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ABSTRACT 

Magnetohydrodynamics (MHD) finds its application in solar physics, geophysics and 

meteorology. This thesis presents a mathematical model describing the flow of 

electrically conducting incompressible fluid through two parallel plates in inclined 

magnetic field in the presence of viscous dissipation energy. The dimensionless coupled 

non-linear partial differential equations governing magnetohydrodynamics flow of 

incompressible fluid through parallel plates in inclined magnetic field in the presence of 

viscous dissipation energy were solved analytically using polynomial approximation 

method. The effects of the various physical parameters on the velocity, concentration and 

temperature of the flow were shown graphically and discussed. It is observed that 

Reynolds number and Nusselt number reduce the velocity of the fluid, whereas Solutal 

Grashof number, Thermal Grashof number and Kinematic viscosity number enhance the 

velocity of the fluid. A considerable effect was also observed on the concentration and 

temperature profiles. Kinematic viscosity number enhances the concentration of the fluid 

while Nusselt number and Peclet energy number reduce the temperature of the fluid. 
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CHAPTER ONE 

1.0                                                     INTRODUCTION 

1.1  Background to the Study  

The word magnetohydrodynamics (MHD) is derived from the words magneto (implies 

magnetic field), hydro (meaning water) and dynamics refer to movement. It is also known 

as magneto-fluid dynamics or hydromagnetic is the study of magnetic properties and 

behaviour of electrically conducting fluids. Examples of such magneto-fluids are plasma, 

liquid metal (such as mercury), saltwater and electrolytes. The fundamental concept of 

MHD is that the magnetic field stimulates currents in a flowing conductive fluid and causes 

the magnetic field to change. The application of electromagnetic fields in controlling the 

heat transfer as in aerodynamic heating leads to the study of MHD heat transfer. This MHD 

heat transfer has gained significance owing to recent advancement of space technology. 

The MHD heat transfer can be divided in two parts. One contains problems in which the 

heating is an incidental by product of electromagnetic fields as in MHD generators and 

pumps, and the second consists of problems in which the primary use of electromagnetic 

fields is to control the heat transfer (Tagawa et al., 2002).  

Heat transfer in channels partially filled with porous media has gained considerable 

attention in recent years because of its various applications in contemporary technology. 

These applications include nuclear reactors, blood flow in lungs or in arteries, porous 

journal bearing, porous flat plate collectors, packed bed thermal storage solidification of 

concentrated alloys, fibrous and granular insulation, grain storage and drying, paper drying, 

and food storage. Besides, the use of porous subtracts to improve heat transfer in channels, 
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which is considered as porous layers, finds applications in heat exchangers, electronic 

cooling, heat pipes, filtration and chemical reactors. In these applications engineers avoid 

filling entire channel with a solid matrix to reduce the pressure drop. The flow between 

parallel plates is a classical problem that has important applications in MHD power 

generators and pumps, accelerators, aerodynamic heating, electrostatic precipitation, 

polymer technology, petroleum industry, purification of crude oil and fluid droplets and 

spays. 

 1.2  Statement of the Research Problem   

The need for the study of magnetohydrodynamic (MHD) flow of an incompressible and 

electrically conducting fluid through various cross sections have rapidly increased in recent 

years as the efficiency of the devices used in engineering and industries depends on the 

particles suspended in the fluid under the effect of magnetic field. Particularly, the flow and 

heat transfer of electrically conducting fluids in channels under the effect of a transverse 

magnetic field occur in MHD pumps, accelerators, and generators. Channels, in particular 

narrow channels, are common parts of many MHD devices. Therefore, investigation of 

MHD phenomena in plane layers and channels with conducting fluids is important for 

understanding their basic mechanisms, improving the existing industrial processes and for 

developing new MHD devices.  

1.3  Scope and Limitation                       

The thesis focuses on the mathematical model for analysing magnetohydrodynamics flow 

of incompressible fluid through parallel plates in inclined magnetic field in the presence of 

viscous dissipation energy. This research work is limited to the mathematical modelling of 

the phenomenon. 
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1.4  Aim and Objectives      

The aim of this research work is to establish an approximate analytical solution capable of 

analysing  magnetohydrodynamics flow of incompressible fluid through parallel plates in 

inclined magnetic field in the presence of viscous dissipation energy. 

The objectives of this study are to:      

1. Formulate mathematical model governing magnetohydrodynamics flow of 

incompressible fluid. 

2. Obtain the approximate analytical solution of the model using polynomial 

approximation method.  

3.  Provide the graphical representation of the solutions obtained. 

4. Analyse the solution obtained. 

1.5  Significance of the Study 

 This study focuses on the magnetohydrodynamics  (MHD) flow of incompressible fluid 

through parallel plates in inclined magnetic field in the presence of viscous dissipation 

energy. Its findings will be of great significance in Applied Mathematics and Engineering. 

The findings will assist in further development of plasma physics and geophysics. The 

study will also assist in improvement of the current devices which employ MHD flow that 

is MHD power generators, cooling systems aerodynamics, heating polymer technology, 

MHD pumps and electromagnetic flow meter. Thermal radiation effects on flow and heat 

transfer processes are also of major importance in the space technology and high 

temperature processes.  
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 1.6  Defination of Terms  

Differential Equation (DE): An equation containing derivatives of a dependent variable 

with respect to one or more independent variables. 

Eckert Number (Ec): The kinetic energy of the flow relative to the boundary layer 

enthalpy difference. 

Fluid: Any substance that yields readily to external pressure and has no fixed shape. 

Grashof Number (Gr): The ratio of buoyancy to viscous forces. 

Heat Transfer: The exchange of thermal energy between physical systems. The rate of 

heat transfer is dependent on the temperature of the system and the properties of the 

intervening medium through which the heat is transferred. 

Incompressible Fluid: An incompressible fluid is defined as the fluid whose volume or 

density does not change with pressure. 

Magnetic Field: A magnetic field is a vector field, meaning it has a specified magnitude 

and direction at any point. 

Modeling: The mathematical representation of a real phenomenon that is difficult to 

observe directly. 

Nusselt Number (Nu): The dimensionless temperature gradient at the surface. 

Ordinary Differential Equation (ODE): An equation containing a single independent 

variable. 

Partial Differential Equation (PDE): An equation containing two or more independent 

variables. 

Peclet Mass Number (𝑷𝒆𝒎): The dimensionless independent mass transfer parameter. 
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Peclet Energy Number (Pe): The dimensionless independent heat transfer parameter. 

Reynolds Number (Re): The ratio of inertia force to the viscous force present in the fluid. 

Sherwood Number (Sh): The dimensionless concentration gradient at the surface. 

Viscous: Having a thick, sticky consistency between solid and liquid. 

