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ABSTRACT 

This research focuses on stimulating an intelligent fault detection system to detect and 

classify multiple faults on the 330 kV Gwagwalada-Katampe transmission lines. The 

study employs a feed-forward neural network with a back-propagation algorithm in 

training the system. The transmission lines were modeled using the SimPowerSytems 

toolbox in Simulink and simulation was done within the MATLAB environment. The 
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instantaneous voltages, currents, and settling time values were extracted and used to train 

the model. Different fault types were considered for detection. These are the single phase-

to-ground faults (C-G, B-G, A-G), double phase-to-ground faults (B-C-G, A-C-G, A-B-

G), three phase-to-ground faults (A-B-C-G), phase-to-phase fault (B-C, A-C, A-B) and 

three phaseto-phase faults (A-B-C). Simulation results show 91.5% accuracy of the 

artificial neural network technique for fault diagnosis on the transmission line. Hence, the 

technique proposed in this research is recommended for use in fault diagnosis of similar 

transmission systems.  
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GLOSSARY AND LIST OF ABBREVIATIONS 

GLOSSARY 

ELECTRICAL FAULT A fault in electrical equipment or apparatus is defined as an 

imperfection in the electrical circuit by which current is deflected 

from the intended path. In other words, the fault is the abnormal 

condition of the electrical system which damages the electrical 

equipment and disturbs the normal flow of the electric current. 

LEARNING Learning is using a set of observations to find a function that solves 

the task in some optimal sense. Or Learning involves the 

adjustment of synaptic connections that exist between neurons. 

NEURONS These are a large number of simple processing units. 

SYNAPSE Synapse is a connection between two nerve cells. 

TRANSMISSION LINE 

The transmission line is the material medium or structure that forms 

all or part of a path from one place to another for directing the 

transmission of energy, such as electromagnetic waves or acoustic 

waves, as well as electric power transmission. Its components are 

wires, coaxial cables, dielectric slabs, optical fibers, and electric 

power lines. 

WEIGHTS these are the values that are multiplied by each neuron through the 

process of giving a desired output. 

LIST OF ABBREVIATIONS 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Networks 

BP Back-Propagation 
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DNN Deep Neural Network 
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LLG Double Line-to-Ground Faults 
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FFNN Feed Forward Neural Network 

FDS Fast Diagnostic System 

FFNNA Feed Forward Neural Network Algorithm 

LTM Long Term Memory 

FLS Fuzzy Logic Systems 

GIS Global Information Systems 

IMFCM Intelligent Multi-Fault Classification Model 

LP Learning Paradigms 

LL Line-to-Line Faults 

MC Markov Chain 

MDP Markov Decision Process 

MSE Mean Square Error 

STM Short Term Memory 

LG Line-to-Ground Fault 

SL Supervised Learning 

TCN Transmission Company of Nigeria 

TL Transmission Lines 

UL Unsupervised Learning 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background to the Study 

With about half of Nigeria's rural population having little or no access to electricity, the 

need for a reliable electricity supply is steadily increasing (Alao and Awodele, 2018). 

There are several ways to generate electricity. This can be divided into two main 

categories: conventional and non-conventional power generation. In some cases, 

generation options can be classified as renewable and non-renewable (Sivadanam, Nagu, 

and Sydulu, 2020). In Nigeria, all grid-connected power plants are conventional power 

plants, essentially gas turbine-based power plants, and hydro-power plants. (Saturday, 

2021). The world's power grid is growing rapidly, eventually resulting in the installation 

of a large number of new transmission and distribution lines. But that request has many 

limitations. The introduction of new marketing concepts such as deregulation has 

increased the need for a reliable and uninterrupted supply of electrical energy to end users 

who are highly sensitive to power outages. Adequate electricity supply is, therefore, an 

inescapable requirement for the development of every country, and generation, 

transmission, and distribution are capital-intensive and require enormous resources, both 

financially and in capacity (Sambo et al., 2010). 

Nigeria's energy sector is split into policy, regulatory, customer, and operational (Alao 

and Awodele, 2018). In addition, the operations department will uncover the activities of 

the Transmission Company of Nigeria (TCN), which manages the supply of highvoltage 

power from power plants to substations for transmission to distribution substations. The 
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Transmission Company of Nigeria (TCN) manages a 330 kV system capacity of 12,522 

MW of electricity from existing power plants over a total distance of 

5650 km, which is insufficient for a country of over 200 million people (Hatata et al., 

2016). Their focus is on maintaining power system stability, reliability, and sustainability. 

One of the most important factors preventing continuous power supply is a fault. 

Abnormal currents flowing through power system components can cause faults in 

network systems. These faults cannot be eliminated by the main protection systems 

currently in use. Since distance protection is dominant, it is subject to inaccuracies due to 

relay limitations on protection schemes that is, settings. These faults can also occur for 

natural reasons that are always beyond human control (Okwudili et 

al., 2019). 

In this regard, it is very important to have a well-coordinated protection system that 

detects any kind of abnormal flow of current in the power system, identifies the type of 

fault, and then accurately locates the position of the fault in the power system. The faults 

are usually taken care of by devices that detect the occurrence of a fault and eventually 

isolate the faulted section from the rest of the power system (Mbamaluikem et al., 2018). 

Therefore, the identification of faults on Transmission Lines (TL) plays an essential role 

in power system operation and control. It fulfills an important function in maintaining 

power system health and promotes the safety of power system operations. Furthermore, 

the accurate identification of faults forms the basis of power system protection along the 

transmission line, facilitates the speedy prognosis of power system faults, and ensures the 

diagnosis of failures related to power system components (Alayande, Okakwu, 

Olabode, and Nwankwoh, 2021). 
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Some of the important challenges for the incessant supply of power are the detection, 

classification, and location of faults. Faults can be of various types, namely transient, 

persistent, symmetrical, or asymmetrical faults and the fault detection process for each of 

these faults is distinctly unique in that, there is no one universal fault location technique 

for all these types of faults (Okwudili et al., 2019). The High Voltage Transmission Lines 

are more prone to the occurrence of a fault than the 

local distribution lines; thus, there are no insulators around the transmission line cables, 

unlike the service lines (Swain, Abdellatif, Mousa, & Pong, 2022). The fault on the power 

transmission line occurs due to the following interferences, such as thunderstorms, 

lightning strikes, heavy rains, heavy winds, and salt deposition on overhead lines and 

conductors (Su, Yaakob, and Ariffen, 2023). The automatic location of faults can greatly 

enhance the system's reliability because the faster we restore power, the more money and 

valuable time we save. Hence, many utilities are implementing fault location devices in 

their power quality monitoring systems that are equipped with Global Information 

Systems (GIS) for easy location of these faults. 

This work brings to view the application of artificial neural networks for fault diagnosis 

of transmission lines with regards to fault detection, fault location, and application of the 

schemes as opposed to conventional approaches such as traveling wave approach and 

synchronous compensators (Yadav and Goad, 2021). 

In this regard fault location techniques can be broadly classified into the following 

categories: 

i. Impedance measurement-based methods ii. Traveling-wave phenomenon-based 

methods iii. High-frequency components of currents and voltages generated by 

faults-based methods 
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 iv. Intelligence-based methods 

Intelligent-based methods are being used in the process of fault detection and location. 

The three major artificial intelligence-based techniques that have been used in the power 

and automation industries are (Madueme and Wokoro, 2015): 

i. Expert System Techniques ii. 

Artificial Neural Networks iii. 

