equation 2.1-2.2). 

 

𝑉 = 𝐶√𝑅𝐶𝑆                    (2.1) 

 

Similarly, Manning's equation relates mean velocity to Manning's roughness coefficient 

𝑛, the hydraulic radius 𝑅, and the slope 𝑆  

𝑉 =  
1

𝑛
𝑅
2

3𝑆
1

2                              (2.2) 

Discharge 𝑄 was calculated using these Equations 2.3 (Randa et al., 2022) , which can be 

combined with the sectional area of a channel 𝐴. 

              𝑄 = 𝐴𝑉 = 𝐴
1

𝑛
𝑅
2

3𝑆
1

2                                                                           (2.3) 

   

Hydrodynamic models typically depict flow with equations representing unsteady flow 

because the assumptions for these stable flow equations are frequently too simple due to 

the intricacy of nature. 

 

2.2.2.2 Unsteady flow in open channels 

Natural system flows are naturally unstable because the flow conditions change over time 

and are inconsistent in space due to variations in depth and velocity. The shallow water 

equations use continuity (mass conservation) and momentum to characterize the 

movement in unsteady flows (conservation of energy). The shallow water equations can 

be condensed into what is referred to as the Saint-Venant equations by making several 

assumptions, such as setting channel limits. The 1D Saint Venant equations, or a 
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simplified version of them, must be solved in order to depict movement in hydrodynamic 

models spatially in the most accessible possible manner (Horritt and Bates, 2002; Hunter 

et al., 2008) (Equations 2.4–2.5).  

 

Continuity = 
𝛿𝐴

𝛿𝑥
+

𝛿𝑄

𝛿𝑥
= 0                               (2.4) 

Momentum =
𝛿𝑄

𝛿𝑡
+  

𝛿

𝛿𝑥
[
𝑄2

𝐴
] + 

𝑔𝐴𝛿(ℎ+𝑧)

𝛿𝑥
+ 

𝑔𝑛2𝑄2

𝑅
4
3𝐴

= 0                            (2.5) 

where 𝐴 is the cross-sectional area of the channel, 𝑥 is the distance in the 𝑥 Cartesian 

direction, and 𝑄 is the discharge. In the momentum equation, the additional terms are 𝑧 

(bed elevation), 𝑅 (hydraulic radius), 𝑔 (acceleration due to gravity), and 𝑛 (Manning's 

coefficient of Friction). Also, 
𝛿𝑄

𝛿𝑡
 is acceleration; 

𝛿

𝛿𝑥
[
𝑄2

𝐴
] is the advention; 

𝑔𝐴𝛿(ℎ+𝑧)

𝛿𝑥
 is the 

water slope and 
𝑔𝑛2𝑄2

𝑅
4
3𝐴

 is the frictional slope. 

 

The four (4) categories of degrees of complexity are Kinematic, Diffusive, Inertial, and 

Fully Dynamic. The friction slope term is the single component of kinematic models, 

which are the most basic. The friction slope and water slope are two components of 

diffusive models. The local acceleration term, the water slope, and the friction slope are 

all present in inertial models. Ultimately, every term is present in a completely dynamic 

model. The Saint-Venant has an additional dimension in its 2D formulation, which makes 

it more computationally expensive to solve. Though this is frequently regarded as unduly 

complex, flows can be handled in three dimensions (Bates and De Roo, 2000). However, 

3D models can be required in scenarios where spiral flows, vortices, and vertical 

turbulence are significant (such as levee breaches and dam failures). Although there is no 

analytical solution to these equations, numerical methods can be used to solve them.  
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2.2.2.3 Types of numerical solvers 

Explicit and implicit techniques are used to solve SWEs based on how the equations are 

discretized in time and space (Popescu, 2012; Ali et al., 2015; Nkwunonwo et al., 2020). 

For explicit techniques, SWE is solved for every location within the model scope at a 

specific moment. Every time a time step is made after another, the SWE is again solved 

using the information from the prior time step. 

 

Water can move through a cell in a time step, but if the time step is too big, instability 

may develop. On the other hand, if the time step is too tiny, the runtime for the model 

will be brief. The Courant Friedrichs Lewy equation (Nickolay et al., 2018), which has 

the following formula Equation (2.6) as an expression, can be used to find an appropriate 

time step to prevent instabilities: 

   
𝑡𝑐

𝑥
< 1                                                (2.6) 

 

where 𝑥 is the spatial resolution, 𝑐 is the inundation wave's velocity and 𝑡 is the timestep. 

Flood researchers generally put the level just below 1, as setting it too close to 1 runs the 

risk of developing instabilities. The time step is correlated with the geographic precision 

and scales in the equation. In other words, as the spatial precision decreases, the flood 

wave can traverse a reduced distance before crossing two grid cells (causing instabilities), 

so the time step must decrease to ensure this does not happen. Therefore, the time step 

gets very tiny in hyper- and high-resolution models. Implicit techniques conduct 

computations using data from both the prior and current time steps. Implicit techniques 

do not need the equation because they are always steady. However, compared to explicit 

methods, implicit methods have a much higher calculation time per time step and are 

more challenging to step up (Popescu, 2012; Nkwunonwo et al., 2020). 
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SWEs can be solved in time using implicit and explicit methods, but methods are required 

to define how they can be solved in space. Finite difference or finite volume techniques 

are two popular ways to explain how these problems are solved in space (Di Baldassarre, 

2012a; Nkwunonwo and Whitworth, 2019). The finite volume method expands on this by 

giving each cell a volume and assigning its associated number to its center. Similar to 

finite volume difference in that the model area is divided into several elements, finite 

element has the disadvantage of computationally expensive mathematical techniques to 

generate solutions (Neelz and Pender, 2013). 

 

2.2.3 Data requirements for hydrodynamic models 

Hydrodynamic models explain how water moves through the terrain. Thus, information 

on the topography of the environment, the amount of water moving into and out of the 

model, and the Friction obstructing the flow of water are the three main types of data 

needed for hydrodynamic models. Some hydrodynamic models also need information on 

the canal shape and other elements, like infiltration. More data is needed for more 

complicated hydrodynamic models, as shown in Table 2.3 and 2.3a, which also lists the 

general data needs and model-specific results for each form of hydrodynamic model. 

 

Therefore, a researcher of the flood may be constrained by data accessed even if a more 

complicated hydrodynamic is available. On the other hand, it might have a ton of data but 

need more expertise or computing power for modelling. Tables 2.3 and 2.3a show input 

and output data by type of hydrodynamic model. 
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Table 2.3: Input and output data by type of hydrodynamic model  

Type Input Data Output 

0D DEM; Upstream water level; 

Downstream water level 

Inundation extent and water depth 

1D Surveyed cross sections of channel and 

floodplain; Upstream discharge 

hydrographs; Downstream stage 

hydrographs 

Water Depth and average velocity 

at each cross-section; Inundation 

extent by intersecting predicted 

water depths with DEM; 

Downstream outflow hydrograph 

1D+ As 1D models As 1D Models 

1D/2D DEM; Upstream discharge 

hydrographs; Downstream stage 

hydrographs 

Inundation Extent; Water Depths; 

Downstream outflow hydrographs 

2D DEM; Upstream discharge 

hydrographs; Downstream stage 

hydrographs 

Inundation Extent; Water Depths; 

Downstream outflow 

hydrographs; Depth averaged 

velocities at each computational 

node 

 

(Source: Di Baldassarre, 2012a) 

 

2.2.3.1 Topography 

Topography is a crucial factor in estimating flood extent (Horritt and Bates, 2002). Digital 

Elevation Models (DEM) provide a gridded representation of topography and are 

frequently used in geoscience models. Previous studies show that the quality of the DEM 

affects the quality of flood estimates, with higher resolution DEMs typically giving more 

accurate flood estimates (Fewtrell et al., 2011; Jarihani et al., 2015; Savage et al., 2016a; 

Savage et al., 2016b). Topography is one of the significant factors influencing expected 

inundation spread (Bates and De Roo, 2000). Due to the flat topography of floodplains, 

even small topographic mistakes can have a significant impact on flood forecasts. A 

DEM, a gridded depiction of elevation, is the usual topographic input into a 
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hydrodynamic model. A DEM can be produced using remote sensing methods, field 

observations, or by digitizing paper topographic maps that already exist. Today, remote 

sensing methods are used to generate DEMs quickly, and Uysal et al. (2015) noted the 

advantages of surveying a large spatial region with fewer people at a reduced expense. 

 

Remotely sensing techniques include photogrammetry (Coveney and Roberts, 2017), 

airborne and spaceborne interferometric synthetic aperture radar (InSAR), and light 

detection and ranging (LiDAR). Spaceborne DEMs (e.g., Shuttle Radar Topography 

Mission (SRTM) Farr et al. (2007)) are of intermediate scale, while photogrammetry and 

LiDAR-derived DEMs are of hyper-scale. Hyper-resolution DEMs are rarely available, 

with approximately 0.005% of the Earth's land area having free LiDAR data. Therefore, 

for the vast majority of the world (and assuming little to no funds are available to acquire 

a hyperscale DEM), the best source of topographic information is global DEMs (Table 

2.4). 
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Table 2.4: Global DEM Products  

 Dataset Coverage Acquisition 

Years 

Sensor Wavelength Resolution 

(m) 

Vertical 

Accuracy 

Free Global 

DEMs 

ALOS 

AW3D30 

82°S - 

82°N 

2006-2011 Optical 0.52-0.77um 30 4.4m 

(RMSE)1 

ASTER 

GDEM 

83°S - 

83°N 

2000-2011 Optical 0.78-0.86 30 17m (95% conf.)2 

GMTED2010 Entire 

Earth  

Completed 2010  Derived from 11 sources of 

elevation information 

250,500,1000 26m (RMSE)3 

SRTM 56°S - 

60°N  

2000  SAR C 

Band  

5.66cm  30,90  6m (MAE)4  

TanDEM-X 90 Entire 

Earth  

2010-2015  SAR X 

Band  

3.1cm  30, 90  Unknown  

Error 

Reduced 

Versions of 

SRTM 

EarthEnv 60°S - 

83°N 

ASTER & 

SRTM  

  90  4.15m (RMSE)5  

NASADEM     

MERIT  Entire 

Earth  

AW3D30, SRTM & Viewfinder Panorama  90       5m (LE90)6  

No Name  Same as SRTM  90  5.9m (RMSE)7  

No Name   Same as SRTM  90  1m reduction in 

RMSE8  

Viewfinder 

Panorama  

Entire 

Earth  

ASTER, SRTM & Other Sources  90  Not Reported  

Commercial 

Global DEMs 

ALOS AW3D  82°S - 

82°N  

2006-2011  Optical  0.52-0.77um  5  2.7m (RMSE)9  

PlanetDEM 30 

Plus  

Entire 

Earth  

 Same as 

SRTM  

 30  Not reported  

NEXTMap 

World 10  

Entire 

Earth  

 Not 

Reported  

 10  10m (LE95)10  

World 10 

WorldDEM  

Entire 

Earth  

2010-2015  SAR X 

Band  

3.1cm  12  <1.4m (RMSE)11  

(Source: Yamazaki et al., 2017; Wessel et al., 2018; Zhao et al., 2018) 



33 
 

Over the years, past studies have focused on other hydraulic factors, such as Friction, 

rather than topography's influence on flood forecasts; ambiguity in flood estimates from 

uncertain topography has largely been ignored (Wechsler, 2007). There are two factors at 

play here. First, there is a perceived need for more DEM products, which leads flood 

studies to use a single DEM as the best source of topographic data (even though this 

argument is losing strength, as shown by the number of DEM products listed in Table 

2.4). The practice is widespread in data-scarce areas, where a single DEM, most 

frequently SRTM, is mandated by a supposed dearth of DEM products (Yan et al., 2015). 

 

As a result, studies rarely alter DEM results, while they occasionally alter other factors 

(such as Friction). Secondly, because the most significant source of topographic data for 

most sites is at 90 meters, there is little room to change the model resolution and still get 

usable results. Doing so would cause significant floodplain topography to be "lost" if the 

resolution is too low. Studies that do use multiple DEMs either resample DEMs to a low 

resolution to explore the effect of resampling strategies and scale (Fewtrell et al., 2011; 

Savage et al., 2016a; Komi et al., 2017; Saksena and Merwade, 2015) or compare flood 

extents using different DEM products (Li and Wong, 2010; Jarihani et al., 2015; Bhuyian 

and Kalyanapu, 2018). 

 

For a summary of some studies that have examined the effect of topographic ambiguity 

on flood forecasts, see Tables 2.5, 2.5a, and 2.5b. The quality of flood forecasts typically 

improves as DEM resolution increases, but there is frequently a point where the 

improvement becomes insignificant and is not worth the additional processing power. 

Savage et al. (2016b), for instance, concluded that models with a resolution smaller than 

50 m slightly improved the accuracy of flood predictions for a hydrodynamic model of 

the Imera basin, Sicily. Conversely, the same authors discovered that at resolutions lower 
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than 100 m, the accuracy of inundation forecasts significantly decreased. When modelling 

urban settings, higher-resolution DEMs are crucial so that structures can be included 

(Fewtrell et al., 2011). 
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Table 2.5 Effect of DEM resolution and product on flood inundation predictions  

Location DEM Resolutions Model Main Finding 

River Severn LiDAR  10,20,50,100,250,500,1000 LISFLOOD-FP  Below 100 m resolution model performance similar. For one 

model 250 m resolution best.  

Tegucigalpa, 

Honduras 

LiDAR  1.5,4.5,7.5,15 SOBEK Large differences in predicted flood extent. Variations occur 

with DEM re-sampling techniques. 

River Nene, UK PROFILE Contour DEM, 

DGPS  

30 LISFLOOD-FP 100 versions of DEM were simulated using Sequential Gaussian 

simulation. Uncertainty in predicted inundation extent greatest 

where elevation gradients were smallest. 

Tadcaster, UK LiDAR  4,8,16,32 JFLOW (Similar) Small changes in resolution can have considerable effects. 

Inundation affected by lack of connectivity in low resolutions 

which in part can be compensated with by wetting and 

roughness parameters. 

Santa Clara River 

near Castaic 

Junction 

LiDAR, IfSAR, NED, 

SRTM  

3,10,30,60,90 BreZo (2D) LiDAR is the best source of terrain data, with its ability to detect 

bare earth important. NED DEMs flood zones 25% smaller than 

other DEMs. Little difference predicted in flood predictions 

between SRTM at 30 m and 90 m 

Greenfield, 

Glasgow 

LiDAR  2,4,8,16 LISFLOOD-FP For urban areas representation of buildings important so finer 

resolution required. Response of Manning's friction coefficient 

to model resolution is non-stationary 

Kansas River LiDAR, NED, SRTM 2,10,30 Micro DEM LiDAR and NED similar. SRTM noticeably different, with 

flood prediction fragmented. DEM source more important than 

resolution for flood extent 

Alchester, UK LiDAR (Terrestrial) 0.5,1,2,5 LISFLOOD-FP Step change in performance between 2m and 5m grid resolution 

due to degradation of road network and camber representation 

Source: (Li and Wong, 2010, Jarihani et al., 2015, Bhuyian and Kalyanapu, 2018) 
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Table 2.5a Effect of DEM resolution and product on flood inundation predictions  

Location DEM Resolutions Model Main Finding 

Tewkesbury, 

UK 

LiDAR 2,10,20,40 LISFLOOD-

FP 

Greatest loss of accuracy between 10m or 20m. Best 

accuracy at 2 m. Finest resolutions could simulate 

inundation dynamics best. Valley filling flow magnitudes 

similar all resolutions 

River Wharfe, 

UK 

LiDAR 4,8,16,32 Flood Map Using subgrid information in coarse meshes improved 

model performance but improvement was only relatively 

small. High resolution features (walls, buildings) are 

important 

Alchester, UK LiDAR (Airborne & 

Terrestrial) 

0.1,1 LISFLOOD-

FP; ISIS-

FAST 

Bigger difference between DEM source than resolution 

South Tibet ASTER GDEM, 

SRTM, DEM from 

aerial photography 

90 HEC-RAS ASTER 2.2% smaller and SRTM 6.8% larger inundation 

extent compared to high resolution DEM 

Alchester, UK LiDAR (Terrestrial) 0.1,0.5,1 LISFLOOD-

FP 

Loss of hydraulic connectivity if micro terrain features not 

included 

Thomson 

River, 

Australia 

ASTER GDEM, 

SRTM 

30,60,90,120,250,500,1000,2000 TUFLOW 2D Model Performance noticeably worsened after 120-250 m. 

SRTM better than ASTER GDEM 

6 Stream 

reaches in USA 

LiDAR, NED, SRTM 1,3,6,30,90 HEC-RAS Mean water surface elevation has a strong positive linear 

relationship with grid size. Predicted flood extent increases 

with coarser DEM resolutions. DEM source important, as 

LiDAR derived DEM at 30 m gave better prediction than 

NED at 30 m. 

Kigali, Rwanda ASTER GDEM, 

SRTM, DEM from 

aerial photography 

5,10,20,30 SOBEK DTM essential to represent urban flooding as ASTER and 

SRTM were found to be inadequate without correction. 

Models above 15m began to show significant inaccuracies 

Imera Basin, 

Sicily 

LiDAR 0,20,50,100,200,250,300,350,400,450,500 LISFLOOD-

FP 

Model performance deteriorates at resolutions coarser than 

50m. Below 50 m little gain in performance. Doubling 

model resolution lengthens computation rime by order of 

magnitude 

(Source: Li and Wong, 2010, Jarihani et al., 2015, Bhuyian and Kalyanapu, 2018) 
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Table 2.5b Effect of DEM resolution and product on flood inundation predictions  

Location DEM Resolutions Model Main Finding 

Oti River, West 

Africa 

SRTM 30,60,120,240,480,960 LISFLOOD-FP Best index of fix at 480 m. Worst performance at 30 m. Local 

scale noise the likely reason for worse performance. Noise 

smoothed in coarsening DEM. 

American River ASTER, LiDAR, NED, 

SRTM 

3,10,30,90 HEC-RAS ASTER & SRTM overestimated inundated areas >4x compared 

to LiDAR and NED. Low hydraulic connectivity in ASTER. 30 

m Resolution gave the lowest errors. 

Kaoping River 

Taiwan 

LiDAR-derived 1, 2, 5 HEC-RAS LiDAR-derived DEMs provided higher accuracy compared to 

satellite-based DEMs. 

Yangtze River | 

China 

ASTER GDEM, SRTM-

DEM, TanDEM-X 

30, 90, 12 

 

HEC-RAS Higher resolution DEMs improved the accuracy of flood 

inundation prediction. 

Han River  China SRTM-DEM, ASTER 

GDEM 

30, 90 HEC-RAS The choice of DEM had a significant impact on the accuracy of 

flood inundation prediction. 

Xiangxi River 

China 

ALOS World 3D-30m, 

SRTM-DEM, ASTER 

GDEM 

30, 90 MIKE21 Higher resolution DEMs provided better accuracy in flood 

inundation prediction and a positive correlation. 

River Tachia | 

Taiwan 

LiDAR-derived, SRTM-

DEM, ASTER GDEM 

1, 5, 10 HEC-RAS LiDAR-derived DEMs provided higher accuracy compared to 

satellite-based DEMs. 

 

Songhua River 

China 

SRTM-DEM, ALOS 

World 3D-30m 

30, 90 HEC-RAS Airborne LiDAR provided higher accuracy compared to 

satellite-based DEMs. 

(Source: Li and Wong, 2010, Jarihani et al., 2015, Bhuyian and Kalyanapu, 2018) 
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2.2.3.2 Boundary conditions 

The upstream border condition (typically from a sensor) describes the amount of water 

entering a model, while the downstream boundary condition describes the amount of 

water leaving the model. Tidal gauges represent boundary conditions for maritime 

applications, while point sources (such as a ruptured water main) or direct rain on the grid 

are used for pluvial applications. Hydrographs characterize upstream boundary conditions 

in a fluvial environment (Grimaldi et al., 2018). A water stage measurement can calculate 

the downstream border's water stage, flow, or slope, determining how much water exits 

the model area. Tarpanelli et al. (2013) say that the uncertainty in the downstream 

boundary conditions for river applications, which this thesis is mostly about, comes from 

the delay in the flow measurements and the water heights. 

 

A rating curve is frequently used to predict discharge after measuring the water level. 

Deriving rating curves involves measuring the water level and release at the gauge site 

several times and then figuring out how they relate. The advantage of this method is that 

it is simple to determine the discharge by monitoring the water level. The assessment of 

the water level, the cross-sectional area of the waterway (especially if flow moves out of 

the bank), and the extension of the rating curve all introduce several errors for big floods 

(Domeneghetti et al., 2013).  

 

Even if a place is regularly gauged, it might not be in a flood event because extreme 

events can damage the gauging apparatus. In a thorough literature survey, McMillan et 

al. (2012) presented discharge errors of between 10 and 20% for medium to high flows 

and about 40% when flow moves out of the bank. Studies have, therefore, varied the 

upstream and downstream boundary conditions to evaluate the sensitivity of flood 

forecasts to boundary conditions (Domeneghetti et al., 2013). 
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2.2.3.3 Friction 

The surface-specific Manning's roughness coefficient usually defines the term friction 

term. A higher Manning's roughness number indicates that there is more resistance to the 

movement of water. Manning's values rely on the rough surface, changing depending on 

the land use type and the substance used for the canal bed. Chow (1959) presents 

examples of Manning's numbers. Channel and floodplain friction are generally described 

by two distinct factors, with floodplain friction typically having larger values than 

Manning's (Horritt et al., 2007). 

 

In reality, Manning's varies in time and space (Di Baldassarre, 2012b), so some attempts 

have been made to parameterize further by splitting channels into sections (Hall et al., 

2005), deriving distributed friction values from remote sensing (Wood et al., 2016; 

Tarpanelli et al., 2013), classifying by floodplain land-use type (Mtamba et al., 2015; 

Afshari et al., 2018), or floodplain characteristics (Manh et al., 2014). Although Friction 

has a physical basis and can be measured, its values change over time and place and 

depend on size (Horritt et al., 2007). 

 

Therefore, friction parameters can be classified as effective parameters during calibration. 

They can be calibrated to compensate for other errors from boundary conditions, 

topography, and model structure (Di Baldassarre, 2012b). Some may quaff at such a 

practice as if the model cannot produce reality with physically plausible values, then it is 

evidence that the model is wrong (Cunge, 2003). 

 

The friction values stated can accurately reflect the momentum losses, so this statement 

might be true if all data and model structures are error-free. However, given the intricacy 

of nature, this is different. A hydrodynamic model for flood forecasting should also be 
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understood to accurately anticipate water depths and flood spread rather than friction 

values (Di Baldassarre, 2012b). 

 

Being an effective parameter makes it challenging to estimate the a priori distribution of 

values, so published values (such as those from Chow (1959)) should only be used as a 

general indication of the probable range (Horritt et al., 2007). A hydrodynamic model 

successfully makes flood forecasts once calibrated adequately to a witnessed occurrence 

(Horritt and Bates, 2002). However, because different model parameter combinations 

frequently result in comparable degrees of success, there is often some degree of equality 

(Aronica et al., 2016). Additionally, calibrating a model for a specific flood event may 

result in the hydrodynamic model being over-conditioned for the specific flood event if 

model performance is significantly better for a restricted range of parameters (Hunter et 

al., 2007). 

