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ABSTRACT

This thesis presents mathematical model for transient magnetohydrodynamic free
convection flow between two long vertical parallel plates with viscous energy
dissipation.The partial differential equations governing the phenomenon were non-
dimensionalized using some dimensionless quantities. The dimensionless coupled non-
linear partial differential equations were solved using harmonic solution technique. The
results obtained were presented graphically and discussed. From the results obtained, it was
observed that increase in Peclet number, Eckert number and Grashof’s number lead to
increase in the velocity profiles. Increase in Reynold number leads to reduction in the
concentration profile. The Concentration profile also increases with time. It was also
observed that increase in Reynold number leads to increase in the velocity profile at £ =1 .

The result from this research work is of importance to industries in meteorology, solar
physics, geophysics, planetary magnetospheres, aeronautical plasma flows, chemical
engineering and electronics, pumps and generators.
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CHAPTER ONE

1.0 INTRODUCTION

1.1  Background to the Study

Convectional heat transfer fluids, including oil, water and ethylene glycol mixture are poor
heat transfer fluids. Since the thermal conductivity of these fluids play an important role in
determining the coefficient of heat transfer between the heat transfer medium and the heat
transfer surface, numerous methods have been used to improve the thermal conductivity of
these fluids by suspending nano/micrometer-sized particle materials in liquids ( Chon et al.,

2006).

The experimental and theoretical works on Magnethohydrodynamic (MHD) flow with
chemical reaction have been done extensively in various areas i.e sustain plasma
confinement for controlled thermo nuclear fusion, liquid metal cooling of nuclear reactions
and electromagnetic casting of metals keeping the above facts in many authors attracted in

this field of study of heat and mass transfer through dusty fluids (Ugwu et al., 2021).

Flow of conducting fluid in external magnetic field produce a variety of new effects, which
are not realized in usual hydrodynamics. MHD analyzed these phenomena. It also studies

the arising of a flow of conducting fluid due to the current passing through the fluid (so-
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called electrically induced vortex-type flows). MHD described the frontier area combining
classical fluid mechanics and electrodynamics. It was a relatively young discipline in
natural science and engineering, starting with the pioneering work of Hartmann (1937) on a
liquid metal duet flow under the influence of a strong external magnetic field. Today MHD
has developed into vast field of applied and fundamental research in engineering and

physical sciences.

Electromagnetic methods of action on electrically conducting medium were widely used
both in technical devices such as pump, flow meters, generators and industrial processes in
metallurgy and material processing. Another common application of MHD in metallurgy
was MHD separation that was used for electromagnetic removal of non-metallic inclusions
from melts and metal extraction from Oxides and slag i.e. MHD was used for cleaning
liquid metals of impurities as well as for the separation of multiphase systems into their

components (Herman and Yeshajahu, 1993).

Nowadays, electromagnetic pumps and their modifications were widely used in metallurgy
and materials processing in order to transport and dose (exact batching) melting metal
(Ivlev et a., 1993). The advantages of MHD pumps over mechanical pumps are: the
absence of moving and rotating parts (this increases their reliability), noiseless operations
(better vibration and noise characteristics), relative simplicity of control, being completely
hermetically sealed. They can be utilized even with chemically aggressive, reactive and
very hot fluids. Therefore, they are used also in chemical industries (Al-Habahbeh et al.,

2016).

1.2 Statement of the Research Problem

15



The need for study of transient magnetohydrodynamics free convectional flow with viscous
energy dissipation have rapidly increase in recent years as the efficiency of the devices used
in industries and engineering depend on the particles suspended in the fluid under the effect
of magnetic field. Therefore, investigation of MHD free convection flow between two long
vertical parallel plates is important for improving the existing industrial processes and for

developing new MHD devices.

1.3 Aim and Objectives of the Research

131 Aim

The aim of this work is to investigate the effect of viscous energy dissipation on transient

MHD free convention flow between two long vertical parallel plates.

1.3.2 Objectives

The objectives of this study are to:

i Formulate a model for the transient MHD flow with viscous energy
dissipation.

ii. Obtain the analytical solution of the model using harmonic solution
technique.

iii. Provide the graphical representation of the system responses.

1.4  Significance of the Study

Magnetohydrodynamics (MHD) finds its application in meteorology, solar physics,
geophysics and motion of the earth core. MHD free convection flow have also significant

applications in the field of stellar and planetary magnetospheres, aeronautical plasma
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flows, chemical engineering and electronics which arises to the use of Partial Differential
Equations (PDE) to model these physical phenomena. Since analytical methods are most
times restricted in handling of such PDE due to its coupled nature, harmonic method would

go a long way in providing solutions to these physical problems.

1.5  Scope and Limitation

15.1 Scope

The scope of this work is to study the governing equations by providing analytical solution
using harmonic solution method for the analysis of transient MHD free convection flow

with viscous energy dissipation.

1.5.2 Limitation

This work is limited to the mathematical study of transient MHD free convection flow with

viscous energy dissipation.

1.6 Definition of Terms

Convection: this is heat transfer by mass motion of fluid such as air or water when the

heated fluid is caused to move away from the source of heat, carrying energy on it.

Fluid: A substance that has no fixed shape and yield easily to external pressure, either gas

or liquid

Heat transfer: Is the exchange of thermal energy between physical systems. The rate of
heat transfer is dependent on the temperature of the system and the properties of the

intervening medium through which the heat is transferred.
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Magnetic field: Is the region around a magnetic material or a moving electric charge within

which the force of magnetism acts.

Magnetism: Is a physical process produced by the motion of electric charge, which results

in attractive and repulsive forces between objects.

Mathematical modelling: A representation of a system, process or relationship in a
mathematical form in which equations are used to simulate the behavior of the system or

process under study.

Nano fluids: is a fluid containing nanometer sized particles called nanoparticles. These
fluids are engineered colloidal suspensions of nanoparticles in base fluid. These particles

used in nano fluids are typically made of metals, oxides, carbides, or carbon nanotubes.

Order: the order of a differential equation is the order of the highest derivative involved in

the equation.

Ordinary Differential Equation (ODE): An equation containing a single independent

variable.

Parallel plate: Is an arrangement of two metal plates connected in parallel separated from

each other by some distance.

Partial Differential Equation (PDE): An equation containing two or more independent

variables.

Particles: is a small localized objects to which can be ascribed several physical or chemical

properties such as volume, density or mass. They vary greatly in size or quantity, from

18



subatomic particles like electron, to microscopic particles like atoms and molecules, to

macroscopic particles like powders and other granular materials.

Perturbation technique: isa class of analytical methods for determining approximate

solutions of nonlinear equations.

Viscosity: Is the measure of fluids resistance to gradual deformation by shear stress or

tensile stress. It is the friction between the molecules of fluids.

Viscous: Having a thick, sticky consistency between solid and liquid.

19



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Review of Related Literature

Transient free convection flows under the influence of a magnetic field have attracted the
interest of many researchers in view of their applications in modern materials processing
where magnetic fields were known to achieve excellent manipulation and control of
electrically-conducting materials (Ibrahim and Shankar, 2014). Magnetohydrodynamic
(MHD) convection flows find significant applications in renewable energy devices,
including MHD power generators as well as nuclear reactor transport processes
(Mukhopadhyay, 2011) wherein magnetic field was employed to regulate heat transfer
rates. Therefore great effort have been made to analyze the transient MHD in the presence

of viscous energy dissipation.

Uddin et al. (2014) studied analysis and computation of magneto-convective non-
Newtonian nanofluid slip flow from a permeable stretching sheet. Rana et al. (2013) used a
variational finite element method to simulate rotating magnetic nanofluid boundary layer
flow, heat and mass transfer from an extruding sheet. Recently Rajesh and Chamkha (2014)

presented a mathematical model for the unsteady free convective flow and heat transfer of a
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viscous fluid from a moving vertical cylinder in the presence of thermal radiation. Later
Rajesh and Anwar (2014) numerically studied the effects of MHD on the transient free
convection flow of a viscous, electrically conducting, and incompressible nanofluid past a

moving semi-infinite vertical cylinder with temperature oscillation.

Nelson and Wood (1989) had presented numerical analysis of developing laminar flow
between vertical parallel plates for combined heat and mass transfer natural convection
with uniform wall temperature/concentration and uniform heat/mass flux boundary
conditions. They also had presented an analytical solution for the fully developed combined
heat and mass transfer natural convection between vertical parallel plates with asymmetric
boundary conditions. Unsteady free convection couette flow between two vertical parallel
plates has been studied by Singh (1998). Lee (1999) had studied a combined numerical and
theoretical investigation of laminar natural convection heat and mass transfer in open
vertical parallel plates with unheated entry and unheated exit for various thermal and

concentration boundary conditions.

Singh et al. (1996) had studied the transient free convection flow of a viscous
incompressible fluid in a vertical parallel plate channel, when the walls are heated
asymmetrically. Jha (2001) had studied the combined effect of natural convection and
uniform transverse magnetic field on the unsteady couette flow. Narahari et al. (2002) had
studied the transient free convection flow between two infinite vertical parallel plates with
constant heat flux at one boundary. Jha et al. (2003) have presented the transient free

convection flow in a vertical channel as a result of symmetric heating of the channel walls.
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Narahari (2008) had studied the transient free convection flow of a viscous incompressible
fluid between two infinite vertical parallel plates in the presence of constant temperature

and mass diffusion.

Mohammed et al. (2015) presented an analytical method to describe the heat and mass
transfer in the flow of an incompressible viscous fluid past an infinite vertical plate with the
governing equations accounting for viscous dissipation effect and mass transfer with

chemical reaction of constant reaction rate.

Ahmad et al. (2019) considered the transient free convection flow of nanofluids between
two vertical parallel plates in the presence of radiation and damped thermal flux. The
generalized Fourier's law is considered in thermal flux constitutive equation with a weakly
memory. The integral transform technique is used for finding the exact solutions of the
fractional governing differential equations for fluid temperature and velocity field. The
solutions are presented in the term of the time-fractional derivative of the Wright function

and Robotnov and Hartley function.

Ostrach (1952) had studied laminar free convection flow of a viscous incompressible fluid
between two vertical walls with constant wall temperature. Ostrach (1954) and Sparrow et
al. (1959) had studied the combined effect of a steady free and forced convection laminar
flow and heat transfer between two vertical parallel walls.

Megaraju et al. (2021) analyzed the transient MHD current of an exponentially accelerated
isothermal vertical plate with Hall current and chemical reaction effects, and use the finite
element method to solve the dimensionless equation under appropriate initial and boundary

conditions. The Galerkin finite element method is used for numerical solution. It is a
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powerful and stable technology that provides excellent convergence and is suitable for
processing coupled systems with partial differential equations. Their results are useful in

fields related to heat and mass transfer research.

Pantokratoras (2006) had presented their results for a steady free convection flow between

vertical parallel plates by considering different conditions on the wall temperature.

Susmay and Bidyasagar (2020) investigated unsteady magnetohydrodynamic free
convective flow of an electrically conducting and incompressible fluid past a permeable
and periodically moving infinite flat plate with slippage at the surface in the presence of
Hall current, rotation, thermal radiation and internal heat generation/absorption. Their
model equations are converted into non-dimensional form using suitable dimensionless
variables and parameters. Exact analytical solutions, in closed form, for the velocity and
temperature fields was obtained with the help of Laplace transform technique. They
concluded that the Primary fluid velocity increases with the increase of rotation, Hall
current, heat generation and thermal radiation whereas it decreases on increasing magnetic
field, suction/injection, frequency oscillation and slip parameters and Secondary fluid
velocity is accelerated with Hall current, heat generation and thermal radiation parameters
whereas magnetic field, rotation, suction/injection, frequency of oscillation and slip
parameters have the tendency to decelerate the flow in secondary direction.