Fuzzy Logic Systems 

Among the intelligent-based techniques, Artificial Neural Networks (ANN) will be used 

vastly in this proposed work on fault diagnosis and maintenance of electric power 

transmission lines. These ANN-based methods do not require a knowledge base for the 

location of faults, unlike the other artificial intelligence-based methods. For this reason, 

the application of artificial neural networks to transmission lines is to ensure a steady 

supply of electric power and fault diagnosis in power systems to maximize the continuity 

of power supply (Okwudili et al., 2019). 

The identification of faults on Transmission Lines (TL) plays an essential role in power 

system operation and control. It fulfills an important function in maintaining power 

system health and promotes the safety of power system operations. 

1.2 Statement of the Research Problem 

Power system failure has been a critical problem in Nigeria as a result of faults along the 

transmission lines. The effect of the population increase in the country has increased 

commercial, industrial, and residential load outputs. Therefore, it is important to reduce 

the economic and social costs of any power outages and strengthen Nigeria's economic 

and development system. 
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1.3 Aim and Objectives of the Study 

The aim of the research study is to conduct fault diagnosis using the Artificial Neural 

Network (ANN) approach to determine the application of artificial neural networkbased 

fault diagnosis on 330kv transmission lines: (a case study of the Gwagwalada- 

Katampe transmission line) 

To achieve this aim, the following objectives are outlined: 

i. To simulate the 330kV Gwagwalada-Katampe transmission line parameters to 

obtain fault data using Simulink; ii. To develop an intelligent single multi-fault 

classification model capable of detecting different kinds of faults in the 330kV 

Gwagwalada-transmission line; iii. To evaluate the performance of the artificial 

neural network-based fault diagnosis method. 

1.4 Significance of the Research Study 

This study is very significant because it develops an intelligent measure of detecting and 

classifying different kinds of faults in the 330KV transmission line. This will help power 

system engineers and distribution companies to prevent or minimize frequent power 

outages thereby improving stability. 

1.5 Scope of the Research Study 

This research work is centered on the Gwagwalada-Katampe transmission line power 

system. 

CHAPTER TWO 
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2.0 LITERATURE REVIEW 

This section presents the literature survey that provides an overview of the relevant areas 

and theoretical background to the work and reviews some literature relevant to 

transmission line faults. 

2.1 Representation of Power Systems 

A complete diagram of the power system representing all the three-phases becomes too 

complicated and cumbersome for a system of practical size, so much so that it may no 

longer convey the information it is intended to convey. It is much more practical to 

represent a power system using simple symbols for each component resulting in what is 

called a single-line diagram. 

2.1.1 Single line diagram 

A one-line diagram of a power network shows the main connections and layout of system 

components with data such as output power, voltage, resistance, and reactance. In 

additional case of transmission lines sometimes the conductor size and spacing are given 

to maintain electrical and mechanical integrity. Adequate spacing ensures that electrical 

insulation requirements are met and minimizes the potential for arcing and short circuits 

that would help to prevent corona discharge. It is not necessary to show all the 

components of the system on a single-line diagram, for example, Circuit breakers need 

to be shown in a load flow study but are required for a protection study. In a single-line 

diagram, the system components are usually drawn in the form of their symbols. 

Generators and transformer connections-star, delta, and neutral earthing are indicated by 

symbols drawn by the side of the representation of these elements. Circuit breakers are 

represented by rectangular blocks Figure 2.1 shows a one-line diagram of a typical power 
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system. The ratings of generators, motors, and transformers are given below the diagram 

(Madueme and Wokoro, 2015). 

 

Figure 2.1: Single Line Diagram of a Power System 

(Madueme and Wokoro, 2015). 

2.1.2 Impedance diagram representation of a power system 

Another simplification of the one-line diagram using symbols for the various components 

is to draw the diagram in terms of impedance only. The impedance diagram of the power 

system is shown in Figure 2.2. In the impedance diagram, each component is represented 

by its equivalent circuit, for example, the synchronous generator at the generating station 

by a voltage source in series with a resistance and reactance, the transformer by its 

equivalent circuit, and the transmission line by nominal-equivalent circuit. The load is 

assumed to be passive, contains no rotating machinery, and is represented by series 

resistance and inductive reactance. The neural ground impedance is not shown in the 

figure, as symmetrical conditions as assumed. (Madueme and 

Wokoro, 2015). 
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Figure 2.2: Impedance Diagram Representation of a Power System 

(Madueme and Wokoro, 2015). 

The impedance diagram shown in Figure 2.2 is known as a positive sequence diagram 

since it is drawn for a balanced 3-phase system. 

2.2 Artificial Neural Network 

Artificial Neural Networks (ANNs) are mathematical computational models inspired by 

structural and/or functional aspects of biological neural networks. A neural network 

consists of a group of interconnected artificial neurons that process information using a 

connectionist computational approach. They are mostly adaptive systems that change 

their structure based on external or internal information flowing through the network 

during the learning stage (Kalu and Madueme, 2018). It is a system that closely models 

the human brain and attempts to achieve performance similar to that of humans in solving 

problems. 

Breaking down what it is made up of, it is seen as a computational system made of a large 

number of simple and highly connected processing elements that process information by 

its dynamic state response to external inputs. Computational elements in ANN are non-

linear and so the result that comes out through non-linearity can be more accurate than 

other methods of computation (Okwudili et al., 2019). These nonlinear computational 

elements will be working in unison to solve specific problems. It is configured for specific 

applications such as data classification or pattern recognition through a learning process. 

In other words, one type of network sees nodes as "artificial neurons" and is called an 

artificial neural network (ANN). An artificial neuron is an emulation of the biological 

nervous system. It is inspired by the natural neurons which receive signals through the 
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synapse located on the dendrites or membrane of the neuron. When the received signal is 

strong enough to exceed a certain threshold, the neuron is activated and sends a signal to 

the axon. This signal is sent to another synapse and may activate other neurons. The 

complexity of real neurons is highly abstracted when modeling artificial neurons. These 

consist of inputs that are like synapses, which are multiplied by weights which are the 

strength of the respective signals, and then computed by a mathematical function that 

determines the activation of the neuron. Another function which may be the identity 

computes the output of the artificial neuron, sometimes dependent on certain thresholds 

of artificial neurons in the order confirmation. 

The more weight of the artificial neuron, the stronger the input multiplied by it. But note 

that weights can also be negative, so we can say the signal is inhibited by the negative 

weight. And by adjusting the weights of an artificial neuron we can obtain the desired 

output of a specific input. This adjustment is done by algorithms designed to handle a 

large number of inputs in the network because it will be difficult to calculate weights of 

hundreds of thousands by hand in a particular network to get the desired output. This 

process of adjusting the Weight is called learning or training. Note that the various inputs 

to the network are represented by the mathematical symbols X(n). Each input is 

multiplied by the connection weights and these weights are denoted by W(n). In the 

simplest case, these products are simply summed, and fed through a transfer function to 

generate a result and then the output. Even though all artificial neural networks are 

constructed from these basic building blocks, the fundamentals may vary in these 

building blocks and there are differences in their performance behaviour (Kalu and 

Madueme, 2018). 
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2.2.1 Neural network design 

A neural network element is the smallest processing unit of the whole network essentially 

forming a weighted sum and transforming it by the activation function to obtain the 

output. To gain sufficient computing power, several neurons are interconnected together. 

The manner in which the neural is connected together depends on the classes of neural 

networks. Basically, neurons are arranged in a parallel distributed architecture with many 

nodes and connections (Hatata et al., 2016). 