 

In other words, if a hydrodynamic model is limited to modelling a particular event for a 

small range of optimal parameter values, the optimal parameter set for a different 

possibility would be other, resulting in sub-optimal model performance. This situation 

frequently arises when insufficient empirical or "disinformative" data is used to test a 

model (Beven and Westerberg, 2011). In these situations, modelers may become 

overconfident in the model's abilities when, in fact, the model is only matching 

insufficient, inaccurate data. As a result, the model would be wrong in reality, which 

could be especially problematic if used to control flooding. 

 

2.2.3.4 Channel geometry 

For many rivers, there needs to be more information on channel geometry, as bathymetric 

surveys are very costly and time-consuming. However, 2D models require information 
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on river channel bathymetry. Therefore, approximations of channel geometry have to be 

made. It is expected to assume the channel shape is rectangular (Bates and De Roo (2000). 

Although this presumption is fair, there is enough variety in nature to show that it is too 

simplistic. Studies examining how sensitive models were to changing channel shapes 

concluded that calibrating depth and channel shape might be better than assuming a 

rectangular shape and adjusting Friction (Bate et al., 2013).   

 

A lack of understanding of river lengths leads to additional doubt. Although river widths 

can be physically calculated from satellite pictures, this method is time-consuming, labor-

intensive, and only worthwhile for a short stretch. Using worldwide datasets like GWD-

LR (Yamazaki et al., 2017) or GRWL (Allen and Pavelsky, 2018) or automated tools like 

RivaMap, one option is to derive river widths automatically based on satellite optical 

pictures (Landsat or Sentinel) (Isikdogan et al., 2017).  

 

The hydrodynamic model's sensitivity to unknown width values has received little 

consideration up to this point. Since there is no accessible worldwide collection, channel 

bathymetry remains a critical uncertainty (Barthelemy et al., 2018). Remote sensing has 

proven challenging for estimating channel bathymetry because signals from satellite 

instruments can only travel so far beneath the water's surface. As a result, numerous 

approaches have been suggested. Several places have used remote sensing measurements 

of river breadth and water surface height to determine bathymetry (Mersel et al., 2013). 

 

Benefits of the forthcoming Water and Ocean Topography (SWOT) mission, capturing 

river width and water top height. Additionally, using simulated SWOT results in a data 

assimilation strategy with hydrodynamic models has been effective (Yoon et al., 2012). 

As an alternative, optical images and geostatistical methods have been used to determine 

river bathymetry (Adnan and Atkinson, 2012; Legleiter and Overstreet, 2012). When 
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accessible, bathymetry has been estimated using hyper-resolution LiDAR (Hilldale and 

Raff, 2008) or structure-from-motion photogrammetry (Javernick et al., 2014). Recently, 

Lee et al. (2018) used velocity data from 2D SWE to estimate bathymetry using a 

principal component geostatistical method. Even when bathymetric readings are 

available, they are typically limited to specific points along a reach. As a result, GIS 

methods are used, and various river profiles are obtained by choosing an interpolation 

approach (Merwade et al., 2008; Zhang et al., 2016). 

 

Numerous studies have examined how uncertain channel depth affects flood forecasts 

(Wong et al., 2015; Grimaldi et al., 2018; Cook and Merwade, 2009; Neal et al., 2012). 

In essence, the channel geometry is immediately connected to the channel capacity and, 

consequently, to the bank discharge. "hydraulic geometry" refers to the connections 

between channel geometry and channel breadth, depth, velocity, and release (Leopold and 

Maddock, 1953). 

 

2.2.4  0D models 

0D models are built on the most basic hydraulic principles and do not consider any 

physical processes in water inundation (Pender and Neelz, 2007). They can be helpful for 

a comprehensive evaluation of flood extents and depths because they operate orders of 

magnitude faster than hydrodynamic models (Teng et al., 2017). 

 

One such example of a 0D model is the so-called "bathtub method," which intersects a 

DEM with water stage planes to define the region of a flood, with research using this 

method focusing on coastal flooding (Leon et al., 2014; Van de Sande et al., 2012). 

Alternatively, flood-prone regions can be found by computing the topographic index from 

DEMs (Samela et al., 2015; Samela et al., 2018; Manfreda et al., 2014). 
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2.2.5  Empirical methods 

Geologic or historical traces left behind from previous catastrophic floods are frequently 

examined. For instance, slack-water sediments (sand and silt) quickly build up during 

major floods as flood waters hold sediment. A sediment layer is left behind when flow 

speeds decrease and suspended silt is suddenly deposited. Sheffer et al. (2003) used 

geology to demonstrate past inundation in the Ardeche River. Deposits from floodplains 

can be geochemically analyzed to contribute to the record (Berner et al., 2012). 

 

Alternatively, historical records such as city accounts (Glaser and Stangl, 2001), etchings 

(Herget and Meurs, 2010), flood marks, legal documents (Kiss, 2009), narratives (Brázdil 

et al., 2006), newspapers (Guzzetti et al., 1994), photographs (Smith et al., 2015), songs 

(Brazdil et al., 2006), taxation records (Brazdil et al., 2014), and weather recordings 

(Brazdil et al., 2006) have been used to construct historical flood records. The utility of 

this information to contemporary managers may be limited, even though it is intriguing, 

given how much society and river geometry have changed since the historical periods in 

which these floods were simulated. However, this knowledge helps educate people about 

the risk of flooding. 

 

2.2.6  The best model 

When discussing model selection, the famous quote of statistician George Box is often 

cited, where he noted, "All models are wrong, but some are useful." While true, models 

can be considered valid, partially beneficial, or utterly useless for their intended 

application (Burnham and Anderson, 2002). The key to successful modelling is selecting 

the model to help accomplish the job. Consequently, a researcher of flood should think of 

their primary responsibility for a flood model's implementation as offering an accurate 

forecast of storm inundation.  
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The principle of parsimony, as depicted by Box and Jenkins (1970), can be used to 

understand this tradeoff. According to the concept of parsimony, the bias tends to reduce, 

but the uncertainty rises as model complexity increases. Occam's razor, which proposes 

that no detail is essential, is another name for this concept. Therefore, the researcher of 

flood needs to create an appropriate model that trades off bias and ambiguity or, in other 

words, to create a sparse model. Unparsimonious models can range from models that are 

not complex enough to represent the dominant process to models that are unnecessarily 

complex in that by adding additional parameters, a model can fit almost any data, and 

thus such a model might make poor predictions as the parameterisation will be affected 

by the relatively high uncertainty (Di Baldassarre, 2012a). 

 

The following are the four major questions that should be considered before selecting a 

suitable hydrodynamic model: 

i. What are the main processes controlling flood inundation? 

ii. What data is available? 

iii. What are the computational resources available? 

iv. When do the results need to be available? 

The first question must evaluate the most probable water inundation processes. For 

example, a 1D model would be best adapted if requested to model a reach where 

inundation is regulated by topographic discontinuities (such as artificial embankments). 

Also, a 2D model is likely to be the most suitable if the area under review is a sizable 

floodplain where the terrain of the floodplain plays a significant role in controlling the 

extent of the flood (Di Baldassarre, 2012a). 

 

Secondly, the researchers of flood need to take the facts into account that the quality of 

models depends on the data used to measure and validate (Beven and Westerberg, 2011).  



45 
 

Thirdly, the flood researchers need to think about the available processing tools. It is 

inappropriate to select a complicated model that will require an excessive amount of time 

or will flat-out not function on the computer in question. Equally essential is choosing a 

model that will be simple enough for the intended user if the project's findings are to be 

shared and used by those who are not hydrodynamic model specialists. Additionally, 

picking a model under constant development will allow for the most efficient use of 

improvements in algorithmic design. 

 

A simpler model that permits numerous simulations is required if the model is meant to 

generate flood likelihood maps. Savage et al. (2016b) found that simulation time rises by 

an order of magnitude when the model resolution is halved, demonstrating the significant 

influence that model resolution can have on simulation time. The final factor to take into 

account is time. It is not advisable to select a model that will take weeks to months to run 

if the project has a deadline of six months, particularly considering the extra time required 

to set up the model. The applications' time restrictions should also be taken into account. 

For instance, quick models are needed for inundation predictions. Overall, no single 

model variety is the finest. The application, data accessible, computational tools, and time 

available all influence the model decision. The optimal model, however, will always be 

the most straightforward one that provides the necessary information while somewhat 

fitting the data (Bates and De Roo, 2000). 

 

2.3  Considerations for Flood Modelling 

Every model's performance is only as good as the data it utilizes for parameterization, 

calibration, and validation. Although it is evident that models of varying complexity have 

varied data needs, models should be chosen depending on the features of the current 

situation. In reality, this may limit the user's options for model selection. According to 
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Asselman et al. (2009), every hydraulic model needs the boundary condition, the 

beginning condition, topographical data, friction data, and hydraulic data for model 

validation. 

 

Anuar (2018) stated that flood modelling requires hydraulic boundary determinations, 

geometric data, discharge data, roughness data, calibration, and validation. However, 

modelling floodplain flooding requires high-quality input data, including rainfall, a digital 

terrain model, land use, and calibration. A dense network of rain gauges and the weather 

radar should ideally provide rainfall data. Both sources are essential; the former is 

generally considered more accurate, while the latter typically has a higher spatial 

resolution, enabling advanced applications such as "nowcasting" (quick precipitation 

forecasting). 

 

Hence, the modelling of floodplain flooding requires an accurate digital elevation model 

(DEM). It is a foundation for 2D or 3D modelling, developing surface flow routes and 

ponds, and identifying sub-catchments. On the other hand, the subsections from 2.3.1 to 

2.3.2 discussed the function of topography and hydrology in flood modelling. 

 

2.3.1  Hydrology and flood modelling  

Rainfall patterns have an impact on flood behavior. Heavy rainfall is one of the most 

common causes of floods around the globe. Precipitation has previously been the cause 

of several floods (Shibata et al., 2022). These types of flooding include river floods, flash 

floods, pluvial floods, and fluvial floods. Flooding has occurred in various areas due to 

rainfall ranging from severe to extremely heavy. 

 

One of the primary causes of floods has also been infrastructure connected to hydrology. 

The dam is one of these infrastructures; it is an artificial water catchment system used for 
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agriculture, fisheries, water supply, or the generation of hydroelectric power (Adie et al., 

2012). Over the years, the dam has served its role as a piece of infrastructure, but it has 

also been a significant contributor to tragedies associated with flooding. 

 

Authorities in Nigeria and neighboring nations like Cameroon frequently open the 

spillways of the dams and release massive volumes of water into settlements on the dams' 

floodplains to prevent dam failure during periods of heavy rain. Even with the substantial 

financial and material expenses that the dam authority incurs when such water releases 

occur and the dam's floodplain subsequently floods, these costs are occasionally 

underreported or not reported (Adesina et al., 2021). Future climate change's hydrological 

effects will undoubtedly require significant revisions to current water management 

practices, with adjustments to dam operations playing a pivotal role.  

 

2.3.2 Topography and flood modelling 

The accuracy of hydraulic modelling and flood inundation mapping is significantly 

influenced by topography (Cook and Merwade, 2009). In order to use DEMs for hydraulic 

modelling, cross-sectional elevations, water surface elevations, and flood extents are used 

to identify the active channel. The key characteristics of a DEM that influence the 

outcomes of hydraulic and hydrologic modelling are resolution and accuracy (Vaze et al., 

2010). 

 

A DEM's spatial resolution is defined as the amount of ground surface area that each cell 

covers. Hence, a higher-resolution DEM contains more cells per unit area than a low-

resolution DEM, which more accurately depicts topography (ESRI, 2014a). The 

characteristics and qualities produced from DEMs can be impacted by resolution, which 

can also impact the models linked to them (Haile and Rientjes, 2005). The probability 

distribution of digital elevation values measured about the real value measures a DEM's 
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vertical correctness. The degree of linear inaccuracy in elevation is used to quantify it 

(ESRI, 2014b). The DEM's correctness directly influences the outcomes of the hydraulic 

modelling (Darnell et al., 2008). Hence, water surface heights and flood extents are 

significantly influenced by DEM resolution and accuracy. 

 

Topographic datasets are now crucial for flood mapping due to the development of GIS-

based methods to derive channel cross-sections. Hydraulic modelling uses the cross-

section elevations derived from topographic information to construct water surface 

elevations. The topography is subtracted from the estimated water surface acquired 

through hydraulic modelling to determine the flood extent (Sampson et al., 2016). In 

subsections 2.3.2.1 through 2.3.2.3 that follow, another aspect of topography and flood 

modelling is presented in more detail. 

 

2.3.2.1 Effects of low-resolution DEMs in flood modelling 

Global, freely available DEMs have significant vertical errors made worse by complex 

topography and cannot resolve micro-topographic changes in relatively flat terrain 

(Gallien et al., 2011; Chu and Lindenschmidt, 2017). In order to improve accuracy and 

reduce vegetation biases, several processing techniques and methods have been 

developed throughout the years (Robinson et al., 2014; O'Loughlin et al., 2016a; 

Yamazaki et al., 2017). Even though these derived versions are regularly utilized, they 

frequently have vertical errors significantly higher than what is typically acceptable for 

many applications. 

 

For example, present-day global DEMs cannot determine the specific topographic 

characteristics that regulate floods (Schumann et al., 2019). In evaluating the impact of 

several large-scale DEMs on hydrologic runoff estimates, Kenward et al. (2000) 

emphasized that differing DEMs can result in a variance in runoff projections of over 
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10%. The US National Elevation Dataset (NED) data was among the online DEMs that 

Sanders (2007) investigated for their appropriateness for flood modelling. 

 

The study found that DEMs based on InSAR technologies, particularly SRTM, suffer 

from radar noise and require prior processing, whereas NED DEMs are exceptionally 

clean and may overestimate inundation regions. Sanders (2007), however, stressed the 

importance of using SRTM as a worldwide source of topographical data for flood 

modelling, as demonstrated, for example, by Sampson et al. (2015). While utilizing a 

simplified scenario in their study, Li and Wong (2010) made an additional claim in related 

research that flooded regions from a flood simulation differed significantly across 

different DEM data sources. 

 

Mukherjee et al. (2013) looked at the vertical accuracy of open-source DEMs (ASTER 

and SRTM) for hydrologic applications. They found slope and drainage network 

delineation could be better than their reference DEM. Walker and Willgoose (1999) 

showed that even very accurate DEMs from aerial photogrammetry can differ 

significantly from the ground truth. It is especially true for smaller catchments or 

applications where minor errors in the elevation can hurt small-scale applications. 

 

The fact that the most widely used global DEMs currently need to be updated, such as the 

SRTM-DEM obtained in February 2000, is another severe constraint. While most national 

DEM programs that acquire photogrammetric or LiDAR DEMs repeat acquisition on a 

regular, multi-annual basis, the acquisition is rarely repeated. As a result, global DEMs 

will not account for any substantial geomorphological changes in topography or any 

human-made changes to the Earth's surface since data collection. Naturally, this can have 

profound implications when anticipating, say, flood occurrences in areas where it is 

known that earlier storms significantly changed the terrain in the area. The fact that there 
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are more people on the planet today than when SRTM was first obtained is even more 

astounding since every one of them played a role in changing the surface topography of 

our planet.  

 

In this regard, James et al. (2013) pointed out that significant geomorphological changes 

can happen across decadal periods and even more quickly after catastrophic events and 

substantial human landscape transformation (e.g., mining). Even after extensive 

preprocessing to remove significant biases (due to vegetation and other physical 

structures) and reduce inherent vertical errors, globally available DEMs still frequently 

have inaccuracies that are orders of magnitude larger than the length scales of the 

simulated processes. On most river slopes, the residual vertical error in the SRTM DEM, 

for instance, is orders of magnitude greater than the size of the flood waves in such rivers 

(Bates et al., 2013). 

 

As a result, existing low-resolution global DEMs, like the SRTM-DEM, make it 

exceedingly difficult to represent floods and other intrinsically local phenomena 

effectively. Localized knowledge is crucial, which calls for more accurate terrain data 

with better resolution than what is currently offered at extensive coverage. 

 

2.3.2.2 Needs for accurate DEM in modelling floodplain 

Climate change has increased the flood hazard to coastal cities, which makes predicting 

future flood risk more unclear (Deng et al., 2021; Lin et al., 2016; Gu et al., 2019; Fang 

et al., 2020). Ultimately, the fear of floods in all its variations causes financial losses and 

human fatalities. Thus, it is essential to identify flood hazards and provide accurate 

catastrophe forecasts and emergency response by accurately estimating flood inundations 

in urban regions of coastal cities (Yang et al., 2020; Yin et al., 2020). Flood inundation 

mapping is crucial for identifying possible impact regions and determining inundation 
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depths to assess the severity of flood risks and improve understanding. Hydrodynamic 

models have been widely employed for flood simulations due to improvements in 

computer performance as well as the simplicity and refinement of the methods (Yu and 

Lane, 2006). The significant topographic input data, DEMs, are an essential component 

in regulating hydrodynamic model correctness (Kenward et al., 2000; Cobby et al., 2001).  

 

Flood mapping and modelling have both made extensive use of open-access DEM 

products (Pedrozo-Acuna et al., 2015). Unfortunately, the capacity to predict flooding 

regions and pertinent dangers is considerably constrained by the open-access DEMs' 

generally poor resolution and accuracy (Sampson et al., 2016). It has been shown that 

poor DEM data quality can cause significant biases in flood prediction (Hawker et al., 

2018). The spatial resolution and vertical inaccuracy of DEMs have the most significant 

impacts on this. Poor spatial resolution impairs the accuracy of the flood simulation and 

the identification of surface characteristics (Vaze et al., 2010; Saksena and Merwade, 

2015). Elevation inaccuracies in the vertical direction may impact the accuracy of the 

terrain simulation and, consequently, the flooding simulation (Mukherjee et al., 2013; 

Talchabhadel et al., 2021). Accurate DEMs are essential for exact flood modelling and 

management (Coveney and Fotheringham, 2011; Adesina et al., 2021). 

 

2.3.2.3 Significance of DEM resolution 

The resolution of a digital elevation model (DEM) is one of the key factors influencing 

the outcomes of hydraulic modelling. Understanding the significance of DEM resolution 

on flood mapping is crucial for improving the forecast accuracy of DEMs. Several 

researchers who examined how changing DEM resolution affected hydraulic modelling 

concluded that DEM resolution was crucial in forecasting hydraulic outputs. Hydraulic 

controls, such as embankments, have a considerable impact on the accuracy of flood 
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extents, according to one of the earliest studies by Werner (2001), which examined the 

impact of grid size on the accuracy of projected flood regions. By utilising a low-

resolution DEM, local altitudes around the hydraulic controls averaged out, but using 

higher-resolution DEMs dramatically lengthened the computation time. 

 

A DEM resolution of 5 m had a considerable rise in the inundation extent and depths. It 

looked extraordinarily enormous, according to Kurniyaningrum et al. (2019) study on the 

sensitivity of flow depth inundation based on micro-scale topography. Together with the 

excess in flood extent, the combined effect of flood depth and inundation area grew 

considerably. They claimed that a LIDAR DEM with a resolution of 1 m to 5 m impacted 

the propagation of flood waves in a channel and the adjacent floodplain, changing the 

topography's geometrical characteristics and slowing or accelerating water flow. 

 

Flood modelling and mapping frequently employ DEM (Pedrozo-Acuna et al., 2015). 

Nevertheless, because of the open-access DEMs' generally poor resolution and accuracy, 

the ability to anticipate inundation locations and associated threats is severely limited 

(Sampson et al., 2016). Significant biases in flood prediction have been linked to poor 

DEM data quality (Hawker et al., 2018; Rahmati et al., 2020). The major influences on 

this are the vertical accuracy and spatial resolution of DEMs. The precision of the flood 

simulation and the identification of surface properties need to be improved by low spatial 

resolution (Vaze et al., 2010; Saksena and Merwade, 2015). Elevation errors in the 

vertical direction may influence the accuracy of the terrain simulation and, consequently, 

the flood simulation (Mukherjee et al., 2013; Talchabhadel et al., 2021). It has been 

established that accurate DEMs are necessary for highly accurate flood modelling and 

control (Cook and Merwade, 2009; Coveney and Fotheringham, 2011). 
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This issue cannot be adequately addressed since the low-resolution DEMs make it 

challenging to determine channel shape, the signal attenuation of water bodies, or radar 

reflections. As there is just one set of elevation data over a broader region, DEMs with 

larger grid sizes contain less specific information. Higher resolution DEMs or smaller 

grid sizes show the heights of smaller regions and are thus more suited to displaying finer 

topographic features. The DEM's flood regions and depths were found to grow as the grid 

size was raised. Low-resolution DEMs will always lead to overestimating flood depth and 

extent, regardless of the kind of flood. The reverse tendency for surface water floods, 

however, has been demonstrated by other investigations (Mukherjee et al., 2013; Hawker 

et al., 2018; Ogania et al., 2019; Mohamed and Ali, 2019; Talchabhadel et al., 2021; 

Kepeng et al., 2021). 

 

2.4     Role of Remote Sensing in Flood Modelling  

Remote sensing technologies, such as LiDAR, aerial imagery, and satellite-based sensors, 

offer valuable data sources for generating Digital Elevation Models (DEMs) used in flood 

modelling. These technologies provide detailed elevation information with varying 

resolutions, capturing topographic characteristics for accurate flood simulations (Smith 

et al., 2019). Remote sensing DEMs provide high-resolution data, crucial for representing 

fine-scale elevation variations that significantly influence flood modelling, particularly in 

urban areas (Sanders et al., 2020). These small topographic features have a significant 

impact on flood propagation. The use of remote sensing data allows for the accurate 

representation of these variations, improving the reliability of flood models. 

 

Remote sensing data enables large-scale coverage, facilitating flood modelling at regional 

or national scales and supporting flood risk assessments across diverse landscapes (Smith 

et al., 2019). This extensive coverage is essential for understanding flood dynamics in 
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different geographical areas and developing effective flood management strategies. 

Remote sensing data is easily accessible through various platforms and archives, ensuring 

seamless DEM integration into flood modelling workflows. This accessibility enhances 

the efficiency of flood risk assessments by providing researchers and practitioners with 

readily available data for their analyses (Talchabhadel et al., 2021). 

 

Remote sensing DEMs allow researchers to monitor changes in flood-prone areas over 

time. By analysing the temporal changes captured by remote sensing data, researchers 

can observe modifications in channel morphology, urban development, or natural 

landscape alterations, providing valuable insights for flood modelling and management 

(Smith et al., 2019). Remote sensing technologies play a crucial role in flood prediction 

and disaster management. Images extracted from satellite and aerial photographs are 

analyzed using image processing algorithms to forecast the possibility of flooding in 

specific locations (Syifa et al., 2019). Flood risk maps can be created using remote 

sensing data, including tools like interferometry synthetic aperture radar (InSAR) 

technology, space-based imaging devices, and satellites, which provide high-quality 

pictures of land and water reservoirs even in poor weather and low-light situations 

(Anusha and Bharathi, 2019). 

 

Several research studies have demonstrated the effectiveness of remote sensing DEMs in 

flood modelling. Smith et al. (2019) utilized high-resolution LiDAR DEMs to accurately 

simulate flood extents and depths in a riverine system, improving flood hazard mapping. 