Viscosity: A measure of how thick a fluid is. 
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CHAPTER TWO 

2.0                                            LITERATURE REVIEW 

2.1  Review of Related Literature 

Some of the important literatures available about magnetohydrodynamic (MHD) flow of 

incompressible fluid through parallel plates were reviewed. Mhone and Makinde (2006) 

carried out an investigation on unsteady MHD flow with heat transfer in a divergence 

channel. The non-linear governing equations were obtained and solved analytically using 

perturbation technique. Results showed that the effect of increasing values of heat on steady 

flow was to dampen the velocity profile. This is known as Hartmann flow. Moreover for a 

channel of varying across different sections of the channel, the dampening was more 

pronounced in the centre of the channel. This creates a stagnation point and consequently 

fluid was pushed to the walls of the channel, thereby increasing the velocity in the 

boundary layer. Singh and Kumar (2009) investigated the heat and mass transfer MHD 

flow through porous medium. Palani and Srikanth (2009) studied the MHD flow of an 

electrically conducting fluid over a semi-infinite vertical plate under the influence of the 

transversely applied magnetic field. Ahmed (2009) studied heat and mass transfer effects 

on free convective three dimensional unsteady flows over a porous vertical plate.  

Rajesh (2010) studied radiation effects on MHD free convection flow near a vertical plate 

with ramped wall temperature. Radiation and mass transfer effects on MHD free 

convection fluid flow embedded in a porous medium with heat generation/absorption was 

studied by Shankar et al. (2010). The problem of dissipation effects on MHD nonlinear 

flow and heat transfer past a porous surface with prescribed heat flux have been studied by 

Devi and Ganga (2010). Kwanza et al. (2010) studied the unsteady free convection MHD 
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flow past a semiinfinite vertical porous plate in the presence of strong magnetic field. A 

finite difference method was used to solve the non-linear partial differential equations, after 

non-dimensionalizing the equations. The effect of Hall and ion- slip currents together with 

that of viscous dissipation and radiation absorption among other parameters on velocity, 

temperature and concentration profiles were presented graphically. It was found that in the 

presence of heating of the plate by free convection current, the velocity boundary layer 

thickness decreased. The results also showed that increase in mass diffusion parameter 

increased the primary velocity profiles and decreased the secondary velocity profiles. 

Shyam et al. (2010) examined the Soret and Dufour effects on the MHD natural convection 

over a vertical surface embedded in a Darcy porous medium in the presence of thermal 

radiation. Ali-Chamkha and Mansour (2011) examined the effect of chemical reaction, 

thermal radiation, and heat generation or absorption on the unsteady MHD free convective 

heat and mass transfer along an infinite vertical plate.  

Poonia and Chaudhary (2012) studied the effects of heat transfer on MHD free convective 

flow through porous medium with viscous dissipation. Jain et al. (2012) presented an 

unsteady three dimensional free convection flow with combined heat and mass transfer 

over a vertical plate embedded in a porous medium with time dependent suction velocity 

and transverse sinusoidal permeability. Sharma et al. (2012) investigated the flow of a 

viscous incompressible electrically conducting fluid along a porous vertical isothermal non-

conducting plate with variable suction and internal heat generation in the presence of 

transverse magnetic field. Ravikumar et al. (2012) investigated the heat and mass transfer 

effects on MHD flow of viscous incompressible and electrically conducting fluid through a 

non-homogeneous porous medium in the presence of heat source and oscillatory suction 
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velocity. Sandeep and Sugunamma (2013) analyzed the effects of inclined magnetic field 

and radiation on free convective flow of dissipative fluid past a vertical plate through 

porous medium in presence of heat source. Ashokkunar et al. (2013) studied closed form 

solutions of heat and mass transfer in the flow of a MHD viscous-elastic fluid over a porous 

stretching sheet. It was found that the heat and mass transfer distribution decreased with the 

increasing values of the viscous-elastic parameter.  Sreekala et al. (2014) investigated the 

unsteady hydromagnetic flow of an electrically conducting Maxwell fluid in a parallel plate 

channel bounded by porous medium under the influence of a uniform magnetic field of 

strength Ho inclined at an angle of inclination with the normal to the boundaries. The 

perturbations were created by a constant pressure gradient along the plates. The time 

required for the transient state to decay and the ultimate steady state solution are discussed 

in detail. The exact solutions for the velocity of the Maxwell fluid consists of steady state 

were analytically derived, its behaviour computationally discussed with reference to the 

various governing parameters with the help of graphs. The shear stresses on the boundaries 

were also obtained analytically and their behaviour was computationally discussed in detail.  

Choudhury and Das (2016) studied unsteady, two-dimensional free convective MHD visco-

elastic flow with heat and mass transfer past a semi-infinite moving vertical porous plate 

with variable suction in presence of  homogeneous first-order chemical reaction and 

temperature dependent heat generation was presented. The equations governing the flow 

field were solved by perturbation technique. Expressions for velocity, temperature, mass 

concentration and skin friction coefficient are obtained. The velocity field and the skin 

friction coefficient were illustrated graphically to observe the visco-elastic effects in 

combination with other flow parameters involved in the solution. It was observed that the 
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flow field is significantly affected by the visco-elastic parameter. Olayiwola (2016) worked 

on an analytical  method of studying chemically reacting flow in a laminar premixed flame 

of carbon monoxide/oxygen mixture in the region of the stagnation point, its results showed 

that velocity increased as Prandtl number increased, Biot number decreased the fluid 

velocity and enhanced the species concentration and flame temperature. Babu et al. (2017) 

studied the effect of  unsteady  MHD free convective flow of a viscoelastic incompressible 

electrically conducting fluid past a moving vertical plate through a porous medium with 

time dependent oscillatory permeability and suction in presence of a uniform transverse 

magnetic field and heat source and chemical reaction along with heat and mass transfer 

were reported. A uniform magnetic field acted perpendicular to the porous surface, which 

absorbed the fluid with a suction velocity varying with time. The governing equations of 

the fluid flow, heat and mass transfer are solved by applying multi parameter perturbation 

technique. Comparison with previously published work had been conducted and the results 

were found to be in concordance with the previous study. A parametric study was 

performed on the influence of the visco-elastic fluid parameter, the magnetic field 

parameter, the permeability parameter, on the fluid velocity. The expressions for transient 

velocity, temperature, species concentration and non-dimensional skin friction at the plate 

were illustrated through tables to observe the visco-elastic effect in combination of other 

flow parameters involved in the solution. Dwivedi et al. (2018) presented MHD flow of 

fluids through vertical porous channel having porous medium placed in magnetic field was 

of industrial importance, therefore in this paper study had been made on the flow of a 

viscous incompressible, electrically conducting fluid through a vertical channel filled with 

porous channel, the field was applied perpendicular to the direction of flow. After forming 

the governing equation under suitable boundary conditions, a solution for velocity has been 
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derived and taking different values of parameters, a graph had been plotted between 

velocity and applied magnetic field. Interference had been drawn to check the obtained 

results with physical nature of the problem. The study is useful in applying the result in 

industrial field. Jha and Yusuf (2020) studied the role of magnetic field on fully developed 

natural convection flow in an annulus due to symmetric of surfaces. The transport equations 

concerned with the model under consideration were rendered non-dimensional and 

transformed into the ordinary differential equation using Laplace transform technique. The 

solution obtained was then transformed to time domain using the Riemann-sum 

approximation approach. The governing equations were also solved using implicit finite 

difference method so as to establish the accuracy of the Riemann-sum approximation 

approach at transient as well as at steady state solution. The solutions obtained were 

graphically represented and the effects of pertinent parameters on the flow formation were 

investigated in detail. The Hartmann number (M), was seen to have a retarding effect on the 

velocity, skin-frictions and the mass flow rate. Skin-friction at both surfaces and the mass 

flow rate within the annulus were found to be directly proportional to the radii ratio (λ).  