2.2.2 ANN architecture 

The construction of neural Networks involves the following tasks. 

i. Determination of network topology ii. Determination of 

system (activation and synaptic) dynamics 

2.2.2.1 Determination of the network topology 

A neural network's topology is related to both its framework and its connectivity scheme. 

The number of layers and the number of nodes per layer often specify the framework. 

The types of layers include (Hatata et al., 2016): 

Input Layer, where the nodes are called input units, which do not process information 

but distribute information to other units. 

Hidden Layer(s), where the nodes are called hidden units, which are not directly 

observable. They provide the networks with the capability to map or classify nonlinear 

problems. 

The Output Layer, where the nodes are called output units, encodes possible concepts 

(or values) to be assigned to the instance under consideration. For example, each output 
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unit represents a class of objects. Another main important concept is the weight age for 

the connected unit. It can be real or integer numbers. They can be restricted to areas and 

adjusted during network training. When training is completed, all of them attain fixed 

values. 

2.2.2.2 Determination of systems (activation and synaptic) dynamics 

Network dynamics determine its behavior. ANNs can be trainable nonlinear dynamical 

systems. Neural dynamics consists of two parts one which corresponds to the dynamics 

of activation states and the other corresponding to the dynamics of synaptic weights. 

The activation dynamics determine the time evolution of the neural activations. Synaptic 

activation determines the change in the synaptic weights. The synaptic weights form 

Long Term Memory (LTM) whereas the activation's state forms Short Term Memory 

(STM) of the network. Synaptic weights change gradually, whereas the neuron's 

activations fluctuate rapidly. Therefore, while computing the activation dynamics, the 

system weights are assumed to be constant. The synaptic dynamics dictate the learning 

process(Kalu and Madueme, 2018). 

2.2.3 Features of artificial neural networks over other techniques 

There are several attractive features of artificial neural networks over other techniques 

and they are mentioned below. 

i. Their ability to represent non-linear relations makes them well-suited for 

nonlinear modeling in control systems. 

ii. The adaptation ability and learning of artificial neural networks in uncertain 

systems through offline and online weight adaptation is highly remarkable. 

iii. Parallel processing architecture allows fast processing for large-scale dynamic 

systems. 
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iv. A neural network can handle a large number of inputs and can have many 

outputs 

v. Artificial neural networks can store knowledge in a distributed fashion and 

consequently have a high fault tolerance. 

2.2.4 Advantages of artificial neural networks (ANNs) 

i. A neural network can perform tasks that a linear program cannot. 

ii. When an element of the neural network fails, it can continue without any 

problem of its parallel nature. 

iii. A neural network learns and does not need to be reprogrammed iv. It can 

be implemented in any application 

 v. It can be implemented without any problem. 

2.2.5 Disadvantages of artificial neural networks (ANNs) 

i. The neural network needs training to operate. 

ii. The architecture of a neural network is different from the architecture of 

microprocessors therefore needs to be emulated. 

iii. Requires high processing time for large neural networks. 

2.2.6 Learning paradigms (LP) 

The main learning paradigms are reinforcement learning, unsupervised learning, and 

supervised learning corresponding to a specific abstract learning task. 
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2.2.6.1 Supervised learning (SL) 

Supervised learning is a process that incorporates external guidance. In supervised 

learning, a training pair consists of an input vector and a desired target vector. The 

difference constitutes an error that is used to modify network weights in a manner that 

reduces the error in subsequent training cycles. These techniques include deciding when 

to turn off the learning, how long and how often to present each association for training, 

and supplying performance error information. Supervised learning is further classified as 

Structural learning / temporal learning. Structural learning encodes correct 

autoassociations (single-pattern vectors) or hetero-association vectors of pattern pairs that 

map onto the weight matrix W. Temporal learning encodes a sequence of patterns 

necessary to achieve the fit come. 

2.2.6.2 Unsupervised learning 

In unsupervised learning, there is no target vector. Input vectors are applied to the network 

and the system "organizes itself" to produce consistent outputs (presumably unpredictable 

before training). During the training phase, the weights of the ANN stabilize and testing 

an unknown pattern yields an output without the time lag of the learning phase. Recall or 

test depends on network interconnection. In a feed-forward network, the network 

provides a single-pass output, allowing signal flow in only one direction from the input 

to the hidden and output layers. In feedback networks, signals can flow bidirectionally or 

recursively between neurons. The most commonly used rules for learning include Hebb's 

rule and delta rule for single-layer (perceptual) ANNs and the back-propagation 

algorithm for multi-layer (perceptual) ANNs. 

Thus, its architecture, its processing algorithm, and its learning algorithm characterize a 

neural network. The architecture specifies the way the neurons are connected. The 
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processing algorithm specifies how the neural network with a given set of weights 

calculates the output vector for any input vector (Rathore, Mahela, Khan, Alhelou, and 

Siano, 2020). The learning algorithm specifies how the network adapts its weights for all 

given vectors. 

2.2.6.3 Reinforcement learning 

In reinforcement learning, data is usually not given but is generated by the interaction of 

the agent with the environment. At each point in time, the agent acts and the environment 

generates an observation and an instantaneous cost, according to some (usually unknown) 

dynamics. The aim is to discover a policy for selecting actions that minimize some 

measure of a long-term cost; that is., Expected total cost. The environment's dynamics 

and the long-term cost of each policy are usually unknown but can be estimated. 

More formally, the environment is modeled as a Markov decision process (MDP) with 

states and actions with the following probability distributions: the instantaneous cost 

distribution P(ct |st ), the observation distribution P(tx |st ), and the transition P(c_(t+1) 

|st, at ), while a policy is defined as a conditional distribution over actions given the 

observations. Taken together, the two define a Markov chain (MC). The goal is to find a 

policy that minimizes the cost; that is., the MC for which the cost is minimal. ANNs are 

frequently used in reinforcement learning as part of the overall algorithm (Udofia and 

Nnekwukalu, 2020). 

2.3 Faults in the Power System 

Faults are inevitable in the electrical power system. They can be detected and cleared 

very fast if the system has a good protection scheme to avoid damage to the electrical 

equipment (Thwe and Oo, 2016) . The probability of fault occurring on a transmission 
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line is quite large as it is exposed to environmental conditions. The various types of faults 

occurring on a transmission line are single line-to-ground faults (L-G), double line-to-

ground faults (LL-G), line-to-line faults (L-L), and triple lines-to-ground faults (three 

phases) (Olutoye and Ezechukwu, 2019). These faults are divided into two main types 

namely, unbalanced and balanced faults. 

2.3.1 Symmetrical fault condition 

Balanced fault or symmetrical fault is a fault that occurs in the power system and gives 

rise to a symmetrical current or short circuit current. A typical scheme is shown in Figure 

2.3.  

Figure 2.3: Balanced Three-Phase Faults 

(Olutoye and Ezechukwu, 2019) 

This type of fault occurs when all three conductors' three-phase currents are shorted 

simultaneously. Because of the balanced nature of this type of fault, only one phase will 

be considered in the calculation since the phase fault currents are equal in magnitude with 

120° displacement among them (Alayande et al., 2021). 

The most important parameters needed for the symmetrical fault calculation, the setting 

of the protective relays and circuit breakers responsible for the tripping, isolation of the 

faulted line, and for regular operational planning are; the symmetrical fault current (short 

circuit current, I) and fault impedance, Zf To avoid damage to equipment, the short circuit 

current has to be reduced by increasing the impedance on the line between the feeder and 

point of location of the fault (Ogboh and Madueme, 2015). 
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2.3.1.1 Symmetrical component analysis 

The phasors of an unbalanced three-phase system are described by their equilibrium 

components as shown in the following equations. 