Tariq et al. (2021) compared satellite-based DEMs and aerial imagery-derived DEMs for 

urban flood modelling, emphasising the importance of high-resolution data in capturing 

urban drainage networks and flood-prone areas. Li et al. (2017) integrated LiDAR-based 

DEMs and satellite imagery in flood modelling to simulate flash flood events in a 
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mountainous region, showcasing the ability of remote sensing DEMs to capture complex 

terrain features and rapid elevation changes. 

 

Remote sensing DEMs have revolutionised flood modelling by providing accurate and 

high-resolution elevation data. Integrating remote sensing technologies, such as LiDAR, 

aerial imagery, and satellite sensors, has significantly improved our ability to generate 

precise flood models, assess flood risk, and develop effective flood management 

strategies. The advancements in remote sensing technology, along with the accessibility 

of spatial data archives, continue to enhance our understanding of flood dynamics and 

improve flood risk assessment worldwide. 

 

2.5     Open Source DEMs 

Spaceborne global DEMs are the finest topographic data source for most of the Earth 

because freely accessible, high-accuracy aerial hyper-scale DEMs (10 m horizontal 

resolution) are only available for a tiny part of the Earth's land area (0.005%). There are 

several publicly and privately accessible global DEM goods. The Shuttle Radar 

Topography Mission (SRTM) continues to be the most commonly used worldwide DEM 

product.  

 

In late 2015, one arc-second (about 30 m) release followed the initial release of a three 

arc-second (about 90 m) near-global DEM. There are numerous SRTM variants, 

including the initial SRTM V1 that was not void-filled, the SRTM V2 and V3 that were 

void-filled, and the CGIAR-CSI version (Jarvis et al., 2008). 

 

A reprocessed version of the initial SRTM dataset called NASADEM (Crippen et al., 

2016) is scheduled for publication soon. Other freely available global DEMs include the 

Advanced Spaceborne Thermal Emission Radiometer (ASTER) (Abrams, 2000) with the 
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global product at 90 m and spanning to 83°S and 83°N, the Advanced Land Observing 

Satellite (ALOS AW3D30) (Tadono et al., 2016) at 30 m, and the Global Multi-resolution 

Terrain Elevation Data 2010 at 250 m resolution (Danielson and Gesch, 2011). 

 

Similar to publicly available DEMs, privately available DEMs (like Nextmap 

World10TM, World30TM, and Airbus WorldDEMTM) are also accessible but 

constrained by their limited use, prohibitive prices, and the absence of independent 

validation studies comparing them to other DEMs and ground observations. With all these 

considered, the SRTM dataset is generally still preferred, mainly the CGIAR-CSI Version 

4 (Jarvis et al., 2008), due to ease of access, more excellent feature resolution, a reduced 

number of artifacts, lower noise, and better vertical accuracy than other global DEM 

products and older versions of SRTM (Jing et al., 2014; Rexer and Hirt, 2014; Jarihani et 

al., 2015; Sampson et al., 2016; Hu et al., 2017). 

 

So, the SRTM and its offshoots are still an essential source of topographic data for many 

hazard and risk assessment models. These happen in places with little data, and high-

resolution topographic data like LIDAR (light detection and ranging) is unavailable or 

cannot be obtained. SRTM remains the best choice for elevation data for a large portion 

of the Earth right now and for the foreseeable future, despite demands for a coordinated 

effort to create a free, accurate global DEM (Schumann et al., 2019). 

 

An extensive global study by Rodriguez et al. (2006) provided the most thorough 

characterization of errors in the SRTM dataset. Using nearly 9.4 million Kinematic 

Global Positioning System (KGPS) samples gathered along roads in six countries, 

Rodriguez et al. (2006) discovered that 90% of the errors were less than 5 m, well within 

the mission's precision standards of an absolute height error of 16 m (Rabus et al., 2003). 

SRTM absolute errors have also been evaluated in other, more confined investigations 
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with a predominant vertical error emphasis. Although reporting vertical accuracy as a 

singular quantity, such as root mean square error (RMSE), has its benefits in terms of 

speed of calculation and ease of reporting, it does not accurately depict the heterogeneity 

of the error. It may initially give the impression that the error across the DEM is 

consistent. 

 

2.6  Topographic Accuracy of DEMs and Applications 

DEMs are essential geospatial datasets used in various applications, such as topographic 

analysis, hydrological modelling, and landform characterization. The availability of open-

source data and tools has led to an increase in the number of open-source DEMs 

accessible for different regions worldwide. This literature review aims to examine the 

topographic accuracy of open-source DEMs and explore their applications, emphasising 

their strengths, limitations, and potential for geospatial analysis. 

 

Open-source global DEMs, like SRTM and ASTER, suffer from vertical errors, 

particularly in complex topography and flat terrain (Gallien et al., 2011; Chu and 

Lindenschmidt, 2017). These errors can be significant and might affect their utility in 

specific applications. Various processing algorithms and merging approaches with other 

elevation datasets have been proposed to improve accuracy and address vegetation biases 

(Robinson et al., 2014; O'Loughlin et al., 2016b; Yamazaki et al., 2017; Yue et al., 2017). 

However, despite these efforts, certain limitations persist, especially in areas with 

complex terrain or dense vegetation. Different ways have been used to check the 

topographic accuracy of open source DEMs, such as field surveys, comparisons with 

reference datasets like LiDAR, statistical metrics (like root mean square error and vertical 

accuracy), and visual inspection. Quality assessment tools, such as the National Elevation 

Dataset Validation Tool (NEDVT), have also been used to evaluate DEM accuracy. 
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Mukherjee et al. (2013) assessed the vertical accuracy of open-source DEMs, including 

ASTER, SRTM, and GTOPO30, using the Root Mean Square Error (RMSE). They found 

that topographic accuracy was violated regarding slope and drainage network delineation. 

Dawod and Ascoura (2021) validated four open-source Global Digital Elevation Models 

(GDEMs) using various topographic profiles. The study reported accuracy values for 

different regions, highlighting limitations and suitability for specific map scales and 

contour intervals. 

 

Open-source DEMs have found wide applications in various geospatial analysis and 

modelling tasks, such as hydrological modelling, flood mapping, slope stability analysis, 

land cover classification, and terrain visualization. The accessibility of open-source 

DEMs has facilitated research and decision-making processes related to land 

management, environmental assessment, and disaster risk reduction. Despite their 

advantages, open-source DEMs face limitations related to data quality, resolution, and 

horizontal accuracy, affecting the reliability of derived analyses and interpretations. 

Additionally, data gaps, inconsistencies, and limited coverage in certain regions may 

restrict their applicability for critical applications. Continued research and development 

efforts are necessary to improve the topographic accuracy of open-source DEMs. This 

includes advancements in data collection techniques and algorithms for data processing 

and interpolation. Collaborative approaches involving public-private partnerships have 

been proposed to develop high-accuracy global DEMs to support water management and 

disaster assessment. 

 

Open-source DEMs offer valuable resources for geospatial analysis, and their accuracy 

varies based on several factors. Understanding their strengths and limitations allows 

researchers and practitioners to effectively leverage these datasets in diverse applications, 
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supporting sustainable land management, environmental assessment, and natural hazard 

mitigation. As technology and data availability advance, open-source DEMs will play an 

increasingly important role in geospatial analysis. 

 

2.7     Generation of DEMs from UAV Data 

The benefit of using UAVs over conventional data collection techniques is their speedy 

delivery of high-resolution pictures for a temporal event (the degree of flooding at a 

particular flood stage) (Popescu et al., 2017). UAVs are adaptable and can be flown with 

various sensors that can be set up to detect a range of possible data requirements, 

particularly for locations with complicated urban landscapes and inaccessible areas owing 

to dangerous surroundings. 

 

For a localized photogrammetry project, UAVs may also be operated cheaper than human 

aircraft. They can even be used to return to the exact location repeatedly to track changes 

over time, such as those caused by flooding. UAVs are, therefore, quickly deployed and 

offer on-demand flood mapping photogrammetry platforms that are cost-effective. Such 

maps' dependability and correctness depend on the quality of the topographic data and 

digital elevation model (DEM) (Kulkarni et al., 2014; Leitao et al., 2016). 

Flood-risk analysis for hazard and vulnerability models depends on accurate topographic 

data and DEM. According to research by Zazo et al. (2015), even a small DEM error, 

particularly in a flood-prone area, can significantly alter the flood-risk map for that region. 

 

2.8     Applications of UAV-Based DEMs  

Several researchers have developed and evaluated the effectiveness of UAV-based DEM 

for various applications (Uysal et al., 2015; Krsak et al., 2016; Koci et al., 2017). UAV 

photogrammetry was examined for applications in 3D mapping and topographic 

monitoring of coastal regions (Goncalves and Henriques, 2015; Kung et al., 2011). 
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Serban et al. (2016) looked at how UAV technology and Leica Multi-Station GNSS 

surveying could be used together to make a high-quality DEM of the significant and minor 

riverbeds in the Somesul Mic basin and collect specific hydraulic parameters to study 

ways to manage flood risk.  

 

A DEM with a vertical RMSE of 11.9 cm in submerged regions and 8.8 cm in dry areas 

was created, along with a 5 cm orthomosaic. The DEM's precision allowed for the 

initialization and operation of the River2D two-dimensional hydrodynamic model. In 

terms of weighted useable area, the model results, such as the depth and speed 

distributions, were combined with the mapped physical habitat characteristics to 

determine how much habitat is available. 

 

Ajayi et al. (2017) investigated the accuracy of GNSS receivers installed on a UAV 

platform for DEM synthesis to estimate flooding risk, create complete relief measures 

right away after flooding, and provide damage assessment in both geographical and 

temporal dimensions. Accurate monitoring and mapping of the DEM and flood extent are 

essential. 

 

Esmaeel et al. (2022) investigated the effect of unmanned aerial vehicle (UAV) DEM 

resolutions on flood characteristics, including the inundation area, mean flow depth, and 

mean flow velocity. Results showed that when UAV DEM resolution decreased from 1 

m to 30 m, inundation area and mean flow depth increased by 17.0% and 10.2%, 

respectively, while mean flow velocity decreased by 16.8% (R2 = 0.94). Validation of the 

hydraulic modelling using the modified normalized difference water index showed that 

the HEC-RAS 2D model, in conjunction with the UAV DEM, simulates the flood with 

92% accuracy. The results could be a guideline for selecting global DEMs for hydraulic 

simulations. 
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UAVs have already proven to be highly effective for mapping applications, in addition to 

having a significant potential for producing rapid and precise on-demand DEMs in flood-

assessment applications. The creation of the DEM using UAV data from a flood-prone 

section of the Shiroro Dam floodplain was investigated in this study.  Leitao and de Sousa 

(2018) used a drone-based DEM for urban surface fog modelling to be potentially 

connected to a drainage model of a Swiss town; Erban and Gorelick (2016) investigated 

the use of UAV technology coupled with Leica MultiStation to generate a high-quality 

DEM of the flood-prone area of the Somessul Mic Basin, Transylvania. 

 

Hashemi-Beni et al. (2018) looked into the quality of UAV-based DEM for spatial flood 

assessment mapping and figuring out how big a flood event was in Princeville, North 

Carolina. They did this to show how difficult it can be to make DEMs on demand during 

a flood. Schumann et al. (2019) demonstrated that mapping terrain using a UAV has a 

trivial error compared to a LiDAR-generated terrain model and can thus extract cross-

sections with high accuracy.  

 

Lee et al. (2019) used UAVs over the river floodplain to extract detailed topography, 

combining virtual Natural Hazards reference stations with total station survey equipment 

to reduce a DEM to an accurate DTM. These researchers have shown promising results 

for an extensive application of UAV photogrammetry in hydraulic modelling, confirming 

the advantages of drone-based remote sensing with a drastic cut in risks, costs, and 

execution time while delivering products of satisfactory quality for the intended use. 

 

 

 

2.9     Accuracy Assessment of Flood Modelling 
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Flood modelling is crucial in assessing and managing flood risks in various regions 

worldwide. Accurate flood modelling is essential for effective decision-making, 

emergency response planning, and infrastructure development. A literature review 

explored and evaluated the accuracy assessment methods employed in flood modelling 

studies, highlighting the importance of reliable models for enhancing flood prediction and 

management. 

 

Various accuracy assessment methods have been employed to evaluate the performance 

of flood models. These methods include statistical metrics such as root mean square error 

(RMSE) (Hladik and Alber, 2012), mean absolute error (MAE) (Hawker et al., 2019), 

root mean square error (RMSE), and correlation coefficient. Jakovljevic et al. (2019) used 

spatial analysis techniques like overlay analysis and validation against observed flood 

events. Additionally, remote sensing data and geographic information systems (GIS) have 

been used to validate flood extents and compare them with modeled results. For example, 

Hladik and Alber (2012) conducted an accuracy assessment of a LIDAR-derived salt 

marsh digital elevation model (DEM) by comparing it with GPS data collected using the 

Real-Time Kinematic (RTK) mode. The study found that the vertical error of the DEM 

ranged from 0.25 m to 0.3 mm when compared to the RTK results. They also developed 

a correction factor model to reduce the mean DEM error and the root mean square error. 

 

Similarly, Hawker et al. (2019) assessed the accuracy of the TanDEM-X 90 Digital 

Elevation Model for a selected floodplain site. They compared the accuracy of TanDEM-

X with the widely used Shuttle Radar Topography Mission (SRTM) and a modified 

version of SRTM called Multi-Error-Removed-Improved-Terrain (MERIT). The study 

found that TanDEM-X and MERIT showed improved vertical accuracy compared to 
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SRTM, with TanDEM-X being more accurate in all land cover categories and MERIT 

demonstrating more accuracy in tree-covered areas.  

 

The study suggests that the combination of TanDEM-X and MERIT has the potential for 

floodplain assessment. Jakovljevic et al. (2019) performed an accuracy assessment of 

deep learning-based classification of LIDAR and UAV point cloud data for Digital 

Terrain Model (DTM) creation and flood risk mapping. The study used pixel-by-pixel 

accuracy assessment and visual inspection to examine the accuracy of the DEM generated 

by LIDAR and UAV. 

 

Several factors influence the accuracy of flood modelling, including data quality, model 

complexity, topographic characteristics, and calibration and validation techniques. The 

availability and accuracy of input data, such as digital elevation models (DEMs), rainfall 

data, and hydraulic parameters, significantly impact the reliability of flood models. 

Furthermore, selecting appropriate modelling techniques, parameter calibration, and 

validation against observed data are critical for achieving accurate flood predictions. 

 

In salt marshes, Hladik and Alber (2012) noted that poor laser penetration in dense 

vegetation, sensor resolution, and instrument errors all limit accuracy. Hawker et al.  

(2019) also highlighted the influence of terrain characteristics on DEM accuracy, with 

MERIT exhibiting more accuracy in tree-covered regions and TanDEM-X being useful 

in nearly all land cover types. Jakovljevic et al. (2019) wrote about how LIDAR and UAV 

can be used to make DEMs based on the characteristics of the study area. LIDAR is good 

for areas with water, and UAV is suitable for hills. 

 

Despite advancements in flood modelling techniques, several challenges and limitations 

persist. Inaccurate or incomplete input data, uncertainty in modelling assumptions, and 
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limitations in computational resources can affect model accuracy. Hladik and Alber 

(2012) emphasized the need for unique data acquisition methods based on the nature of 

the terrain, as observed in their study of a salt marsh. Additionally, the dynamic nature of 

floods, such as rapid changes in flood patterns and extreme events, poses challenges in 

accurately capturing their behavior and magnitude. Improving the accuracy of assessment 

methods and addressing the identified limitations can enhance the reliability of flood 

models. Integrating real-time data, advanced remote sensing techniques and ensemble 

modelling approaches can lead to more accurate flood predictions. Additionally, 

incorporating uncertainties and sensitivity analysis into flood models can provide 

valuable insights into the reliability of predictions. 

 

In conclusion, the accurate assessment of flood modelling is vital for reliable flood 

prediction, risk assessment, and effective decision-making. This literature review 

highlighted the various methods used to assess the accuracy of flood models, the factors 

influencing accuracy, and the challenges associated with flood modelling. Continued 

research and advancements in data collection, modelling techniques, and accuracy 

assessment methods will contribute to improved flood modelling capabilities and enhance 

flood risk management strategies. 

 

2.10  Findings from the Literature Review  

This section presents a summary of the findings of the literature review: 

i. Many studies modelled flooding as a function of topographic height, ignoring 

hydrological and hydraulic factors as key parameters (Mayomi et al., 2014; 

Usman and Ifabiyi, 2012; Olukanmi and Salami, 2012). 

ii. Many studies have used low-resolution DEMs that led to the loss of important 

floodplain topography (Savage et al., 2016a; Ogania et al., 2019). 
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iii. Most researchers used hydrodynamic models subject to substantial uncertainties 

due to a lack of high-resolution data and hydrologic measurements (Schumann et 

al., 2019; Nkwunonwo et al., 2020). 

iv. Most researchers have used global DEMs, such as the National Elevation Dataset 

and SRTM DEMs, that overestimate or underestimate flood models (Sanders et 

al., 2020). 

v. Most researchers used historical records to construct flood records, but their 

usefulness to modern planners needs to be improved as society and river geometry 

change (Corringham and Cayan, 2019). 

vi. The low-resolution DEMs led to an over-prediction of flood depth and extent, 

regardless of the kind of flood (Saksena and Merwade, 2015). 

 

Hence, most researchers who have worked on flood modelling have only used low-

spatial-resolution DEMs as their input parameters. It has resulted in inaccurate flood 

models that often need to depict the extent of flood damage in the event of flood mishaps 

due to the inappropriate spatial resolution of the input DEM. Thus, the study aims to close 

this gap by demonstrating how DEMs with a specific spatial resolution from different 

data sources affect flood simulation. 

 

 

 

 

 

 

 

 



66 
 

CHAPTER THREE 

3.0     MATERIALS AND METHODS 

3.1 Materials 

Materials in this study refer to the various data types used to achieve the research's goal. 

The instruments, software, and hardware used to gather and process the collected data. 

Although, some of the data used in the study were obtained directly in the field (primary 

data) and from secondary sources. An analysis validates the authenticity of all secondary 

data before use in this study. The details of the materials and data used are in Table 3.1, 

and the materials are in Section 3.3. Figure 3.1 shows a workflow view of the research 

methods adopted in this study. 
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Table 3.1: Details of the materials and data used for the study 
Primary Data Source Instrument Processing software Spatial 

resolution 

Data 

acquisition 

date 

Accuracy 

UAV-Derived DEM Field mission UAV Trimble 

UX5 

Trimble 

Business Center 

Photogrammetry 

Module 

application 

(version 3.30) 

1 m 2019 0.1 m 

River channel bathymetry  Field mission Dual-

frequency 

GPS receiver  

and Hi-Target 

DH Light 

Echo Sounder 

 

 

ArcGIS  

- 2019 - 

Secondary data 

 

Source Instrument Processing software Spatial 

resolution 

Date of data 

acquisition 

Accuracy 

InSAR 10 m DEM  https://scihub.copernicus.eu/dhus/#/home. N/A SeNtinel 

Applications 

Platform   

(SNAP) 

version 8.0 

10 m 2021 1 m 

SRTM 30 m DEM  http://earthexplorer.usgs.gov  

N/A 

ArcGIS 30 m 2000 3 - 4 m 

 

 

Settlements flooded NSEMA N/A N/A - 2021 - 

Settlements data for the 

study area 

Niger State Geographical Information 

System (NIGIS) 

N/A N/A - 2021 - 

Water level, rainfall,  

inflow, temperature and 

outflow 

Shiroro Dam Authorities 

 (hydrological data) 

N/A N/A - 

- 

2021 

2020 

- 

- 

http://earthexplorer.usgs.gov/


68 
 

 

 

 

 

 

 

 

 

PHASE 6 

PHASE 1 PHASE 2 PHASE 3 PHASE 4 

Assess the quality of 

floods modelled using 

UAV data 

Assess the quality of 

flood modelled using 

InSAR data  

Assess the quality of 

flood modelled using 

SRTM data  
 

Inputting outflow data 

Acquisition of hydrological 

data (such as rainfall, inflow, 

reservoir water level, 

temperature and outflow) 
 

Generation of high-

resolution 1 m UAV 

DEM  

Generation of high-

resolution 10 m InSAR 

DEM 

Download low-

resolution 30 m SRTM 

DEM  

Preparation of hydrological 

data  
 

Shallow Water Equation 

(Simulation of flood 

events and river flows) 

Shallow Water Equation 

(Simulation of flood 

events and river flows) 

Shallow Water Equation 

(Simulation of flood 

events and river flows) 

PHASE 5 

Discharge Discharge 

Correlation of hydrological 

data 

Discharge 

Flow velocity Flow velocity Flow velocity 

Flow potential Flow potential Flow potential 

VALIDATION 

Figure 3.1: The workflow view of the research procedure  
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3.2  Conceptual Framework (Choice of Data and Hydrodynamic Models) 

A hydraulic model must meet the following requirements to satisfy the standards of good 

practice (Beven et al., 2018). 

i. Computationally efficient enough to run multiple simulations at a regional scale at a 

high resolution 

ii. Few data requirements (i.e., suitable for a data-sparse location) 

iii. Ability to represent flood inundation over a large floodplain 

 

The Shiroro Dam floodplain in Niger State, Nigeria, is a very sizable area. A trade-off is 

needed between model complexity and resolution so the model can capture the correct 

processes but can, in turn, be run multiple times. A 2D model is best suited to replicate flow 

over the complicated topography of the floodplain as storm inundation expands over 

topography. A 1D model is unsuitable because it is inadequate to capture the intricate terrain 

of the floodplain. 

 

In order to study the impacts of DEM resolution, a hydrodynamic model needs to be able to 

operate at various levels. As a result, this study chose to use ArcScene in ArcGIS 10.4 to 

carry out the hydrodynamic model simulation. Three DEM resolutions were examined to 

determine the effect of DEM resolution on the resulting flood models. The investigated 

DEMs are UAV-derived 1 m DEM, InSAR 10 m DEM, and SRTM 30 m DEM. 

 

Arc GIS 10.4 software was used to perform the 2D storm inundation simulation. Waterway 

and surface flooding are brought on by rain using ArcScene in ArcGIS 10.4. Before running 

a flood simulation in ArcScene, the river outflow and flow rate were calculated in MATLAB 

using the standard shallow water equation (SWE) in Equation (3.1). The preference for SWE 
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is because of its capacity to model unsteady flow, unlike the other flow modelling equations, 

which are better suited for modelling steady flow. However, the reality of surface runoff and 

flood modelling is that they could be more stable flows. Equations 3.1–3.5 (Vila et al., 2017; 

Adesina et al., 2021) present a mathematical description of the conceptual framework for 

flood modelling in light of the variable spatial resolution of the input topographic data. 