Kettleborought (1972) had described numerically the transient laminar two-dimensional
motion of a viscous incompressible fluid between two heated vertical plates in which the
motion is generated by a temperature gradient perpendicular to the direction of the body

force.
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Olanrewaju et al. (2012) studied internal heat generation effect on thermal boundary layer
with convective surface boundary conditions. They showed that an increase in the internal
heat generation prevent the rapid flow of heat from the lower surface to the upper surface of
the plate. Kabir et al. (2013) examined effects of viscous dissipation on
magnetohydrodynamics natural convection flow along a vertical wavy surface with heat
generation. They discovered that velocity, temperature and skin friction coefficient enhance
higher values of internal heat generation parameter but the same reason the rate of heat

transfer reduces.

Ajibade et al. (2021) investigated the effects of dynamic viscosity and nonlinear thermal
radiation on free convective flow through a vertical porous channel. The study is aimed at
finding the possible effects of changing viscosity and nonlinear thermal radiation on the
flow characteristics of the fluid. A semi-analytic method of solution popularly called
Adomian decomposition method (ADM) is used to split the equations into series after

which computer simulation is deployed for the final solution of the equations.

Daniel et al. (2013) investigated an unsteady forced and free convection flow past an
infinite permeable vertical plate. They observed that thermal boundary layers increases
towards the plate with injection and reduced towards the plate with suction and also seen
that temperature is higher near the plate with injection while velocity is enhanced near the
plate with suction and injection. Mostafa (2015) studied variable fluid properties effects on
Hydromagnetic fluid flow over an exponentially stretching sheet. They observed that the
local velocity Nusselt number increased with the increase of suction parameter, and heat

generation parameter.

Krishna and Chamkha (2020) investigated the Hall and ion slip effects on the MHD

convective flow of elastico-viscous fluid through porous medium between two rigidly
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rotating parallel plates with time fluctuating sinusoidal pressure gradient. Analytical
solutions for the velocity, temperature and concentration were evaluated and discussed
computationally with the help of graphical profiles. For engineering interest, they obtained
skin friction, Nusselt number, Sherwood number and volumetric flow rate and discussed
numerically. Elasticity and magnetic field resist the fluid motion gets thinner boundary
layer. Lesser frequency of oscillating pressure gradient frightens the reverse flow.

Sajid and Hayat (2008) studied the influence of thermal radiation on the boundary layer
flow due to an exponentially stretching sheet using homotopy analysis method. The study
of MHD has important applications, and may be used to deal with problems such as cooling
of nuclear reactors by liquid sodium and induction flow metre, which depends on the
potential difference of the fluid in the direction perpendicular to the motion and to the

magnetic field.

Isah et al. (2019) discussed thermal radiation and variable pressure effects on natural
convective heat and mass transfer fluid flow in porous medium. They obtain solutions for
time dependent energy, concentration and momentum equations by the perturbation series

method after transforming into ordinary differential equations.

Olayiwola (2016) presented an analytical method for studying chemically reacting flow in a
laminar premixed flame of carbon monoxide/oxygen mixture in the region of the stagnation
point his result showed that the velocity increased as prandtl number increased, Biot
number decreased the fluid velocity and enhanced the species concentration and flam

temperature.
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Attia and Aboul-Hassan (2002) studied the flow of a conducting, viscoelastic fluid between
two horizontal porous plates in the presence of transverse magnetic field. The plates were
assumed to be non-conducting and maintained at two fixed points but at different
temperatures. The fluid viscosity was assumed to be temperature dependent and the fluid
was subjected to a uniform suction from above and injective from below. The motion of the
fluid was produced by a uniform horizontal pressure gradient. The equation of motion and

energy were solved numerically to yield the velocity and temperature distributions.

Rajput and Sahu (2011) studied transient free convection MHD flow between two long
vertical parallel plates with constant temperature and variable mass diffusion which

neglects viscous energy dissipation. Their model equations are:

ou’ R wlmy o oBZ
= =gﬂ(T T, )+gﬁ (c ¢, )H)W_ o 2.1)
i 217
oT :La T2 2.2)
ot pC, oy’
' 21
oc’ _ 8(22 2.3)
atf ay!
With initial and boundary conditions as follows,
u’(y,0)=0, u'(0,t')=0, u'(d,t')=0
T'(y,0)=T,/, T'(0t)=T,/, T'(dt)=T, (2.4)
c'(y,0)=C,, C’(O,t’):Cd'+(CW'—Cd')L—LZ), c'(d,t')=C,
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u’ is the velocity of the fluid,

g is the acceleration due to gravity,
S as the volumetric coefficient of thermal espansion,

t' as the time,
d is the distance between two vertical plates,

T'- the temperature of the fluid,

T,' - the temperature of the plate at y'=d

£ is the volumetric coefficient of concentration expansion,

C’ - species concentration of the fluid,

C, - species concentration at the plate y'=d,

v is the kinematic viscosity,

y' - the coordinate axis normal to the plates,
p 1s the density,

C, - the specific heat at constant pressure,

k - the thermal conductivity of the fluid,

D is the mass diffusion coefficient,
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T, is the temperature of the plate at y'=0,

C,, - species concentration at the plate y'=0,

B, is the uniform magnetic field,

o is the electrical conductivity.

2.1  Summary of Review and Gap to fill

In reviewing the above literature, it has been discovered that several works had been carried
out on transient free convection flow of a viscous incompressible fluid. Some authors
considered transient magnetohydrodynamic free convection flow between two long vertical
parallel plates without considering viscous energy dissipation. In view of the above, this
research work seeks to consider transient magnetohydrodynamic free convection flow
between two long vertical parallel plates with viscous energy dissipation, thereby extended
the work of Rajput and Sahu (2011) by incorporating viscous energy dissipation to the

energy equation.
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CHAPTER THREE
3.0 MATERIALS AND METHOD
3.1 Mathematical Formulation

In this problem, the x'- axis is considered along one of the vertical plates and y’- axis is

taken normal to the plates. Initially, at time t’ <0 the temperature of the fluid and the plates
are same as T, and concentration of the fluid is C,". At t'>0, the temperature of the fluid
near the plate (at y’=0) is raised to T,” and the concentration of the fluid near the plate (at

y'=0) is raised linearly with time t, causing the flow of free convection currents. The

governing equations under the usual Boussinesq’s approximation are as follows:

ou’ Ozu' O'B2 , , ’ * ' ’
U —7°u +gﬂ(T T, )+g,B (c ¢, ) (3.1)
' 217 ' 2
ale k aT2+ p {au,} (3.2)
ot pC, oy pC,\ oy
[ 2/
< _pt (3.3)
th ayl

With initial and boundary conditions as;
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Where,
u’ is the velocity of the fluid,

g is the acceleration due to gravity,
S as the volumetric coefficient of thermal espansion,

t' as the time,
d is the distance between two vertical plates,

T'- the temperature of the fluid,

T,' - the temperature of the plate at y'=d

£ is the volumetric coefficient of concentration expansion,

C’ - species concentration of the fluid,

C, - species concentration at the plate y'=d,

v is the kinematic viscosity,

4 is the dynamic viscosity

y' - the coordinate axis normal to the plates,

30
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p is the density,

C, - the specific heat at constant pressure,

k - the thermal conductivity of the fluid,

D is the mass diffusion coefficient,

T, is the temperature of the plate at y'=0,

C, - species concentration at the plate y' =0,

B, is the uniform magnetic field,

o is the electrical conductivity.
3.2 Non-dimensionalisation

Equation (3.1), (3.2), (3.3) and (3.4) were non-dimensionalised using the following

dimensionless variables

y:l’ t:Ut’ =u—’ a):d—a)
d d U U s
g T =T ,_C-C/ '
T, T, C, -C;

From equation (3.5), equation (3.6) was obtained

o_ Vo o0 10 o 198
ayr d ay’ ay!2 d2 6y2 (36)
= (1T, )o+T,, ¢'=(c, ¢/ Jg+cy

w
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Equation (3.1) becomes,

U2au_ W du oBU

d ot d? oy

u+ gﬂ(TW' —Td')9+ gﬂ*(cw’ —cd’)¢ 3.7)
: d
Multiply through by B to have,

2 2 gpd(T, -T, gpd(c, -C,/
aziaz_aBodqu ( : d)9+ ( . d)¢ (3.8)
ot duay? pU U U

Equation (3.2) becomes,

V(T )op KW T, (&JT (39

i + -
d ot pde2 oy® ,ond2 oy

Multiply equation (3.9) through by to have,

u(r, -1/

00 kK 0% U ou)
- H [ ) (3.10)

i + __
ot pC,du oy* pcpd(TW'—Td') oy

And equation (3.3) becomes,

U(CW'—Cd')a¢ D(cw’—cd’)az¢
d ot d? oy

(3.11)

Multiply (3.11) through by to have,

u (CW' —cd')
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o _D ¢
ot du ay?

Equation (3.4) also becomes,

u(y,0)=- (3’0)=o as u'(y,0)=0, u(0,0)=""Y o asuw(y,0)=0,
a1t =180 o o6 w(g,0)-0, e(y,o)zTT,_? —0asT'(y.0)=T,,
w ~ 'd
0(0,t) = T,_Td’ =1 as T'(0,t")=T,’, O(Lt)= T’_Td, =0asT'(d,0)=T,,
T, -T, T, -T,
¢(y,0)= C,_Cd,=o as C'(y,0)=C,,
CW _Cd
c'-c, t v
0,t)=——% = as C'(0)=C, +(C ’—c’)—t',
¢( ) CW’—Cd' Re as ( ) d + w d dz
Cc'-C, :
#(0,t)= -0 as C'(d,t')=C
( ) CWr_Cd! ( ) d

The dimensionless equations becomes,

ou

13u_H G,
ot R, oy’

2 G
—iu+—9+—f¢¢
R, R R

e e

o 1
at

_ 1%
Pem ay2

With dimensionless initial and boundary conditions as
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v _ R, = Reynolds number
v

2 2
oB,d _ N = Ha o Stuarts number
pJ R,

gpd* (T, -7, )
U

=G, , = Thermal Grashof number

9f'd*(c, -c,)

=G,,= Solutel Grashof number

uJ
pC,dU
- P, = Peclet Energy number
U2
———— = E,= Eckert number
Cp(TW T, )
du

— = P, = Peclet mass number
D

oBid®
u

H Z= Hartman number
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3.3 Method of Solution

For a purely oscillating flow, we have

u(y.t)=u(y)e, 0(y,t)=0(y)e™, ¢(y.t)=g¢(y)e" (3.19)
So,
au(y,t)ziweiwt ) 8u(y,t)=eiwt du(y) (éu(y,t)jz=em(du(y)J2

ot B dy "\ oy dy )’
CUY) _ g SU0Y) - OOWY _ i gy Q0 _ o 490Y),

oy? dy> © & oy dy (3.20)
PO _ i SOUY) 29 iy BN _ i d80Y)

oy* dy* Y dy
O°4(y.t) _ i d°0(y)

oy’ dy?