 = 1 + 2 + 0 (2.1) 

 = 1 + 2 + 0 (2.2) 

 = 1 + 2 + 0 (2.3) 

Then the phasors of the symmetrical system in terms of phase ‘A’ symmetrical 

component are: 

 = 1 + 2 + 0 (2.4) 

 = 21 + 2 + 0 (2.5) 

 = 1 + 22 +  (2.6)  

form,(2.7)  1   0 Matrix 

However, these symmetrical component values of currents and voltages are the solution 

to the unsymmetrical fault problems on the transmission line. 

 

 = 

1 1 1 

1 2  
2 

 0 

0 
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1 1 

 =2  (2.8) 

 2 

01 1 

1 =1   (2.9) 

21 2 

V1 1 

Vb =2  (2.10) 

Vc 2 

01 1 

11 (2.11) 

21 2 

Henceforth, the symmetrical components of the unsymmetrical fault currents and 

voltages can be determined using equations 2.8 to 2.10. 

2.3.2 Unsymmetrical fault conditions 

The symmetrical component condition is used for unsymmetrical (unbalanced) fault 

analysis on power systems. The majority of faults in the power system are 

asymmetrical in nature. These include; one-line-to-ground, double-line-to-ground, and 

line-to-line faults. Figure 2.4 shows these types of unsymmetrical faults (Phyu, 2019). 
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Figure 2.4: Unsymmetrical Fault Type (a) Single line-to-ground fault 

(b) Double line to-ground fault (c) Line-to-Line fault 

When unsymmetrical faults occur on the transmission line, it gives rise to an 

unsymmetrical current. This means that the magnitude of fault currents in the three lines 

are different, having unequal phase displacement. 

To calculate and find the line parameters (unsymmetrical fault currents, impedance fault, 

line currents, and voltages) both before and after the fault, the symmetrical component 

method is used. 

Every unbalanced system of three-phase currents and voltages is regarded as composed 

of three separate sets of balanced vectors. 

This means that; 

i. A balanced three-phase sequence current has a

 positive phase sequence component. 

ii. A balanced three-phase sequence current has a

 negative phase sequence component. 

iii. A system of three-phase currents equal in magnitude has zero phase 

displacement and is called zero phase sequence components. The positive, 

negative, and zero sequences components are the symmetrical components of 

the original unbalanced system (Ogboh and Madueme, 2015). 

2.3.2.1 Single line-to-ground fault 

In general, single-phase-ground faults occur transmission lines when the conductor falls 

to earth or touches the neutral conductor. These types of failures can occur in power 

systems for many reasons, including B. High winds, falling of trees, lightning strikes, 
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etc. 

Suppose phase a is connected to the ground at the fault point F as shown in Figure 2.5 

below. Ia, Ib, and Ic are current, and Va, Vb, and Vc are the voltage across the three-phase 

lines a, b, and c respectively. The fault impedance of the line is Zf. 

 

Figure 2.5: Single Line-to-Ground Fault 

Since only phase a is connected to the ground at the fault, phases b, and c are 

opencircuited and carry no current; that is fault current is Ia and Ib = 0, Ic = 0. The voltage 

at the fault point F is Va = Zf Ia. 

The symmetrical component of the fault current in phase “a” at the fault point can be 

written as 

𝑎 = 13 +  +  = 13  + 0 + 0 = 13  (2.12) 

1 = 31 +  + 2 = 13 

 + 0 + 0 = 13  (2.13) 
1 

2 = 3  + 2 +  1 = 13  + 0 + 0 = 13  

(2.14) 
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b 

c 

Z f 
V a 
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I b=0 
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𝑎 = 1 = 2 = 13   

This relation can also be found by matrix method as follows: - 

(2.15) 

 1 1 

2 (2.16) 

  2 

1 1 

1  (2.17) 

1 2  

 
1 

𝑎 = 1 = 2 = 3  (2.18) 

 2 1 

In the case of a single line-to-ground fault, the sequence currents are equal. 

The sequence voltage at the fault point is determined by the equations: 
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 0=0 − 00 (2.19) 

 1=1 − 11 (2.20) 

 2=2 − 22 (2.21) 

Where, Ea0, Ea1, and Ea2 are the sequence voltages of phase a, and Za0, Za1, and Za2 are the 

sequence impedances to the flow of currents Ia0, Ia1, and Ia2 respectively. For a balanced 

system 

0=0, 2=0, 1= (2.22) We know that: 

 = 0+1+2 (2.23) 

 0=0 − 00 (2.24) 

 1= -0 +  − 11 − 22 (2.25) 

On substituting the 𝑎 = 1 = 2 =  in above equation we get, 

  =  − 3 0 + 1+2  (2.26) 

 =  + 3 0 + 1+2  

 =   + 13 0 + 1+2  

 

  = 1 (2.27) 

+3 0+1+2 
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The sequence current is given by the equation, 

 

 3𝑎 = 31 = 32 = 1 (2.28) 

+3 0+1+2 

 

 𝑎 = 1 = 2 = 1 

3× +3 0+1+2 

 

 𝑎 = 1 = 2 = 3+ 0+1+2 (2.29) 

2.3.2.2 Line-to-line fault (L-L) 

A line-to-line fault or unsymmetrical fault occurs when two conductors are shortcircuited. 

Figure 2.6 shows a three-phase system with line-to-line fault phases b and c. where the 

fault impedance is Zf. The LL fault is placed between lines b and c so that the fault is 

symmetrical with respect to the reference phase a which is un-faulted. 

 

Figure 2.6: Line-to-Line Fault 

The symmetrical components of a fault current in phase ‘a’ at the fault point can be 

divided into three components. The zero-sequence component of current at phase a is 

1 

 𝑎 = 3  +  +  0 +  −  (2.30) 
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For the Positive sequence component of phase a, Ib = -Ic is expressed as 

 1 = 13  +  + 2 0 +  − 2  − 2  (2.31) 

and the negative sequence component of phase a is given by the equation, 

2 = 13  + 2 + 0 + 2 −  = 31 2 −  (2.32) The sequence current can also be found by 

matrix method 

 0 1 1 1 

1 = 1 1  2 2 3 1 2  

 0 1 1 1 

 1 = 1 1  2(2.33) 
 3 2  

 2 1  

Therefore, we get  

𝑎 = 0 and 1 =− 2 (2.34) 

Expressing Va, Vb and Vc regarding voltages at the fault point are found by the relations 

given by 

 0 + 21 + 2 − 0 + 1 + 22  = 0 + 21+2  (2.35) 

Combination of equation (2.30), (2.34) and (2.35) gives 

 2 − 1 − 2 − 2 = 2 − 1 (2.36) 

 1 − 2 = 1 (2.37) 
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The sequence current of voltage at the fault point are determined by the relations shown 

below 

    0 0

   

(2.38) 
 2 2 2 2 2 

0=− 00 (2.39) 

1= − − 11 (2.40

) 

2=− 22 

From equation (2.40) and (2.41) we get 

(2.41) 

1− 2=  − 11 + 22 (2.42) 

Combination of equation (2.34), (2.41) and (2.42) gives 

1 =  − 11 + 22 

 = 11 + 21+1 = (1 + 2+)1 

 

 1 = ( 1+2+) (2.43) 

The fault current is given by the equation 

2−  

  = (1+2+3) (2.44) 

From equation (2.30) it is clear that the line-to-line fault the zero-sequence component of 

current Ia0 is equal to zero. Equation (2.34) shows that the positive-sequence component 

of current is opposite in phase to the negative-sequence component of 

0 

1 

 
= 

0 

1 

 
− 

0 

0 1 0 

0 0  

 0 

1 

 

 0 

1  



38 

current. 