SWE is of the form (Vila et al., 2017): 

 
𝛿𝑄

𝛿𝑡
+ 

𝜕

𝜕𝑥
(
𝑄2

𝐴
) =  −𝑔𝐴𝑆𝑓 + 𝑔𝐴𝑆0 −  𝑔𝐴

𝜕ℎ𝑜

𝜕𝑥
                                                   (3.1) 

where 

𝑄 = discharge  

𝐴 = cross-sectional area 

𝛿𝑄

𝛿𝑡
 = rate of discharge with respect to time  

𝜕

𝜕𝑥
(
𝑄2

𝐴
) = rate of discharge with respect to cross-sectional area 

𝑔 = acceleration due to gravity 

𝑆𝑓= frictional slope  

𝑆𝑜 = reference slope  

ℎ0 = is a typical length characteristic of the height of the flow 

𝜕ℎ𝑜

𝜕𝑥
 = channel bed-topography 

𝑄 can be computed as: 

    𝑄 =
𝐴

𝑛
∗ 𝑅

2

3 ∗ 𝑆
1

2                                                                                                        (3.2) 

where 

𝑅 =Hydraulic radius  
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𝑛 =Manning coefficient of roughness 

𝐴 = Cross-sectional area  

𝑆 = Channel slope in the direction of flow, 

𝜕ℎ𝑜

𝜕𝑥
 is obtained from the bathymetric observation   

𝐴 is measured from satellite imagery (width) and some points validated on the ground  

𝑆𝑓 and 𝑆𝑜 are deduced from the digital elevation model, and 

𝑄 is computed using Equation (3.2) 

 

Thus, the simultaneous substitution of the computed value of 𝑄 from Equation (3.2) into 

Equation (3.2) allows the calculation of the actual flow rate 
𝛿𝑄 

𝛿𝑡
 in Equation (3.1). 

Again, Equation (3.3) is used to compute the stream flow rate: 

𝐹𝑟 (
𝜕ℎ0

𝜕𝑥
)  =

𝐴×𝐿 ×𝐶

𝑇
                                                     (3.3) 

where 

𝐹𝑟 = flow rate 

A = cross-sectional area 

𝐿 = length of reach  

𝐶 = coefficient or correction factor to accommodate for the drag due to sediments and channel 

disturbance. 

𝑇 = Time in seconds 

Combining the water channel discharge capacity (𝑄) with the discharge rate (
𝛿𝑄

𝛿𝑡
) and stream 

flow rate, the flooding potentials of the water channel was simulated using Equations (3.4), 

(3.5a) and (3.5b). 

Water flux equation is expressed as: 
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𝑊𝑓 =  
𝛿𝑄

𝛿𝑡
 × 𝐹𝑟                                          (3.4) 

where 

𝑊𝑓 = water flux 

𝛿𝑄

𝛿𝑡 
 = discharge rate 

𝐼𝑓 𝑊𝑓 > 𝑄 River section is potentially flood prone                          (3.5a) 

     𝑊𝑓 ≤ 𝑄 River section is not potentially flood prone                           (3.5b) 

 

3.3  Phase One: Acquisition, Preparation, and Correlation of Hydrological Data 

The hydrological and weather-related parameters associated with the Shiroro dam were 

collected from Shiroro dam authorities for 20 years (i.e., 2001–2020) (Shiroro Dam 

Authority, 2020), prepared and correlated. The hydrological data comprises rainfall, 

temperature, inflow, water level, and outflow (water discharge). Appendices A1- A10 

presents the hydrological data and the correlation of the hydrological data used for the study. 

 

3.3.1  Bathymetry data  

 

The river channel bathymetry of the Shiroro downstream was carried out in 2021 at random 

intervals. Nine hundred and fifty-five (955) data points were observed, and the data statistics 

are shown in Appendices A11. Calibrating the echo sounder is as essential as testing any land 

survey equipment for inherent errors and precision. It is done to keep the depth ping 

consistent. As the acoustic wave travels through the water medium, it is affected by the speed, 

salinity, temperature, and pressure of the water (Ojinnaka, 2007). It either slows the wave or 

increases it from the transducer to the seabed and its return signal. The echo sounder was 

calibrated by the bar-check method. 
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It was accomplished by lowering a flat plate beneath the echo sounder transducer to various 

known depths beneath the surface and comparing the measured depth to the actual depth. As 

the bar is moved down, the sound velocity in the echo sounder is adjusted until the measured 

depth matches the actual depth. Figure 3.2 shows the echo sounder calibration by the bar-

check method. 

 

 

Figure 3.2: Echo sounder calibration by the bar-check method (Ojinnaka, 2007) 

 

A Hi-Target DH Light Echo Sounder carried out the sounding operation. The Echo sounder 

was set up inside the vessel while its transducer was fixed to its side. The draught of the 

transducer was read and keyed into the system as 0.1 m. All ellipsoidal, time/date, frequency, 

velocity, and zone parameters were keyed into the system. 

The horizontal datum employed for this work was the World Geodetic System (WGS 84). 

The Hi-Target DH Light Echo Sounder is configured with a dual-frequency GPS receiver 

just for the instrument. This receiver cable is connected to the Echo Sounder. Once the 

connection is established, the coordinates and speed of the vessel are displayed, as the speed 
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is a function of the vessel's position at any given time and is computed from the coordinates 

obtained. 

 

3.3.2  Niger State Emergency Agency (NSEMA) damaged assessment data 

The Niger State Emergency Management Agency (NSEMA) carried out a damaged 

assessment of the flooded area in Shiroro downstream, Shiroro local government area, Niger 

State, after the flood in 2021 using Global Position System (GPS) to access the communities 

affected by the flood, weighing the severity of the flood and the impact on the settlements 

and categorizing them as low and high through the physical inspection. Appendice A12 

presented the NSEMA data used to validate the study. However, this information confirmed 

which of the three DEMs performs optimally in modelling floods in the study area.  

 

3.4  Phase Two: Unmanned Aerial Vehicle DEM Generation 

In this study, a fixed-wing unmanned aerial vehicle (UAV) equipped with a calibrated small-

format digital camera, a GPS sensor tracking system, and an inertial navigation system (INS) 

form the data acquisition system. The establishment of ground control points helped in 

improving the aero-triangulation quality, and the processing of the data to obtain an 

orthophoto and a Digital Elevation Model (DEM) was generated by processing the acquired 

image pairs using Trimble's photogrammetric workstation. The Trimble UX5 was chosen 

because it is a fast and safe aerial data collection system with a robust design, simplified 

workflow, reversed thrust, and automatic failsafe procedures. It offers a safer method than 

traditional surveying methods and is fully automated, requiring no piloting skills (Lawali and 

Dauda, 2014; Olagoke et al., 2017). 
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3.4.1  Mission and flight planning 

Onboard the UX5 rover was a sensor (a calibrated camera) with a focal length of 24 mm and 

forward and side overlaps of 70% and 65%, flown at 200 m above the ground. Mission and 

flight planning was done with a software package called Trimble Access Aerial Imaging. 

Flight plans were edited both in the graphical and tabular sections of the screen. The mission 

was planned on Trimble Access Aerial Imaging software, UAS- Flight Operations Manual 

(UAS-FOM, 2017). 

 

3.4.2  Initial flight planning 

The initial flight planning entailed using Google Earth (GE) to execute an initial review and 

demarcation of the project area, which was then saved in Kemler file format. It was also 

essential to do initial flight planning as the GE imagery does not show dangerous obstructions 

such as cell towers, power lines, or other objects that could impede the flight plan. Part of the 

reconnaissance includes identifying an open, reasonably central location that can be used as 

the take-off and landing area, as well as obstructions like utility poles, trees, and buildings. 

 

3.4.3  Establishment of ground control points (GCPs) 

Ground controls can be avoided if the UAV has a dual-frequency GNSS sensor on board so 

that precise camera station coordinates are determined for each photograph, but in this case, 

the GNSS onboard the UAV is of a single frequency; hence, the GCPs were pre-marked 

across the project area before the flight (Karamuz et al., 2020). The GCPs were surveyed 

using Trimble R8 GNSS receivers (Ahmad, 2014). Trimble Navigation's recommended 

default ground signal was used. Conspicuous existing natural or artificial features on the 

ground were used as checkpoints (ChP), considering the clarity of the aerial photographs 
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(Hughes et al., 2005). The precise coordinates of all the GCPs were determined in a defined 

spatial reference frame (Azmi et al., 2014). 

 

Trimble R8 differential GNSS receivers were used to establish the ground control points 

(GCPs) and checkpoints (ChPs) in rapid static survey mode. With about 45 minutes of 

occupation time, 106 GCPs were established to considerably enhance the georectification 

quality, though it is insufficient for rough terrain. The WGS 84 reference ellipsoid in UTM 

Zone 32N projected coordinates was used as the spatial reference system, UAS-Flight 

Operations Manual (UAS-FOM, 2017). The coordinates obtained are presented in the 

appendix. 

 

3.4.4  Image acquisition 

The selection of flights was perfectly carried out, which covered the study area to alleviate 

the stress of processing the images due to the processing system configuration. Wind 

direction, take-off, and landing locations were defined on the UAV Ground Control Station 

(GCS) before the flight, UAS-Flight Operations Manual (UAS-FOM, 2017). 

 

In preparation for the flight, the UAV, the Radio Connection (RC) transmitter, and the 

Ground Control System (GCS) were connected, and the flight mission plan was uploaded to 

the UAV Autopilot fixed in the eBay section. The UAV was launched after being fully armed 

for capture, and it hovered for about 15 minutes for each flight mission before landing. The 

flight ended on the GCS, after which the log data and captured images were downloaded. 

Each flight covers about 80 hectares and produces 200 images, according to the UAV Flight 

Operations Manual (UAV-FOM, 2017). 
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Details of the flight parameters for the UAV mission are provided in Table 3.3. The 

processing software (Trimble Business Center Photogrammetry Module, Version 3.30) was 

also used to extract the height of the buildings from the digital surface model to achieve the 

digital elevation model for the study area, which is the primary concern of this research. 

 

Table 3.3: Flight planning parameters for the UAV mission 

S/N Parameter Value 

1 Flying height 200 m 

2 Flight speed 12-15 m/s 

3 Forward lap 70% 

4 Side lap 65% 

5 Camera focal length  24 mm 

6 Flight time is approximately (Per flight) 15 minutes 

7 Battery capacity  5350 mAH 

8 Capacity of each image 6 megabytes 

9 Number of GCPs  106 points 

10 Number of GCPs used for georeferenced 60 points 

11 Number of GCPs used for the adjustment of Tie points 46 points 

 

 

3.4.5  Image processing  

The flight was designed with generous overlaps of 70% (forward) and 65% (side), which 

produced 6-8 overlapping image frames, amounting to a large set of image data of about 6 

megabytes per image frame. Consequently, the processing part of the UAV methodology is 

the most time-consuming. It involves performing a procedure referred to as "photo 

alignment," "tie point adjustment," "digital elevation model" (DEM) creation, and 

"orthophoto" production. The processing was done on the Trimble Business Center 

Photogrammetry Module application (version 3.30) installed on an HP laptop with the 

following configuration properties: 128 GB of RAM, an Intel® CoreTM i7 CPU 11th 
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Generation @ 2.80 GHz processor, a 64-bit operating system, and a 1 TB hard drive disk. 

The data was post-processed in a UTM 32N projected coordinate system referenced to the 

WGS 84 global ellipsoid. The 46 GCPs were used to adjust tie points (aero-triangulation), 

followed by the production of the digital elevation model, UAV-Flight Operations Manual 

(UAV-FOM, 2017). 

 

3.5  Phase Three: Generation of InSAR 10 m DEM 

This section provided the InSAR operational steps and processing chain for DEM creation 

from single-look complex (SLC) Synthetic Aperture Radar (SAR) data. The three operations 

are data structure, processing, and product validation. Data pre-processing, co-registration, 

interferogram creation, phase unwrapping, and geocoding are the additional processes that 

make up the data processing stage. The Sentinel Applications Platform (SNAP) version 8.0 

processing software has to test the data processes utilizing SRTM data. The results of the 

stated processing procedures on actual data sets are in subsections 3.4.1 to 3.4.5. 

 

3.5.1  Data search 

The data search step entails looking for pertinent data that will guarantee sufficient data 

quality and produce the best outcomes possible for the InSAR processing. Typically, 

agencies in charge of providing SAR data are sought out. The Canadian Space Agency (CSA) 

and the European Space Agency (ESA) are the two organizations now in charge of running 

SAR satellites in the civilian sector. Since 1996, the CSA has had one SAR satellite in orbit, 

RADARSAT-1. In 2002, ESA launched ENVISAT, their third SAR satellite. The ERS1 and 

ERS2 satellites, their forerunners, gathered SAR imagery from 1992 to 2000 and from 1995 

to the present, respectively. 
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In addition, a SAR satellite was run by the National Space Development Agency of Japan 

(NASDA) from 1993 to 1998. This satellite's SAR pictures collection is also accessible. 

Future satellite radar missions are in the works. These include the German TerraSAR (X-

Band), the Japanese ALOS, and the Canadian RADARSAT 2 (C-Band). 

 

3.5.2  Data processing 

Data pre-processing, coregistration, resampling, computation of the interferogram, phase 

unwrapping, and geocoding are the five independent procedures that comprise the data 

processing stage (Figure 3.3). Sentinel Applications Platform (SNAP) version 8.0 is used in 

this work for data processing (Kampes, 2005; Kampes et al., 2003). SNAP was selected since 

it is free interferometric processing software that is fully functional. SNAP adheres to the 

traditional UNIX tenet that each tool should have a single, clearly defined function, and a 

pipeline of simple tools should be used to build complex functions. 

 

SNAP comprises several software applications (or modules) that carry out various 

interferometric operations. In order to carry out specific tasks that these programs can handle 

well, SNAP makes use of additional public-domain applications. These include GMT for 

general plotting and gridding (GMT, 2005), SNAPHU for phase unwrapping (SNAPHU, 

2005), Getorb for acquiring precise orbital data records for the ERS satellites (Getorb, 2005; 

Scharroo and Visser, 1998), and PROJ.4 for coordinate transformations (USGS, 2005). 

 

3.5.2.1  Step 1: Data input, data cropping, and oversampling 

 

The input of the master and slave data sets for InSAR processing is the initial data processing 

stage. All processed data are single-look complex (SLC) data. It does not include radar and 

orbital raw data pre-processing. This step additionally reads orbit data acquired from the 
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getorb Web site to compute precise orbit. The SLC leader, volume, and header data files, as 

well as pertinent parameters, were then retrieved from the input files by SNAP. At this stage, 

data oversampling and amplitude calibration are also carried out. 

 

 

 

 

 

 

  

  

Figure 3.3: Data processing stage for InSAR DEM 

(Source: Okeke, 2006) 

 

3.5.2.2  Step 2: Co-registration and resampling 

The co-registration polynomial, which was later used to resample the slave image to the 

master grid and define the transformation of the slave picture to the master image, is 

determined at this stage. In SNAP, this is accomplished in four steps. First, a single coarse 

offset on the pixel level between the master and slave images is computed using the orbital 

data of the master and slave. Then, using a cross-correlation on the intensity data of the master 

and slave on a select few relatively big patches, the estimate for this offset is enhanced. 

 

The coarse offset previously calculated using the orbits serves as the beginning offset. The 

offset vectors between the master and slave are calculated at numerous small patches (64 × 

64 pixels) in the third phase, the fine co-registration, employing a cross-correlation of the 

Data Pre-Processing 

Co-registration and 

resampling 

Computation of Interferometric Products 

Phase unwrapping 

Geocoding 
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intensity data. Finally, the slave picture is resampled to the master grid using the estimated 

polynomial. 

 

3.5.2.3  Step 3: Computation of interferometric products 

The interferogram and the coherence image are produced in this step. By default, SNAP 

computes the interferogram with a multilook factor of 5 for azimuth and 1 for range. A 

reference body's phase is considered when correcting the interferometric phase. The 

reference phase can be calculated using the WGS84 ellipsoid or another ellipsoid. 

 

Additionally, SNAP can compute the coherence image that may be used as an input for the 

unwrapping program's cost function calculations. Different techniques can be used to do 

phase filtering. The Goldstein filter, 2D convolution kernels, and simple pre-defined spatial 

averaging kernels are just a few of the techniques used by SNAP to compute coherence 

images (Baran et al., 2003; Goldstein and Werner, 1998). 

 

3.5.2.4  Step 4: Phase unwrapping 

The wrapped phase representation has been used to rebuild the initial phase. The 

computations for phase unwrapping are performed by SNAP using the SNAPHU phase 

unwrapping program (SNAPHU, 2005). Curtis and Zebker (2000) describe the SNAPHU 

phase of unwrapping software. It is a cutting-edge phase unwrapping program that computes 

the cost functions using the interferometric amplitude and coherence image, as well as data 

on the anticipated smoothness of the unwrapped phase. 

 

3.5.2.5  Step 5: Geocoding 

In this step, the pixel coordinates are geo-referenced, and the unwrapped phase is converted 

to a height. This stage produces the height of a substantial number of pixels on an asymmetric 
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grid of longitude and latitude pairings. However, these output matrices are gridded using the 

GMT tools, and transformation to the required coordinate system is performed using the 

PROJ.4 program. 

 

3.5.3  Product validation 

In this phase, the quality of the InSAR products is evaluated through comparison with a 

reference model acquired from independent sources. The existing second-order control 

points in the research area were used to validate that the interferometric phases are eventually 

transformed to heights (Okeke, 2006). 

 

3.5.4  Generation of InSAR DEM  

This section presents the methods used to generate inSAR DEM for the study from 

subsections 3.5.4.1 to 3.5.4.6. 

Given two radar image phases, where the phases of images 1 and 2 are as given in Equations 

3.6a and 3.6b, 

𝜑1 = 
4𝜋

𝜆
 . 𝜌1 + 𝑛1                                  (3.6a) 

𝜑2 = 
4𝜋

𝜆
 . 𝜌2 + 𝑛2                                 (3.6b) 

where 

𝜑 = signal phase 

𝜌 = signal range / distance measured 

𝜆 = signal wavelength 

𝑛 = observation noise 

The Equation (3.7) represents the phase difference  
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∆𝜑 = − 
2𝜋

𝜆
 𝛿𝜌                                 (3.7) 

In Equation (3.7), the range differences are obtained from the phase differences. Using the 

geometry of image data acquisition, point elevations can be determined by the Equation (3.8). 

𝑧 = ℎ − 𝜌 cos 𝜃                                 (3.8) 

where 

𝑧 = elevation of point 

ℎ = height of satellite above ground level 

𝜃 = Azimuth 

 

The Sentinel Applications Platform (SNAP) version 8.0 was used in this study to implement 

Equation (3.8) with the traditional DEM generation approach. The procedure for DEM 

generation is shown in Figure 3.4 Two single-look complex (SLC) images of the same area 

are accurately co-registered, and the interferogram is prepared. After that, the interferogram 

was subjected to flat-earth correction and smoothing using the Goldstein filtering approach. 

The minimum cost flow algorithm is used to unwrap the phases, and the interferometric 

phases are finally converted to heights using existing second-order control points in the study 

area (Okeke, 2006). 

 

Throughout this study, the VH polarisation was selected for the interferogram formation. The 

SRTM 1-second Digital Elevation Model (DEM) was used as the reference Digital Terrain 

Model (DTM) for the processing of the flat earth model (Okeke, 2006). The choice of the 

SRTM 1-second height as a reference DEM for the flat earth model is to maintain consistency 

with the earlier study by Karabork et al. (2021). The use of the DEM (an optional process) 
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for interferogram generation allows the assignment of a reference cartographic system for 

the resulting DEM. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Procedure for interferometric analysis and DEM generation  

(Source: Okeke, 2006) 
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3.5.4.1  Co-registration and implementation in SNAP 

The SLC Level-1 product of IW with VV polarisation was selected for this process. The IW2 

sub-swath with bursts numbered 1 to 9 with VV or VV+VH polarisation was obtained by 

splitting. The two split Level-1 SLC products, "Master" and "Slave," of the same sub-swath, 

were coregistered using the orbits of both images acquired at different times. The "slave" 

image is the one acquired at a later date, while the "master" image is the one acquired earlier. 

The co-registration also corrects the offsets in master and slave images regarding range 

direction and azimuth. Precise orbit files for Sentinel images were obtained from the 

European Space Agency (ESA).  

 

The orbit files contain information about altitude, atomic time, and other real-time orbit data 

that can improve the baseline estimation and co-registration of these images (Yague-Martinez 

et al., 2016). The co-registration ensures that a particular ground target will be in the same 

pixel (range and azimuth) in both the master and slave images. Because the sensor velocity 

and altitude in Sentinel satellites are relatively stable, the 6-parameter similarity 

transformation was used to approximate the entire frame of the SAR image pairs in 100 x 

100 square kilometers. 

 

3.5.4.2  Interferometry generation implementation in SNAP 

Two sets of phases appear in the interferogram, one due to the elevation and the other due to 

a change in the relative position of the scatters. Removing phase due to elevation or 

topography is called interferogram flattening, which gives the phase change relative to the 

reference surface from the master image. The reference image was calculated using a 

polynomial degree of 5. A total of 501 points were selected for flat-earth estimation, as this 

is an optimal number for an area of up to 100 square kilometers. Had this process been 
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skipped, fringes due to the earth's curvature would have appeared in the interferogram. Figure 

3.4 shows the interface of the interferogram formation Graphical User Interface (GUI) in 

SNAP. 

 

3.5.4.3  Coherence estimation implementation in SNAP 

The interferogram formation operator in SNAP was used to compute the interferogram and 

the coherence bands by selecting the stack after back geocoding and using ESD as an input. 

 

3.5.4.4  De-bursting, topographic phase removal and filtering 

Debursting is the process of joining and resampling all the bursts from a swath into a single 

image. VH and VV polarizations were selected for deburring as the data was acquired with 

these polarizations. The phase produced by the topography needed to be cancelled out so that 

relative changes could be observed. The complex interferogram was flattened using the 30-

m-resolution SRTM DEM (Berti et al., 2013). 

The following corrections were further applied to the interferogram:  

 

i. Subtract of the flat-earth phase: The flat-earth phase is the phase present in the 

interferometric signal due to the curvature of the reference surface. The flat-earth phase is 

estimated using the orbital metadata information and subtracted from the complex 

interferogram. 

ii. Subtract the topographic phase: Flat terrain should produce a series of regularly 

spaced, parallel fringes. Topographic variation can be interpreted as any deviation from a 

parallel fringe pattern. When topographic phase removal is applied, the SRTM 1-sec HGT 

(Auto-Download) is selected during implementation in SNAP. 
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iii. Include coherence estimation: This produces a coherence band in the output 

calculated based on a window of 10 x 3 pixels in range and azimuth direction. 

As topographic phase removal was applied, the interferogram should only contain variations 

from displacement, atmosphere, and noise. The patterns, also called "fringes," represent a 

full 2-cycle and appear in an interferogram as cycles of arbitrary colors, with each cycle 

representing half the sensor's wavelength. Relative ground movement between two points is 

later derived by counting the fringes and multiplying by half the wavelength. The closer the 

fringes are together, the greater the strain on the ground. The coherence shows the areas 

where the phase information is coherent, which means it can be used to measure deformation 

or topography (without removing the topographic phase). If low-coherence areas are too 

dominant in the image, the later Unwrapping will fail and produce faulty or random results. 