Ziya and Manoj (2011) studied MHD heat and mass transfer free convection flow near the 

lower stagnation point of an isothermal cylinder imbedded in porous domain with the 

presence of radiation. The equations of conservation of mass, momentum, energy and 

concentration which governed the study were obtained and transformed into a system of 

non-linear ordinary differential equations. They were solved by Runge-Kutta and shooting 

methods. Velocity profiles, temperature distribution and concentration distribution for the 

flow were presented for various values of radiation parameter, viscosity variation 

parameter, thermal conductivity variation, Prandtl number and Schmidt number. The skin 
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friction, local Nusselt number and Sherwood number were also calculated for all 

parameters involved in the problem. The findings showed that increase in Schmidt number 

lead to decrease in skin friction and Nusselt number but it lead to increase in Sherwood 

number. 

 Hanvey et al. (2017) presented MHD flow of incompressible fluid through parallel plates 

in inclined magnetic field having porous medium with heat and mass transfer. Their model 

equations are: 

2
2 2

0 02
sin ( ) ( )

u u p u
v u g T T g C C

t y x y


     



   
    

    

   
= − − + −  + − + −

               (2.1) 

2

2

T K T

y Cp y

 

 

 
=

                                                                                                             (2.2) 

where, 

*u  is the component of velocity along 
*x  - axis, 

is the viscosity of the fluid, 

  is the electrical conductivity of the fluid, 

  is the density of the fluid, 

g  is the acceleration due to gravity, 

*T  is the fluid temperature, 

is the magnetic field strength component, 



0
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is the characteristic velocity, 

pC  is the specific heat at constant pressure, 

 is the thermal conductivity. 

2.2  Summary of Review and Gaps to Fill 

In reviewing the above literature, it has been discovered that several works had been carried 

out on magnetohydrodynamics flow of incompressible fluid through parallel plates. Some 

authors considered magnetohydrodynamics flow of  incompressible fluid through parallel 

plates in inclined magnetic field without considering viscous dissipation energy. In review 

of the above, this research work seeks to consider magnetohydrodynamics flow of  

incompressible fluid through parallel plates in inclined magnetic field with viscous 

dissipation energy, thereby extended the work of Hanvey et al. (2017)  by incorporating 

viscous energy dissipation term to the energy equation and also introduced concentration 

equation to the set of model equations. 
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CHAPTER THREE 

3.0              MATERIALS AND METHODS 

3.1 Mathematical Formulation 

An electrically conducting, unsteady, viscous, incompressible Newtonian fluid moving 

between two infinite parallel plates kept at a distance of 2h apart are placed in inclined 

magnetic field. The lower plate at x L= −  is being subjected to both heat and mass flux and 

the upper plate at x L=  is being subjected to both convective heat and mass transfer. 

Consider one dimensional flow so that the axis of the channel formed by two plates is x-

axis and the flow is in this direction. The equations  governing the flow field are as follows: 

2
2 2

0 02
sin ( ) ( )

u u p u
v u g T T g C C

t y x y
       

   
    

    

    
+ = − + +  + − + − 

          (3.1) 

2
2

0 2

T T T u
Cp v K

t y y y
 

   

   

      
+ = +   

                                                                           (3.2) 

2

0 2

C C C
v D

t y y


  

  

   
+ = 

                                                                                              (3.3) 

where, 

*u  is the component of velocity along 
*x  - axis, 

g  is the acceleration due to gravity, 

is the viscosity of the fluid, 

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  is the electrical conductivity of the fluid, 

  is the density of the fluid, 

is the magnetic field strength component, 

is the characteristic velocity, 

pC  is the specific heat at constant pressure, 

  is the angle of inclination, 

*T  is the fluid temperature, 

*C  is the species concentration, 

*T  is the far field temperature, 

*C  is the far field concentration, 

  is the volume expansion coefficient for the heat transfer, 

 is the thermal conductivity, 

 is the diffusion coefficient. 

The initial and boundary conditions are formulated as: 

 

0

0v

K

D
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      

 

=− =

 
      

 

=− =


= − = = 

 


  
= − = − = − 

  


  = − = − = −
 
                          (3.4) 

3.2 Non-dimensionalisation 

Equations (3.1) to (3.4) were non-dimensionalised using the following dimensionless 

variables 

0

2
, , , , , , ,

vT T C Cx Ut u y p
x t u y p v

L L U T T C C L U U 

 


       

 

   

 

− −
= = = = = = = =

− −
            (3.5) 

From equation (3.5), the following equation was obtained 

2

0

2

2 2 2 2 2 2 2 2

, , , , , ,

( ) , ( ) , , ,

, , , ( ) , ( ) ,

, , ( ) , (

Lt
u Uu x Lx y Ly v Uv p pU t

U

T T T T C C C C u U u x L x

L
y L y p U p t t T T T C C C

U

u U u y L y T T T C C C

 

 

 



 

  



    

         

   

        

 

     

 

= = = = = =

= − + = − +  =   = 

 =   =   =   = −   = − 

 =   =   = −   = − 2) 










             (3.6) 

Put equation (3.6) in equation (3.1), equation (3.7) was obtained 

2 2 2 2
2 2

02 2
sin ( )

( )

U u U v u U p U u
Uu g T T

L t L y L x L y

g C C





 
     

  

 



 



    
+ = − + +  + − + 

     


−         (3.7) 

Multiply through equation (3.7) by 
2

L

U have,  
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2 22

0

2 2 2

sin ( ) ( )L u g L T T g L C Cu u p u
v

t y x UL y U U U

      

 

   

 
 − −   

+ = − + + + + 
         (3.8)                                          

So, 

2
2

2

1

Re
r r

u u p u
v M u G G

t y x y
  

   
+ = − + + + +

                                                                (3.9)           

where, 

2

0

2

2

sin , , Re Re ,

( )
,

( )

r

r

L UL
M N N ynolds number

U

g L T T
G Thermal Grashof number

U

g L C C
G Solutal Grashof number

U







 


 

 

 

 



 




= = = = 




− 
= = 


−

= = 
                               (3.10)                                             

Put equation (3.6) in equation (3.2) have, 

22

2

( ) ( ) ( )U T T Uv T T K T T U u
Cp

L t L y L y L y

    
 

     

  
   − − −   

+ = +   
                         (3.11) 

Multiply through equation (3.11) by 
( )

L

CpU T T  

−
have, 

22 2

2 ( )

K U u
v

t y CpU y CpUL T T y

   

   



    
+ = +  

   −                                                        (3.12) 

22

2

1

Re

Ec u
v

t y Pe y y

       
+ = +  

                                                                                       (3.13)            
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where, 

2

  

 
( )

,
CpU

Pe
K

U
Ec

Cp

Peclet

T

Energy number

Eckert
T

number




 



= =

= =
−

                                                                    (3.14)         

Put equation (3.6) in equation (3.3) have, 

2

2

( ) ( ) ( )U C C Uv C C D C C

L t L y L y

    


     

  
 − − −  

+ = 
                                            (3.15)       

Multiply through equation (3.15) by 
( )

L

U C C  

−
 have, 

2

2

D
v

t y U y

  