2.3.2.3 Double line-to-ground fault (LLG): 

Figure 2.7 shows a Double Line-to-Ground Fault at F in a power system. The fault may 

in general have an impedance Zf as shown. 

 

 Figure 2.7: Double Line-to-Ground (LLG) Fault Through Impedance Zf 

The current and voltage (to ground) conditions at the fault are expressed as 

  = 0,  1 + 2 + 0 = 0 (2.45) 

  =  =  +  = 30 (2.46) 

The symmetrical components of voltages are given by 

 0 1 1 1 V 

 21 = 13 11 2 2 VVbc (2.47) 

from Equation 2.11 it follows that: 
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 1= 2 = 13  +  + 2  (2.48a) 

1 

 0 = 3  + 2  (2.48b) 

From Equations. 2.48a and 2.48b 

0− 1 = 13 2 −  − 2  = 30. 

 0 = 30+1 (2.49) 

From Equations. 2.45, 2.48a, and 2.49, we can draw the connection of sequence networks 

as shown in Figures. 2.8 a and b. The reader may verify this by writing mesh and nodal 

equations for these Figures. 

 

Figure 2.8: Connection of Sequence Networks for a Double Line-to-Ground (L-L-G) 

Fault 

In terms of the Thevenin equivalents, we can write from Figure. 2.8b 
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 1 = 1+2//(0+3) (2.50) 

 
 1 = 1+2(+3)/(2+0+3) (2.51) 

The above result can be obtained analytically as follows: 

Substituting for Va1, Va2, and Va0 in terms of Ea in Equation 2.37 and pre-multiplying both 

sides by Z-1 (inverse of sequence impedance matrix), we get 

 −1 −11  0

 0 

 0 −21  0(2.52) 

 0 0 0 −010 0 

Pre multiplying both sides by row matrix [1 1 1] and using Equations 2.45 and 2.46, we 

get 

 11 1 (2.53)  −3 0 1

 + 1 +  +1 = +  
 0 0 20 2  

From Equation (2.48a), we have 

  − 11 =− 22. (2.54) 

 Substituting 2 =− (1 + 0). (2.55) 

  − 11 =− 2(1 + 0). Or 0 = 2 − 1+22 1. (2.56) 

Substituting this value of Ia0 in Equation 2.53 and simplifying, we finally get 

 1 = 1+2(+3)/(2+0+3). (2.57) 

1 0 0 

0 −21 0 

0 0 −1 

  − 11 

 − 11 

 − 11 + 30 
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 2.4 Review of Related Works 

There are different methods which can be employed for fault diagnosis on the power 

system transmission lines. Among these methods, the use of Artificial Intelligence is 

prevalent, accurate and fast. Among the artificial intelligence systems is the Artificial 

Neural Network (ANN), whose its application diagnosis is in three categories, fault 

detection, fault classification, and fault isolation (Ogboh and Madueme, 2015). 

(Akhikpemelo et al., 2019) performed fault detection on 132 kV transmission lines using 

ANNs. The system was examined by a feed-forward network with a backpropagation 

algorithm in the recognition process for the Uyo to Eket 132kV transmission line using 

MATLAB software. The result obtained showed that the trained network with hidden 

layers architecture (15 15 10 5) has the best performance with mean square error (MSE) 

value of 0.000145 and correlation coefficients for validation and testing of 0.99998 and 

0.99953 respectively (Akhikpemelo et al., 2019). However, the result did not reveal the 

point at which the fault in the transmission line occurred. 

(Ferdous, 2018), examined the zone protection system of a transmission line by distance 

relay using MATLAB/SIMULINK. The digital computation of impedance uses 

symmetrical components of three-phase currents and voltages measured at the local end 

only based on MATLAB and Simulink. The study revealed that the impedance of the 

faulty line reduces to a zero value approximately where the impedance of the remaining 

healthy lines B and C was 103Ω while the impedance of the faulty line A from 91Ω to a 

lower value of 38 Ω due to the fault and impedance of line B and C remain same 

(Ferdous, 2018). However, the study did not use a single multi-fault classifier model. 

(Hatata et al., 2016) studied the transmission line protection scheme for fault detection, 

classification, and location using Artificial Neural Network. The authors utilized a multi-
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layer feed-forward neural network algorithm (MFFNN), which is based on MATLAB. 

The results demonstrate the ability of MFFNN to generalize the situation from the 

provided patterns and accurately indicate the presence of the fault and locate it (Hatata et 

al., 2016). However, the study failed to show the time at which the MFFNN indicated the 

presence of a fault and where it was located. 

(Jamil et al., 2015) examined fault detection and classification in electrical power 

transmission systems using the Artificial Neural Network (ANN) system. The simulation 

method based on neural networks is efficient in detecting and classifying faults in the 

transmission by measuring voltage, current, and the processing of data. The simulation 

results concluded that the method based on the neural network is efficient in detecting 

and classifying the faults on transmission lines with satisfactory performances (Jamil et 

al., 2015). However, the study considered only line-ground transmission networks, while 

other classifications were not considered. 

(Madueme and Wokoro, 2015) utilised a cascade, multi-layer ANN structure using the 

back-propagation (BP) learning algorithm, the findings indicated that the fault diagnostic 

system accurately identifies high impedance faults, which are relatively difficult to 

identify with other methods. However, the study failed to use an intelligent single multi-

fault classification model for accuracy and a fast diagnostic system (FDS). 

(Mbamaluikem et al., 2018) carried out an intelligent fault classification system for the 

33-kV Nigerian transmission line using an artificial neural network. The simulation 

results have been provided to demonstrate the efficiency of the developed intelligent 

systems for fault detection and classification on the lines. The performance of the 

detector-classifier is evaluated using mean square error (MSE) and the confusion matrix; 

the systems achieved an acceptable MSE of 0.00004279. Showing that the performance 
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of the developed intelligent system is satisfactory and better in comparison with other 

systems in the literature concerning Nigeria transmission lines (Mbamaluikem et al., 

2018). However, an intelligent multi-fault classification model for fault classification 

occurrence was not considered. 

(Udofia and Nnekwukalu, 2020) works on fault detection, classification, and location on 

132kV transmission line based on discrete wavelet transform (DWT) and adaptive neuro-

fuzzy inference system (ANFIS). The system used simulation investigations and the result 

revealed that the fault classifications scheme was able to discriminate between actual fault 

cases from the normal condition in a maximum time of eight milliseconds after fault 

inception (Udofia and Nnekwukalu, 2020); however, the study did not show the faults at 

different phases of the fault scenario. 

(Ogboh and Madueme, 2015) used artificial neural networks (ANNs) to investigate 

transmission line faults in the Nigerian power system. He used the ANN method for fault 

diagnosis on the 132kV transmission line from Enugu - Otukpo - Yandev. The results 

indicate that three lines – ground, three lines – lines, three double lines – ground, and one 

three-phase fault occurred in the system. Performance graphs and the regression analysis 

graphs of output versus target were used to test the accepted ANN. They also show the 

convergence of the network output with respect to the target values, the best line of fitting 

for fault detection, and the best pattern recognized for fault classification of the network 

(Ogboh and Madueme, 2015). However, an intelligent multi-fault classification model 

was not used to reveal the faults at the time. 