 

3.5.4.5  Signal filtering 

Noise from temporal and geometric decorrelation, volume scattering, and other processing 

errors can corrupt the interferometric phase. Phase information in decorrelated areas cannot 

be restored. However, the quality of the fringes existing in the interferogram can be increased 

by applying specialised phase filters, such as the Goldstein filter, which uses a fast Fourier 

transformation (FFT) to enhance the signal-to-noise ratio of the image. It is required for a 

proper unwrap in the subsequent step. Goldstein phase filtering is another residue-reducing 

method that enables better phase Unwrapping in the later stages. A non-linear adaptive 

algorithm proposed by Goldstein and Werner (1998) was used. The value of the filter 

component ranged from 0 to 1, with higher values resulting in more robust filtering. 

Therefore, the value of 1 was selected. Selecting a coherence threshold means that the areas 

with a coherence of less than 0.4 will be neglected as the areas have a higher degree of noise.  
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3.5.4.6  Phase unwrapping  

The observed phase has a modulus of two (2), which means that a sine function describes the 

phase of the wave. It is an ambiguous measurement of phase. However, the phase is only 

measurable in wavelength, which is 0.5 cm in the case of Sentinel-1A. These wavelengths 

need to be converted to general linear units to be summed. Phase unwrapping identifies the 

sum of cycles that need to be added to the wrapped phase such that the explicit phase can be 

known for each pixel, and this is defined by the Equation (3.9) given by Ferretti et al. (2007): 

       𝜓 = ∅ + 2𝜋. 𝑛                                                                  (3.9) 

 

The phase unwrapping uses the statistically low-cost Network-flow Algorithm for Phase 

Unwrapping (SNAPHU), which makes the interferometric phase and coherence bands 

compatible by creating the band details, metadata, and processing parameters in a 

configuration file (snafu. conf). A minimum cost flow was before exporting the data. This 

iterative process is a network flow technique. This algorithm uses maximum a posteriori 

probability (MAP) estimation by maximising the conditional probability given wrapped 

phase, coherence, and intensity (Chen and Zebker, 2001). The results of SNAPHU processing 

are imported into the SNAP for further processing so that the metadata and bands of the 

unwrapped data can be together with the SNAPHU-processed data, which makes the data 

compatible with InSAR processing. 

 

3.6  Phase Four: SRTM 30 m DEM Download  

The 30 m SRTM data used in this study was from the US Geological Survey website, 

http://earthexplorer.usgs.gov. The Shuttle Radar Topography Mission (SRTM) was a 

collaborative mission between the National Aeronautics and Space Administration (NASA) 

and the National Imagery and Mapping Agency (NIMA), which is now known as the 
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National Geospatial-Intelligence Agency (NGA) (Nwilo et al., 2012). The aim is to produce 

more refined elevation data, Digital Terrain Elevation Data (DTED). The system uses 

Spaceborne Imaging Radar-C (SIR-C) technology to acquire elevation data. The generated 

digital elevation model uses radio detection and ranging (RADAR) interferometry and the 

principle of stereoscopy (Tom and Mike, 2000). The region of coverage is between 600N and 

560S, and its resolution varies from 1 arc second (30 meters) within the USA to 3 arc seconds 

(90 meters) outside the USA (Farr et al., 2007; Slater et al., 2006). 

 

Masood and Takeuchi (2011) noted that SRTM data is advantageous for flood modelling 

because SRTM vertical accuracy is partially fair on relatively flat terrain such as floodplains 

in the absence and cost of high-resolution DEM (Farr et al., 2007; Slater et al., 2006) 

elevation range in the study area ranges from as low as 2 meters in the south to as high as 47 

meters in the far north. Because of two issues with SRTM data, as identified by Li et al. 

(2021), SRTM has many invalid areas, i.e., areas where the quality of SRTM data is poor, 

and SRTM in some areas represents a Digital Surface Model rather than a DEM (Farr et al., 

2007; Slater et al., 2006). This study thus adopts the methodology shown in Figure 3.5. The 

regions were detected, analyzed, and filled using the adopted by Li et al. (2020). 
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Figure 3.5: Methodology for processing SRTM data 

(Source: Ugbelase et al., 2021) 

 

 

3.7:  Phase Five: Methods  

The research aims achieved by the hydraulic analysis through the combination of hydraulic 

and topographic modelling data in this study. Numerical data relating to river flow dynamics, 

surface topography, and climatic conditions around the Shiroro floodplain were collected and 

analysed using shallow water equations.  
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3.7.1  The flood modelling approach used 

Generally, river floods spill over into the floodplains by continuous water flows whose 

magnitude and flux exceed the carrying capacity of the water channel. The flow of water is 

by the channel geometry, hydrodynamic, and topographical factors in the study area. 

 

Due to the recurrence of floods worldwide, equations are used to study the phenomenon of 

floods. Considering that water flows directly under gravity, the discharge rate of the water 

using the conventional 2D shallow water equation by Vila et al. (2017). The Shallow Water 

Equation (SWE) describes many physical phenomena based on physical laws, mass, and 

momentum conservation. The solution of the Shallow Water Equation (SWE) gives the 

variation of discharge (and depth) with time along the length of the water body (river, stream, 

or channel), which is for flood forecasting. The equations referred to in Section 3.2. 

 

A flood model requires a 3D simulation of flood hazard assessment from river cross-sections 

of river route areas in DEMs from different platforms, like aerial photography, optical stereo 

imagery, or SAR interferometry. To achieve the research objectives, the following methods, 

as discussed in sections 3.2 to 3.5, were utilised: 

 

3.7.2  Flood simulation approach  

ArcScene for ArcGIS 10.4 software was used to model floods in the study area. ArcScene 

simulates surface flooding caused by rainfall and river flooding. Before flood simulation in 

ArcScene, the river discharge and flow velocity were computed in MATLAB software using 

the conventional shallow water equation in Equations (3.1), Section 3.2. Similarly, to 

compute the flood levels, equations (3.4), (3.5a), and (3.5b) in Section 3.2 were implemented 

in MATLAB using the river bathymetry data and the different DEMs.  
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Thus, using the start and end nodes as major identification points along the water channels 

(catchment areas) for the stream, the river discharge of each identified node provided a basis 

for determining levels that can be obtained from the stream given an initial discharge. The 

initial discharge value used for simulation corresponds to the dam discharge when the 

spillway is opened. 

 

3.8  Statistical Analysis Used for the Study 

The following statistical analyses were performed on the obtained data. The study made use 

of the subheading statistical tools from 3.8.1 to 3.8.4. 

 

3.8.1  Standard deviation 

The variability or dispersion of data points within the research study was measured in this 

study using the standard deviation. The standard deviation offers essential insights into the 

distribution of data around the mean, enabling one to evaluate the consistency or variability 

of measurements and eventually assisting in the interpretation and analysis of the findings. 

The square root of the variance was used to convert from variance to standard deviation. 

Equation 3.10 provides the standard deviation's mathematical expression. 

𝑆 = (
√((𝑁−1)∗∑(𝑋−𝑋̅)2)

𝑁
)                                                                                                  (3.10) 

Where 𝑆 represents the standard deviation, 𝑁 denotes the sample size, 𝑥 represents individual 

data points, and 𝑥  represents the mean of the data (Adebanji, 2014). 

 

 

 



93 
 

3.8.2  Analysis of variance (ANOVA)  

The statistical technique known as ANOVA examines the mean differences between two or 

more variables. Checking for statistically significant variations between the means of two or 

more variables is done using this method. The F-statistic, which the ANOVA test generates, 

is used to assess if there are any statistically significant differences between the means of the 

variables under comparison. The variance between the variables is divided by the variance 

within the variables to determine the F-statistic. There is evidence to imply substantial 

differences between the means of the groups being compared if the F-statistic is higher than 

the critical value. In this work, the DEM sources were subjected to an ANOVA analysis. 

 

The best resolution was determined in the study by comparing the means of flood modelling 

results at various resolutions using ANOVA. It made it possible to locate the DEM with the 

geographic resolution that yields the most precise or ideal flood modelling outcomes. The 

ANOVA was conducted in Microsoft Excel to examine the variation in flood modelling 

results among the various resolution groups after the null and alternative hypotheses were set 

up. To ascertain significant differences in the group, the F-statistic and P-value were 

determined. Based on the findings, a choice was made on the best resolution for the flood 

model. 

 

3.8.3  Root mean square error (RMSE) 

A statistical technique called RMSE is used to assess the precision of a predictive model. It 

calculates the discrepancy between the expected values and the actual values and gives a 

single number as a measure of the model's overall accuracy. RMSE is frequently used in data 

implementation to analyze the efficacy of predictive models. It indicates how well a model 

fits a given set of data and can be used to assess model modifications or to compare several 
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models (Zhang et al., 2022). The RMSE was employed to rate the accuracy of the digital 

elevation models utilized for hydrological studies. 

RMSE=𝑆𝑞𝑟𝑡 [
(∑(𝑃𝑖−𝑄𝑖

2))

𝑛
]                               (3.11) 

where, 

𝑃𝑖=denotes the predicted values 

𝑄𝑖=represents the observed values, and  

𝑛= is the total number of observations or data points 

 

3.8.4  Correlation analysis 

Correlation analysis was used in this study to compare DEM data (UAV, InSAR, and SRTM). 

The correlation coefficient, which measures how closely elevation values from different 

datasets relate to one another, was determined using the elevation data of the datasets. A low 

or nearly negative correlation coefficient denotes disparities or a lack of agreement, while a 

high positive correlation coefficient denotes similarity between the elevation datasets from 

the two datasets. 

(−1 ≤ 𝑟 ≥ +1)                                          (3.12) 

 

3.9  DEM Implications on the Hydrological Analysis of the Study Area 

Since flooding is generally a response of free-flowing water to anthropogenic, hydrological, 

and hydraulic characteristics within the study area, the hydrological analysis of the study area 

is consequent upon the chosen or adopted DEM in this section. The three DEMs (UAV, 

InSAR, and SRTM) for the study were subjected to hydrological analysis, and the parameters 

deduced were as follows: (1) The flow direction map (2). Flow accumulation map: a stream 
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connectivity map showing the surface runoff paths. The study used a strahler layer size of 5-

7. Watersheds within the catchment area. 

 

3.10  DEM Implications on the Hydraulic Modelling of the Study Area 

Hydraulic analysis on UAV-1 m, InSAR-10 m, and SRTM-30 m DEMs was carried out using 

the two parameters determined from the hydraulic modelling using the Shallow Water 

Equation (MATLAB), river discharge and flow velocity for the two flood levels (low and 

high) determined for the study area comparison was done. 

 

3.11  Phase Six: Model Validation 

The validation method used in this study is the ground truthing or field verification method. 

In this case, simulation results were validated, with known realities established and 

compared, and the closer the simulation to reality, the better the simulation model. The results 

from the study by the situation assessment report acquired from the Niger State Emergency 

Management Agency were validated (NSEMA, 2021). A comparison of the simulation 

results with those in this report revealed that UAV-derived 1 m resolution DEMs provide 

high accuracy in flood simulation when compared to global DEMs. These all show 

convergence with the conclusions derived from this study by Unger et al. (2014), Leitao and 

de Sousa (2018), and Esmaeel et al. (2022). Due to security challenges within the study 

location, the study could not use direct field checks of the simulation results. Hence, the 

model validation relies strictly on the damage assessment carried out by NSEMA. 
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CHAPTER FOUR 

4.0                                          RESULTS AND DISCUSSION 

4.1      Results  

The results obtained in this study are presented in line with the research objectives but in 

phases similar to the methodology for easy understanding. Except where otherwise stated in 

the methodology or result section, all numerical computations used a given mathematical 

formula expressed in a MATLAB environment. 

 

4.2      Hydrological Data Results Presentation  

This section presented the hydrological data preparation results. 

Figure 4.1 shows the average monthly inflow data. Figure 4.2 shows the average monthly 

temperature data; Figure 4.3 presents the average monthly temperature data; Figure 4.4 

displays the average monthly water level data; and Figure 4.5 shows the average monthly 

outflow data obtained from the hydrological processed data. 

 

  

  

 

 

 

 

 

 

Figure 4.1: Average monthly rainfall data 
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Figure 4.2: Average monthly inflow data 

 

 

Figure 4.3: Average monthly temperature data 
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Figure 4.4: Average monthly water level data. 

 

 Figure 4.5: Average monthly outflow data 

  

 

4.3 Hydrological Data Results Correlation 

This section presented the hydrological data correlation results. 

Figure 4.6 shows the correlation between rainfall and water level data, Figure 4.7 shows the 

correlation between Inflow and rainfall data, Figure 4.8 displays the correlation between the 
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correlation between water level and inflow data, Figure 4.9 presents the correlation between 

Inflow and outflow correlated data, and Figure 4.10 shown the correlation between water 

level and temperature correlated result.  

 

Figure 4.6: Rainfall and water level data

 

Figure 4.7: Inflow and rainfall data 
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Figure 4.8: Water level and inflow data 

 

Figure 4.9: Inflow and outflow data 
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Figure 4.10: Water level and temperature  

4.4      Bathymetry Data Results Presentation 

 

This section presented the river channel bathymetry of the Shiroro downstream carried out at 

random intervals. Nine hundred and fifty-five (955) data points were observed, and the data 

statistics are shown in Table 4.1. 

 

Table 4.1: Summary of bathymetric information for the study area 

SN Parameter Value (m) 

i Minimum depth 0.95 

ii Maximum depth 2.15 

iii Average depth 1.20 

iv Total number of points 955 
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4.5       NSEMA Damaged Assessment Results Presentation 

Appendices A12 presented the NSEMA data as low and high settlements used to validate the 

study. This information confirmed which of the three DEMs performs optimally in modelling 

floods in the study area.  
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4.6      Digital Elevation Models (DEMs) 

This section presented the results of the three DEM sources used for the study. 

4.6.1  UAV DEM  

Figure 4.11 shows the DEM obtained from the UAV survey. 

 

Figure 4.11: UAV 1 m DEM generated
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4.6.2   InSAR DEM  

The coherence, interferogram, and DEM maps of the study area generated by the SentiNel 

Application Processing (SNAP) software are in Figures 4.12 a, b, and c. The resulting DEM, as 

shown in Figure 4.12 (c), is further subjected to analysis as presented in later sections. However, 

Figure 4.13 shows the 10-m final DEM generated from InSAR. 
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Figure 4.12 a, b, c: Extraction of data results from InSAR DEM processing 

(c) 

Coherence process Interferogram process 

DEM 

(a)   (b)   
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Figure 4.13: InSAR 10 m DEM generated 

 

km 
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4.6.3 SRTM DEM  

Data from the SRTM was extracted using ArcGIS 10.4 software, and the resulting DEM generated is in Figure 4.14. 

 

Figure 4.14: SRTM 10 m DEM generated
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 4.6.4 Comparative assessment of the DEM sources 

 For ease of comparison, all three DEMs are shown in Figures 4.15 (a, b, and c). 

 

 

 

 

 

 

 

 

 

      

 

(a) UAV 1 m DEM (b) InSAR 10 m DEM 

(c) SRTM 30 m DEM 

Figure 4.15: Comparative assessment of the three DEMs (a) UAV 1 m DEM (b) InSAR 10 m DEM (c) SRTM 30 m DEM 
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Table 4.2 shows the descriptive statistics of the three generated DEMs. Figure 4.16 displays 

the descriptive difference statistics for UAV-derived 1 m, InSAR 10 m, and SRTM 30 m 

DEMs. 

 

Table 4.2: Descriptive statistics of the DEM sources 

Parameter UAV (m) InSAR (m) SRTM (m) 

Min 156.527 173.031 177.110 

Max 601.679 635.599 665.032 

Range 445.152 458.489 492.000 

Average 323.903 348.594 357.991 

Std dev 84.707 87.290 93.622 

 

 

Figure 4.16: Descriptive difference statistics for UAV, InSAR, and SRTM DEMs 
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Analysis of the variances (ANOVA) between UAV, InSAR, and SRTM data using a single-

factor analysis was carried out (Tables 4.3 and 4.3a). While Table 4.4 presents the 

correlation analysis between the three DEMs. 

 

Table 4.3: ANOVA test (single factor) summary table 

Groups Count Sum Average Variance 

UAV 10000 3239034 323.903 7175.299 

INSAR 10000 3485940 348.594 7619.554 

SRTM 10000 3579913 357.991 8765.043 

 

 

Table 4.3a: ANOVA test (single factor) result table 

Source of 

Variation 

SS  DF MS F P-VALUE F-CRIT 

Between Group 6199743.4 2 3999872 394.722 6.184 E-

170 

2.996 

Within Group 235575409 29997 7853.299    

Total 241775152 29999     

 

Table 4.4: Correlation analysis of the DEMs 

DEM InSAR SRTM UAV 

InSAR 1   

SRTM 0.999639 1  

UAV 0.999639 0.999524 1 

 

 

4.7 Implications of the DEM on Hydrological Analysis of the Study Area 

This section presented the hydrological analysis results on DEMs sources for the study area.  
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Figures 4.17-4.19 show the flow direction map, while Figure 4.20 shows flow accumulation 

and surface runoff generated from all three DEMs. The river watersheds derived from the   

selected DEMs are presented in Figures 4.21– 4.23, while the significant morphometric 

characteristics of the river basins are shown in Table 4.5. 
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Figure 4.17: Flow direction from UAV 1 m DEM 
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Figure 4.18: Flow direction generated from InSAR 10 m DEM 

 



114 
 

 
 

Figure 4.19: Flow direction from SRTM 30 m DEM 

 

 



115 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.20: Flow accumulation generated from the DEMs source 

 

 



116 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Watershed generated from UAV DEM 
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Figure 4.22: Watershed generated from InSAR DEM 
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Figure 4.23: Watershed generated from SRTM DEM 
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Table 4.5: Summary of the study area's hydrological characteristics 

  SN 

Hydrological  

Parameter 

UAV 1 m 

DEM 

InSAR 10 m 

DEM 

SRTM 30 m 

DEM  

i Total no of basins 14 10 13 

ii No of major basins 6 6 8 

iii Size of largest basin (43.5 by 30.2) km (42.8 by 30.8) km (34.7 by 30) km 

iv Size of smallest basin (6.6 by 12.4) km (6.1 by 3.9) km (4.7 by 3.98) km 

v 

No runoff 

streams/tributaries   Same network   Same network   Same network  

 

 

4.8  Implications of the DEM on Hydraulic Analysis of the Study Area 

 

Figures 4.24 (a,b, and c) show the graphical representation of the discharge rate, flow 

velocity, and elevation for UAV-1 m, InSAR-10 m, and SRTM-30 m DEMs, while the 

graphical differences in parameters between the discharge rate, flow velocity, and elevation 

for the UAV-1 m, InSAR-10 m, and SRTM-30 m DEMs are in Figures 4.25 (a, b, and c). 

Appendices B1, B3, and B5 summarise the discharge rate, flow velocity, and elevation for 

the DEM sources. At the same time, the differences in parameters between the discharge rate, 

flow velocity, and elevation for the DEM sources are presented in Appendices B2, B4, and 

B6, respectively. 
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Figure 4.24a: Discharge rate for selected nodes from DEM sources 

 

 

Figure 4.24b: Flow velocity for selected nodes from the DEM sources  
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Figure 4.24c: Elevation of the selected nodes for the DEM sources 

 

Figure 4.25a: Discharge rate difference between UAV, InSAR, and SRTM DEM 
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Figure 4.25b: Flow velocity difference between UAV, InSAR, and SRTM DEMs 

 

 

Figure 4.25c: Elevation difference between UAV, InSAR, and SRTM DEMs 
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4.9     Derived Flood-levels of the Study Area 

Figure 4.26 shows the delineated catchment area and drainage basin from all three spatial 

resolution DEMs for the determination of the flood levels capable of inundating the studied 

floodplains (UAV–derived 1 m, InSAR 10 m, and 3SRTM 0 m). Tables 4.6-4.6a show the 

computed discharge and flow velocity at each node.   

 

Figure 4.26: Delineated catchment area from different DEM sources 



124 
 

Table 4.6: Discharge rate and flow velocity using different DEMs source 

 UAV 1 m DEM InSAR 10 m DEM SRTM 30 m DEM 

Sta_ID Settlement 

Name 

Elevation 

(m) 

Discharge 

(m/s^3) 

Velocity 

(m/s^2) 

Elevation 

(m) 

Discharge  

(m/s^3) 

Velociy 

(m/s^2) 

Elevation 

(m) 

Discharge 

(m/s^3) 

Velociy 

(m/s^2) 

A01 Gidan 

Patuko 

348.46 114.38 1.27 373.32 114.38 1.27 373.07 114.38 1.27 

A02 Gidan 

Patuko 

348.16 982.14 7.71 372.12 1137.03 8.93 280.09 1154.42 9.07 

A03 Awolu 

Saga 

251.16 244.82 1.71 272.64 144.72 1.01 256.09 219.00 1.53 

A04 Sumaila 212.97 164.32 1.20 233.35 166.67 1.22 223.20 152.48 1.12 

A05 Bere 198.36 322.99 1.48 218.35 327.25 1.50 211.10 293.92 1.35 

A06 Tungan 

Gamba 

197.93 71.75 0.46 215.55 183.46 1.18 209.33 146.16 0.94 
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Table 4.6a: Discharge rate and flow velocity using different DEMs source 

 UAV 1 m DEM InSAR 10 m DEM SRTM 30 m DEM 

Sta_ID Settlements 

Name 

Elevation 

(m) 

Discharge 

(m/s^3) 

Velocity 

(m/s^2) 

Elevation 

(m) 

Discharge 

(m/s^3) 

Velocity 

(m/s^2) 

Elevation 

(m) 

Discharge 

(m/s^3) 

Velocity 

(m/s^2) 

A07 Layi 195.72 96.68 0.45 214.86 53.80 0.25 197.05 227.45 1.06 

A08 Nill 194.53 72.83 0.46 211.86 115.79 0.74 174.97 314.13 1.99 

A09 Nill 174.39 411.48 2.56 174.39 561.24 3.49 174.39 69.90 0.43 

A010 Nill 174.30 73.83 0.43 175.32 74.63 0.61 176.23 74.73 0.73 

A011 Nill 167.08 161.14 0.91 167.08 161.14 0.91 167.08 161.14 0.91 

A012 Nill 159.30 264.57 1.46 159.30 264.57 1.466 159.30 264.57 1.46 

A013 Lawo Ravo 159.12 73.96 0.43 159.12 73.96 0.43 159.12 73.96 0.43 

A014 Nill 128.00 343.64 1.72 128.00 343.64 1.72 128.00 343.64 1.72 
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The results presented in Figures 4.27 (a, b, and c) show the flood heights obtained for UAV-

derived 1 m DEM, InSAR 10 m DEMs, and SRTM 30 m DEM that are capable of flooding 

the entire floodplain of Shiroro Dam and its environs. Figures 4.28 (a, b, and c) show the 

vulnerability map generated for the study through the flood heights simulated in the 

ArcScene environment to create a flood vulnerability graphical model for the study area. 

 

 

Figure 4.27a: Flood height based on UAV 1 m DEM at 150 m and 250 m 
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Figure 4.27b: Flood height of InSAR 10 m DEM based on 160 m and 270 m 

 

Figure 4.27c: Flood-heights of 30 m based on SRTM DEM at 200 m and 280 m 
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Figure 4.28a: UAV-derived 1 m DEM vulnerability flood extent 
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Figure 4.28b: InSAR 10 m DEM vulnerability flood extents 
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Figure 4.28c: SRTM 30 m DEM vulnerability flood extents
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The flood heights and the number of settlements flooded are depicted in Table 4.7 using 

UAVs (1 m), InSAR (10 m), and SRTM (30 m). Figures 4.29 (a, b, and c) show the 

weighted overlay of flood-vulnerable areas from DEMs generated for the study area. Tables 

4.8–4.8a, 4.9–4.9a, and 4.10–4.10a are the number and names of the settlements affected 

by the various flood levels, considering the DEMs used for the study.  