  
+ =

                                                                                                       (3.16)        

2

2

1
v

t y Pem y

    
+ =

                                                                                                     (3.17) 

where,  

em Peclet mass n
U

P u be
D

m r


= =
 

Put equation (3.6) in equation (3.4) have, 
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1

1

( ,0) 0 ( ,0) 0 ( ,0) 0

( , ) ( 1, ) 1

0 0 0

( ,0) ( ,0) ( ) ( ,0) 1

( )

y

Ly L yy L

II I

h h

Ly Ly L

u y Uu Ly u y

u L t U Uu t U u

u U u u

y L y y

T T
T y T y T T T T y

T T

K T TT
K q q

y L y


  





 







 



=−





= ==

 
       

   



  
 



=−=−

=  =  =

− =  − =  =

  
=  =  =

  

−
=  − + =  = =

−

− 
− =  − =

 
1

1

1 1

1 1

( )
( ) ( )

( )

( )

( ,0) ( ,0) ( ) ( ,0) 1

I

y

Ly Ly L

y y

y y

y L

q
y

K T TT
K h T T h T T

y L y

hL T T
Nu Nu

y K T T y

C C
C y C y C C C C y

C C

C
D q

y






  







 
 

 





=−

  
    

 

==

 



   = =
= =

 
       

   








=−


 = −



− 
− = −  − = − 

 

− 
= − = −  = −

 − 

−
=  − + =  = =

−


− =


2

1

1

1

( )

( )
( ) ( )

( )

( )

II II

m m

Ly L y

m m

Ly Ly L

m

y

y

D C C
q q

L y y

D C CC
D h C C h C C

y L y

Lh C C
Sh

y D C C







 








  



=− =−

  
    

 

==

 



   =
=





























−  
 − =  = −

  


−  
− = −  − = − 

 

−
= − = −

 − 

               (3.18) 

where, 

, mLhhL
Nu Nusselt number Sh Sherwood number

K D 
= = = =

 

Therefore, the dimensionless equations with the initial and boundary conditions are: 
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2
2

2

1

1

1

Re

( ,0) 0, 1, 0

r r

y

y

u u p u
v M u G G

t y x y

u
u y u

y

  

=−

=

   
+ = − + + + + 

    


 = = =

                                                         (3.19) 

22

2

1 1

1 1

1

Re

( ,0) 1, ,
y

y y

Ec u
v

t y Pe y y

y q Nu
y y

  

 
 

=

=− =

    
+ = +  

     


  
= = − = −

 


                                                        (3.20) 

2

2

2 1

1 1

1

( ,0) 1, ,
y

y y

v
t y Pem y

y q Sh
y y

  

 
 

=

=− =

  
+ = 

   


  = = − = −
 
                                                          (3.21) 

3.3 Method of Solution  

Solution Via Polynomial Approximation Method (PAM) 

Here, let 

0 1

0 1

0 1

0 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

r

r

r

r

G such that

u y t u y t G u y t

y t y t G y t

y t y t G y t









  

  

 

= + 


= + 
= +                                                                                       (3.22) 

Substituting equation (3.22) into equations (3.19) through (3.21) and simplify, have: 

0 :rG   
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2
20 0 0

0 02

0
0 0 1

1

1

Re

( ,0) 0, 1, 0

r

y

y

u u up
v M u G

t y x y

u
u y u

y



=−

=

  
+ = − + + + 

    


 = = =

                                                             (3.23)      

22

0 0 0 0

2

0 0
0 1 0 1

1 1

1

Re

( ,0) 1, ,
y

y y

uEc
v

t y Pe y y

y q Nu
y y

  

 
 

=

=− =

    
+ = +  

     


  
= = − = −

 
                                     (3.24) 

2

0 0 0

2

0 0
0 2 1

1 1

1

( ,0) 1, ,
y

y y

v
t y Pem y

y q Sh
y y

  

 
 

=

=− =

  
+ = 

   


  = = − = −
 
              (3.25) 

1 :rG   

2
21 1 1

1 0 12

1
1 1 1

1

1

Re

( ,0) 0, 0, 0

r

y

y

u u up
v M u G

t y x y

u
u y u

y

 

=−

=

  
+ = − + + + + 

    


 = = =

                          (3.26)           

2

01 1 1 1

2

1 1
1 1 1

1 1

1 2

Re

( ,0) 0, 0,
y

y y

u uEc
v

t y Pe y y y

y Nu
y y

  

 
 

=

=− =

    
+ = +  

      


  = = = −
 


                                                        (3.27)      
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2

1 1 1

2

1 1
1 1 1

1 1

1

( ,0) 0, 0,
y

y y

v
t y Pem y

y Sh
y y

  

 
 

=

=− =

  
+ = 

   


  = = = −
 
             (3.28)         

Assume Polynomial Solutions:            

2

0 0 1 2

2

0 0 1 2

2

0 0 1 2

2

1 0 1 2

2

1 0 1 2

2

1 0 1 2

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

u y t a t a t y a t y

y t b t b t y b t y

y t c t c t y c t y

u y t d t d t y d t y

y t e t e t y e t y

y t f t f t y f t y









= + +


= + + 


= + + 


= + + 
= + +

= + +                                                                                 (3.29)           

0
1 2

0
1 2

0
1 2

1
1 2

1
1 2

1
1 2

2

2

2

2

2

2

u
a a y

y

b b y
y

c c y
y

u
d d y

y

e e y
y

f f y
y









 
= + 


 

= + 


 
= +  


 = +




 = +



 = +
 

                                                                                                          (3.30) 

0 0 1 21
1

y
u a a a

=−
= − + =

                                                                                                (3.31) 

1 0 2 1a a a= + −
                                                                                                              (3.32)               
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0
1 2

1

2 0
y

u
a a

y
=


= + =


                                                                                                    (3.33)    

1
2

2

a
a = −

                                                                                                                  (3.34) 

Substituting equation (3.34) into equation (3.32) have, 

1
1 0 1

2

a
a a= − −

                                                                                                              (3.35)  

1 0

2
( 1)

3
a a= −

                                                                                                               (3.36) 

Substituting equation (3.36) into equation (3.34) have, 

2 0

1
( 1)

3
a a= − −

                                                                                                            (3.37) 

0 0 1 2 0 0 01

2 1
( 1) ( 1)

3 3y
u a a a a a a

=
= + + = + − − −

                                                            (3.38) 

0 01

4 1

3 3y
u a

=
= −

                                                                                                            (3.39) 

0 0 1

3 1

4 3y
a u

=

 
= + 

                                                                                                          (3.40)                                        

That is, 

( )0 0 1

1
3 1

4 y
a u

=
= +

                                                                                                        (3.41)             

Substituting equation (3.41) into equation (3.36) have, 
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1 0 1

2 1
(3 1) 1

3 4 y
a u

=

 
= + − 

                                                                                               (3.42) 

( )1 0 1

1
1

2 y
a u

=
= −

                                                                                                          (3.43) 

Substituting equation (3.41) into equation (3.37) have, 

2 0 1

1 1
(3 1) 1

3 4 y
a u

=

 
= − + − 

                                                                                            (3.44)      

( )2 0 1

1
1

4 y
a u

=
= − −

                                                                                                       (3.45) 