Put equation (3.20) in equations (3.14), (3.15) and (3.16) to have,

) - eia)tdZU(y) HZeiwt Geezmt Gmeiwt

_ _'a =0~ p Bl 3.21
o Zot 429(y) E.e% (du(y) 2
2ie?o(y) = c 3.22
)= TR (322
I e d’¢(y)

_ 3.23
e p(y) Y. (3.23)

.y . R,

Multiplying equation (3.21) by i

The following equations were obtained
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. d’u 2 it
lwoRU=——-Hu+e“G,0+G, ¢
dy

d’u 2, - it
d—yz—(Ha +ioR, )u=-€"G,,0-G, ¢

So,

du

d_yz _ b12u — —ei(”tGm@—Gr¢¢

Where,
b = ,\/Hj +ioR,

Multiply equation (3.22) by , to have,

eZiwt

2 2
2iwpe¢9=d_f+ E.R[du
dy° R, (dy

2 2
d—f—zinﬁ:— EcFfdu
dy R

. \Ldy
So,
dy R, dy
Where,
b, = \[2iwP,
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Pon
eia)t

Multiply equation (3.23) by to have,

The corresponding boundary conditions are,

o

0(0)="CY o atu(or)=0, u)="E_oa u(o)=o,

ot ot

€
0(0)= 20 e at p(o.)=1, 0= 2 <0t (010,
5(0) =50 = et plon)= o) =<0 at pav)-
That is,
u(0)=0, u(1)=0
6(0)=e", 6(1)=0,
$(0)="— p1)=0
Let,
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0<G,, <<1togive,

U=u,+G U, +G>U, +...
0=0,+G,,0,+G%0, +... (3.38)
o= +Gr0¢1 +Gr20¢2 L

Putting equation (3.38) in equations (3.26), (3.30) and (3.34), the following equations were

obtained

dd;uzo +G,, Oclj;uzl =07 (Uy + G, +...) = —€"'G,, (6, + G0, +...)— Gy, (¢ + Gy +...)
(3.39)

cj;yio +G,, zz—ﬁ+...—b§ (6, +G 0y +...)=— Eélje [%-FGW %Jﬁ..jz (3.40)
(j:—ﬁ‘)+6r9 C:j;‘fl+...—b32(¢50+Gr9¢l+...):0 (341)

For Order 0, That is O(G,):1 we have,

d?u,

— 0 _plu, =-G

dyZ bl 0 r¢¢0 (342)
U, (0)=0, u,(1)=0

4’0, 2y __ER(du,)

dy> 27° R, | dy (3.43)

0,(0)=e?*, ¢,(1)=0
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d2
dy¢;0 _b3‘2¢0 =0

te—i(x)l

¢0(0)=R—’ ¢ (1)=0

For Order 1, That is O(G;, ):G,, becomes,

du .
dyzl _b12u1 =-¢€ tt90 _Gr¢¢1

ul(o) =0, y (1) =0

d?g, ., 2E_P, ( du, |( du,
> —0y60, =~ — || =
dy R dy )\ dy

6,(0)=0. 6,()

I
o

d2
dyfl _b32¢1 =0

4(0)=0, 4(1)=0

Solving equation (3.44) ,
Seeking
¢0 =e"

Differentiating equation (3.48) twice with respect to y to have

d 2¢0 — mzemy
dy?

Put equations (3.49) and (3.48) in equation (3.44) to have,
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(3.47)
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m%e™ _bZe™ = 0
(ne—t£)e” 0
For e™ =0,
(re-85) -0

m?—bZ =0

So assume a solution to be
% (y) = Aier + A2e7b3y
Applying the boundary conditions,

te—ia]t

¢ (0)= to have,
te—i(ut
+ =
A==
te—iwt
A=——-A,

Also for ¢,(1)=0,
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(3.54)
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te—i(uteb3

A= R.(e%—e™)

Put equation (3.63) in equation (3.58) to have,

_te*iwt e—b3

A= Re(ebs —e‘b3)

te—iwte—b3

A= Re(e‘IDS —eb3)

So the solution to equation (3.44) is

¢o (y) = Aiew + A2e7b3y
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(3.62)

(3.63)

(3.64)
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(3.66)
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Where,

te e
A= R.(e™—e”)

te g™
%= R.(e%—e™)

Solving equation (3.47)

dZ
Wfl_bzz@:o

¢1(0) =0, ¢ (1) =0
Seeking,

¢ =e"

The second derivative of equation (3.70) with respect to y gives,

Put equations (3.71) and (3.70) in equation (3.47) to give,

m?e™ —bZe™ =0
(m*—bf)e™ =0
For e™ =0 to have,

()0
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So assume a solution of,

B (y)=Ae™ +Ae™

Applying the boundary conditions, that is
For ¢,(0)=0,

A+A =0

A=A,

Also for ¢ (1)=0,

Ag> +Ae™ =0

Put equation (3.80) into equation (3.81) to have,

~Ae*+Ae™>=0

A (e™—e*)=0

That is,
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(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)
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Put equation (3.84) into equation (3.80) to have,

A =0

(3.85)

Put equations (3.85) and (3.84) into equation (3.87), the solution to (3.47) becomes,

#(y)=0

Solving equation (3.42)

d?u,
dy?

_b12u0 =

_Gr¢¢0

U, (0)=0, u,(1)=0

Put equation (3.68) into equation (3.42) to give,

2
ddyuzo _b12u0 —

G, (A +Ae™)

Solving the homogeneous part,

2

Seeking,

— My
u, =e

The second derivative of equation (3.89) with respect to y gives
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(3.87)
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(3.89)
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Putting equations (3.90) and (3.89) in equation (3.88) gives,

m’e™ —b/e™ =0 (3.91)
(m*—b)e™ =0 (3.92)
For e™ %0 ,

(m*-bf)=0 (3.93)
m?—b? =0 (3.94)
m? = b? (3.95)
So,

m = +b (3.96)

The complimentary solution is given by

U (V)= Ae™ + Ae™ (3.97)
Assume a particular solution to be

U, (V) =A™ + Ae™ (3.98)

The second derivative of equation (3.98) with respect to y gives

d?u
dygp = AbZe™ + AbZe™ (3.99)
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Putting equations (3.99) and (3.98) into equation (3.87) gives,
AbIe™ + Able™ —bf (Ae™ + Ae™ ) =G, (Ae™ +Ae™)
Comparing the variables in equation (3.100),

Ab? —b7A, =-G,,A

A —b'A =-G, A,

From equation (3.101),

_ _GrqﬁAl
A7 - b32 _b12

From equation (3.102),

-G AZ
A

So,

Up, (V) = Ae™ + Ae™

The solution to equation (3.42) is given by,

Uy () = Uoe (¥) +Ugp (¥)

Put equations (3.97) and (3.105) into equation (3.106),

Up (V) =A™ +Ae™ + Ae™ + Ag™
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Applying the boundary conditions,

U, (0

)=0gives,

A+A+A+A=0

A=

A A=A

Also u,(1)=0 gives,

Ae” +Ae™ +Ae™+Ae ™ =0

Put equation (3.109) into equation (3.110),

(A -A-A)e>+Ae™+Ae>+Ae ™ =0

Ale

So,

A =

by _eb1)= A7eb1 + Aiebl —A7€b3 _Ase—bs

Ae™ + Ae” —Ae® - Ae™

£7-)

Put equation (3.113) into equation (3.109),

A5:

A=

_A7_A8_A79b1+A3ebl—A7eb3—ABe*b3

(e

(A -A)(e™ e ) - Aeh - Ae™ + Ae™ + Ae™

(£¢)
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(A A)en A+ A 116

(e

A

So the solution to equation (3.42) is,
U (V) =A™ +Ae™ + Ae™ + Ag™ (3.117)

Solving equation (3.43)

2 2
d’g, g, :_ECPe(duOJ

dy? R, dy (3.118)
6,(0)=e?*, 6,(1)=0
Differentiate equation (3.117) with respectto vy,
% = Abe™ — Abe™ + Abe® — Abe™ (3.119)
y

Taking the square of both sides of equation (3.119) gives,
du, Y
[d—;j = (Abe™ — Abe™ + Abe™ — Abe™ )(Abe™ — Abe™ + Abe™ — Abe™)(3.120)

A32 ZeZbly _ A3A6b12 + A5A7b1b3e(bl+b3)y _ A5A8b1b3e(bl_b3)y _ A3A6b12 +
Lduo jz ) Aé 26720y _ I%A7b1b3e(b3’bl)y n AbAgblbse*(bﬁbs)y n A5A7b1b3e(bl+b3)y 3

3.121
dy A\SA7blb3e(ba—b1)Y + A72b32e2b3y _ A7A8b32 _ AsAablbae(brbs)y 4 AsAsblbge_(bl+b3)y ( )
~AAbZ + AlbZe ™™
[ a, T ) AD7e™ —2( AADE + A ADZ)+ 2A AL —2A A 1
dy +A 26-20y _2A6A7blb3e(bs—b1)y +2A, phblb3e—(bl+b3)y + A72b32e2bgy N Agzb;e*”’sy
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Putting equation (3.122) into equation (3.43) gives,

ABTe™ —2( AADT + AAD] )+ 2A A" -
2
y e

2AAbbe ™™ 4 AZp2e? 4 AZh2e 2

Solving the homogeneous part, that is

d?e

F2°—b§00 =0 (3.124)
We seek,

g,=e"™ (3.125)

The second derivative of equation (3.125) with respectto y is

d°6, =m’e™ (3.126)
dy?

Putting equations (3.126) and (3.125) into equation (3.124) gives,

m%™ —bZe™ =0 (3.127)
(m* b3 )e™ =0 (3.128)
For e™ =0,

m? —b? =0 (3.129)
m? = b? (3.130)
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m = xb, (3.131)
So,
o (Y) = Ae™ +Ae™ (3.132)

Assume a particular solution to be,

e L A 4 A bty A o)y A a2y A o)y A o (Bies)y
eop(y)_(/m A+ AR MY A A (3139

AR + A

Differentiating equation (3.133) with respectto vy,

2by p(b+bs)y —p. el )y _ -2by
%[ZAﬂble + Ay (b +b,)e™ ™ 4 A (b —b,)e 2Abe +] (5,130

dy | Ag(b,—b)e®™ — A (b +b,)e ™™ 124 be®™ —2A be™™

Differentiating (3.134) with respect to y gives,

dzeop [4A11b1262b1y *As (b1+b )2 ()Y T+ A, (bl b, ) eln ) Y+ 4Ab%e by

’ 2 J (3.135)
dy Aie(b3_b1) (a-br)y +A1 (bl+b) ~(B+b5)y +4A1b2 2b3y+4A1b2 —2byy

Putting equations (3.135) and (3.133) into equation (3.123) gives,

AL + Ay (b +b,) e AEPY 4 A+ Al 4 A gt

+A, (b -,) e+ AA bl ™ ¢ b2 4 A G g gl |

Ag(b,—b) ™™ £ A, (b +b,) e > A6 A g

+4A D™ +4A e
£ P [ Abe™ —2( AAD + A AL |+ 2AADDE" ™ ~2A Abbe" ")

+ A% ™ —2A Abbe™ ™ 1 2A Abbe Y 4 AlhZe? 4 AlhZe P

(3.136)
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Comparing the variables in equation (3.136) gives,

4A11b12 _b22A11 = —%A‘gblz

e

b? = 2E.P, (AAD + A AD)
282 T R

e

Aia(b1+b3)2 _b22A13 :_%

e

“4(@—bs)2—bia4=%m

e

i -tia, = ERARE

[

Au(by—b,)'-biA, - ZERAADD,

(]

A (bl"'bs)z_bzzAﬂ :_%

e

2E.P, K2
4T —b7 Ay = —%

EPAD;
4A19b32 _b22A19 =—%

e

From equation (3.137), equation (3.146) is obtained

ERAD

A11:_Re(4b12_b22)
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From equation (3.138), equation (3.147) is obtained

| 2E.R.(AADI +AAD)
2 R.b?