 

Table 4.7: Number of flood- prone settlements using different DEMs sources 

UAV 1 m DEM InSAR 10 m DEM SRTM 30 m DEM 

Flood 

heights 

Vulnerable 

settlements 

Flood  

heights 

Vulnerable 

settlements 

Flood 

heights 

Vulnerable 

settlements 

150 m 20 160 m 24 200 m 32 

250 m 57 270 m 63 280 m 72 
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Figure 4.29a: Weighted overlay of flood vulnerable area from UAV DEM   
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Figure 4.29b: Weighted overlay of flood vulnerable area from InSAR DEM 
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Figure 4.29c: Weighted overlay of flood vulnerable area from SRTM DEM
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Table 4.8: Settlements vulnerable to inundation by UAV DEM 

UAV 1 m DEM 

Flood height_150 m 

Vulnerable settlements 

Bere Gidan Madatsi Jangaru Wuna 

Samboro Seikna Layi Baganakwo 

Berikago Jiko Tungan Shaluko Shalko 

Guwa Manta Gijiwa Mapi 

Sumaila KamiKamt Kwochi Numbupi 

 

Table 4.8a: Settlements vulnerable to inundation by UAV DEM 

UAV 1 m DEM 

Flood height_250 m 

Vulnerable settlements 
 

Bere 
Gidan 

Madatsi 

Janga

ru 
Wuna Kwatayi 

Gidan 

Tarasilawa 
Ungwan 

Maikun

ke 
Kunu Sumaila 

KamiKa

mt 
Kwochi 

Sambo

ro 
Seikna Layi 

Baganakw

o 
Baha Padgaya 

Zarumayi 

Ungwan 
Daboyi Gijiwa 

Gidan 

Madatsi 
Jangaru Numbupi 

Berika

go 
Jiko 

Tung

an 

shalukoSha

lko 
Kafa Awolu Kuyi Epigi 

Sambo

ro 
Seikna Mapi 

Baganakw

o 

Guwa Manta 
Gijiw

a 
Mapi 

Gidan 

Basakuri 
Shaga Bosso 

Matum

bi 

Berika

go 
Jiko Tungan 

shalukoSha

lko 

Sumail

a 
KamiKamt 

Kwoc

hi 
Numbupi Ebbe Lashin Minna 

Samann

a 
Manta    
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Table 4.9: Settlements vulnerable to inundation by InSAR DEM  

InSAR 10 m DEM 

Flood height_160 m 

Vulnerable settllements 
 

Gidan Magwi Bere KamiKamt Wuna 

Samboro Gijiwa Seikna Jangaru 

Berikago Sumaila Gidan Madatsi Baganakwo 

Guwa Jiko Kwochi Shaluko Shalko 

Tungan Gamba Manta Layi Numbupi 

Mapi Kurmin Kakuri Gini 

            
Table 4.9a: Settlements vulnerable to inundation by InSAR DEM  

InSAR 10 m DEM 

Flood height_270 m 

Vulnerable settlements 

Madaka 

Makuri 
Gijiwa Yako 

Gidan 

Tarasilawa 
Kwatayi 

Ungwan 

Makama 
Ungwan Berikago Bere KamiKamt Daboyi 

Kakuri Baha Gwope Ebbe Baha Lashin 
Zarumayi 

Ungwan 
Guwa Gijiwa Seikna Epigi 

Maguga Gusuru Awolu 
Gidan 

Basakuri 
Kafa Samanna Kuyi Tungan Gamba Sumaila 

Gidan 

Madatsi 
Tungan 

Dami Dami Gurmana Shaga Kafa 
Gidan 

Basakuri 
Bosso 

Gidan 

Magwi 
Mapi Jiko Kwochi 

 

Kwatayi Yelwa Padgaya 
Ungwan 

Zarumayi 
Ebbe Minna Samboro Kurmin Manta Layi 

 
Kakuri Gini Wuna Jangaru Baganakwo Shaluko Shalko Numbupi KamiKamt Jangaru Tungan  
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Table 4.10: Settlements vulnerable to inundation by SRTM DEM  

SRTM 30 m DEM 

Flood height_200 m 

Settlements name vulnerable 
 

Samboro Layi KamiKamt Wuna Madaka Makuri 

Bere Jiko Seikna Jangaru Kakuri 

Gijiwa Manta Gidan Madatsi Baganakwo Maguga 

Tungan Gamba KamiKamt Kwochi Shaluko Shalko Dami Dami 

Berikago Seikna Layi Numbupi Kwatayi 

Guwa Baganakwo Kakuri Gini Kakuri 

Gijiwa Baha       

 

 
 

Table 4.10a: Settlements vulnerable to inundation by SRTM DEM 

SRTM 30 m DEM 

Flood height_280 m 

Vulnerable settlements 
 

Madaka 

Makuri 
Gijiwa Yako 

Gidan 

Tarasilawa 
Kwatayi 

Ungwan 

Makama 
Ungwan Berikago Bere KamiKamt 

Daboy

i 

Maikun

ke 

Kakuri Baha 
Gwop

e 
Ebbe Baha Lashin 

Zarumayi 

Ungwan 
Guwa 

Gijiw

a 
Seikna Epigi Samana 

Maguga 
Gusur

u 

Awol

u 

Gidan 

Basakuri 
Kafa Samanna Kuyi 

Tungan 

Gamba 

Sumai

la 

Gidan 

Madatsi 

Tunga

n 
Prinna 

Dami Dami 
Gurma

na 
Shaga Kafa 

Gidan 

Basakuri 
Bosso Gidan Magwi Mapi Jiko Kwochi 

Berika

go 
Asha 

Kwatayi Yelwa 
Padga

ya 

Ungwan 

Zarumayi 
Ebbe Minna Samboro Kurmin Manta Layi Guwa 

Mukam

a 

Kakuri Gini Wuna Jangaru Baganakwo 
Shaluko 

Shalko 
Numbupi KamiKamt 

Janga

ru 
Tungan Kunu Nabi 
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4.10  Model Validation Results 

Tables 4.11-4.11a, b; Tables 4.12-4.12a, b; and Tables 4.13-4.13a, b show the results of different 

DEM sources used for this study and the NSEMA (2021) results. Figure 4.30 presents the graphical 

representation of UAV-derived DEM 1 m conformity with the NESMA data and InSAR 10 m and 

SRTM 30 m DEMs produced higher estimate of the flood extent in the study area.  
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Table 4.11: Model validation results between UAV 1 m DEM and NSEMA data 

UAV 1 m DEM  NSEMA 2021 

Flood height_150 m  Low vulnerable 

Vulnerable settlements  Vulnerable settlements 

Bere Gidan Madatsi Jangaru Wuna  Bere Gidan Madatsi Jangaru Wuna 

Samboro Seikna Layi Baganakwo  Samboro Seikna Layi Baganakwo 

Berikago Jiko Tungan shalukoShalko  Berikago Jiko Tungan shalukoShalko 

Guwa Manta Gijiwa Mapi  Guwa Manta Gijiwa Mapi 

Sumaila KamiKamt Kwochi Numbupi  Sumaila KamiKamt Kwochi Numbupi 

 

Table 4.11a: Model validation results between UAV 1 m DEM and NSEMA data 

UAV 1 m DEM 

Flood height_250 m 

Vulnerable settlements 

Bere 
Gidan 

Madatsi 

Jangar

u 
Wuna Kwatayi 

Gidan 

Tarasilawa 
Ungwan 

Maikunk

e 
Kunu Sumaila 

KamiKa

mt 
Kwochi 

Sambor

o 
Seikna Layi Baganakwo Baha Padgaya 

Zarumayi 

Ungwan 
Daboyi Gijiwa 

Gidan 

Madatsi 
Jangaru Numbupi 

Berikag

o 
Jiko 

Tunga

n 

shalukoShal

ko 
Kafa Awolu Kuyi Epigi 

Sambor

o 
Seikna Mapi Baganakwo 

Guwa Manta Gijiwa Mapi 
Gidan 

Basakuri 
Shaga Bosso 

Matumb

i 

Berikag

o 
Jiko Tungan 

shalukoShal

ko 

Sumaila KamiKamt 
Kwoc

hi 
Numbupi Ebbe Lashin Minna 

Samann

a 
Manta    
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Table 11b: Model validation results between UAV 1 m DEM and NSEMA data 

NSEMA 2021 

High vulnerable 

Vulnerable settlements 

Bere 
Gidan 

Madatsi 

Jangar

u 
Wuna Kwatayi 

Gidan 

Tarasilawa 
Ungwan 

Maikunk

e 
Kunu Sumaila 

KamiKa

mt 
Kwochi 

Sambor

o 
Seikna Layi Baganakwo Baha Padgaya 

Zarumayi 

Ungwan 
Daboyi Gijiwa 

Gidan 

Madatsi 
Jangaru Numbupi 

Berikag

o 
Jiko 

Tunga

n 

shalukoShal

ko 
Kafa Awolu Kuyi Epigi 

Sambor

o 
Seikna Mapi Baganakwo 

Guwa Manta Gijiwa Mapi 
Gidan 

Basakuri 
Shaga Bosso 

Matumb

i 

Berikag

o 
Jiko Tungan 

shalukoShal

ko 

Sumaila KamiKamt 
Kwoc

hi 
Numbupi Ebbe Lashin Minna 

Samann

a 
Manta    

                      
 

 

Table 4.12: Model validation results between InSAR 10 m DEM and NSEMA data 

InSAR 10 m DEM  NSEMA 2021 

Flood height_160 m  Low vulnerable 

Vulnerable settlements  Vulnerable settlements 

Gidan Magwi Bere KamiKamt Wuna  Bere Gidan Madatsi Jangaru Wuna 

Samboro Gijiwa Seikna Jangaru  Samboro Seikna Layi Baganakwo 

Berikago Sumaila Gidan Madatsi Baganakwo  Berikago Jiko Tungan shalukoShalko 

Guwa Jiko Kwochi Shaluko Shalko  Guwa Manta Gijiwa Mapi 

Tungan Gamba Manta Layi Numbupi  Sumaila KamiKamt Kwochi Numbupi 

Mapi Kurmin Kakuri Gini      
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Table 4.12a: Model validation results between InSAR 10 m DEM and NSEMA data 

InSAR 10 m DEM 

Flood height_270 m 

Vulnerable settlements 

Madaka 

Makuri 
Gijiwa Yako Gidan Tarasilawa Kwatayi 

Ungwan 

Makama 
Ungwan Berikago Bere KamiKamt 

Daboy

i 

Kakuri Baha Gwope Ebbe Baha Lashin 
Zarumayi 

Ungwan 
Guwa Gijiwa Seikna Epigi 

Maguga Gusuru Awolu Gidan Basakuri Kafa Samanna Kuyi 
Tungan 

Gamba 

Sumail

a 

Gidan 

Madatsi 

Tunga

n 

Dami Dami 
Gurman

a 
Shaga Kafa 

Gidan 

Basakuri 
Bosso Gidan Magwi Mapi Jiko Kwochi 

 

Kwatayi Yelwa 
Padgay

a 

Ungwan 

Zarumayi 
Ebbe Minna Samboro Kurmin Manta Layi 

 
Kakuri Gini Wuna Jangaru Baganakwo Shaluko Shalko Numbupi KamiKamt Jangaru Tungan  

 
Table 4.12b: Model validation results between InSAR 30 m DEM and NSEMA data 

NSEMA 2021 

High vulnerable 

Vulnerable settlements 

Bere 
Gidan 

Madatsi 

Jangar

u 
Wuna Kwatayi 

Gidan 

Tarasilawa 
Ungwan 

Maikunk

e 
Kunu Sumaila 

KamiKa

mt 
Kwochi 

Sambor

o 
Seikna Layi Baganakwo Baha Padgaya 

Zarumayi 

Ungwan 
Daboyi Gijiwa 

Gidan 

Madatsi 
Jangaru Numbupi 

Berikag

o 
Jiko 

Tunga

n 

shalukoShal

ko 
Kafa Awolu Kuyi Epigi 

Sambor

o 
Seikna Mapi Baganakwo 

Guwa Manta Gijiwa Mapi 
Gidan 

Basakuri 
Shaga Bosso 

Matumb

i 

Berikag

o 
Jiko Tungan 

shalukoShal

ko 

Sumaila KamiKamt 
Kwoc

hi 
Numbupi Ebbe Lashin Minna 

Samann

a 
Manta    
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Table 4.13: Model validation results between SRTM 30 m DEM and NSEMA data 

SRTM 30 m DEM  NSEMA 2021 

 Flood height_200 m  Low Vulnerable 

Settlements name vulnerable  Settlements name vulnerable 

Samboro Layi KamiKamt Wuna Madaka Makuri  Bere Gidan Madatsi Jangaru Wuna 

Bere Jiko Seikna Jangaru Kakuri  Samboro Seikna Layi Baganakwo 

Gijiwa Manta Gidan Madatsi Baganakwo Maguga  Berikago Jiko Tungan shalukoShalko 

Tungan Gamba KamiKamt Kwochi Shaluko Shalko Dami Dami  Guwa Manta Gijiwa Mapi 

Berikago Seikna Layi Numbupi Kwatayi 
 

Sumaila KamiKamt Kwochi Numbupi 

Guwa Baganakwo Kakuri Gini Kakuri      
 

 

Table 4.13a: Model validation results between SRTM 30 m DEM and NSEMA data 

SRTM 30 m DEM 

Flood height_280 m 

Vulnerable settlements 
 

Madaka 

Makuri 
Gijiwa Yako 

Gidan 

Tarasilawa 
Kwatayi 

Ungwan 

Makama 
Ungwan Berikago Bere KamiKamt Daboyi 

Maikun

ke 

Kakuri Baha Gwope Ebbe Baha Lashin 
Zarumayi 

Ungwan 
Guwa Gijiwa Seikna Epigi Samana 

Maguga Gusuru Awolu Gidan Basakuri Kafa Samanna Kuyi 
Tungan 

Gamba 

Sumai

la 

Gidan 

Madatsi 
Tungan Prinna 

Dami Dami 
Gurma

na 
Shaga Kafa 

Gidan 

Basakuri 
Bosso Gidan Magwi Mapi Jiko Kwochi 

Berika

go 
Asha 

Kwatayi Yelwa 
Padga

ya 

Ungwan 

Zarumayi 
Ebbe Minna Samboro Kurmin Manta Layi Guwa 

Mukam

a 

Kakuri Gini Wuna Jangaru Baganakwo 
Shaluko 

Shalko 
Numbupi KamiKamt 

Jangar

u 
Tungan Kunu Nabi 
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Table 4.13b: Model validation results between SRTM 30 m DEM and NSEMA data 

NSEMA 2021 

High vulnerable 

Vulnerable settlements 

Bere 
Gidan 

Madatsi 

Jangar

u 
Wuna Kwatayi 

Gidan 

Tarasilawa 
Ungwan 

Maikunk

e 
Kunu Sumaila 

KamiKa

mt 
Kwochi 

Sambor

o 
Seikna Layi Baganakwo Baha Padgaya 

Zarumayi 

Ungwan 
Daboyi Gijiwa 

Gidan 

Madatsi 
Jangaru Numbupi 

Berikag

o 
Jiko 

Tunga

n 

shalukoShal

ko 
Kafa Awolu Kuyi Epigi 

Sambor

o 
Seikna Mapi Baganakwo 

Guwa Manta Gijiwa Mapi 
Gidan 

Basakuri 
Shaga Bosso 

Matumb

i 

Berikag

o 
Jiko Tungan 

shalukoShal

ko 

Sumaila KamiKamt 
Kwoc

hi 
Numbupi Ebbe Lashin Minna 

Samann

a 
Manta    
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Figure 4.30: UAV-derived DEM 1 m conformity with NSEMA 2021 data 

 

4.11 Discussion of Results 

4.11.1 Hydrological data presentation discussion of results 

Figure 4.1 shows that from May to October, there was an increase in rainfall, which also 

increased the volume of water in the dam reservoir. Likewise, with no rain between 

January and April, there needed to be more rainfall to fill the dam reservoir. Figure 4.2 

shows months when there is less inflow into the dam reservoir, from January to May, and 

when there is an increased inflow into the reservoir, from June to October. Based on this 

information, the inflow data helped to know the months when there is more or less inflow 

to the dam reservoir. Figure 4.3 shows that the temperature from January to April 

increases and begins decreasing from May to August.  

 

By indication, when the temperature is low, the water in the dam reservoir increases. 

Figure 4.4 shows the water level in the dam reservoir that increased from July to 

September and started diminishing in October. These indicate the months when the water 

level in the dam reservoir is high. Figure 4.5 shows an increase in outflow from July to 
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September, which is high in those months, which is the contributing factor leading to 

water released downstream when it is over the bank to flood the downstream.  

 

4.11.2 Hydrological data correlation discussion of results 

Figure 4.6 shows that rainfall significantly contributed to the increase in the amount of 

water in the dam reservoir, which causes the water surface level of the dam to increase 

(i.e., an increase in rainfall causes an increase in the water surface level of the dam 

reservoir). Similarly, from July to September, the amount of rainfall significantly 

increased. Hence, rainfall is the factor in the hydrological data that contributed to the 

flooding along the Shiroro floodplain.  

 

Figure 4.7 shows the graphical representation of the two data sets. Looking at the chart, 

from April to September, the inflow into the dam reservoir increased more than the 

amount of rainfall. Whether there is rainfall or not, water goes into the dam reservoir from 

the upstream Kaduna River. As a result, it increased the water level in the dam reservoir. 

Thus, the inflow is one of the hydrological factors that contributed to the increase of water 

in the dam reservoir, which overflows its banks, causing the release of the deluge to the 

downstream communities by the dam authorities. 

 

The correlation between the inflow discharge and water elevation in the study under 

investigation is shown in Figure 4.8, which shows that when the amount of inflow 

entering the dam reservoir is higher, the water level in the dam reservoir increases. Figure 

4.9 shows that storage increases when peak inflow occurs and continues until the outflow 

rises to equal the receding inflow. At this time, the flood crest occupies a position in the 

reach. The amount of water is higher from July to September, and the low temperature is 

also observed in the same months, as shown in Figure 4.10. The low temperatures 

increased the dam reservoir's water level.  
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Thus, the correlation of the various plots reveals the following relationships, validating 

the authenticity of the hydrological dataset: (i) As rainfall increases over the months, the 

water level in the reservoir is also on the rise (ii) Similarly, the inflow and water level 

elevation also respond positively to increased rainfall and vice versa. It shows that the 

perennial flooding event witnessed in the floodplain could result in changing hydrological 

patterns in the study area, which resulted in the opening and closing of the spillway gate 

(iii). In contrast, high temperatures are associated with low rainfall. 

 

The correlation between various datasets shows that the hydrological data is the 

contributing factor to the annual flooding downstream of the dam (Adesina et al., 2022), 

which is caused by the Shiroro Dam authorities opening the spillway gates to release 

excess water from the dam reservoir whenever it overflows its bank.  

 

4.11.3 Bathymetry data presentation discussion of results 

The river channel bathymetry in Table 4.1 was used with DEM sources and SWE 

(MATLAB) to compute discharge volume, discharge rate, and flow velocity for two flood 

level (low and high) comparisons. 

 

4.11.4 NSEMA damaged assessment data presentation discussion of results 

The NSEMA data validated the study and confirmed that the three DEMs (UAV-derived 

1 m, InSAR 10 m, and SRTM 30 m) perform differently in modelling floods in the study 

area shown in Figure 4.30.  

 

4.11.5 Comparative assessment of the DEM sources discussion of results 

A visual examination of the three different DEM sources generated indicates similarities 

in the patterns of the DEM produced (Figures 4.15 a, b, and c). It shows that the data 

sources have some form of consistency with each other within the study area and, as such, 
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allow for some form of "replaceability" between them. However, DEM statistics (Table 

4.1) show that all three DEMs have striking data differences that are large enough to cause 

a significant difference in the results obtained from their analyses. 

 

The descriptive statistics of the data reveal that the UAV data has the lowest absolute 

values (156.527 m) compared to others (173.031 m and 177.110 m for the InSAR and 

SRTM DEMs, respectively). It is clear that the InSAR and SRTM maximum and 

minimum height values (635.599 m, 665.032 m, and 173.031 m, 177.110 m, respectively) 

appear to be more consistent with themselves than the values obtained from the UAV, 

some of the reasons for this trend, as observed, are:  

 

i. Both InSAR and SRTM DEMs have the same vertical reference surface, which is 

the WGS 84 ellipsoid used as a reference ellipsoid for the Sentinel and SAR satellites for 

data collection (Nwilo et al., 2012). 

ii. Aside from their ground sampling distance (GSD) or spatial resolution, the other 

difference between both data generation sources is the radar band used in the payloads of 

each of the satellites. While the Sentinel satellite carries a C-band-enabled payload, the 

SRTM twin-SAR satellites carry X-band-enabled payloads (Farr et al., 2007; Foni and 

Seal, 2004; Rabus et al., 2003). 

iii. Since the X-band has limited material penetrative power compared to the C-band, 

the SRTM DEM is more of a surface model than a terrain model (Farr et al., 2007), 

wherein the radar pulses are reflected by foliage (in forested areas), building components 

(in built-up areas), and vehicle tops. Although the C-band does not penetrate all terrain 

materials, it does pass through foliage and may return to the tree's trunk. 

iv. Invariably, the InSAR and SRTM DEMs are surface models, not terrain models 

(Dowman and Michalis, 2004). For this reason, it is scientifically consistent if the InSAR 
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and SRTM DEM's absolute heights are higher in value than the UAV data set. The InSAR 

and SRTM data do not reach the terrain surface; instead, the radar pulses generating the 

measurements are reflected from tree trunks and foliage, respectively. 

 

In addition, considering the statistical parameter differences between the three DEM 

datasets, the DEM with the highest range is the SRTM at 30 m, followed by InSAR at 10 

m and UAV at 1 m. UAV has the lowest standard deviation, which shows a more accurate 

representation of its accuracy. It could be inferred from the graph in Figure 4.16 that, in 

terms of descriptive statistics, the InSAR is a better representation of the study relative to 

the UAV, which is considered the measure of accuracy. 

 

Based on the facts presented in items 1 – 4 of this section, it is clear that the UAV data is 

the most precise among all three (3) tested data sources. For this reason, the UAV-derived 

DEM, which has a spatial resolution of 1 m, was chosen as the control data set for this 

work, to which all other DEMs are correlated. Comparing the UAV data with InSAR and 

SRTM data yielded root mean square errors (RMSE) of 0.249 m, 0.352 m, and 0.455 m, 

respectively. It further confirms that the UAV data outperforms the InSAR and SRTM 

data. For this reason, it is also scientifically acceptable to state that the InSAR-derived 

DEM is next in accuracy to the UAV-derived DEM, and SRTM DEM has the lowest 

precision and accuracy notwithstanding, analysis of the variances (ANOVA) between 

UAV, InSAR, and SRTM data using a single-factor analysis carried out. Going by the 

result of the test as presented in Tables 4.2 and 4.2a, although the ANOVA test performed 

on the three DEM sources indicates statistically low significance with an F-critical 

(2.996), it is lower than the expected F-table value for 10,000 points (394.722) at a 95% 

confidence interval. The correlation analysis in Table 4.3 backs up the results in Tables 
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4.2 (a, b). There is a correlation between the three different data sets; a positive correlation 

(0.9996) between the InSAR DEM and the SRTM and UAV-derived DEMs. 