Also,      

0
1 2 1

1

2
y

b b q
y



=−


= − = −


                                                                                               (3.46) 

1 1
2

2

b q
b

+
 =

                                                                                                               (3.47) 

0
1 2 0 1

1

2
y

y

b b Nu
y




=

=


= + = −


                                                                                      (3.48)                                               

( )1 2 0 1
2

y
b b Nu

=
 = − +

                                                                                             (3.49) 

Substituting equation (3.49) into equation (3.47) have, 

1 2 0 1

2

2

2

y
q b Nu

b


=
− −

=
                                                                                                (3.50) 
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1 0 1

22
2

y
q Nu

b


=
−

=
                                                                                                      (3.51) 

( )2 1 0 1

1

4 y
b q Nu

=
= −

                                                                                                   (3.52) 

Substituting equation (3.52) into equation (3.49) have, 

( ) ( )1 1 0 0 1 01 1 1

1 1

2 2y y y
b q Nu Nu q Nu  

= = =

 
= − − + = − + 

                                            (3.53) 

( ) ( )0 0 1 0 1 01 1 1

1 1

2 4y y y
b q Nu q Nu  

= = =
= − + + −

                                                         (3.54)     

1
0 0 01 1

3

4 4y y

q Nu
b 

= =
= − −

                                                                                           (3.55) 

That is, 

( )0 0 11

1
(4 3 )

4 y
b Nu q

=
= + +

                                                                                         (3.56) 

Similarly, 

( )0 0 21

1
(4 3 )

4 y
c Sh q

=
= + +

                                                                                         (3.57) 

( )1 2 0 1

1

2 y
c q Sh

=
= − +

                                                                                                 (3.58) 

( )2 2 0 1

1

4 y
c q Sh

=
= −

                                                                                                   (3.59) 

Also, 
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1 0 1 21
0

y
u d d d

=−
= − + =

                                                                                               (3.60) 

1 0 2d d d = +
                                                                                                              (3.61) 

1
1 2

1

2 0
y

u
d d

y
=


= + =


                                                                                                   (3.62) 

1
2

2

d
d = −

                                                                                                                 (3.63) 

Substituting equation (3.63) into equation (3.61) have, 

1
1 0

2

d
d d= −

                                                                                                                  (3.64) 

1 0

2

3
d d=

                                                                                                                       (3.65) 

Put equation (3.65) into equation (3.63) have,  

 
2 0

1

3
d d= −

                                                                                                                   (3.66) 

1 0 1 2 0 0 0 01

2 1 4

3 3 3y
u d d d d d d d

=
= + + = + − =

                                                                (3.67) 

0 1 1

3

4 y
d u

=
=

                                                                                                                  (3.68) 

Substituting equation (3.68) into equation (3.65) have, 

1 1 1

1

2 y
d u

=
=

                                                                                                                   (3.69) 
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Substituting equation (3.68) into equation (3.66) have, 

2 1 1

1

4 y
d u

=
= −

                                                                                                                (3.70) 

Also, 

1
1 2

1

2 0
y

e e
y



=−


= − =


                                                                                                   (3.71) 

1
2

2

e
e =

                                                                                                                     (3.72) 

1
1 2 1 1

1

2
y

y

e e Nu
y




=

=


= + = −


                                                                                       (3.73) 

( )1 2 1 1
2

y
e e Nu

=
 = − +

                                                                                             (3.74) 

Substituting equation (3.74) into equation (3.72) have, 

( )2 1 1

2

2

2

y
e Nu

e


=
+

= −
                                                                                                 (3.75) 

2 1 14 y

Nu
e 

=
= −

                                                                                                             (3.76) 

Put equation (3.76) into equation (3.74) have,  

1 1 12 y

Nu
e 

=
= −

                                                                                                              (3.77) 
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1 0 1 11 1 12 4y y y

Nu Nu
e  

= = =
= − −

                                                                                   (3.78) 

( )0 1 1

1
4 3

4 y
e Nu 

=
= +

                                                                                                   (3.79) 

Similarly, 

( )0 1 1

1
4 3

4 y
f Sh 

=
= +

                                                                                                    (3.80) 

1 1 12 y

Sh
f 

=
= −

                                                                                                              (3.81) 

2 1 14 y

Sh
f 

=
= −

                                                                                                              (3.82) 

Then, equation (3.29) becomes, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2

0 0 0 01 1 1

2

0 0 1 1 0 1 01 1 1

2

0 0 2 2 0 2 01 1 1

2

1 1 1 11 1 1

1 1

1 1 1
( , ) 3 1 1 1

4 2 4

1 1 1
( , ) (4 3 )

4 2 4

1 1 1
( , ) (4 3 )

4 2 4

3 1 1
( , )

4 2 4

1
( , ) 4 3

4

y y y

y y y

y y y

y y y

u y t u u y u y

y t Nu q q Nu y q Nu y

y t Sh q q Sh y q Sh y

u y t u u y u y

y t Nu

   

   

 

= = =

= = =

= = =

= = =

= + + − − −

= + + − + + −

= + + − + + −

= + −

= +

( )

2

1 11 1 1

2

1 1 1 11 1 1

2 4

1
( , ) 4 3

4 2 4

y y y

y y y

Nu Nu
y y

Sh Sh
y t Sh y y

 

   

= = =

= = =













− −



= + − − 


           (3.83) 

For a long geometry, 
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1 1
0 0

0 0
1 1

1 1
0 0

0 0
1 1

1 1
0 0

0 0
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1
1

1 1
1

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

u u
u u dy and dy

t t

dy and dy
t t

dy and dy
t t

u u
u u dy and dy

t t

dy and dy
t t

dy and
t

 
 

 
 

 
 


 

− −

− −

− −

− −

− −

−

 
= =

 

 
= =

 

 
= =

 

 
= =

 

 
= =

 

 
= =



 

 

 

 

 


1

1

1
dy

t


−


















 
                                                                   (3.84) 

where,  

0 0 0 1 1 1 0 0 0 1 1 1, , , , , , , , .u u and aretheaverageof u u and respectively       
 

That is, 

1

0 0
1

1

2
u u dy

−
= 

                                                                                                              (3.85)        

( ) ( ) ( )
1

2

0 0 0 01 1 11

1 1 1 1
3 1 1 1

2 4 2 4y y y
u u u y u y dy

= = =−

 
= + + − − − 

 


                                    (3.86) 

( ) ( )0 0 01 1

1 1
3 1 0 1

4 12y y
u u u

= =
= + + − −

                                                                          (3.87) 

0 0 1

2 1

3 3y
u u

=
= +

                                                                                                            (3.88) 

Also, 

1

0 0
1

1

2
dy 

−
= 

                                                                                                              (3.89) 
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( ) ( ) ( )
1

2

0 0 1 1 0 1 01 1 11

1 1 1 1
(4 3 )

2 4 2 4y y y
Nu q q Nu y q Nu y dy   

= = =−

 
= + + − + + − 

 


     (3.90) 

( ) ( )0 0 1 1 01 1

1 1
(4 3 ) 0

4 12y y
Nu q q Nu  

= =
= + + − + −

                                                   (3.91) 

1
0 0 1

12 8

12 3y

qNu
 

=

+ 
= + 
                                                                                             (3.92) 