From equation (3.139), equation (3.148) is obtained

2E P, A/A DD,
R, ((b,+by)* ~b?)

A =-

From equation (3.140), equation (3.149) is obtained

A, = 2ERAADD,
R ((b-by) -b?)

From equation (3.141), equation (3.150) is obtained

___ERAN
As = R, (407 -b?)

From equation (3.142), equation (3.151) is obtained

2E,P, A A,
Re ((b3 _bl)z _bz?)

A =

From equation (3.143), equation (3.152) is obtained

2E P, A A,
R, ((by+by)* b3 )

A;=-

From equation (3.144), equation (3.153) is obtained
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_2ERAE

Ao = R, (4b2 —b?)

From equation (3.145), equation (3.154) is obtained

E.PADS

Agz_RJ4@—bﬂ

The general solution to equation (3.43) is given by,

6 (¥)= 65 (¥)+ 65, (¥)

That is,

00 (y) = A‘gebzy + Aioe*bzy + AileZbly + A12 + A13e(b1+bs)y + A14e(b1—bs)y + Aise—Zbly +
ALse(brbl)y +Aﬂef(b1+b3)y +Alsezb3y +Aige—2b3y

Applying the boundary conditions, that is

For 6,(0)=e?",

A+ A+ A+ A+ A A A AT A+ Ag+ Ay =7

A== (At Ayt At A+ At Ag+ A+ Ayt Ag—e )= A

A =-By - A

Where,

834=A&1+A&2+A3+A4+Ai5+A16+Al7+A18+A19_e_2imt
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For 6,(1)=0,

A)ebz +A0e’b2 +A1e2bl +A12+A&3e(bl+Q)+A14e(bl_b3)+AISe’2bl +Aiee(b3_b1)+

2 2 (3.161)

Age )4 Ae™ + Age™ =0
Put equation (3.159) into equation (3.161) gives,
By — A + A + AL+ A, + AR+ A 4 A 4 (3.162)
A ™ + A LA™ £ A =0 -
So,

~(by+bs) 2b, ~2b,
A.Lo = A-L7 A.L8 Alg ~ : (5,163

g2 —g”
Put equation (3.163) into equation (3.159) gives,
[_834 (e_b2 —e® )— B34eb2 + A+ A+ Aise(bl*k%) + Ame(brbs) " A15e_2b1 +}
(bs_bl) —(b1+b3) 2b, —2b,
€ + A€ +A e +AL
A3 = Aﬁ ’Ai7 'Alg 'i*ibg - (3.164)
g2 —g”
[—834eb2 + Ailezbl + A12 + Aise(bﬁbs) + Ame(btbs) + Aise_Zbl + Ame(brbl) +J
~(by+bs) 2b, —2b,
e + A + AL
b = 5 A b2 _gb (3.165)
g2 —g”

Therefore,
Ho(y): pbebzy n AiOe_bzy " AllBZbly +A,+ Aise(bﬁb?,)y _'_Ame(bﬁbs)y +A15e_2bly + 0166)

A&se(%_bl)y +A‘17e_(bl+b3)y +A18e2b3y +A&9e72b3y

Solving equation (3.45) that is,
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d®u,

b12u1 = _eimteo - Gr¢¢1

dy? (3.167)
U (0)=0, u(1)=0

Put equation (3.166) into equation (3.167) gives,

i“zl e (Agebzy + A + AR + A, + A 4 Aue(bl_ba)yJ (3.168)
dy +AL Y 4+ A L A e Y LA e | A a7

For the homogeneous solution,

4 e, o (3.169)
dy

Seeking,

U, =e™ (3.170)

The second derivative of equation (3.170) with respectto y is

dzlil — m%™ (3.171)
dy

Put equations (3.171) and (3.170) into equation (3.169) gives,

m?e™ —bZe™ =0 (3.172)
(m*—bf)e™ =0 (3.173)
From e™ =0 we have,

m? —b? =0 (3.174)
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m? = b2 (3.175)

That is

m=+b (3.176)
So,

U (Y) =A™ +Ae™ (3.177)

Assume a particular solution to be,

ulp (y) — )Azzebzy + A23e_bzy + A24e2bly + A25 + A26e(q+b3)y + A27e(b.l7b3)y + Azge_Zbly +

3.178
Azge(b:i_bl)y +A30e_(bl+b3)y + A31e2b3y +A32e72b3y ( )

The second derivative of equation (3.178) with respect to y is

dZU 2,.b,y 20702y a2y el
o = A hle™ + Agble ™ +4A, 0™ + Ay (b +b,) e + A (b —b;)"e (3.179)

AT & Ay (b by ) €™ 4 Ay (b +b,) e Y + 4A DIE™ +4A ble

Put equations (3.179) and (3.178) into equation (3.168) gives,

byy -y 2y
| e”+ALY+AL

Azzbzebzy +A23bze byy +4A24b1262bly +A26(b +b ) b1 by)y Azz Az?bl ! Az4 -

oty 2 2y | HAs AT 4 At
+A (bl+b el L4 e L 4A e b2 oy et TR T A

0 173 +A31e2b3y _I_ A3ze_2b3y

Agesz_FAwe*bzy _I_AileZbly +A12 +Age(b1+ba)y+A14e(hrba)y _I_Aise*Zbﬂ +
Aiﬁe(brhl)y +Aﬂe*(bﬁbs)y +A1862b3y + Aige-%sy

(3.180)

_piat
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Comparing the variables in equation (3.180) gives,
AbZ —b A, =€ A,

A}~ Ay =—€* A,

APN7 ] A, =€ A,

b Ay =€ A,

Ao (b +,)" b7 Ay =€ A,
Ay (b =) —bP A, = A,
APgl? b7 Aoy =€ A

Ao (b, —by)" —Bf Ay =€ A
Py (b, +b, ) =B Ay =—€“A,
4AD —b2 A, =€ A,

4A32b§ - b12A32 =—e Ao

From (3.181) we have,

ei(ul Ag
b; —b;

From equation (3.182), equation (3.193) is obtained
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_ eiwt Alo

By

From equation (3.183), equation (3.194) is obtained

~ ei(utA&l

Ay = 3b12

From equation (3.184), equation (3.195) is obtained

ei(ut Alz
b12

A =

From equation (3.185), equation (3.196) is obtained

eia)t A13

A :_(b1+b3)2—b12

From equation (3.186), equation (3.197) is obtained

eia)t A14

A, =_(b1_b3)2 _b12

From equation (3.187), equation (3.198) is obtained

eia)t Ais
30/

Ay =—

From equation (3.188), equation (3.199) is obtained

eia)t A16

Ay :_(bs_bl)z_b12
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From equation (3.189), equation (3.200) is obtained

Ay = —ﬁ (3.200)

From equation (3.190), equation (3.201) is obtained

__ €A,
A31 - 4b32 _blz (3201)

From equation (3.191), equation (3.202) is obtained

_ A,
Ao =~ i (3.202)

So,

Uy, (y) _ Azzebzy n Azse—rw n A2462b1y + A+ Azﬁe(bﬁbs)y n A27e(brb3)y n Azse—Zbly n

(3.203)
N N ey
The general solution for equation (3.45) is given by
U, (¥) = e (¥) +y, (V) (3.204)
That is,
U (Y) =A™ + AL ™ + AL + Ae™ + AE™ + A+ A L A By (3.205)

A28e_2bly +A29e(b3_bl)y +Asoe_(bl+b3)y +A31e2b3y +A32672b3y
Applying the boundary conditions that is,

For u,(0)=0,
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Azo"'AA"'Azz+A23+A24+A25+A26+A27+A28+A29+A30+A31+A32=O (3.206)

Ay =—( Ay + Ayt Ayt At A+ Ay + A+ A+ A+ AL+ AL) - A, (3.207)
So,

Ao =Py = Ay (3.208)
Where,

Ap= Ayt Ayt Ay + A+ A+ Ay + Ay + Ay + Ay + A, + A, (3.209)

Also for u, (1) =0,

A + A + Ae™ + Ae™ + Ae™ + A+ Ae® ™ 1 A B LA ey

(3.210)
Azge(b37bl) + A3Oe7(bl+b3) + Azlez% + A32esz — 0
From equation (3.208) into equation (3.210), equation (3.211) is obtained
_Assebl - Aﬂebl + Aueml + Azzeb2 + Azaeib2 + '6‘24@2bl + A25 + A26e(b1+b3) + A27e(bl_b3) + (3 211)
Azge*Zbl + Azge(brbl) n Asoe*(bﬁbz) n Asle2b3 + %ze_st -0 .
So,
A&sebl - Azzekb - Azse_bz - 'A‘z4e2bl - Azs - Azee(bﬁbS) - Az7e(blib3) - Azse_zbl _J
(bs=by) ~(by+b3) 2b, ~2b,

e —-Ae —A e —-Ae

A21 — A29 ASO ASl %2 (3212)

e_bl _ ebl

From equation (3.212) into equation (3.208), equation (3.213) is obtained
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[A%en A A A A A A e
_A2 e(Q’:7b1) _ A3 ef(bl+b3) _ 'A3 e2b3 _ 'A3 e_st
Ay =Py —~—= : ! = _Zeq (3.213)
[A33 (€ =™ ) Aue™ + Ae™ + Age™ + A ™ + Ay + Ae™™ + ANe(M)J
2, (by-by) ~(by+b) 20, “2b,
+A e 4 A ™LA e +A ™+ AL
A, - A As Ay A™ + A, (3.214)

e’bl _ ebl

AR+ A 4 Al AT 4 A A Ae )
3 +A28e72b1 + Azge(b37bl) + Asoef(lerbB) + %leZbB + A32e_2b3

Ay = e (3.215)

So,

U (Y)= Age™ + Ae™ + A™ + A ™ 1 A" + A+ ALY LA BN

(3.216)
Aqe + Azge(b3_bl)y n ASOG—(bﬁbg)y + AR + A

Solving equation (3.46) that is,

%6, g - 2ER(duy ) dy,
dy? 2 R, Ldy )\ dy (3.217)

6,(0)=0, 6(1)=0

Where,

U (Y)=Ae™ + Ae™ +Ae™ + Ae™ (3.218)

U (V) =A™ + A ™ + Ae™ + Ae™ + Ae™ + A+ ’/'\2ese(bl+b3)y + sze(brb:‘;)y +

(3.219)
Azse_Zbly +A29e(b3_bl)y +A306_(b1+b3)y +A31e2b3y +A32e’2b3y

Differentiate equations (3.218) and (3.219) with respect to y gives,
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o= A~ Abe™ + Abe™ ~ Abe
y

L= Abe™ - Abe™ +Abe™ —Adbe™ +2A,be™ + A (b +b, )™

Ay(bl—bg) e A e + Ay (b, -1 )€™ — Ay (b, +D,)e Y 1+ 24 be™
_2A32bseizb3y

Multiplying equation (3.220) with equation (3.221) gives,

(‘fj“yj[ } AADE™ — AR + AADDE ™Y A ADDE"

+2AA, 7™ + A—,A%bl(bﬁbs)e Y AN by (b, - S)G(Zbrba)y B
2AADTE™ + AALD (b =)™ ~ AAD (b +by)e™ +2A5Ag bhe® 2
2AA DD _ AA B2+ AA b —AA bbel