(Okwudili et al., 2019) examined the fault diagnosis using an artificial neural network 

method for fault detection on transmission. Two versions of parameters were used to train 

and simulate the ANN network architecture selected for each stage of the detection. 
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The simulation results show that the demonstrated ANN-based methods are efficient in 

detecting faults on the transmission lines and the three-line-ground, three-line-line, three 

double line-ground, and one three-phase fault in the transmission lines diagnosed 

satisfactorily (Okwudili et al., 2019). However, the inter-fault distance was not 

considered. 

(Padhy et al., 2018) employed Artificial Neural Network (ANN) in a transmission line 

and for the fault detector and classifier, a back-propagation algorithm was used. The 

modeling of the transmission line was done by using MATLAB and Simulation result 

showed the efficiency of the proposed method in a transmission line (Padhy et al., 2018). 

However, the study did not disclose the estimated level of efficiency in each of 

the fault classifications. 

(Resmi et al., 2019) examined the detection, classification, and zone location of faults in 

transmission lines using the Artificial Neural Network (ANN) algorithm. The power 

system study was simulated using load flow analysis and short circuit analysis to detect 

unsymmetrical faults, classify the fault type and locate the fault zone in the transmission 

lines, the system was capable of identifying line-to-ground faults, line-to-line faults, and 

double-line-to-ground faults, and indicating the zone in which the fault has occurred. By 

obtaining the regression plot of the ANN classifier, there is a very good relationship 

established between the output and the target, only after 6500 epochs this, shows that the 

developed algorithm is able to locate and detect the fault in the system accurately (Resmi 

et al., 2019). However, the findings did not consider the distance between each 

fault classification detected. 

(Rosle et al., 2020) carried out fault detection and classification in three-phase series 

compensated transmission lines using Artificial Neural Network (ANN). The ANN model 
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was successfully developed to localize and classify the fault in the three-phase power 

transmission line. The results obtained show that ANN can accurately detect the different 

types of faults and classify them into the respective category even if the random vectors 

on the system are used (Rosle et al., 2020). However, the study did not consider the 

distance along the transmission line. 

The authors carried out fault detection, classification, and estimation of fault location on 

an overhead transmission line using an S-transform and neural network. The features 

extracted from ST were given to ANN for training, and subsequently, it is tested for 

effective classification. The results obtained show satisfactory accuracy and the effect of 

noise on both the current and voltage signals was investigated (Roy and Bhattacharya, 

2015). However, the study did not consider all fault scenarios such as line-line fault, line-

line-ground fault, and three-phase fault. 

The authors examined the transmission line fault analysis, using artificial neural networks 

for fault detection, classification, and location of faults in an interconnected power 

system. The network was modeled and simulated in the MATLAB/Simulink environment 

and revealed that: the operation of ANN shows proficiency as its capability to classify 

fault type and architecture of ANN is found to be accurate, reliable, and effective for the 

problem of detection, classification, and location of the faults. Thus, the performance of 

the detector and classifier was evaluated using a regression plot and error histogram from 

the system (Sidhu et al., 1995). However, the study did not use an intelligent Single multi-

fault classification model to examine the distance of the fault along the transmission line. 

The authors study the detection and classification of transmission line fault using Discrete 

Wavelet Transform (DWT) and Artificial Neural Networks as classifiers, the study made 

use of Wavelet Toolbox of MATLAB software for acquiring the various parameters like 
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the presence of harmonic and over-voltage, the results showed that the faulted waves of 

current and voltages can be observed during line to a fault (Taywade and Ghute, 2016). 

However, the study did not consider other power system protection such as a differential 

relay. 

The authors examined the fault detection and classification for transmission line 

protection systems using Artificial Neural networks (ANN). The study employed a feed-

forward neural network along with a back-propagation algorithm. The ANN was trained 

and tested using various sets of field data, which was obtained from the simulation of 

faults at various fault scenarios (fault types, fault locations, and fault resistance) of 

230kV, 193.2km in length “Mansan-Shwesaryan, Mandalay Region, 

Myanmar” transmission line using a computer program based on MATLAB/Simulink. 

Simulation results confirm that the proposed method can efficiently be used for accurate 

fault classification on the transmission line (Thwe and Oo, 2016). However, the study 

examined fault scenarios, such as fault types, fault locations, and fault resistance without 

reference to the computational speed as an index of the ANN performance. 

The authors examined the fault classification for protective relaying, using Artificial 

Neural Network (ANN) via wavelet analysis; the proposed algorithm was tested on 

400kV two-terminal transmission lines simulated using MATLAB/SIMULINK. The 

PSO-based multi-layer perceptron neural network fault classification is capable of 

producing fast and more accurate results taken from the simulation studies when 

combined with a wide area monitoring system that would be an effective tool for detecting 

and identifying the faults in any part of the system. The performance of the proposed 

technique is analyzed by comparing the fault classification results with the original Back-

Propagation Neural Network (BPNN) method for the same test data considering wide 
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variations in the operating conditions (Upendar et al., 2010). However, the results did not 

consider using an intelligent multi-fault classification model for each fault classification. 

The authors examined the detection, classification, and transmission line’s fault using 

Wavelet Transform and Artificial Neural Network, the study used the Wavelet Transform 

two types of neural network architectures as analysis tools, and the results obtained 

showed the validity of the proposed methodology (Wani et al., 2018). However, the study 

did not disclose the nature of the fault type that was detected. 

(Warlyani et al., 2011) carried out fault classification and faulty section identification in 

Teed transmission circuits using Artificial Neural Network (ANN). The algorithm uses 

the voltage and current signals of each section measured at one end of the teed circuit to 

detect and classify double-line to ground faults. The result shows better performance 

indicating that the neural networks-based approach is an improvement on the 

conventional fault selection algorithm (Warlyani et al., 2011). However, the study did not 

reveal the other faults for the different scenarios to be detected. 

The authors examined transmission line fault distance and direction estimation using 

Artificial Neural networks (ANN). The study used the voltage and current available at 

only the local end of the line based on simulation using MATLAB and the results showed 

that single phase-to-ground faults (both forward and reverse) can be correctly detected 

and located one cycle after the inception of fault (Yadav and Thoke, 2011). 

However, the study did not consider double-line to ground. 

 2.5 Summary of the Literature Review 

 Among the gaps established from the literature are non-consideration of fault 

occurrence time, inter-fault distance, intelligent single multi-fault classification model for 

all faults, and evaluation of the performance accuracy of the artificial neural network-
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based fault diagnosis method. It is pertinent to address these gaps in order to achieve very 

fast and accurate fault diagnostic processes. It is on this premise that the present work 

considers an intelligent single multi-fault model for all faults detection, classification, and 

conceptualization of the artificial neural network for the applications to the 330kV 

transmission line. This will be made possible through the use of the 

artificial neural network approach.  
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CHAPTER THREE 

 3.0 MATERIALS AND METHOD 

This chapter describes the Gwagwalada 330kV Transmission Line and its Parameters, the 

development and utilization of algorithms of ANN that make predictions based on input 

data obtained from the simulations carried out using Simulink in the MATLAB 

environment. This powerful tool proved effective in predicting various fault detection, 

classification and optimal performance evaluation of the Gwagwalada-Katampe 

transmission lines power network. 