Similarly, 

2
0 0 1

12 8

12 3y

qSh
 

=

+ 
= + 
                                                                                             (3.93) 

1 1 1

2

3 y
u u

=
=

                                                                                                                   (3.94) 

1 1 1

12 8

12 y

Nu
 

=

+ 
=  
                                                                                                     (3.95) 

1 1 1

12 8

12 y

Sh
 

=

+ 
=  
                                                                                                      (3.96) 

and, 
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0 0

1

0 0

1

0 0

1

1 1

1

1 1

1

1 1

1

2

3

12 8

12

12 8

12

2

3

12 8

12

12 8

12

y

y

y

y

y

y

u u

t t

Nu

t t

Sh

t t

u u

t t

Nu

t t

Sh

t t

 

 

 

 

=

=

=

=

=

=

  
= 

 

 + 

=  
   


 +  =      


  =

 

 + 

=   
   

 + 
=  

                                                                                              (3.97) 

Integrating the governing equations with respect to y have, 

2
1 1 1 1

0 0 0
0

1 1 1 1

1 1

0
1 1

1 1

2 2Re 2 2

1

2 2

r

u u uv M
dy dy dy u dy

t y y y

G p
dy dy

x




− − − −

− −

   
= − + +  

     


 
+ −  

   

 
                            (3.98) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
0

0 0 01 1 11 1

2
1

2

0 0 01 1 11

1
2

0 2 2 0 2 01 1 11

1

1

1 1 1 1
( 1) 1 1

2 Re 2 2 2 2

1 1 1
3 1 1 1

2 4 2 4

1 1 1
(4 3 )

2 4 2 4

1

2

y y y

y y y

r

y y y

u v
u dy u u y dy

t

M
u u y u y dy

G
Sh q q Sh y q Sh y dy

p
dy

x


  

= = =− −

= = =−

= = =−

−

    
= − − − − − − +    

     
 

+ + − − − +  
 


 

+ + − + + − − 
 





 













   (3.99) 

( ) ( ) ( ) ( )

( )( ) ( )

2

0
0 0 0 01 1 1 1

0 2 2 01 1

1 1 1
1 1 3 1 1

2Re 2 2 2 6

1 1
4 3

2 2 6

y y y y

r

y y

u v M
u u u u

t

G p
Sh q q Sh

x


 

= = = =

= =

  
= − − − − + + − − +  

  


  + + + − −             (3.100) 



31 
 

( ) ( )

( )( ) ( )

2

0
0 0 01 1 1

1

0 2 2 01 1

2 1 4 2
1 1

3 2Re 2 2 3 3

1 1
4 3

2 2 6

y y y
y

r

y y

u v M
u u u

t

G p
Sh q q Sh

x


 

= = =
=

= =

  
= − − − − + + +  

   


  
+ + + − −                              (3.101) 

2

0
0 01 1

1

2

2 2

2 1 1 4 (4 3 )

3 2 Re 3 2 2 6

1

2Re 2 3 2 2 6

r

y y
y

r

Gu M Sh Sh
v u

t

G q qv M p

x






= =

=

  + 
= − + − + − +   

    


    
+ + + + −                            (3.102) 

Take, 

tp
e

x

 −
=

                                                                                                                   (3.103) 

That is, 

2

0
0 01 1

1

2

2

3 1 4 3 12 8

4 Re 3 4 6

3 1 2 3

2 2Re 2 3 2 3 2

ry y
y

r t

u M Sh
v u G

t

Gv M
q e



 





= =
=

−

  + 
+ + − = +    

    


   
+ + + −                                    (3.104) 

0
0 1

1

( ) ( )
y

y

u
p t u q t

t =
=


+ =


                                                                                           (3.105) 

where, 

2

2

2

0 1

3 12 8 3 1 2
, ,

4 6 2 2Re 2 3 2 3

3 3 1 4
, ( ) , ( )

2 4 Re 3

r

r

t

y

GSh v M
G q

M
C p t v q t Ce






 −

=

 +   
 =  = + + +     

     


  
= = + − =  +−  

                                 (3.106) 
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Also, 

2
1 1 1 1

0 0 0 0

1 1 1 1

1 1

2 2 2 2

uv Ec
dy dy dy dy

t Pe y y y Re y

  
− − − −

      
= − +   

       
   

                        (3.107) 

( )

( ) ( )

( ) ( ) ( )

1 1
0

1 0 11 1

1

1 0 1 01 11

1
2

0 0 01 1 11

1 1 1

2 2 2

1 1

2 2 2

1 1 1
1 2 1 2 1 2

2 4 2 4

y

y y

y y y

dy q Nu dy
t Pe

v
q Nu q Nu y dy

Ec
u u y u y dy

Re




 

=− −

= =−

= = =−


= − + 

 
 

+ + − +  
  

 
− − − + −  

  

 




         (3.108) 

( ) ( )

( ) ( )

0
1 0 1 01 1

0 01 1

1

2 2

1 1
1 2 1 2

2 2 6

y y

y y

v
q Nu q Nu

t Pe

Ec
u u

Re


 

= =

= =


= − + + +

 


  − + −                                                           (3.109) 

0
0 0 11 1

2 1

2 2 3Re 2 2 3Rey y

vNu Nu Ec v Ec
u q

t Pe Pe




= =

       
= − − + + +      

                                   (3.110) 

0
0 0 11 1

1

12 8 ( 1) 2 1

12 2 3Re 2 3Rey y
y

Nu vPe Nu Ec vPe Ec
u q

t Pe Pe




= =
=

+ −  +        
= − + +        

             (3.111) 

0
0 1

1

1 0 1

12 (1 )

12 8 2

12 1 12 2

12 8 2 3Re 12 8 3Re

y
y

y

vPe Nu

t Nu Pe

vPe Ec Ec
q u

Nu Pe Nu




=
=

=

 −  
+ =   

 +   


 +        + −        + +                             (3.112) 

0
1 0 11

1

( ) ( )
y

y

p t q t
t




=
=


+ =


                                                                                        (3.113) 

where, 
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1

1 1 0 1

12 1 12 2
, ,

12 8 2 3Re 12 8 3Re

12 (1 )
( ) , ( )

12 8 2 y

vPe Ec Ec
D q

Nu Pe Nu

vPe Nu
p t q t D u

Nu Pe =

 +       
= +  =        

+ +        


−   = = −   +                              (3.114) 

Also, 

1 1 1
0 0 0

1 1 1

1 1

2 2 2

v
dy dy dy

t Pem y y y

  
− − −

   
= − 

    
  

                                                     (3.115) 

( )

( ) ( )

1
0

2 0 11

1

2 0 2 01 11

1 1

2 2

1 1

2 2 2

y

y y

q Sh dy
t Pem

v
q Sh q Sh y dy




 

=−

= =−

  
= − +  

  


  + + −    




                                            (3.116) 

( ) ( )0
2 0 2 01 1

1

12 8 1

12 2 2y y
y

Sh v
q Sh q Sh

t Pem


 

= =
=

+ 
= − + + 

 
                                   (3.117) 

0
0 21

1

12 8 1

12 2 2 2 2y
y

Sh Sh vSh v
q

t Pem Pem




=
=

+     
= − − + +     

     
                                   (3.118) 