AADDe B —2A A 2™ — A A D (b +b )e*’sy—AeA27 1( b, ~b, )&
AR AR () s AR (b b))
2AAbbse (us2t)y 2AAbbe (b+203)y A A bbe (b1 +bs)y A7A21bb o(bty
FAA DD A A BB L oA A b et

A A, 3(b1+b3) (br2by)y AA D, (bl_bs)ebly _2AA bbe (bs-20)y

At (B =)~ A AgD, (b +by )™ +2A7A31b§e3b3y ~2A A hle ™
—AADbE )y, AA, bbe (b+be)y —~AAbbe (BaBs)y o AA Db, o (boBs)y
—2A A BDE™ Y — A A D, (b +by)e™ — A AD, (b —b,)el
2AAbbe (20 +b5)y — AAD, (b, —b;)e W 4 AAD, (b, +b,)e ~(b,+2by)y
~2A A b2 +2A A b2 ™

Factorizing equation (3.222) gives,
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[Z“y][ ] ARDLE™ + A A AN DL+ 2AA ™ +

(A (85 ZAR IS+ (AAB(B -5) A )™
AsAzg 1( 3_b1)—

(A +AAD B0+ AAD (B, -b))e ™ +| AR (B+5,)- &
2A A
2A3A31b1b3_

_(A5%0b1 (bl + b3)+ A (b1 —b, ) + 2A7A32b32 )efbsy + {ZABAslblb3 + p(t+20s)y

A Aueh, (b, +b,)

~(2AADD, + AAD, (b ~b,))e™ Y + AA B7e ™ — AA bbe ™ +
2A MDY~ AAD, (b =) +) | 2-3hy

| Aat (bh) ]e +2AA D -
(AAaD (b =)+ 2A Abib, Jet ™+ (A AL, (b +b,) + 2A A, Je ™)
+(2A A, + AAD, (b +D,))e @+ A A B — A A b e
+AADDE ™Y — AN BB LA A D (b -b )™ 27 A bl
-A Azoblbse(brbs)y +A Azlblbse_(bl+b3)y ~A Azzbzbse(bz—bs)y +A A23b2b3e_(b2+b3)y n
2AADTE ™ —( AAD + AAD)

AADpe ™

Putting equation (3.223) into equation (3.217) gives,

63

(3.223)



d’g, 0 2E P

o

C

[

€

AADTE™ + A AL — AN b e
2AABE™ +(AAD (B +5;)+2A Abh, ) e

2A A+
+[§‘5A:Zb1bfsl‘ 3) j (2b,-by )y {A7A3o (b1+b3)+}bly
o AAD, (b,-b,)
AAGD (b +by)
+ A5A29bl(b3_b1t3 ) bz]ebs)’_ +A3A27b1(b1_b3) e*bsy
_A\SAZGbl(bl-l_ 3)_ ABAgl L 2A7A32b2

[ ZAADD: 2A5A31b1b3]e 2y [2A5A3zb1b s Je(bl—st)y
+A, Aol (b +by) AyAb; (b —b; )
+A3A21bfe 2y _ A6A22b1bze(bz—bi)y n A6A23b1bze—(b1+b2)y _
(2A6A24b12_A7A27b3(b1_b )+ APl (by +b3))ebly+

2A6A28b12e3b1y_[A5A29b1( bl)] (es-2br)y

+2A, A,
2AALDD; +
(AAD (b +b,)+2AADb, )e ™ | AA D, o2y
(b +b;)

+A Azoblbge(bl+b3)y ~A A21b1b3e(b3_b1)y +A A22b2b3e(bz+bs)y _
A ADDE™ ™Y 1 A AD (b -b)e® ™ +2A A bZe™
~AAbbe” ™ + AA bbe ™Y AA bbel
A 4 2A A —( A AR + AﬁAzobl)

For the homogeneous part that is,

d%g,

o b26, =0

Seeking,
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g (y)=e™ (3.226)
The second derivative of equation (3.226) with respect to y gives,

2
d fl =m’e™ (3.227)
dy

Putting equations (3.227) and (3.226) into equation (3.225) gives,

m%™ —bZe™ =0 (3.228)
(m*—bZ)e™ =0 (3.229)

For e™ %0 we have,

m’-b; =0 (3.230)
m? = b? (3.231)
m=+h, (3.232)
So,

O, (Y)= Age™ +A,e™ (3.233)

Assume a particular solution to be,
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ASSeZbly n Asse(bl+b2)y n Aye(brbz)y n Agse3bly n Aage(Zbﬁbs)y n A40€(2b1_b3)y

FALTY + ALY + A 4 AT L A Y A ey

(y): A47e(bz—b1)y+A4Be-(b1+bz)y+A4geb1y _|_Asoef3b1y +A51e(b3_2bl)y +A526_(2b1+b3)y+

FAGE £ AT 4 AR g Al g A O A e A

The second derivative of equation (3.234) with respect to y gives,

AADTE™ + Ay (b +h,) €™+ AL (b -b,) 6™ +9A bE™ +

A (2, +b,) €% 4 Ay (20 b, ) €™ 4 A BT ™ + A bZe™

FADE™ £ A, (b +2b,) €™ £ A (b -2b,) eV 4 4A b
+Ag (b, =) ™™ 4 A (b +h,) e 4 A DY +OA bR ¢

A, (b, —2b, ) e +A52(2b1+b) Rl A (b +2b,) e 4

A, (b +b,) €™ 4 A (b, —b) ™™ 4 A (b, +b,) eV

A, (b,—b,) ™ 4 A (25, b, ) e +9/A\39b2e3b3y+A50(b1-b)2e<“f*’3>y
+A (b +b,) e ™Y L A (b, -b,) ™™ £ AL (b, +b,) e Y 497 bl

Put equations (3.235) and (3.234) into equation (3.224) gives,
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AADTE™ + A (b +h,) e 1A (b —b,) ™™ +9A, 2e3"1y+A39(2b1+b) gl2re)y
+Ay (28, -b, ) ™Y 4 A BT 1 A beb3y+A4b2e b3y+A44(b1+2b) gl

A (b —20,) €™ ™) L 4A B + A (b, ~b;) ™™ + Ag (b +b,) e ™™ + A bEe™ +
OADE ™ + A, (b, -20) e 4 Ay (2 +b,) e 4 A (b 20, ) e

A (b by ) €™ 4 A (b, by ) e+ A (b, +b, )€™+ A (b, b, ) e

+A, (20, -b) ™ £ OA BZe™ + A (b —b,) ™™ + A, (b +b,) e >
+A62(b2—b3)2eb2’hs + Ay (b, + 3) e ) L9 b2

Ae™ + A%e(bﬁbz)y + A37e(b1-bz)v +AE™ 4 A396(2b1+b3)y + Ame(Zb“bS)y
FAE™Y 4 AR + A £ AN LA O LA ey

_bzz AMe(bZ’bl)y + AASE*(bﬁbz)Y + A49€b1y + Asoe—Bbly n Asle(ba—zbl)y + Asze’“bl*%)y n
e B p BB | B L p gl g oy p ol2h)y
FAE™ £ A SO LA g b p gty g o b p S A
AADIE™ + AA DD ™Y — AN Bbe® ™Y L2AA b2e™
(AAGD (B +b,) + 2, A, b, o™ + (AAD, (b -, ) - 2A A b, Je ™™

AAghy (b by ) -
~(2A A+ A AD (B b,) ¢ AAGD, (b, —by))e ™+ AAD (b +b;)— e -
2AAb;
2A5A31b1b3_
(AAD (b +b;)+ AAD (b —by)+ 2A Ahl )e™ +| 2A A bb, o820y
+A Al (b +b,)

~(2AADD, + ARb (b -b))e™ " + AA D™ — AA e
2A P = A Ab (b -
+AAD (b +D,)
(AP (b, =b)+ 27 Aybb, e (AsAmbl(bl+b)+2A%Azsblb) ey
(2AA D+ AAD, (b +b;))e ™™ + A A hbe™ — A A bbe™

A A — A A bbe™ ™ LA A D (b, q) (2r-b)y +2A7A3b2e3b3y
AA D™ L AA bbe ™™ AN bbe® ™ L AA bbe Y,
DA™ ~(AAD +AAD) (52%)

—t e AADDE O [ )]ebﬂ +2A D™ -
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Comparing the variables in equation (3.236) gives,

_2ERAAN
R

e

4A35b12 - b22A35 =

Ay (b +b,) —b A, Z_ZEC%AM

e

%7(q—b2)2-b;%7=w

(]

9A38b12 _b22A38 == 4ECP€|§5A24b12

(3

2E.P, (AAD (b +b,)+2A A bb,)

A39(2b1+b3)2_b22A39:_ R

e

2E.P, (A (b —b,) —2A/A,bb; )
R

e

A4o(2b1_b3)2 _b22A40 =

A41b12 - b22 A41 =

2Ecpe (2A3A28b12 + A7A30b3 (bl +b3)+ A8A29b3 (bs _bl))

R

e

ZECPe (A5A29b1 (bs _bl)_ A6A26b1 (bl +b3)_ 2A8A31b32)

A42b§_b22A42 == R

e

2E.P, (AAGD (b +1;)+ AAb; (b —by)+2A,A,bS )

A43b32 _b22A43 == R

e

2EcPe (2A5A31b1b3 _2A6A31b1b3 + A7Azeb3 (bl +b3))

A44(b1+2b3)2_b22A44:_ R

e
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2Ecpe (2A5A32b1b3 + A8A27b3 (b1 _bs ))
R

e

'6‘45([31_2b3)2 _b22A45 =

_2ERAAD
R

e

4A46b12 - b22 A46 =

bV _p2A. - 2ERAADD,
A47(b2 bl) b2A47_ R

e

2E.P,
RE

A (bl + b2 )2 - b22A48 == A6A23blb2

ZECPe (2A6A24b12 - A7Az7b3 (b1 _b3)+ A8A26b3 (bl +b3))

A49b12_b22A49 == R

e

_AERAALD
R

e

9A30b12 - bz2 Ay =

2Ecpe (AaAngl (ba _b1)+2A7A28b1b3)
R

e

A31(b3_2b1)2 _b22A51 =

2E.P, (AAgD (b +b,)+2A,Ahb,)

ASz(Zb1+b3)2_b22A52:_ R

e

| 2E,P, (2A/AuD, + AAGD: (b +b,))

A:73(b1+2b3)2_b22/'\53: R

(]

2E_P,

A%>4(b1+b3)2_b22A54 == R A7Azob1b3

A%:s(bs_bl)z—bzzABS :w

e
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2E R A A,bb,

e

A (B, +b3)2—b22A56 =-

A (b3_b2)2_b22A57 = b,b,
2E.P, A, A, (b
A58(2b3—b1)2—b22A58:_ F:S( 3
4E P, b2
9ADT —bI A, = é\yAsl

(]

&o(q—bs)z—bg%ozw

e

Abl(b1+b3)2_b22A61 =_2ERCPe A A, DD,

2E.P, b.b
A\SZ(bz_bg)z—bzerZ: ?QBAZZ 23

e

2E P Ay Ay,

e

Ao (B, b, B, —-

_4E PAaAszbz

e

9A54b32 - b22A54

bA. - ZEcPe(/’sAlebl + AADE)

e

From equation (3.237), equation (3.268) is obtained

(3.258)

(3.259)

(3.260)

(3.261)

(3.262)

(3.263)

(3.264)

(3.265)

(3.266)

(3.267)



_2ERAAN

PR (a0 -0)

From equation (3.238), equation (3.269) is obtained

2E R AALD,
R, ((by+b,)" b3}

A%:—

From equation (3.239), equation (3.270) is obtained

2E,RAAbD,
R.((b~b,)"-b5)

A, =

From equation (3.240), equation (3.271) is obtained

_AERAAD

P = R, (967 —b?)