 3.1 Materials (The Gwagwalada 330kV Transmission Line and its Parameters) 

Transmission Company of Nigeria 330/132/33𝒌 substation Gwagwalada, Abuja is one of 

the most important components of the power substation, which connects the generating 

station with the distribution system. It has four transmission lines LokojaGwagwalada 

line 1 and line 2, Shiroro-Gwagwalada line 3, and Gwagwalada-Katampe line 4 that are 

all connected with turn-in and turn-out bus-bar arrangement as shown in the schematic 

representation of the single-line diagram of Figure 3.1. 

 The Gwagwalada-Katampe 330kV line was considered in this study due to the 

availability of data. The various types of faults occurring on this transmission line are 

single line-to-ground faults (L-G), double line-to-ground faults (L-L-G), line-to-line 

faults (L-L), and triple line-to-ground faults (Three-phase). 

The purpose of a protective relay is to clear the fault as quickly as possible by opening 

and closing contacts electrically or mechanically, minimizing the damage caused by the 

fault, and restoring the line quickly. As a result of this, it is important to understand the 

nature of the fault that occurred in the line and its exact location. 
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Figure 3.1: Single Line Diagram of the 330kV Gwagwalada Transmission Company 
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 3.2 Method 

Due to the variety of fault scenarios imminent in power systems, the artificial neural 

network (ANN)-based fault diagnosis of 330kV transmission lines performed in this 

study is summarized as represented by the flow diagram shown in Figure 3.2. 

 

Figure 3.2: Implementation Flow Diagram 

(Madueme and Wokoro, 2015). 
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 3.2.1 Simulink model design for fault detection 

The three-phase power system network model is simulated in MATLAB/Simulink 

software. It is a 330kV, 50 Hz, 140 km transmission line power system. It consists of 

Voltage and current measurements, circuit breakers, transmission line, and load which 

are shown in Figure 3.3. The main purpose of the transmission lines is to supply power 

to the load. The power supply generated by the Generator is supplied to the load through 

the transmission line network. The load is the feeder of the load, the load that the load 

supplies and the kVA are unbalanced, the ANN can see faults such as overload current. 

Traditional algorithms are based on Kirchhoff voltage and current laws for well-defined 

transmission line protection models. 

Conventional distance relays consider the power swing of voltage and current as a fault 

and tripping mechanism. Such faulty components would lead to severe consequences and 

contribute to power system instability. The application of Artificial Neural 

Networks to transmission line faults gives accurate results. 

A Simulink model of the one-line diagram in Figure 3.1 is shown in Figure 3.3. 
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Figure 3.3: Simulink Model 

Transmission Line parameters are shown in Table 3.1 
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Table 3.1: Transmission Line Parameters 

Line Parameters Values  

Line Length 140 km  

Positive- and zero-sequence resistances (Ohms/km): [ 0.01273 0.3864] 

Positive- and zero-sequence inductances (H/km): [ 0.9337e-3 4.1264e-3] 

Positive- and zero-sequence capacitances (F/km) [12.74e-9 7.751e-9] 

Fault Resistance 0.001  

Source: 330/132/33kV Transmission Substation Gwagwalada. 

 3.2.2 Data generation 

A Simulink model is shown in Figure 3.3. was used to generate the data required to train 

and test the intelligent model for fault classification: Simulations were carried out for 

different fault scenarios in order to get various fault patterns. Six features corresponding 

to the number of phase voltages and currents were generated for each 

fault scenario. 

The faults scenarios considered were: 

For each fault scenario, the six-input data/features were generated after simulating the 

model and combining the features for all the fault scenarios. A total of 12,201 input data 

were generated. 

Similarly, the target data were generated using the encoding scheme shown in the 

Appendix B. The encoding scheme was designed for a multi-fault scenario having 12 

inputs each. 

From Appendix B, the No-fault case has a class value of 0000000000001, the C-G fault 

has 100000000000, the B-G fault has 01000000000, the A-G fault has 001000000000, 

the B-C-G fault has 000100000000, the A-C-G fault has 000010000000, the A-B- 
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G fault has 000001000000, the A-B-C-G fault has 000000100000, the B-C fault has 

000000010000, the A-C fault has 000000001000, the A-B 000000000100 while the AB-

C fault has 000000000010. A total of 12,201×12 target samples were generated. 

 3.2.3 Data pre-processing 

The data-set generated was pre-processed and partitioned into training and testing data. 

The pre-processing was carried out to normalize the input to match the ANN input pattern 

from 0’s to 1’s. this presents bias and improved the classification rate. 

 3.2.4 Training and testing data 

Several different training algorithms for ANN are available (Madueme and Wokoro, 

2015). All of these algorithms use the gradient of the power function to determine how to 

adjust the weights to minimize power. Gradients are determined using the 

backpropagation technique. This involves performing computations backward through 

the network. Taking speed and memory allocation into account, many algorithms are 

available for implementing the back-propagation method. Over the years, different 

popular, improved variations of BPNN have been proposed to specifically address several 

important issues, namely, reduction in convergence time, ease of computational burden, 

reduced memory requirement, and so on (Okwudili et al., 2019). 

The training and testing data used for the training and testing of the intelligent model are 

shown in Table 3.4. A total of 8,541 samples for both input and target were selected for 

training, while 1,220 for validation and 2,440 samples were selected for testing which 

were obtained from the training confusion matrix and testing confusion matrix in Figure 

4.8 and Figure 4.9 respectively. 
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 Table 3.4: Training and Testing 

Models Number of samples Percentage (%) 

Training 8541 70 

Validation 1220 10 

Testing 2440 20 

 3.2.5 Model training 

The ANN model was designed to train the data generated, pre-processed, and partitioned 

as earlier discussed. The training parameters are shown in Table 3.5. For each parameter, 

the decision/ reason for the selection of such parameter was given. It can be seen that the 

feed-forward neural network (FF-NN) model was selected on its efficiency and excellent 

in classification tasks, the three layers (input-hidden-output) were selected for its 

requirement, back-propagation scale conjugate gradient (BP-SCG) was considered for the 

training algorithm on its fast speed and accuracy, the 40 neurons in the hidden layer were 

considered for the experiment to be adequate while 6 input-output neurons were 

considered for the multi-fault scenario. 

 Table 3.5: The Model Parameters 

 Model parameter Reason 

Model Type FF- Neuron Excellent for classification 

problem 

Number of layers 
Three layers (input-hidden 

output) 

Required 

Training algorithm 
Back-propagation scale 

conjugate gradient (BP-SCG) 

Very fast and accurate 

Number of Neurons 

input 

6 
Number of inputs for 

multifault scenario 
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Number of Neurons 

hidden layer 

40 Experiment to be adequate 

Number of Neurons 

output layer 

12 Number of outputs for multi- 

fault scenario 

 3.2.6 Model testing 

The trained model was tested using the 20% data which is 2,440 samples from the 

different fault scenarios as discussed earlier. For each sample, the ANN model detected 

the fault type and produced an output corresponding to the fault type given in the target 

vector. 

After testing all 2,440 samples, the performance of the model was measured by comparing 

the model output with the target output. 

 3.2.7 Performance evaluation 

The model performance was evaluated after testing the model using the following 

performance matrices calculated from the confusion matrices: 

Accuracy: This measures the ability of the model to find the correct fault types. It is 

 given as, Accuracy = 𝑇+𝑇 (3.1) 
𝑇+𝑇+𝑇+𝑇 

Where: 

TP is the true positive, FP is the false positive, TN is the true negative and FN is false 

negative. 