0
0 21

1

12 (1 ) 12 1

12 8 2 12 8 2y
y

vPem Sh vPem
q

t Sh Pem Sh Pem




=
=

 − +     
+ =     

 + +     
                     (3.119) 

0
2 0 21

1

( ) ( )
y

y

p t q t
t




=
=


+ =


                                                                                        (3.120) 

where, 

2 2 2

12 (1 ) 12 1
( ) , ( )

12 8 2 12 8 2

vPem Sh vPem
p t q t q

Sh Pem Sh Pem

− +     
= =     

+ +                           (3.121) 
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Also, 

2
1 1 1 1

1 1 1
1

1 1 1 1

1 1

0 1
1 1

1 1

2 2Re 2 2

1

2 2

r

u u uv M
dy dy dy u dy

t y y y

G
dy dy


 

− − − −

− −

   
= − + + 

     



+ 

   

 
                              (3.122) 

( )( ) ( )

( )

( )

1 1
1

1 1 11 1 11 1

2
1

2

1 1 11 1 11

0 1 1 01 11

1
2

1 0 1

2

1 1 11 1 1

1 1 1

4 Re 2 2 2

3 1 1

2 4 2 4

1 1
4 3

1 4 2

12

4

1
4 3

2 4 2 2

y y y

y y y

y y

y

r

y y y
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2 2 2( ) ( ) ( )

0 21 0
( ) ( )

t
p t t p x x p t t

y
e q x e dx f y e − −

=
= +                                                               (3.143) 

2 2( ) ( )2
0 1

2 0

( )
( )

( )

t

p t t p t t

y

q x
e f y e

p x
 − −

=

 
 = +
 
                                                                         (3.144) 

( )2 2 2( ) ( ) ( )2
0 1

2

( )
1 ( )

( )

p t t p t t p t t

y

q t
e e f y e

p t
 − −

=

 
= − + 

                                                            (3.145) 

( )2 2( ) ( )2
0 1

2

( )
1 ( )

( )

p t t p t t

y

q t
e f y e

p t
 − −

=
= − +

                                                                       (3.146) 

At, 

0, ( ) 1t f y= =                                                                                                            (3.147) 

2 ( )2 2
0 1

2 2

( ) ( )
1

( ) ( )

p t t

y

q t q t
e

p t p t
 −

=

 
= + − 

                                                                                 (3.148) 

2 ( )

0 11

p t t

y
r re −

=
= +

                                                                                                      (3.149) 

where, 

2 2
1

2 2

( ) ( )
, 1

( ) ( )

q t q t
r r

p t p t

 
= = − 

                                                                                           (3.150) 



38 
 

Consider equation (3.105). Then, 
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Consider equation (3.134). Then, 
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The solution for dimensionless equations (3.19) – (3.21) are shown in (3.177)  
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The computations were done using Maple 17 version and the graphs generated were shown 

and discussed in Chapter four.
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CHAPTER FOUR 

4.0                RESULTS AND DISCUSSION 

4.1   Results 

In this analysis we examine the effects of Reynolds number ( )Re , Solutal Grashof number 

( )rG  , Thermal Grashof number ( )rG  , Peclet mass number ( )emP , Nusselt number ( )Nu , 

Peclet energy number ( )eP , Kinematic viscosity number ( ) ,v
 

Eckert number ( ) ,cE  

Sherwood number ( )Sh  on the velocity ( ),u y t  of the fluid, temperature of the fluid 

( ),y t  and concentration of the fluid ( ),y t . Analytical solutions given by equations 

(3.177), (3.178), (3.179), (3.180), (3.181), (3.182) and (3.183) were computed using 

computer symbolic algebraic package MAPLE 17.  

The results obtained from the solutions are shown in Figure 4.1 to 4.16. The effect of 

Reynolds number ( )Re  on velocity ( ),u y t against distance 𝑦 is depicted in figure 4.1. The 

effect of Reynolds number ( )Re  on velocity ( ),u y t against time 𝑡 is depicted in figure 4.2. 

The effect of Solutal Grashof number ( )rG   on velocity ( ),u y t against distance 𝑦 is 

depicted in figure 4.3. The effect of Solutal Grashof number ( )rG   on velocity ( ),u y t

against time 𝑡 is depicted in figure 4.4. The effect of Thermal Grashof number ( )rG   
on 

velocity ( ),u y t
 
against distance 𝑦 is depicted in figure 4.5. The effect of Thermal Grashof 

number ( )rG   
on velocity ( ),u y t

 
against time 𝑡 is depicted in figure 4.6.  
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The effect of Peclet mass number ( )emP  on  concentration ( ),y t  against distance 𝑦 is 

depicted in figure 4.7. The effect of Peclet mass number ( )emP  on  concentration ( ),y t  

against time 𝑡 is depicted in figure 4.8. The effect of Thermal Grashof number ( )rG   
on 

temperature ( ),y t
 
against distance 𝑦 is depicted in figure 4.9. The effect of Peclet energy 

number ( )eP  on temperature ( ),y t  against distance 𝑦 is depicted in figure 4.10. The 

effect of Kinematic viscosity number ( )v
 
on velocity ( ),u y t

 
against distance 𝑦 is depicted 

in figure 4.11. The effect of Kinematic viscosity number ( )v
 
on velocity ( ),u y t

 
against 

time 𝑡 is depicted in figure 4.12. The effect of Kinematic viscosity number ( )v
 

on 

concentration ( ),y t  against distance 𝑦 is depicted in figure 4.13. The effect of Kinematic 

viscosity number ( )v
 
on concentration ( ),y t  against time 𝑡 is depicted in figure 4.14. 

The effect of Eckert  number ( )cE
 
on temperature ( ),y t

 
against distance  𝑦 is depicted in 

figure 4.15.  The effect of  Sherwood number
 
( )Sh  on concentration ( ),y t  against time 𝑡 

is depicted in figure 4.16.   
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Figure 4.1: Effect of Reynolds Number ( )Re  on Velocity ( ),u y t against Distance y  

 

It is observed that the velocity of the fluid decreases along distance as Reynolds number  

 

increases.  

 

 

  

Figure 4.2: Effect of Reynolds Number ( )Re  on Velocity ( ),u y t
 
against Time t  

 

It is observed that the velocity of the fluid increases with time as Reynolds number  

 

increases.
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Figure 4.3: Effect of Solutal Grashof Number ( )rG   on Velocity ( ),u y t against Distance  

 

It is observed that the velocity of the fluid decreases along distance as Solutal Grashof  

 

number increases.
  

 

 

 

Figure 4.4: Effect of Solutal Grashof Number ( )rG   on Velocity ( ),u y t against Time t  

 

It is observed that the velocity of the fluid increases with time as Solutal Grashof number  

 

increases.
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Figure 4.5: Effect of Thermal Grashof Number ( )rG  on Velocity ( ),u y t against Distance  

It is observed that the velocity of the fluid decreases along distance as Thermal Grashof  

number increases. 

 

 

Figure 4.6: Effect of Thermal Grashof Number ( )rG   
on Velocity ( ),u y t  against Time t

It is observed that the velocity of the fluid increases with time as Thermal Grashof number 

increases. 
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Figure 4.7: Effect of Peclet Mass Number ( )emP on Concentration ( ),y t against Distance  

It is observed that the concentration of the fluid decreases along distance as Peclet mass  

number increases. 