From equation (3.241), equation (3.272) is obtained

_2E.R (AAD (b +b;)+2A A bb,)
R, (20, +by)" b7

g =

From equation (3.242), equation (3.273) is obtained

_ 2ER(AAb (b -b;)-2AA,Dbb,)
0 Re((Zbl—b3)2—b22)

From equation (3.243), equation (3.274) is obtained
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| 2E.R(2A A0S + A A, (b +by )+ A A, (by—by))

' R, (b’ -b})

From equation (3.244), equation (3.275) is obtained

_ 2B (AAD (b —b)— AAD (b +b;)-2A A )
Re (b3‘2 _b22)

2

From equation (3.245), equation (3.276) is obtained

__2ER(AAM (b +b)+ AAN (b b))+ 24 AD)

T Re (b§ _b;_)
From equation (3.246), equation (3.277) is obtained

__ 2E.R, (ZASAslblbs _ZAGAmblbs + A7A26b3 (bl +b3 ))
' R, (b, +28,)° ~b?)

From equation (3.247), equation (3.278) is obtained

_ ZECPe (2A5A32b1b3 + A8A27b3 (bl _bS))
R, ((bl - 2b3)2 _bzz)

45

From equation (3.248), equation (3.279) is obtained

__2ERAAN
© R (407 -b7)

From equation (3.249), equation (3.280) is obtained
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2E,RAADD,
R.((b,~b,)"-b2)

A47:

From equation (3.250), equation (3.281) is obtained

2E R AADD,
R, ((by+b,)" b5

A48:_

From equation (3.251), equation (3.282) is obtained

- 2E.F, (2A6A24b12 — A Ab, (bl _b3)+ A Ab, (bl +b3))

9 R, (b ~b3)
From equation (3.252), equation (3.283) is obtained

_AERAAD

Ao = R, (967 —b?)

From equation (3.253), equation (3.284) is obtained

_ 2EcPe (AaAngl(ba _b1)+2A7A28b1b3)
1 R ((b,~20,)° ~b?)

From equation (3.254), equation (3.285) is obtained

_ 2ER (AAGD, (b +by)+2A A, )
i R.((2b,+b;)" ~bZA|

From equation (3.255), equation (3.286) is obtained
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| 2E.R, (2AAubb, + AAGD, (b +Dy))
R, ((by+2,)" -5

3

From equation (3.256), equation (3.287) is obtained

2ERA A,
R, ((by-+b,)" b7

A34:_

From equation (3.257), equation (3.288) is obtained

2E P A Ay,
R, ((by—by)* -b)

As =

From equation (3.258), equation (3.289) is obtained

2E R.A A,b,b,
R, (b, +b,)" —b7

Asez_

From equation (3.259), equation (3.290) is obtained

2E,RA Abb,
R, ((by—b,)" b7

A; =

From equation (3.260), equation (3.291) is obtained

__ 2EcPeA7Ang3 (b3 _bl)
R((20-ty)° -t

8

From equation (3.261), equation (3.292) is obtained
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_AERAAD;

Ao = R, (9b2 —b?)

From equation (3.262), equation (3.293) is obtained

2E P, AjAbb;
(5 b, b

Aso =

From equation (3.263), equation (3.294) is obtained

2E P, AA b,
R, ((by+by)" b3 )

Ay =—

From equation (3.264), equation (3.295) is obtained

2E. R A A,b,D,
R.((b, ~b,)" b5}

Ay =

From equation (3.265), equation (3.296) is obtained

2E P A A,
R, (b, +bs)" b3 )

Ay =—

From equation (3.266), equation (3.297) is obtained

_AERAAD

Ao = R, (902 —b?)

From equation (3.267), equation (3.298) is obtained

_2E.R.(AAD] + AALD)
o R b?
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The general solution to equation (3.46) is given by

6(y)=6.(y)+6,(y) (3.299)

So,

0,(y)= Ae™ + Aue™ + Ae™ + AP 1 A BN LA gBY A glBhly
_|_A406(2b1—b3)y +A416’b1y +A428b3y +A43€—b3y _I_A44e(bl+2b3)y +A4se(b1—2ba)y _I_AAGebely n
A47e(b2_bl)y n A4ge_(bl+b2)y n AAerly n Asoe%bly n Asle(bS_Zbl)y n A32e—(2b1+bs)y n
A53e_(b1+2b3)y +A54e(b1+b3)y +A556(b3_bl)y +A%e(bﬁba)y _}_A57e(b3‘bz)y +A;se(2b3_bl)y

+ Asge3b3y + A%Oe(bl_tb)y + '%18_(bl+b3)y + AGze(bZ_bS)y + '%3e_(b2+b3)y + A64e’3%y ‘I‘A%S

(3.300)

Applying the boundary conditions that is,

For 6,(0)=0,

A+ Ay + A+ A+ Ay + A+ A + A + A+ Ap + A+ Ay + A + A +
A+ A+ A+ Ag+ A+ A+ A+ A+ Ag + A+ A+ Ag + Ag + A + (3.301)
A+ A+ At A+ A =0

A35+A36+A37+A38+A39+A40+A41+A42+A43+A44+A45+A46+A47
A== Tt A+ At A+ Ap A+ A+ Ag+ A + Ay + Ag+ A + A, |- A, (3.302)

A+ A+ A+ A+ A
So,
Ay =—As— Ay (3.303)
Where,
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Ao+ Ag + Ay + Aoy Ayg + A + A+ Ay + Ag + Ay + A + A + Ay
Aoy =| TR+ A+ Ag T Ay + Ay T A+ Ay + A+ A+ Ay + Ag+ Ay + Ay | (3.304)
AL At Ay A+ A

Also forg,(1)=0,

A + Aue™ + Ae™ + A 4+ A ) p A e L A gP) A gl?)

AL + AL + Age™ + A L AL LA e LA e 4

Age ) p A e 4 A e A L) 4 A e B A e b2 | p o) L (3305
Al A gt A glBit) | p (o) | p o3 p gB)  p oot

+ AL p A LA e LA =0

Putting equation (3.303) into equation (3.305) gives,

_Aasebz _ A34eb2 n A34e-bz n A3562bl n Asse(bﬁbz) n A37e(b1-bz) n A‘sse3bl + Aage(2b1+bs) n A4Oe(2brbs)

FAL ALY + A+ AT L AL LA e 4 A e

AASe*(bﬁbz)_l_Awebl ‘I'Asoe%bl +A51€(b3_2b1)+Asze_(2bl+b3)+Ag3e_(bl+2b3)+:°g4e(bl+b3)+ (3.306)
Asse(bsfbl) n Agse(b2+b3) n Aﬂe(bs*bz) n Asse(Zbrbl) -|-A5963b3 n Aeoe(brba) _|_Ame*(b1+bs)

+Aﬁze(b2’b3) + %3e’(b2+b3) + %4e’3b3 + AEE —

So equation (3.306) becomes,

2 +hy -b, 2y + 2b, by
Aageb _ A35e2b1 _ A%e(bl )—A37e(bl ) _ A, 3 _ AL ( by+bs) ~A, e( by~b)
_Aﬂe*bl _ A429b3 _ A43e‘b3 _ A44e(b1+2b3) A, £ (by—2bs3) A4 e 2 _ A47e(bz
—(b,+b, - -2 2 + +2 +
- b, + -b, 2b,— +
Asse(bg b) Ase ( by) A57e(b3 ) A;ge( by-by) A59e3bs _ Aeoe(bl by) 'Abl (b+bs)

_Aaze(b2 %) A53 bart Aemeisba_Ass
Ay = S (3.307)

Putting equation (3.307) into equation (3.303) gives,
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2 erz —bz + —|
%Beb _ A35e2bl _ Azﬁe(bl ) _ A37e(bl )_ A38e3bl _ Asge(Zbl bS) _ A4Oe(2bl b3)

_ _ +2 _ . b,-
_A41e b A426b3 _ A43e by A44e(b1 by) A4Se(b1 ;) A466 Ay A47e( b)
A4ge-(b1+bz) _ A49ebl _ Aaoe%bl _ ASle(bVZbl) _ Asze*(%ﬁbs) _ A53e*(bl+2ba) _

+ - b, +hbs by-b, 2b,-

ASAe(bl by) Asse(bs b) Asee( ) _ A37€( ) _ A;ge( by-by) A5993b3 _

- ~(by+by b,—bs ~(by+by -
Afsoe(b1 ") _Aale o )_Aaze( )_Aeae ( )_A54e » _Ass
-b b
e 2 _e 2

Ay =—Ay-

(3.308)

P (e - ) - Age™ + Ae™ + A4 A LA 6™ 1 Al
A 4 AR + ALY + Ae™ + A L AL LA ey
A p AT LA G LA B A o) A () g i)
A 4 A gt p gl | p oty p o), p g p o)

—(b+ b, —(by + -
AL (bt o Aﬁze( b) | Ae (bptbs) Ae 3y A,
Ay=- E—— (3.309)

So equation (3.309) becomes,

A+ A 4 AED ) LA g0 LA G A ) A o)
+AL T+ ALY+ AL+ AR LA O LA e A )
Age B LA G 4 A e 4 A B 4 A g BB A o i) | p )
Aol ) o A e, A gt L p @B g o3y p olioh) g glbob)
+A62e(bz—b3) n A63e—(bz+b3) n Ame%f% + A,

Ay =- =~ (3.310)

Therefore,
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gl(y): A33€bzy +A34eszy _,_ASSeZbly _,_A%e(bﬁbz)y +A37e(b1—bz)y +A38e3b1y +A398(2b1+b3)y n
A4Oe(2b1*b3)y+A41e’bly + A, +A43e—b3y+A448(bl+2bs)y +A45e(b172bs)y + A +
A47e(bz—b1)y +A4se—(b1+bz)v +A49eb1y Jr,A‘Soe%bly +A51e(b3_2bl)y +A52e—(2b1+b3)y n (3.311)
A33e_(b1+2b3)y n Ame(bﬁbs)y +Asse(b3_bl)y n A‘E\Ge(bz+b3)y +A57e(b3—bz)y +A58e(2bz—b1)y

+ A}ge%sy + AGOe(brbs)y + )%19_(b1+b3)y + Asze(bz—bz)y + A53e_(b2+b3)y n A64673b3y n '%5

Putting equations (3.117), (3.216), (3.166), (3.311), (3.68) and (3.86) in equation (3.38)

gives,

u(y)=Uo (¥)+G,u(y) (3.312)
0(y)=6,(y)+G.,0,(y) (3.313)
#(y)=6¢(y) (3.314)

The transformed solution becomes,

o A + Ay ™ + A A + AR 4
eV +Ae™ +
u(y)Z(As by \ by ]*Gre Pug  Agg™ ™ AT A e 1 A e | (3.315)
e + Aef
A7 AS +Asoef(b1+b3)y +A31e2b3y + A?)2672%y

A + ALE™ 4 Ae™ + A el 4
Aye(brbz)y +A3863b1y +A39e(2b1+b3)y n AAOe(Zbrbs)y
AL + Age™ +Ae™ + TAE™ + ALY + A + A 4
o(y) = A, + A 1 A e . Ae Y g e A gy p gty (3.316)
TAL + A 4 LAY £ AT AR A gy
Aue-(bﬁba)v + AL™Y + A Asse—(bﬁzbz)y n A54€(bl+bs)y n A&Ee(ba—bl)y n Asee(bﬁba)y
+A57e(brbz)y +A58e(2b37b1)y + AL + AGOe(brba)y n
Ame‘(hﬁba)y n ABze(bz‘ba)V n Aﬁse‘(bﬁba)y ALY A,
#(y)=Ae™ +Ae™ (3.317)
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Recall equation (3.19) on the general solutions

U(y)=u(y)e™, 0(yt)=0(y)e™, g(y.t)=g(y)e"

3.4:  Skin-friction of the Fluid Velocity u(y,t).