 

4.11.6 Implications of the DEM on hydrological analysis of the study area discussion 

of results 

Figures 4.17- 4.19 show the flow direction map, while Figure 4.20 flow accumulation and 

surface runoff generated from all three DEMs. The river watersheds derived from the 

selected DEMs differ significantly (Figures 4.21– 4.23). It shows the differences in the 

floodable areas of the used DEM obtained. 

 

Table 4.4 further shows that the accuracy of the DEM plays a significant role in generating 

flood inundation maps by adequately presenting the topographic data of the river and the 

floodplain. Additionally, the quality of DEM-derived hydrological features is sensitive to 

the DEM's accuracy and resolution. There are differences between the elevation values 

derived from high-resolution UAV-derived DEMs and low-resolution InSAR-derived 

and SRTM DEMs. Watershed boundaries derived from these three DEM sources are also 

quite different (Figures 4.21- 4.23). The higher accuracy of the UAV-derived DEM gave 

a more detailed delineation of watersheds. The results indicate that the UAV-derived 

DEM with high resolution offers the capability of improving the quality of hydrological 

features extracted from DEMs. Thus, higher-resolution DEMs provide more reliable 

maps of flood simulations.  

 

4.11.7 Implications of the DEM on hydraulic analysis of the study area discussion of 

results 

Considering the discharge difference from UAV-derived 1 m, InSAR 10 m, and SRTM 

30 m DEMs, the analysis of the differences shows that the InSAR data shows a close 

relationship with the UAV data in a few locations, such as A02, A04, A05, A07, A08, 
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and A09, as seen in the differences in Appendix B3. It is more precise than the difference 

observed between UAV and SRTM. Details of this analysis are in Figure 4.24a. The root 

mean square error (RMSE) for UAV-InSAR is 72.0248, and that of UAV-SRTM is 

127.859; this shows that InSAR gives a closer difference in discharge value concerning 

UAV than SRTM. 

 

Also, an analysis of the differences in flow velocity is in Table 4.5-4.5a for UAV-derived 

1 m, InSAR 10 m, and SRTM 30 m DEMs, respectively. InSAR gives a more precise 

difference in the discharge velocity compared to SRTM using UAV as a reference. The 

chart in Figure 4.24b represents the variation in the discharge velocity derived from these 

datasets. The settlement with code A09 has the highest velocity range, and the same case 

for the discharge rate in Appendix B4.  

 

The analysis of the root mean square error (RMSE) for UAV-InSAR is 0.49863, and that 

of UAV-SRTM is 0.81878; this shows that InSAR gives a closer difference in velocity 

value concerning UAV than SRTM. Appendix B5 shows the analysis of the difference in 

the parameter elevation for the DEM datasets, and Figure 4.24c shows the variation in the 

charts. The root mean square error (RMSE) for UAV-InSAR DEMs is 15.688, and that 

of UAV-SRTM DEMs is 20.7791; this shows that InSAR DEM gives a closer difference 

in elevation value concerning UAV DEM than SRTM DEM. 

 

4.11.8 Derived flood levels of the study area discussion of results  

The discharge values obtained at nodes in Tables 4.5 -4.5a for the used DEMs show the 

flood heights where the inundation occurred in the study area and its environs. The results 

presented in Figures 4.27 (a, b, and c) show the flood heights obtained for UAV-derived 

1 m DEM, InSAR 10 m DEMs, and SRTM 30 m DEM capable of flooding the entire 

floodplain of Shiroro Dam and its environs. Then, the simulated flood heights in the 
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ArcScene environment created a flood vulnerability graphical model for the study area, 

shown in Figures 4.28 (a, b, and c). 

 

According to Figure 4.27a, twenty (20) settlements were affected at a flood height of 150 

m and Fifty-seven (57) settlements at 250 m from 1 m UAV-derived DEM. Twenty-four 

at the flood height of 160 m and sixty-three (63) were affected by flood at the flood height 

of 270 m, according to Figure 4.27b, the InSAR 10 m DEM. Figure 4.27c, the SRTM 30 

m DEM shows the number of settlements affected at various flood heights: 32 and 72 at 

200 m and 280 m, respectively. However, as shown in Figures 4.28 (a, b, and c), the 

vulnerability map was generated for the study. The map of the DEMs used at different 

flood levels shows the coverage areas where the volume of water (outflow) flooded when 

the dam authorities opened the spillway gate when the dam reservoir overflowed its bank.  

 

The overlay map shows areas' potential for flooding in the study area. Based on Figures 

4.29 (a, b, and c) show the settlements in the Shiroro downstream in the flood 

vulnerability category. This area has a contour that tends to be sloping, with an elevation 

mostly below 20 meters above sea level. In addition, what exacerbates the potential for 

flood vulnerability is the opening of the Shiroro dam reservoir through the dam spillway 

gates whenever it overflows. 

 

Figure 4.29a shows the settlements in light blue downstream of the dam that are highly 

vulnerable when the dam water spills to the floodplain and the settlements in sky blue 

that are not vulnerable. Figure 4.29b presents the settlements in blue that are highly 

vulnerable when the dam water spills to the floodplain; likewise, Figure 4.29c shows the 

settlements in deep blue high flooded and in sky blue that will be fair when the dam water 

is released when the weighted overlay of flood-vulnerable areas in the study area. 
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On the other hand, Tables 4.7–4.7a, Tables 4.8–4.8a, and Tables 4.9–4.9a present the 

names and total numbers of the settlements that invaded at the different flood heights 

obtained from the DEMs (UAV 1 m, InSAR 10 m, and SRTM 30 m). However, the effect 

of DEM on regional flood vulnerability varies depending on the level of elevation. Where 

a region shows low heights, the flooding is high, and vice versa. 

 

4.11.9 Model validation of the study area discussion of results  

When compared to the earlier study by NSEMA, only the UAV-derived 1 m DEM 

resolution agreed with the NSEMA record and also agreed with the work of Leitao et al. 

(2016) and Esmaeel et al. (2022), while the other DEMs (10 m InSAR DEM and 30 m 

SRTM DEM resolution) show a significant difference in the flood extent in the study 

area. Tables 4.10-4.10a, b; Tables 4.11-4.11a, b; and Tables 4.12-4.12a, b show the results 

of different DEM sources used for this study and the NSEMA (2021) results. Figure 4.30 

presents the graphical representation of UAV-derived DEM 1 m conformity with the 

NSEMA data and other overestimates of the flood extent. 

 

4.12 Discussion of Results Based on the Objectives of the Study 

The section discussed the results concerning the objectives of the study. Subsections 

4.10.1 to 4.10.4 discuss the results achieved. 

4.12.1 Assessment of the topographic accuracies of the DEM Sources discussion of 

results 

The topographic accuracies between the generated UAV, InSAR, and SRM DEMs were 

assessed by comparing the descriptive statistics of both DEMs (Figure 4.16). The 

differences between the UAV-derived DEM, InSAR-derived DEM, and the SRTM DEM 

are visually minimal and are better than the residuals. The vertical accuracy of the DEM 

sources was achieved using the actual heights of the DEMs. The analysis shows that 
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UAV-derived DEM is more reliable and accurate, followed by InSAR DEM, and the least 

was the SRTM DEM. The results indicate that the vertical accuracy of DEMs is 601.679 

m, 635.599 m, and 665.032 m for UAV, InSAR, and SRTM DEMs, respectively (Table 

4.1). SRTM DEM had the highest absolute, relative, and root mean square errors, 

maximum positive and negative deviation, a difference with reference heights, and the 

lowest correlation coefficient. Therefore, SRTM DEM is the least acceptable source for 

studying flood vulnerability among the DEM sources used. 

 

4.12.2 Generation of high-resolution DEM using UAV data discussion of results 

The second objective was to generate a high-resolution DEM of the study area from 

primary UAV data and ascertain its topographic accuracy. Raster elevation maps were 

successfully generated from photogrammetric data using Trimble Business Centre 

Photogrammetry Software. Conclusions from the results and analysis obtained from this 

study indicate that the UAV images the updating and revision of topographic maps with 

ground control points (GCPs) and a high percentage of forward and side overlaps. This 

research affirms the suitability of UAVs in areas that are partly accessible or inaccessible. 

The map accuracy in terms of horizontal and vertical accuracy is 3.207 m (RMSE = 1.85 

m) and 0.884 m (RMSE = 0.45 m), respectively. The DEM generated from Trimble Aerial 

Imaging Solution should be employed to achieve accurate mapping because it falls below 

the maximum allowable RMSE according to the American Society for Photogrammetry 

and Remote Sensing (Lawali and Dauda, 2014) and the National Standard for Spatial 

Data Accuracy. This study has looked into the geometric quality through the geometric 

accuracy and resolution of its products for flood modelling. 
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4.12.3 Develop an accurate flood extent modelling approach using DEM sources in 

the study area discussion of results 

The third objective modelled the flood extent of the study area using DEMs from three 

sources: UAV 1 m, InSAR 10 m, and SRTM 30 m. The 2D flood inundation modelling 

using ArcScene in ArcGIS 10.4 software was used to simulate surface flooding caused 

by rainfall and river flooding in the study area. The river discharge, flow velocity, and 

flood level that determined the flood extent of the study area using DEMs from three 

sources were computed in MATLAB using the shallow water equation, the river 

bathymetry data, and the different DEMs. The analysis of discharge data from UAV-

derived 1 m, InSAR 10 m, and SRTM 30 m DEMs has a close relationship between 

InSAR and UAV data in some locations. The RMSE for UAV-InSAR is 72.0248, while 

SRTM has 127.859, indicating a difference in discharge value (Figure 4.24a). 

 

Figure 4.24b analyses flow velocity differences between UAV-derived 1 m, InSAR 10 

m, and SRTM 30 m DEMs. InSAR provides a more precise discharge velocity difference 

to SRTM, with an RMSE of 0.49863 for UAV-InSAR and 0.81878 for UAV-SRTM. 

While Figure 4.24c shows UAV-InSAR DEMs have a 15.688 RMSE, UAV-SRTM 

DEMs have a 20.7791 RMSE, indicating a closer elevation difference. The results clearly 

show the effectiveness of the UAV-derived 1 m DEM with its high resolution on the 

discharge rate and flow velocity to model the flood extent of the study area scientifically, 

followed by the InSAR 10 m DEM, while the SRTM 30 m DEM is the least effective 

among them based on poor resolution. 
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4.12.4 Assessment of the effect of DEM resolution on flood modelling discussion of 

results 

The fourth objective evaluated the impact of the various DEM sources on the accuracy of 

flood modelling in the study area. It is observed from the results in Figure 4.30 that only 

the UAV-derived 1 m DEM conformed with the existing ground conditions with the other 

DEMs (10 m InSAR DEM and 30 m SRTM DEM) showed a significant difference in the 

flood extent in the study area. The 1 m DEM from the UAV was in line with how the 

Niger State Emergency Agency (NSEMA, 2021) classified the flood-vulnerable 

settlements in the study area. The high resolution agreed with the work done by Mazoleni 

et al. (2020).  

 

However, results from the InSAR 10 m DEM have some reasonable performance ranked 

with the UAV-derived 1 m DEM. The SRTM DEM indicated that it overpredicted the 

flood levels in the study area due to the poor resolution of the DEM. Also, studies that 

compare UAV DEM accuracy with high-accuracy DEM data from other sources, such as 

LiDAR (Unger et al., 2014; Leitao et al., 2016), show that UAV DEM performance may 

be on par with LiDAR. (Esmaeel et al., 2022) also revealed in their study that UAV DEMs 

provide high accuracy in flood simulation compared to global DEMs. These all show 

convergence with the conclusions derived from this study.  

 

The findings of this study also have implications for other flood risk management 

activities, such as emergency evacuation routes. The approach provides reliable flood risk 

maps from high- and low-resolution DEM sources. Such maps can then inform the 

development of better overall flood risk management practices. 
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4.13 Findings from the Results 

This study examined the impact of spatial resolutions of DEMs on the accuracy of flood 

modelling using the floodplain of the Shiroro Dam in Niger State, Nigeria, as a case study. 

The key findings of the study are as follows: 

 

i.  A strong correlation exists between the InSAR-derived 10 m DEM and the 

SRTM-derived 30 m DEM despite differences in their spatial resolution. Even though the 

InSAR DEM with a 10 m spatial resolution is still more similar to the UAV DEM than 

the SRTM DEM with a 30 m spatial resolution, the study suggests that the similarity 

between the InSAR and SRTM DEMs is because they are both radar-derived heights and, 

as a result, have similar spatial responses to their environments (Nwilo et al., 2012). Even 

though both the InSAR DEM and the SRTM DEM use the same operational method, the 

InSAR DEM is better than the SRTM DEM because of the difference in the radar 

response bands (band C for InSAR and band L for SRTM) and the spatial resolution of 

the resulting image (Nwilo et al., 2012). 

ii.  The study found that selecting the same DEM and different spatial resolutions for 

flooding simulations results in differences. As the spatial resolution of the DEM 

decreases, the predicted flood inundation area and the maximum inundation depth 

increase for all the low-resolution DEMs. It implies that a low-resolution DEM may lead 

to more errors in the inundation results.  

iii.  InSAR DEMs and SRTM have a positive (0.9996) correlation with UAV-derived 

DEMs in the elevation data (Table 4.4). 

iv.  UAV data with InSAR and SRTM yielded RMSEs of 0.249 m, 0.352 m, and 0.455 

m, respectively. 

v. The F-critical value for DEMs is 2.996, below the expected F-table value for 

10,000 points, 394.722, at the 95% confidence interval (Table 4.2 and 4.2a). 
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vi. Low-resolution DEMs lead to an increase in the flood extent and depth. 

Invariably, it exaggerates the flood depths due to increased elevation. The flood depth 

and flood extent increased with decreasing DEM resolution. 

vii. Conversely, flood models generated from high-resolution DEM have better 

accuracy than the resulting models. 

viii. In flood extent, low-resolution DEMs produced higher estimate of the flood risk 

situation in the study area compared with high-resolution DEMs. 

ix. The result from the UAV-derived 1 m DEM provided a more defined flood extent 

and clearly showed the distribution of hazard levels based on its high resolution. 

However, the InSAR 10 m DEM has some reasonable performance with the UAV-derived 

1 m DEM. While the SRTM DEM indicated that it produced higher estimate of the flood 

risk situation in the study area, this was due to the poor resolution of the DEM.  
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CHAPTER FIVE 

5.0                              CONCLUSION AND RECOMMENDATIONS 

5.1      Conclusion 

Flooding is one of the most devastating natural disasters, occurring annually in many parts 

of the world (Sauer et al., 2021). It remains a significant natural hazard despite recent 

advances in the scientific mechanisms causing it and increased expenditure on flood 

defenses. Developing flood models helps policymakers make timely decisions about 

emergency responses and future planning. The thesis established the impact of DEM 

resolutions in flood modelling. This study generated two different DEMs of high spatial 

resolution: a UAV-derived 1 m DEM and an InSAR 10 m DEM, and also utilised an 

SRTM 30 m DEM, and then investigated how the DEMs affected flood modelling results 

in the study area. 

 

The SWE was implemented in MATLAB using river channel bathymetric data, Manning 

coefficients, and DEMs computed for discharge and flow velocity, determined flood 

levels for the study area. The findings from the study confirmed that accurate terrain data 

has an impact on modelling flood hazards. Specifically, the results of flood simulations 

varied in response to different DEM resolutions, which can be associated with the degree 

of representation of the topography by the DEMs. 

 

In addition, high-resolution DEMs from UAV-derived 1 m resolution provide relevant 

and reliable flood modelling results; low-resolution DEMs from InSAR 10 m and SRTM 

30 m produced higher estimate of the flood risk situation in the study area. The UAV-

derived 1 m gives a more defined flood extent and clearly shows the distribution of hazard 

levels. Hence, a high-resolution DEM is necessary for decision-makers in local-scale 

inundation predictions. Furthermore, accurate DEM for flood simulation provides an 

initial assessment of the possible population and areas affected by low and high flood 
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hazards. The Root Mean Square Error (RMSE) values of the three DEM resolution data 

were 0.249 m, 0.352 m, and 0.455 m, respectively. The thesis affirmed that UAV DEM 

provides higher accuracy in the simulation of flood hazards compared to the other two 

DEMs (10 m InSAR and 30 m SRTM), which contain observational constraints in flood 

risk simulation. It implies that the higher the DEM resolution, the greater the preservation 

of the topographic terrain features. 

In this study, flood levels within the Shiroro floodplains were 150 m and 250 m from 

UAV-derived DEM 1 m resolution data as against 160 m and 270 m and 200 m and 280 

m from the InSAR 10 m and SRTM 30 m DEM resolution data, which conforms with the 

results of the Niger State Emergency Management Agency (NSEMA, 2021). The study 

confirmed that 1 m UAV-derived resolution DEMs provide high accuracy in flood 

simulation compared to global DEMs. These all show convergence with the conclusion 

derived from this study by Unger et al., (2014), Leitao and de Sousa (2018), and Esmael 

et al., (2022). This finding from the study helps determine possible evacuation centers 

and establish significant infrastructure for the settlements around the floodplain. 

 

5.2      Recommendations 

The study recommends that DEMs of higher resolution from 1 m UAV-derived data be 

used in floodplain modelling for optimal accuracy instead of adopting the trial-and-error 

method. Government agencies such as NEMA, NSEMA, NIMET, and other relevant 

stakeholders should use the findings from the study for effective flood disaster planning, 

response, and mitigation. 

 

5.3      Contribution to Knowledge 

The study has contributed to the existing body of knowledge by generating two different 

DEMs of high spatial resolution from an unmanned aerial vehicle (UAV) at 1 m 
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resolution, an interferometry synthetic aperture radar (InSAR) at 10 m resolution, and 

also utilising a Shuttle Radar Topographic Mission (SRTM) at 30 m resolution. The study 

has used generated DEMs to examine the assessment of the impact of flooding at Shiroro 

Dam, Niger State, Nigeria. The study developed a MATLAB program to implement the 

Shallow Water Equation (SWE) using river channel bathymetric data, Manning 

coefficients, rainfall data, DEMs, and hydrological and hydraulic flood models for the 

assessment.The findings of the study showed that the UAV-derived 1 m DEM reliably 

predicted the flood risk situation due to its superior spatial resolution compared to the 

other two DEMs, InSAR 10 m and SRTM 30 m, which produced a higher estimate of the 

flood risk situation in the study area.The study affirmed that the UAV-derived 1 m DEM 

provides high accuracy in the flood simulation of flood hazards compared to the other 

two DEMs (10 m InSAR and 30 m SRTM), which contain observational constraints in 

flood risk simulation. It implies that the higher the DEM resolution, the greater the 

preservation of topographic terrain features. 

 

5.4     Suggestions for Further Study 

Based on the study's findings and limitations, further studies should consider high-spatial-

resolution DEMs < 1 m from various sources for flood vulnerability assessment. 
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Appendix A1: Average monthly rainfall data from 2001 to 2020  

 
Month 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Jan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Feb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mar 0.00 0.00 0.00 0.00 0.00 2.40 0.30 0.00 0.00 0.00 

Apr 97.6
0 

56.00 58.60 31.30 56.20 34.10 218.4
0 

28.90 106.5
0 

41.10 

May 138.
90 

116.3
0 

118.1
0 

99.40 81.60 121.9
0 

86.50 128.9
0 

128.4
0 

95.80 

Jun 159.
40 

233.8
0 

145.2
0 

165.7
0 

245.7
0 

154.9
0 

223.6
0 

153.9
0 

105.9
0 

162.7
0 

Jul 316.
70 

286.6
0 

208.3
0 

236.4
0 

229.7
0 

341.7
0 

214.5
0 

305.7
0 

173.9
0 

275.0
0 

Aug 212.
70 

231.1
0 

351.5
0 

215.1
0 

174.1
0 

266.1
0 

332.3
0 

373.5
0 

398.0
0 

248.0
0 

Sept 360.
00 

146.1
0 

251.9
0 

214.8
0 

247.1
0 

425.0
0 

282.8
0 

297.6
0 

254.0
0 

247.2
0 

Oct 60.1
0 

98.00 187.1
0 

57.60 72.10 190.8
0 

80.60 53.70 0.00 148.2
0 

Nov 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Month 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Jan 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Feb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 1.82 0.00 

Mar 0.00 0.00 9.80 5.30 70.10 44.45 0.80 0.00 0.00 0.09 

Apr 34.0
0 

47.60 96.30 1.90 0.00 123.9
5 

33.95 0.72 1.26 1.87 

May 113.
70 

281.5
0 

65.40 5.20 67.20 136.0
5 

252.8
0 

4.93 8.86 4.34 

Jun 83.0
0 

277.7
0 

149.6
0 

252.3
0 

196.1
0 

180.6
5 

105.7
0 

7.56 12.33 7.29 

Jul 218.
30 

310.0
0 

215.0
0 

181.6
0 

239.2
0 

353.3
0 

228.1
5 

11.37 6.58 9.76 

Aug 272.
90 

296.7
0 

221.1
0 

300.1
0 

350.3
0 

320.6
8 

193.7
0 

14.29 11.91 13.26 

Sept 368.
10 

371.0
0 

253.5
0 

327.2
0 

254.2
0 

280.5
0 

312.6
0 

9.64 16.38 12.32 

Oct 146.
80 

75.20 111.4
0 

166.7
0 

52.52 81.30 49.20 2.51 13.54 3.29 

Nov 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(Source: Shiroro Dam Authorities, 2020) 
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Appendix A2: Average monthly inflow from 2001 to 2020 used for the study 

  
Month 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Jan 57.32 23.23 48.77 32.97 21.55 40.77 51.39 30.42 41.35 64.58 

Feb 39.32 12.54 38.61 34.25 17.79 37.96 27.93 26.96 33.79 50.75 

Mar 24.77 11.06 19.84 40.55 19.00 28.23 13.19 10.84 13.45 26.39 

Apr 27.63 28.87 15.57 26.47 15.57 20.33 34.93 9.87 17.97 18.03 

May 88.90 21.97 18.45 72.23 81.16 81.26 69.19 88.61 65.10 96.61 

Jun 154.37 237.37 244.00 199.57 166.0
0 

97.73 201.0
3 

168.1
3 

108.4
0 

214.2
0 

Jul 550.48 649.42 576.58 588.23 423.8
1 

469.3
5 

528.7
4 

303.6
1 

279.7
4 

630.5
2 

Aug 901.10 930.84 1327.6
8 

1011.10 680.4
8 

747.1
9 

1048.
90 

1022.
29 

1431.
29 

1149.
32 

Sep 1246.5
3 

926.10 1752.5
0 

922.10 627.0
7 

1265.
63 

951.5
0 

1042.
20 

1130.
00 

1399.
70 

Oct 364.74 599.42 492.55 334.23 372.7
1 

878.1
6 

249.3
9 

357.7
1 

500.5
8 

867.8
1 

Nov 130.43 107.43 102.03 73.20 46.50 119.1
3 

95.73 89.00 147.8
0 

163.5
3 

Dec 79.68 59.61 39.55 38.87 38.23 87.29 38.84 61.42 61.71 54.74 

Mont
h 

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Jan 68.68 45.19 56.29 45.29 27.29 42.16 41.87 31.97 52.87 67.90 