 

 

Figure 4.8: Effect of Peclet Mass Number ( )emP on Concentration ( ),y t against Time t  

 

It is observed that the concentration of the fluid increases with time as Peclet mass number  

increases. 
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Figure 4.9: Effect of Thermal Grashof Number ( )rG  on Temperature ( ),y t against       

        Distance y     

It is observed that the temperature of the fluid decreases along distance as Thermal Grashof  

number increases. 

 

 

Figure 4.10: Effect of Peclet Energy Number ( )eP  on Temperature ( ),y t  against    

           Distance y   

It is observed that the temperature of the fluid decreases along distance as Peclet energy  

number increases. 
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Figure 4.11: Effect of Kinematic Viscosity Number ( )v  on Velocity ( ),u y t  against    

           Distance y   

It is observed that the velocity of the fluid decreases along distance as Kinematic viscosity  

number increases. 

 

  

Figure 4.12: Effect of Kinematic Viscosity Number ( )v  on Velocity ( ),u y t against Time t  

 

It is observed that the velocity of the fluid increases with time as Kinematic viscosity  

number increases. 
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Figure 4.13: Effect of Kinematic Viscosity Number ( )v  on Concentration ( ),y t  against 

           Distance y   

 

It is observed that the concentration of the fluid decreases along distance as Kinematic  

 

viscosity number increases. 

 

 

  

Figure 4.14: Effect of Kinematic Viscosity Number ( )v  on Concentration ( ),y t  against 

           Time t   

 

It is observed that the concentration of the fluid increases with time as Kinematic viscosity  

 

number increases. 
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Figure 4.15: Effect of Eckert Number ( )cE  on Temperature ( ),y t  against Distance y   

 

It is observed that the temperature of the fluid decreases along distance as Eckert number  

 

increases. 

 

 

Figure 4.16: Effect of Sherwood Number
 
( )Sh  on Concentration ( ),y t  against Time t    

 

It is observed that the concentration of the fluid increases with time as Sherwood number  

 

increases. 
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4.2  Discussion of the Results   

Figure 4.1: shows the effect of Reynolds number ( )Re  on velocity ( ),u y t against distance.   

It is observed that the velocity of the fluid decreases along distance and this velocity 

decreases as Reynolds number increases.  

Figure 4.2: depicts the effect of Reynolds number ( )Re  on velocity ( ),u y t
 
against time.  

It is observed that the velocity of the fluid increases with time and this velocity decreases as 

Reynolds number increases.
 

Figure 4.3: displays the effect of Solutal Grashof number ( )rG   on velocity ( ),u y t against 

distance. It is observed that the velocity of the fluid decreases along distance and this 

velocity increases as Solutal Grashof number increases.
  

Figure 4.4: depicts the effect of Solutal Grashof number ( )rG   on velocity ( ),u y t against 

time. It is observed that the velocity of the fluid increases with time and this velocity 

increases as Solutal Grashof number increases. 

Figure 4.5: presents the effect of Thermal Grashof number ( )rG  on velocity ( ),u y t against 

distance. It is observed that the velocity of the fluid decreases along distance and this 

velocity increases as Thermal Grashof number increases. 

Figure 4.6: shows the effect of Thermal Grashof number ( )rG   
on velocity ( ),u y t  against 

time. It is observed that the velocity of the fluid increases with time and this velocity 

increases as Thermal Grashof number increases. 

Figure 4.7: displays the effect of peclet mass number ( )emP on concentration ( ),y t against 

distance. It is observed that the concentration of the fluid decreases along distance and this 

concentration decreases as Peclet mass number increases. 
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Figure 4.8: presents the effect of peclet mass number ( )emP on concentration ( ),y t against 

time. It is observed that the concentration of the fluid increases with time and this 

concentration decreases as Peclet mass number increases. 

Figure 4.9: shows the effect of Thermal Grashof number ( )rG  on temperature ( ),y t

against distance. It is observed that the temperature of the fluid decreases along distance 

and this temperature increases as Thermal Grashof number ( )rG   increases. 

Figure 4.10:  shows the effect of Peclet energy number ( )eP  on temperature ( ),y t  against 

distance. It is observed that the temperature of the fluid decreases along distance and this 

temperature increases as Peclet energy number increases. 

Figure 4.11: shows the effect of Kinematic viscosity number ( )v  on velocity ( ),u y t  

against distance. It is observed that the velocity of the fluid decreases along distance and 

this velocity increases as Kinematic viscosity number increases. 

Figure 4.12: presents the effect of Kinematic viscosity number ( )v  on velocity ( ),u y t

against time. It is observed that the velocity of the fluid increases with time and this 

velocity increases as Kinematic viscosity number increases. 

Figure 4.13: depicts the effect of Kinematic viscosity number ( )v  on concentration ( ),y t  

against distance. It is observed that the concentration of the fluid decreases along distance 

and this concentration increases as Kinematic viscosity number increases. 
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Figure 4.14: depicts the effect of Kinematic viscosity number ( )v  on concentration ( ),y t  

against time. It is observed that the concentration of the fluid increases with time and this 

concentration increases as Kinematic viscosity number increases. 

Figure 4.15: shows the effect of Eckert number ( )cE  on temperature ( ),y t  against 

distance. It is observed that the temperature of the fluid decreases along distance and this 

temperature increases as Eckert number increases. 

Figure 4.16: depicts the effect of Sherwood number
 
( )Sh  on concentration ( ),y t  against 

time. It is observed that the concentration of the fluid increases with time and this 

concentration decreases as Sherwood number increases. 
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CHAPTER FIVE 

5.0                        CONCLUSION AND RECOMENDATION 

5.1  Conclusion 

A mathematical analysis has been carried out to model magnetohydrodynamics flow of 

incompressible fluid through parallel plates in inclined magnetic field in the presence of 

viscous dissipation energy. The dimensionless governing coupled non-linear partial 

differential equations were solved analytically using polynomial approximation method. 

The effects of the dimensionless parameters as shown on the graphs were analyzed. From 

the results obtained, we can conclude that: 

(i) Reynolds number reduces the velocity of the fluid. 

(ii) Solutal Grashof number, Thermal Grashof number and Kinematic viscosity 

number enhance the velocity of the fluid.  

(iii) Peclet mass number and Sherwood number reduce the concentration of the fluid. 

(iv) Thermal Grashof number, Peclet energy number and Eckert number enhance  

the temperature of the fluid.  

5.2  Recommendations 

Further work can be carried out on magnetohydrodynamics flow of 

incompressible fluid through parallel plates in inclined magnetic field in the 

presence of viscous dissipation energy using other analytical methods to 

ascertain how best the results can be obtained.  
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5.3  Contributions to Knowledge 

In this study, the following contributions were made: 

(i) This research work extended the work of Hanvey et al. (2017)  by incorporating 

viscous energy dissipation term in the heat process and also introduced 

concentration equation to the set of model equations. 

(ii) Magnetohydrodynamics flow of incompressible fluid through parallel plates in 

inclined magnetic field in the presence of viscous dissipation energy was solved 

using polynomial approximation method. 
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