The dimensionless stress tensor in terms of the skin-friction coefficient at the plate y=0 is
given by

CFO _ 5U(y:t)J :[d_U] (e“"t)
ay y=0 dy y=0
(Ap = Ay +2A, +2A, )by + (3.318)

Ck = (As_Ae)b1+(A7 _Aa)b3+Gn9 (Azz _A23)b2+(A26 _Aao)(b1+b3)+ e
Az7 (bl_b3)+A29 (bs_b1)+2(A31_A32)b3

3.5:  Nusselt-number of the Temperature of the Fluid &(y,t).

The dimensionless rate of heat transfer in terms of the Nusselt number at the plate y =0 is
given by

O e i o W

(A33_A34)b2+(2A35_A41+3A35_2A4e+A49_3A50)b1 (3319)

+(Ax—Ag) (b +b, )+ A, (b b, )+ (A — A, )(2b, +b,

(A-Agbr2(h-Agn) | T AT B G R)

A A TN [T S SO R S S | =2

o T -2 (A o A )

P +(Ag = Ag) (b, +by) + Ay (by—b, )+ Ag (20, -by)
+A60(b1_b3)+Aez(bz_Q)

3.6:  Sherwood number of the Concentration of the Fluid ¢(y,t).

The dimensionless rate of species concentration in terms of the Sherwood number at the
plate y =0 is given by

(4 {8,
% ), \dy) (3.320)

S, =—(Ab, — Aby)e
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CHAPTER FOUR
4.0 RESULTS AND DISCUSSION

4.1 Results

In this analysis, the effect of Peclet number (P,), Hartman number (H, ), Eckert number
(E,), Peclet mass number (P,,), Reynold number (R,), Solutal Grashof number (Gr¢),
Grashof thermal number (G,, ), time (t), on the velocity u(y,t) of the fluid, concentration

of the fluid ¢(y,t) and temperature of the fluid &(y,t)were examined. The results

obtained from the solutions are shown in Figure 4.1 through 4.25. The effect of Peclet

number (P,) on velocity u(y,t) against distance is depicted in figure 4.1. The effect of
Peclet number (P,) on temperature of the fluid &(y,t)against distance is depicted in figure
4.2. The effect of Peclet number (P,) on concentration of the fluid ¢(y,t)against distance
is depicted in figure 4.3. The effect of Hartman number (H,)on velocity u(y,t) against
distance is depicted in figure 4.4. The effect of Hartman number (Ha)on concentration of
the fluid ¢(y,t)against distance is depicted in figure 4.5. The effect of Eckert number
(E,) on the velocity u(y,t) against distance is depicted in figure 4.6. The effect of Eckert
number (E)on temperature of the fluid &(y,t)against distance is depicted in figure 4.7.
The effect of Eckert number (E_)on concentration of the fluid ¢(y,t)against distance is
depicted in figure 4.8. The effect of Peclet mass number (P, ) on the velocity u(y,t)

against distance is depicted in figure 4.9. The effect of Peclet mass number (Pem)on
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temperature of the fluid 49(y,t) against distance is depicted in figure 4.10. The effect of
Peclet mass number (P,,)on concentration of the fluid ¢(y,t) against distance is depicted
in figure 4.11. The effect of Reynold number (R,)on velocity of the fluid u(y,t) against
distance is depicted in figure 4.12. The effect of Reynold number (Re) on concentration of
the fluid ¢(y,t) against distance is depicted in figure 4.13. The effect of Grashof Thermal
number (G,,) on velocity of the fluid u(y,t)against distance is depicted in figure 4.14.
The effect of Grashof Thermal number (G,,)on temperature of the fluid &(y,t) against
time is depicted in figure 4.15. The effect of Grashof Thermal number (G, )on
concentration of the fluid ¢(y,t) against distance is depicted in figure 4.16. The effect of
Solutal Grashof number (Gr¢)on velocity of the fluid u(y,t) against distance is depicted
in figure 4.17. The effect of Solutal Grashof number (G,¢)on temperature 6?(y,t)against
time is depicted in figure 4.18. The effect of Solutal Grashof number (Gr¢)on
concentration of the fluid ¢(y,t) against distance is depicted in figure 4.19. The effect of
time (t)on velocity of the fluid u(y,t) against distance is depicted in figure 4.20. The
effect of time (t)on temperature &(y,t)against time is depicted in figure 4.21. The effect

of time (t) on concentration of the fluid ¢(y,t) against distance is depicted in figure 4.22.

Skin friction of the fluid velocity, Nusset number of the fluid temperature and Sherwood
number of the mass transfer of the fluid given by equations (3.285), (3.286) and (3.287)

respectively were computed using MAPLE 17 and presented in Tables 4.1, 4.2 and 4.3.
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Figure 4.1: Effect of Peclet Number (P,)on Velocity of The Fluid u(y,t) Along
Distance

It is observed that velocity of the fluid reduces with an increase in the Peclet number (P,)

at steady time.
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Figure 4.2: Effect of Peclet Number (P,)on Temperature Profile 6(y,t) Along
Distance

It is observed that the temperature of the fluid 49(y,t) reduces with increase in the Peclet

number (P,) at steady time.
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Figure 4.3: Effect of Peclet Number (P,)on Concentration Profile ¢(y,t)

It is observed that the concentration of the fluid ¢(y,t)does not change much with an

increase in Peclet number (P, ) at steady time.
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Figure 4.4: Effect of Hartman Number (H,)on Velocity of The Fluid u(y,t) Along
Distance.

It is observed that velocity of the fluid reduces with an increase in the Hartman number
(H,) atsteady time.
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Figure 4.5: Effect of Hartman Number (Ha) on Concentration Profile ¢(y,t) Along
Distance

It is observed that the concentration of the fluid ¢(y,t) does not change much with an

increase in the Hartman number (H,) at steady time.
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Figure 4.6: Effect of Eckert Number (E,)on Velocity of the Fluid u(y,t) Along

Distance

It is observed that velocity of the fluid u(y,t) does not change much with an increase in

the Eckert number (E,) at steady time.
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Figure 4.7: Effect of Eckert Number (E,)on Temperature Profile 6(y,t) along
Distance

It is observed that the temperature of the fluid H(y,t) increases with increase in Eckert

number (E,) at steady time.
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Figure 4.8: Effect of Eckert Number (E,)on Concentration Profile ¢(y,t)

It is observed that the concentration of the fluid ¢(y,t) does not change much with an

increase in the Eckert number (E,) at steady time.
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Figure 4.9: Effect of Peclet Mass Number (P, )on Velocity of The Fluid u(y,t)

Along Distance

It is observed that the velocity of the u(y,t) reduces with an increase in the Peclet mass

number (P,,) at steady time.
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Figure 4.10: Effect of Peclet Mass Number (P, )on Temperature Profile 6(y,t)Along
Distance

It is observed that temperature of the fluid e(y,t) does not change much with an increase in

the Peclet mass number (P, ) at steady time.
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Figure 4.11 Effect of Peclet Mass Number (P, )on Concentration Profile ¢(y,t) Along
Distance

It is observed that concentration of the fluid ¢(y,t) reduces with an increase in the Peclet

mass number (P, ) at steady time.
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Figure 4.12: Effect of Reynold Number (R,)on Velocity of the Fluid u(y,t) Along

Distance

It is observed that velocity of the fluid reduces with an increase in Reynold number (Re) at

steady time.
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Figure 4.13: Effect of Reynold Number (R,)on Concentration Profile ¢(y,t) Along
Distance

It is observed that the concentration of the fluid reduces with an increase in Reynold

number (R, ) at steady time.
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Figure 4.14: Effect of Thermal Grashof Number (G,,)on Velocity of the Fluid u(y,t)
Along Distance

It is observed that velocity of the fluid increases with an increase in Thermal Grashof

number (G,,) at steady time.
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Figure 4.15: Effect of Thermal Grashof Number (G,,)on Temperature Profile
d(y,t)Along Distance

It is observed that the temperature of the fluid increases with an increase in Thermal

Grashof number (G,,) at steady time.
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Figure 4.16: Effect of Thermal Grashof Number (G,,)on Concentration Profile
#(y.t) Along Distance

It is observed that concentration of the fluid does not change much with an increase in

Thermal Grashof number (G,, ) at steady time.
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Figure 4.17: Effect of Solutal Grashof Number (Gr¢)on Velocity of the Fluid u(y,t)

Along Distance

It is observed that velocity of the fluid increases with an increase in Solutal Grashof

number (G,, ) at steady time.
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Figure 4.18: Effect of Solutal Grashof Number (Gr¢)on Temperature Profile H(y,t)

Along Distance

It is observed that the temperature of the fluid increases with an increase in Solutal Grashof

number (G,, ) at steady time.
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Figure 4.19: Effect of Solutal Grashof number (G, )on Concentration Profile ¢(y,t)

Along Distance

It is observed that concentration of the fluid does not change much with an increase in Solutal
Grashof number (G,, )at steady time. time((t)
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Figure 4.20: Effect of Time(t)on Velocity of the Fluid u(y,t)

It is observed that velocity of the fluid increases with an increase in time(t).
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Figure 4.21: Effect of Time(t) on Temperature Profile 6(y,t)

It is observed that the temperature of the fluid increases with an increase in time(t) .
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Figure 4.22: Effect of time(t) on concentration profile ¢(y,t)

It is observed that concentration of the fluid increases with an increase in time(t) .
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Table 4.1. Numerical values of skin-friction coefficient at the plate y=0 for various
values of physical parameters

P H S E P, R G, G, t CF

1 04 03 1 02 01 01 02 01 009376453347
2 04 03 1 02 01 01 02 01 009111573447
3 04 03 1 02 01 01 02 01 008908191868
1 06 03 1 02 01 01 02 01 009259884228
1 08 03 1 02 01 01 02 01 009103592697
1 04 06 1 02 01 01 02 01 009376453347
1 04 09 1 02 01 01 02 01 009376453347
1 04 03 2 02 01 01 02 01 009378194994
1 04 03 3 02 01 01 02 01 009379943198
1 04 03 1 04 01 01 02 01 0.09294406100
1 04 03 1 06 01 01 02 01 009215296717

1 04 03 1 02 02 01 0.2 0.1 0.06103630928
1 04 03 1 02 03 01 0.2 0.1 0.05001863507
1 04 03 1 02 01 02 02 0.1 0.1228671986

1 04 03 1 02 01 04 02 0.1 0.1810725292
1 04 03 1 02 01 01 04 0.1 0.1584787222
1 04 03 1 02 01 01 06 0.1 0.2232279061
1 04 03 1 02 01 01 02 0.2 0.1582187806

1 04 03 1 02 01 01 02 0.3 0.2223278641
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Table 4.2:
physical parameters.