Feb 43.29 20.32 34.46 23.29 14.32 30.71 24.68 19.11 39.36 51.46 

Mar 55.26 8.32 35.84 7.42 11.13 19.97 9.55 1.48 47.77 44.42 

Apr 26.77 11.27 20.27 27.63 9.20 21.70 14.90 29.83 21.27 33.00 

May 77.71 126.58 52.00 159.6
8 

13.55 119.0
6 

168.7
1 

81.65 95.23 104.7
4 

Jun 166.93 366.10 187.47 201.8
7 

130.60 237.7
0 

434.5
0 

286.1
3 

422.6
0 

309.3
3 

Jul 330.10 846.26 671.71 363.4
8 

348.42 713.2
9 

597.0
6 

906.9
7 

653.3
2 

877.7
1 

Aug 768.84 1266.6
8 

750.06 745.3
9 

1181.55 1043.
00 

865.5
8 

1207.
58 

943.5
2 

1010.
97 

Sep 1027.1
7 

2053.4
7 

1197.4
7 

1058.
73 

1571.43 1300.
53 

1029.
83 

1874.
67 

1408.
40 

2366.
93 

Oct 507.58 653.77 421.45 537.1
6 

613.32 425.5
2 

288.7
1 

815.8
1 

1382.
26 

860.3
2 

Nov 109.77 147.20 127.03 112.4
0 

89.10 106.2
3 

78.30 133.9
7 

316.1
3 

142.7
3 

Dec 57.61 83.16 71.71 54.45 74.10 72.61 39.65 71.19 113.8
4 

92.90 

 

(Source: Shiroro Dam Authorities, 2020) 

 

 

 

 

Appendix A3: Monthly temperature used for the study range from 2001 to 2010  
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Mon 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Jan 22.22 22.73 25.98 26.69 24.26 26.72 22.47 22.88 27.02 25.89 

Feb 24.24 28.05 28.74 28.91 29.02 28.02 27.00 25.14 29.18 29.46 

Mar 29.27 31.77 30.43 30.57 31.95 29.48 29.18 31.36 29.95 30.16 

Apr 29.47 31.16 31.81 30.48 32.08 31.11 31.31 31.40 29.67 32.39 

May  28.51 31.37 31.48 28.78 30.40 28.57 29.49 29.77 30.05 30.74 

Jun 26.66 28.00 28.69 27.67 28.30 28.63 26.88 29.11 27.64 29.42 

Jul 24.91 26.48 26.47 27.48 26.49 26.69 26.14 26.28 27.06 26.73 

Aug 24.49 26.48 26.49 26.69 25.82 25.58 25.32 26.34 26.54 26.41 

Sep 25.19 26.63 26.58 27.27 27.28 25.90 26.32 27.97 27.25 27.10 

Oct 26.25 27.41 28.30 29.76 27.27 26.68 27.35 28.07 27.85 25.98 

Nov 26.14 27.53 28.94 30.68 26.83 25.41 27.60 27.69 27.14 27.25 

Dec 25.12 25.81 26.45 26.16 25.20 24.15 25.59 27.26 25.00 24.80 

Mon 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Jan 23.41 23.65 25.10 24.84 21.52 24.97 24.16 20.85 23.03 27.71 

Feb 28.94 28.63 27.00 26.03 25.96 27.25 24.32 25.96 23.57 29.66 

Mar 30.57 29.46 30.16 29.65 26.74 31.61 28.10 28.45 28.10 32.97 

Apr 29.96 30.28 29.73 29.03 27.87 31.37 28.40 28.90 29.27 34.07 

May  29.19 27.65 28.23 26.35 27.32 29.58 26.94 26.10 26.65 32.58 

Jun 27.57 27.43 26.60 25.71 25.10 28.43 25.37 24.60 25.13 31.60 

Jul 27.22 26.09 25.84 24.06 25.56 29.10 24.61 24.26 25.35 32.61 

Aug 26.72 26.14 26.68 24.23 24.29 24.58 24.61 24.29 26.00 33.90 

Sep 27.45 26.17 26.10 23.94 24.43 25.10 25.27 24.23 27.93 36.50 

Oct 28.56 27.19 26.26 25.35 27.97 25.55 26.97 25.87 29.90 39.45 

Nov 25.61 27.53 27.20 25.33 28.40 28.10 25.47 25.13 32.07 38.43 

Dec 24.87 24.74 25.19 23.06 24.55 24.87 24.10 22.90 2.92 37.87 

 

(Source: Shiroro Dam Authorities, 2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A4: Monthly average water level data from 2001 to 2020 
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Mont
h 

2001 2002 2003 2004 2005 200
6 

2007 2008 2009 2010 

Jan 370.4
3 

374.29 377.1
4 

371.15 376.5
8 

374.
26 

372.3
1 

373.8
4 

376.7
5 

377.9
5 

Feb 367.9
7 

371.11 375.3
1 

369.78 374.2
4 

370.
09 

369.5
5 

370.8
5 

373.5
4 

375.7
6 

Mar 365.7
7 

367.49 371.9
2 

368.03 371.3
1 

365.
86 

366.0
0 

367.4
8 

369.7
6 

371.9
6 

Apr 364.0
3 

362.65 367.1
3 

365.38 367.6
2 

362.
86 

362.2
8 

363.2
4 

365.2
9 

365.9
9 

May 362.8
3 

360.24 362.8
0 

362.57 363.8
6 

361.
05 

358.2
5 

358.6
1 

362.9
8 

358.8
1 

Jun 359.9
8 

361.47 360.2
5 

360.79 359.6
7 

361.
27 

359.3
7 

358.7
4 

355.3
3 

361.6
1 

Jul 362.4
3 

362.53 360.9
6 

360.11 360.4
7 

360.
47 

359.6
7 

358.5
5 

355.4
4 

361.8
2 

Aug 368.5
9 

368.94 369.6
1 

365.27 353.1
9 

365.
71 

366.4
6 

368.1
4 

364.6
5 

369.0
3 

Sep 377.6
1 

363.51 380.7
5 

372.53 374.3
5 

376.
87 

377.5
1 

377.9
8 

378.6
0 

379.9
7 

Oct 381.5
0 

380.60 382.0
2 

375.56 379.7
0 

382.
08 

379.1
5 

380.4
2 

381.8
4 

382.3
0 

Nov 379.2
5 

379.65 380.8
0 

374.87 380.0
6 

380.
15 

377.2
1 

378.8
6 

381.7
8 

381.9
9 

Dec 374.4
8 

377.08 378.9
0 

372.91 378.5
5 

377.
84 

374.6
9 

376.6
2 

379.5
0 

380.2
6 

Mont
h 

2011 2012 2013 2014 2015 2016 2017 2018 2019 202
0 

Jan 370.2
2 

375.4
2 

371.5
0 

370.75 373.9
8 

373.55 373.8
3 

373.83 376.0
0 

377.
33 

Feb 366.2
3 

372.4
9 

367.2
4 

366.34 370.2
8 

369.83 371.4
5 

371.45 373.2
1 

374.
18 

Mar 360.8
6 

368.9
5 

362.5
5 

361.99 365.4
3 

365.42 370.8
7 

370.87 369.6
8 

369.
67 

Apr 358.0
2 

363.5
9 

359.2
9 

358.63 359.0
2 

359.75 369.3
3 

369.33 364.7
6 

364.
45 

May 357.1
6 

358.2
4 

358.7
8 

356.19 356.7
8 

357.40 364.9
6 

364.96 360.0
3 

359.
81 

Jun 357.3
1 

358.9
5 

356.8
1 

357.69 356.6
5 

359.41 361.8
0 

359.73 360.0
2 

360.
26 

Jul 358.4
2 

361.8
7 

361.3
6 

359.23 358.2
1 

362.42 365.2
1 

366.40 364.6
9 

365.
77 

Aug 361.3
7 

371.1
1 

365.2
3 

361.81 370.8
1 

369.36 369.0
8 

373.60 371.6
7 

375.
56 

Sep 371.2
2 

380.9
2 

375.2
7 

370.80 380.8
4 

377.77 375.7
8 

382.08 380.0
7 

381.
91 

Oct 377.3
5 

382.1
5 

379.3
9 

377.31 382.2
4 

382.08 379.8
5 

382.40 382.5
8 

382.
51 

Nov 376.5
6 

380.9
3 

377.6
9 

377.04 380.5
9 

380.17 378.5
2 

380.98 382.3
0 

381.
22 

Dec 373.7
6 

378.4
8 

374.9
8 

374.40 377.4
5 

377.20 376.4
9 

378.50 380.1
5 

378.
74 

 

(Source: Shiroro Dam Authorities, 2020) 

Appendix A5: Monthly outflow data from 2001 to 2020  
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Mon
th 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Jan 76.43 30.97 65.03 43.96 28.7
3 

54.37 68.52 40.56 55.14 86.11 

Feb 56.54 19.17 53.67 35.39 21.0
3 

46.68 46.37 36.87 47.68 70.66 

Mar 34.41 7.83 32.54 43.52 20.8
2 

37.01 17.01 19.84 23.36 43.93 

Apr 9.47 24.15 20.26 16.90 -4.55 5.58 17.54 -13.06 4.05 0.47 

May 40.60 -49.10 -56.13 11.34 24.3
1 

50.54 8.03 28.22 30.31 25.37 

Jun -
15.59 

4.53 33.10 7.27 32.8
4 

-
41.87 

27.46 76.33 25.26 12.48 

Jul 244.9
2 

340.65 145.05 253.62 207.
92 

206.3
3 

188.26 -11.71 -
188.9

4 

251.5
7 

Aug 567.2
3 

735.69 791.86 788.27 540.
77 

394.0
9 

794.49 670.99 991.6
5 

766.6
1 

Sep 1314.
03 

971.52 1852.2
7 

1073.4
5 

683.
09 

1104.
28 

1133.20 1146.6
3 

1293.
69 

1365.
97 

Oct 759.2
7 

887.45 1075.9
6 

667.64 584.
91 

1206.
54 

595.21 710.25 882.5
4 

1268.
62 

Nov 356.9
7 

383.38 447.50 282.79 228.
73 

492.2
2 

281.19 305.28 421.4
1 

568.1
6 

Dec 198.6
7 

187.41 188.72 133.13 114.
47 

251.3
6 

132.57 163.18 202.1
8 

244.1
3 

Mon
th 

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Jan 91.57 60.26 75.05 60.39 36.39 56.22 55.83 42.62 70.49 90.54 

Feb 55.39 37.63 47.54 40.94 22.74 42.80 40.11 32.82 46.93 66.84 

Mar 64.80 17.11 44.93 11.86 15.64 27.00 17.95 2.48 56.33 55.70 

Apr 22.46 -
25.22 

17.91 -21.64 9.90 -8.99 -
35.35 

3.44 8.30 16.65 

May 29.55 -3.86 -4.52 85.17 -26.69 36.84 12.09 -12.58 -42.87 7.18 

Jun 66.75 82.73 -37.94 109.10 5.57 12.21 239.5
1 

-20.38 190.53 19.16 

Jul 96.07 451.6
1 

409.04 151.39 -43.58 369.7
0 

388.3
7 

497.65 402.33 547.11 

Aug 458.4
7 

732.7
2 

487.26 442.94 643.21 732.7
2 

651.7
6 

748.57 608.16 404.36 

Sep 1010.
80 

2079.
78 

1219.4
0 

1027.3
3 

1581.40 1402.
93 

1150.
85 

1852.2
6 

1150.3
7 

2214.95 

Oct 807.9
2 

1297.
97 

785.57 842.14 1110.75 857.7
5 

646.2
3 

1388.5
7 

1660.3
4 

1551.06 

Nov 359.8
7 

552.1
4 

364.99 374.96 434.65 367.9
5 

280.4
9 

573.09 831.63 628.79 

Dec 177.5
7 

267.2
1 

193.37 179.44 218.98 195.2
6 

133.1
4 

262.22 391.05 302.50 

 

(Source: Shiroro Dam Authorities, 2020) 

 

 

  

Appendix A6: Rainfall and water elevation data  
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Month Rainfall Water elevation 

Jan 0.00 375.42 

Feb 0.00 372.49 

Mar 0.00 368.95 

Apr 47.60 363.59 

May 281.50 358.24 

Jun 277.70 358.95 

Jul 310.00 361.87 

Aug 296.70 371.11 

Sep 371.00 380.92 

Oct 75.20 382.15 

Nov 0.00 380.93 

Dec 0.00 378.48 

 

(Source: Shiroro Dam Authorities, 2020) 

 

Appendix A7: Rainfall and temperature data  

 
Month Rainfall Temperature 

Jan 0.00 23.65 

Feb 0.00 28.63 

Mar 0.00 29.46 

Apr 47.60 30.28 

May 281.50 27.65 

Jun 277.70 27.43 

Jul 310.00 26.09 

Aug 296.70 25.14 

Sep 371.00 23.17 

Oct 75.20 27.19 

Nov 0.00 27.53 

Dec 0.00 24.74 

(Source: Shiroro Dam Authorities, 2020) 

 

 

 

 

 

 

 

 

 

Appendix A8: Inflow and rainfall data  

 



189 
 

Month Inflow Rainfall 

Jan 45.19 0.00 

Feb 20.32 0.00 

Mar 8.32 0.00 

Apr 11.27 47.60 

May 126.58 281.50 

Jun 366.10 277.70 

Jul 846.26 310.00 

Aug 1266.68 296.70 

Sep 2053.47 371.00 

Oct 653.77 75.20 

Nov 147.20 0.00 

Dec 83.16 0.00 

(Source: Shiroro Dam Authorities, 2020) 

 

Appendix A9: Water elevation and inflow data 

  
Month Water elevation Inflow 

Jan 375.42 45.19 

Feb 372.49 20.32 

Mar 368.95 8.32 

Apr 363.59 11.27 

May 358.24 126.58 

Jun 358.95 366.10 

Jul 361.87 846.26 

Aug 371.11 1266.68 

Sep 380.92 2053.47 

Oct 382.15 653.77 

Nov 380.93 147.20 

Dec 378.48 83.16 

 

(Source: Shiroro Dam Authorities, 2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A10: Water elevation and Temperature  
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Month Water elevation Temperature 

Jan 375.42 23.65 

Feb 372.49 28.63 

Mar 368.95 29.46 

Apr 363.59 30.28 

May 358.24 27.65 

Jun 358.95 27.43 

Jul 361.87 26.09 

Aug 371.11 25.14 

Sep 380.92 23.17 

Oct 382.15 27.19 

Nov 380.93 27.53 

Dec 378.48 24.74 

(Source: Shiroro Dam Authorities, 2020) 

 

Appendix A11: Bathymetric information for the study area 

 
SN Parameter Value (m) 

i Minimum depth 0.95 

ii Maximum depth 2.15 

iii Average depth 1.20 

iv Total number of points 955 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A12: NSEMA DATA  
Eastings Northings Name of Settlement 
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258846.390 1108098.029 Aguwi 

257145.029 1099700.298 Asha 

260625.372 1095140.819 Awasha 

253325.277 1102602.891 Awolu 

247853.178 1104410.981 Baha 

238843.032 1117422.097 Bassa 

229521.571 1102772.650 Bere 

225859.630 1097266.693 Berikago 

238843.032 1117422.097 Besse 

262476.998 1109844.235 Boladna 

246040.699 1111837.516 Dami Dami 

253375.100 1109905.412 Daudun Gini 

255289.909 1117305.803 Dnakwala 

262538.518 1119137.897 Dnakwo 

251409.970 1095202.402 Ebbe 

255264.982 1113654.567 Farin Dutse 

242303.779 1095265.543 Gidan Basakuri 

260710.706 1108085.614 Gidan Galadima 

255177.254 1100709.326 Gidan Goma 

249782.311 1113692.371 Gidan Madaki 

236817.876 1095304.678 Gidan Madatsi 

231454.805 1111943.507 Gidan Magwi 

251575.162 1119212.482 Gidan Mama 

260661.718 1100672.773 Gidan Patuko 

247918.162 1113705.415 Gidan Sarumai 

251434.863 1098853.688 Gidan Tarasilawa 

205660.248 1082592.489 Gijiwa 

231386.506 1102758.785 Gijiwa 

205660.248 1082592.489 Gijiwi 

247866.286 1106291.995 Gini 

251485.655 1106266.923 Gusuru 

227724.893 1097252.709 Guwa 

240583.819 1115528.223 Gwadara 

240583.819 1115528.223 Gwadara Irina 

251510.796 1109918.226 Gwope 

266289.827 1122764.322 Iburu 

253413.062 1115437.641 Irina 

253400.894 1113667.326 Jagabay Ugwa 

260759.281 1115387.841 Jagwana 

234938.985 1093437.018 Kafa 

(Source: NSEMA, 2021) 

 

 

 

Appendix A12a: NSEMA DATA 
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Eastings Northings Name of Settlement 

236898.013 1106370.189 Kauran Pawa 

246093.218 1119251.039 Kawo 

247982.902 1122889.240 Kawo 

258699.988 1085969.981 Kmakma 

216652.413 1084388.044 Kunu 

242395.659 1108211.753 Kurmin Gurmana 

249629.613 1091563.079 Kuta 

258699.988 1085969.981 Kwakwa 

238749.089 1104475.542 Kwatayi 

220274.697 1084360.397 Kwochi 

205748.823 1093660.237 Lawo 

225818.126 1091733.561 Layi 

205690.264 1086355.517 Luwa 

229590.346 1111957.482 Maguga 

231454.805 1111943.507 Maowo 

231496.220 1117476.490 Masuku 

255090.543 1087764.161 Nyagwa 

244194.563 1098903.871 Padgaya 

205748.823 1093660.237 Rawo 

255277.058 1115424.862 Rumpa 

207446.577 1086341.521 Sabon Gida 

223938.399 1089866.288 Seikna 

255189.938 1102590.254 Shaga 

260637.709 1097021.682 Shakwada 

251498.596 1108147.897 Shamiki 

234979.170 1098969.828 Sumaila 

246105.811 1121021.437 Tunga Makuba 

251575.162 1119212.482 Tunga Mamma Agwagwa 

225887.135 1100918.567 Tungan Gamba 

246105.811 1121021.437 Tungan Makuba 

253438.982 1119199.565 Ungwan Kawo 

236738.536 1084239.221 Ungwan Makama 

229384.906 1084292.436 Ungwan Zarumayi 

253362.920 1108135.102 Yako 

249743.852 1108160.027 Yelwa 

233333.203 1113810.819 Zangoro 

260649.340 1098791.907 Zumba 

233333.203 1113810.819 Zungoro 

(Source: NSEMA, 2021) 

 

 

 

 

Appendix B1: Discharge rate at selected nodes using DEMs source 
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ID UAV 1 m 

Discharge (m/s^3) 

InSAR 10 m Discharge 

(m/s^3) 

SRTM 30 m Discharge 

(m/s^3) 

A01 114.38 114.38 114.38 

A02 982.14 1137.03 1154.42 

A03 244.82 144.72 219 

A04 164.32 166.67 152.48 

A05 322.99 327.25 293.92 

A06 71.75 183.46 146.16 

A07 96.68 53.80 227.45 

A08 72.83 115.79 314.13 

A09 411.48 561.24 69.9 

A10 74.73 74.73 74.73 

A11 161.14 161.14 161.14 

A12 264.57 264.57 264.57 

A13 73.96 73.96 73.96 

A14 343.64 343.64 343.64 

 

Appendix B2: Discharge rate differences between UAV, InSAR, and SRTM 

 
ID UAV-InSAR InSAR-SRTM UAV-SRTM 

A01 0 0 0 

A02 -154.89 -17.39 -172.28 

A03 100.1 -74.28 25.82 

A04 -2.35 14.19 11.84 

A05 -4.26 33.33 29.07 

A06 -111.71 37.3 -74.41 

A07 42.88 -173.65 -130.77 

A08 -42.96 -198.34 -241.3 

A09 -149.76 491.34 341.58 

A10 0 0 0 

A11 0 0 0 

A12 0 0 0 

A13 0 0 0 

A14 0 0 0 

 

 

 

 

 

 

 

Appendix B3:  Flow velocity of selected nodes calculated using DEMs source 
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ID 
UAV 1 m InSAR 10 m SRTM 30 m 

Velocity (m/s^2) Velocity (m/s^2) Velocity (m/s^2) 

A01 1.27 1.27 1.27 

A02 7.71 8.93 9.07 

A03 1.71 1.01 1.53 

A04 1.2 1.22 1.12 

A05 1.48 1.5 1.35 

A06 0.46 1.18 0.94 

A07 0.45 0.25 1.06 

A08 0.46 0.74 1.99 

A09 2.56 3.49 0.43 

A10 0.43 0.43 0.43 

A11 0.91 0.91 0.91 

A12 1.46 1.46 1.46 

A13 0.43 0.43 0.43 

A14 1.72 1.72 1.72 

 

 

Appendix B4: Flow velocity difference between UAV, InSAR, and SRTM DEMs 

 

ID UAV-InSAR InSAR-SRTM UAV-SRTM 

A01 0 0 0 

A02 -1.22 -0.14 -1.36 

A03 0.7 -0.52 0.18 

A04 -0.02 0.1 0.08 

A05 -0.02 0.15 0.13 

A06 -0.72 0.24 -0.48 

A07 0.2 -0.81 -0.61 

A08 -0.28 -1.25 -1.53 

A09 -0.93 3.06 2.13 

A10 0 0 0 

A11 0 0 0 

A12 0 0 0 

A13 0 0 0 

A14 0 0 0 

 

 

Appendix B5: Elevation of the selected nodes for the three DEMs 
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Sta_ID Elevation (m) Elevation (m) Elevation (m) 

A01 348.46 373.32 373.07 

A02 348.16 372.12 280.09 

A03 251.16 272.64 256.09 

A04 212.97 233.35 223.20 

A05 198.36 218.35 211.10 

A06 197.93 215.55 209.33 

A07 195.72 214.86 197.05 

A08 194.53 211.86 174.97 

A09 174.39 174.39 174.39 

A010 174.30 174.30 174.30 

A011 167.08 167.08 167.08 

A012 159.30 159.30 159.30 

A013 159.12 159.12 159.12 

A014 128.00 128.00 128.00 

 

 

Appendix B6: Differences in elevation between UAV, InSAR, and SRTM DEMs 

 

ID UAV-InSAR InSAR-SRTM UAV-SRTM 

A01 -24.86 0.25 -24.61 

A02 -23.96 92.03 68.07 

A03 -21.48 16.55 -4.93 

A04 -20.38 10.15 -10.23 

A05 -19.99 7.25 -12.74 

A06 -17.62 6.22 -11.4 

A07 -19.14 17.81 -1.33 

A08 -17.33 36.89 19.56 

A09 0 0 0 

A10 0 0 0 

A11 0 0 0 

A12 0 0 0 

A13 0 0 0 

A14 0 0 0 

 

 