Numerical values of Nusselt number at the plate y =0 for various values of

P H S E P, R G, G, t Nu
1 04 03 1 02 01 01 02 01 18300.84406
2 04 03 1 02 01 01 02 01 3569.959011
3 04 03 1 02 01 01 02 01 3044911915
1 06 03 1 02 01 01 02 01 -134.4319549
1 08 03 1 02 01 01 02 01 -17.43137658
1 04 06 1 02 01 01 02 01 18300.84491
1 04 09 1 02 01 01 02 01 18300.84491
1 04 03 2 02 01 01 02 01 6505227514
1 04 03 3 02 01 01 02 01 138487.9284
1 04 03 1 04 01 01 02 01 4783549511
1 04 03 1 06 01 01 02 01 27.24311949
1 04 03 1 02 02 01 02 01 -2656457031
1 04 03 1 02 03 01 02 01 02112692571
1 04 03 1 02 01 02 02 01 36600.10279
1 04 03 1 02 01 04 02 01 7319861598
1 04 03 1 02 01 01 04 01 119026.2452
1 04 03 1 02 01 01 06 01 372733.8326
1 04 03 1 02 01 01 02 02 118479.3884
1 04 03 1 02 01 01 02 03 368119.9574
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Table 4.3: Numerical values of Sherwood number at the plate y =0 for various values
of physical parameters.

P H S E P, R G, G, t S

1 04 03 1 02 01 01 02 01 1.065368116
2 04 03 1 02 01 01 02 01 1065368116
3 04 03 1 02 01 01 02 01 1065368116
1 06 03 1 02 01 01 02 01 1065368116
1 08 03 1 02 01 01 02 01 1065368116
1 04 06 1 02 01 01 02 01 1065368116
1 04 09 1 02 01 01 02 01 1065368116
1 04 03 2 02 01 01 02 01 1.065368116
1 04 03 3 02 01 01 02 01 1.065368116
1 04 03 1 04 01 01 02 01 1129456117
1 04 03 1 06 01 01 02 01 1191954372

1 04 03 1 02 02 01 0.2 0.1 0.5326840581
1 04 03 1 02 03 01 0.2 0.1 0.3551227054
1 04 03 1 02 01 02 02 0.1 1.065368116

1 04 03 1 02 01 04 02 0.1 1.065368116
1 04 03 1 02 01 01 04 0.1 1.065368116
1 04 03 1 02 01 01 06 0.1 1.065368116
1 04 03 1 02 01 01 02 0.2 2.128180031

1 04 03 1 02 01 01 02 0.3 3.185886358
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Table 4.4: Comparison between present and Rajput and Sahu (2011) results.

y 0(y,t) Harmonic Results 0(y.t) Laplace Results ‘gLapl —0,.

0 1.0000000000 1.0000000000 0
0.1 0.8332534696 0.8502840152 1.703 x107?
0.2 0.6900599584 0.7056395321 1.558 x107?
0.3 0.5663719114 0.5705631300 4,191 x10°
0.4 0.4586931209 0.4484879662 1.021 x107?
0.5 0.3639799028 0.3414480166 2.253 X102
0.6 0.2795550617 0.2499276713 2.963 x107?
0.7 0.2030322162 0.1728926221 3.014 x1072
0.8 0.1322483475 0.1079690244 2.428 x10°
0.9 0.0652026544 0.0517237204 1.348 x107?
1.0 0 0 0
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4.2 Discussion of Results

Figure 4.1 shows the effect of Peclet number (P,) on the velocity of the fluid u(y,t). Itis

observed that velocity of the fluid reduces with an increase in the Peclet number (P,) at

steady time.

Figure 4.2 displays the effect of Peclet number (P,) on the temperature of the fluid &(y,t)
. It is observed that the temperature of the fluid 0(y,t) reduces with increase in the Peclet

number (P,) at steady time.

Figure 4.3 shows the effect of Peclet number (P,) on the concentration of the fluid ¢(y,t).
It is observed that the concentration of the fluid ¢(y,t)does not change much with an

increase in Peclet number (P, ) at steady time.

Figure 4.4 shows the effect of Hartman number (H, ) on the velocity of the fluid u(y,t). It

is observed that velocity of the fluid reduces with an increase in the Hartman number (H,)

at steady time.

Figure 4.5 shows the effect of Hartman number (H,) on the concentration of the fluid
#(y.t). It is observed that the concentration of the fluid #(y,t) does not change much

with an increase in the Hartman number (H, ) at steady time.
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Figure 4.6 shows the effect of Eckert number (E_) on the velocity of the fluid u(y,t) . Itis
observed that velocity of the fluid u(y,t) does not change much with an increase in the

Eckert number (E,) at steady time.

Figure 4.7 shows the effect of Eckert number (E_) on the temperature of the fluid 6(y,t).

It shows that an increase in Eckert number from 0 (no viscous heating) through 0.5 to 1
(high viscous heating) clearly boost temperature in the porous regime. Eckert number
signifies the quantity of mechanical energy converted via internal friction to thermal
energy.

Figure 4.8 shows the effect of Eckert number (E_) on the concentration of the fluid ¢(y,t)

It is observed that the concentration of the fluid ¢(y,t) does not change much with an

increase in the Eckert number (E,) at steady time.

Figure 4.9 shows the effect of Peclet mass number (P, )on the velocity of the u(y,t). Itis
observed that the velocity of the u(y,t) reduces with an increase in the Peclet mass

number (P,,) at steady time.

Figure 4.10 shows the effect of Peclet mass number (P, ) on the temperature of the fluid
d(y.t). It is observed that temperature of the fluid &(y,t) does not change much with an

increase in the Peclet mass number (P, ) at steady time.
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Figure 4.11 shows the effect of Peclet mass number (P,,) on the concentration of the fluid
#(y.t). Itis observed that concentration of the fluid ¢(y,t) reduces with an increase in the

Peclet mass number (P,,) at steady time.

Figure 4.12 shows the effect of Reynold number (R, ) on the velocity of the fluid u(y,t). It

is observed that velocity of the fluid reduces with an increase in Reynold number (Re) at

steady time.

Figure 4.13 shows the effect of Reynold number (R,) on the concentration of the fluid
#(y.t). It is observed that the concentration of the fluid reduces with an increase in

Reynold number (R,) at steady time.

Figure 4.14 shows the effect of Thermal Grashof number (G,, )on the velocity of the fluid
u(y,t). It is observed that velocity of the fluid increases with an increase in Thermal

Grashof number (G,,) at steady time.

Figure 4.15 shows the effect of Thermal Grashof number (G,,) on the temperature of the
fluid H(y,t). It is observed that the temperature of the fluid increases with an increase in

Thermal Grashof number (G,, ) at steady time.

Figure 4.16 shows the effect of Thermal Grashof number (G,,) on the concentration of the
fluid ¢(y,t). It is observed that concentration of the fluid does not change much with an

increase in Thermal Grashof number (G,, ) at steady time.
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Figure 4.17 shows the effect of Solutal Grashof number (Gm) on the velocity of the fluid
u(y,t). It is observed that velocity of the fluid increases with an increase in Solutal

Grashof number (G, ) at steady time.

Figure 4.18 shows the effect of Solutal Grashof number (Gm,)on the temperature of the
fluid e(y,t). It is observed that the temperature of the fluid increases with an increase in

Solutal Grashof number (G, ) at steady time.

Figure 4.19 shows the effect of Solutal Grashof number (Gm)on the concentration of the
fluid ¢(y,t). It is observed that concentration of the fluid does not change much with an

increase in Solutal Grashof number (Gr¢)at steady time. time(t)

Figure 4.20 shows the effect of time(t)on the velocity of the fluid u(y,t). It is observed

that velocity of the fluid increases with an increase in time(t).

Figure 4.21 shows the effect of time(t) on the temperature of the fluid &(y,t). It is

observed that the temperature of the fluid increases with an increase in time(t) .

Figure 4.22 shows the effect of time(t) on the concentration of the fluid #(y,t). It is

observed that concentration of the fluid increases with an increase in time(t) )

Table 4.1 shows that at the plate (y =0)when the Eckert number (E,), Solutal Grashof

number (G,,) and Grashof thermal number (G,,) increase, the skin friction (CF,) is
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increasing. The rate of skin friction (CFO) decreases for increasing values of Reynold

number (R, ), Hatmann number (H, ), Peclet number (P,) and Peclet mass number (P, ,)

Table 4.2 shows that the rate of heat transfer at the plate (y:O) increases for increasing
values of Eckert number (E_) Reynold number (R,), Hatmann number (H,), Grashof
thermal (G,,) and Solutal Grashof number (Gr¢), but a reverse trend is observed for

increasing values of Peclet number (P,) and Peclet mass number (P, ).

Table 4.3 shows that the rate of mass transfer at the plate (y=0) increases for increasing
values of Peclet mass number (P,,), but a reverse trend is observed for increasing values
of the Reynold number (R,).

Table 4.4 on page 84 demonstrates agreement between the results obtained using harmonic

solution technique and the results obtained by Rajput and Sahu (2011) using Laplace

transform method. Generally, the difference is of order 102and 103
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5.0

5.1

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

Conclusion

A mathematical analysis has been carried out to model transient magnetohydrodynamic

free convection flow between two long vertical parallel plates with viscous energy

dissipation. The dimensionless governing coupled non-linear partial differential equations

for this investigation were solved analytically using harmonic solution technique. The

effects of the dimensionless parameters as shown on the graph were analyzed. It is

concluded that:

(i)

(i)

(iii)
(iv)

(v)
(vi)

Peclet energy number, Hartman number., Peclet mass number, Reynold number
reduce the velocity of the fluid.

Thermal Grashof number and Solutal Grashof number enhance the velocity of
the fluid.

Peclet number reduces the temperature of the fluid.

Eckert number, Thermal Grashof number and Solutal Grashof number enhance
the temperature of the fluid.

Peclet mass number and Reynold number reduce the concentration of the fluid.

Eckert number (E;), Solutal Grashof number (G ) and Grashof thermal

re

number (G,,) increase the skin friction (CF,) at the plate (y=0).
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(vii)  Reynold number (R,), Hatmann number (H,), Peclet energy number (P,)

and Peclet mass number (P,,) reduces the rate of skin friction (CF,) at the

plate (y=0).
(viii) Eckert number (E,) Reynold number (R,), Hatmann number (H, ), Grashof

thermal (G,,) and Solutal Grashof number (G ) increases the rate of heat

re

transfer at the plate (y =0).
(ix)  Peclet energy number (P,) and Peclet mass number (P,,) reduces the rate of

heat transfer at the plate (y=0).

5.2 Recommendation

For further study, it is recommended that other analytical methods (separation of
variables, polynomial approximation, method of lines and so on) can be used to analyse
transient magnetohydrodynamic free convection flow between two long vertical parallel

plates with viscous energy dissipation to ascertain how best the result can be obtained.

Magnetohydrodynamics (MHD) finds its application in meteorology, solar physics,
geophysics and motion of the earth core. MHD free convection flow have also
significant applications in the field of stellar and planetary magnetospheres,
aeronautical plasma flows, chemical engineering and electronics. The need for study of
transient magnetohydrodynamics free convectional flow with viscous energy
dissipation also has it application in the efficiency of the devices used in industries and

engineering.
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5.3  Contribution to Knowledge
In this study, the following contribution was made to knowledge.

1. This present research work extends the work of Rajput and Sahu (2011) by
incorporating viscous energy dissipation term in the heat process.
2. Transient magnetohydrodynamic free convention flow between two long vertical

parallel plates with viscous energy dissipation was solved using harmonic solution

technique.
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