 Sensitivity: This measures the ability of the model to detect positive faults. It is 

 represented as, Sensitivity = 𝑇 (3.2) 
𝑇+𝑇 
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Specificity: This measures the ability of the model in detecting negative faults 

 Specificity = 𝑇 (3.3) 
𝑇+𝑇 

 3.3 ANN Structures 

A brief overview of the application of NNs to power systems can be found in (Roy and 

Bhattacharya, 2015). An Artificial Neural network (ANN) is a massively parallel 

distributed processor made up of processing units that have the capacity for storing 

experimental knowledge and making it available for use. Similar to the functional 

behaviour of the human brain, the network receives input signals and internal processing 

takes place through the activation of neurons to yield output signals (Kalu and Madueme, 

2018). An ANN consists of a massively parallel distributed processing system made of 

highly interconnected neural computing elements called “Neurons”, which have the 

ability to learn and thereby acquire knowledge. ANN comprises a number of neurons that 

forms the basic processing unit. Each neuron is also connected to other neurons by 

connections. Every neuron receives a number of inputs which are modified by 'weights'. 

The synaptic weights would either strengthen or weaken the signal which is processed 

further (Okwudili et al., 2019). One particular structure, based on multi-layer perceptron, 

called back-propagation neural network (BPNN), is the most popular neural network 

architecture, which uses supervised learning to determine a complex, nonlinear, 

multidimensional mathematical fitting. Artificial neurons are used to transmit signals 

from one layer to the other, its complex network of interconnected neurons is analogous 

to the firing of electrical pulses via its connections that lead to information propagation. 

An artificial neural network consists of three layers, the input layer, hidden layer, and 

output layer having a number of neurons present in it (Hatata et al., 2016). 
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To generate the final output the sum of the weighted output will be passed on to a 

nonlinear filter called "activation function" plus a threshold value called 'bias' which will 

release the output. 

Although the basic concept behind relays remains the same, digital technology has had a 

significant influence on the way relays operate and have offered several improvements 

over traditional Electro-Mechanical relays (Yadav and Goad, 2021). 

 

Figure 3.4: artificial neural network model 

  = ∱ 11 + 22 + …+ +  =∱ ∑11 ++  (3.4) 

The work is to design, develop, test, and implement a complete strategy for the 

transmission line’s fault diagnosis as shown in Figure 3.5. 

First, all collected data is split into two sets, a training data set, and a test data set. The 

first step in this process is fault detection. Once we know that a fault has occurred on the 

transmission line, the next step is to classify the fault into different categories based on 

the phases that are faulted (Yadav and Goad, 2021). Then, the third step is to pinpoint the 

position of the fault on the transmission line. A back propagation-based neural network 
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has been used for the purpose of fault detection and another similar one for fault 

classification. For each of the different kinds of faults, A single multi-fault neural network 

model was employed for the detection and classification of faults. 

Each of these steps has been depicted in the flowchart shown in Figure 3.5 
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Figure 3.5: Flow Chart of the Fault Diagnosis Process 

CHAPTER FOUR 

 4.0 RESULTS AND DISCUSSIONS 

In order to achieve fault diagnosis of the 330 Gwagwalada-Katampe transmission line 

using the Artificial Neural Network approach, simulations were carried out using 

Simulink in the MATLAB environment. In addition, a classification model for different 

faults detected was developed with the performance of the approach evaluated. 

This chapter presents results of various faults identified and classified on the 330 

Gwagwalada-Katampe transmission line and as well provide an extensive discuss of the 

various results obtained. 

 4.1 Results 

This section presents all results obtained on diagnosis of various fault scenario. At the 

first instance, the no-fault scenario was considered. This is followed by Single Phase-

toGround Fault Scenario, Double Phase-to-Ground Fault Scenario, Three Phase-

toGround Fault Scenario and Phase-to-Phase Fault Scenario. 

 4.1.1 No-fault scenario 

The no-fault scenario result is shown in Figure 4.1. It should be noted that Ia, Ib, and Ic 

represent current in the yellow, blue and red phases respectively, while Va, Vb and Vc 

represent the voltages on the yellow, blue and red phases respectively. 
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Figure 4.1: Normal Waveform for Three-Phase Voltage (Vabc) and Current (Iabc) 4.1.2

 Single phase-to-ground fault scenario 

The results of the single phase-to-ground fault is presented in Figure 4.2. There are three 

possible single line to ground faults exist (A-G, B-G,C-G), corresponding to each of the 

three phases (A, B or C) being faulted 

 

Figure 4.2: B-G Fault Waveform for Three-Phase Voltage (Vabc) and Current (Iabc) 



63 

 4.1.3 Double phase-to-ground fault scenario 

The result of the double phase-to-ground fault case is shown in Figure 4.3., The third 

category of faults is the double-line-ground fault, there are three possible double-

lineground faults exist which are A-B-G, B-C-G, and A-C-G (based on which two of the 

three phases A, B, and C are faulted) 

 

Figure 4.3: A-C-G Fault Waveform for Three-Phase Voltage (Vabc) and Current (Iabc) 

 4.1.4 Three phase-to-ground fault scenario 

The results of the Three Phase-to-Ground Fault are presented in Figure 4.4, this is a 

category of faults that exists only one kind of three-phase fault thus, A-B-C-G fault where 

all the phases A, B, and C are faulted to the ground. 
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Figure 4.4: A-B-C-G Fault Waveform for Three-Phase Voltage (Vabc) and Current (Iabc) 

 4.1.5 Phase-to-phase fault scenario 

The result of the Phase-to-Phase Fault scenario is presented in Figure 4.5, There are three 

possible line-line faults exist (A-B, B-C, C-A), corresponding to each of the three (A, B, 

or C) being faulted. 
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Figure 4.5: A-B Fault Waveform for Three-Phase Voltage (Vabc) and Current (Iabc) 

These faults were used to generate the data set for training the intelligent system. The 

waveform of other faults is described in the Appendix of the research work. 

 4.1.6 Faults classification results 

The results obtained from the intelligent multi-faults classification model are presented 

in this section as shown in Figure 4.6 and Figure 4.7 respectively. 

 

Figure 4.6: Training Performance of the Process 
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Figure 4.7: Training/Validation States 
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 4.1.7 Training and testing confusion matrix results 

The results obtained from the training and testing confusion matrix of multi-faults 

classification models are presented in this section as shown in Figure 4.8 and Figure 4.9 

respectively. It provides a summary of the predicted and actual fault classifications, 

allowing us to analyze the accuracy and effectiveness of the fault classification system. 

These confusion matrices are represented in Figure 4.8 and Figure 4.9 as a table with rows 

and columns for both training and testing. The rows represent the actual fault 

classifications, while the columns represent the predicted fault classifications. Each cell 

in the matrix represents the number of instances where a particular fault classification 

was predicted (column) for a given actual fault classification (row). The diagonal line of 

the confusion matrix represents the correct predictions, where the predicted fault 

classification matches the actual fault classification. The values on this diagonal line 

indicate the number of corrected predictions for each fault type. 

The colours in the confusion matrix were used to visualize and represent the performance 

of the classification system. For example, the cells on the diagonal line, representing 

correct predictions, were highlighted in green indicating accuracy. Cells off the diagonal 

line, representing incorrect predictions, were highlighted in red to indicate errors. It helps 

in evaluating the accuracy of the classification model by summarizing the results of 

classification tasks. 

From the right-hand side column, sensitivity represents the ability of the system to 

correctly identify the presence of a fault. It is calculated by dividing the number of true 

positive predictions by the sum of true positive and false negative predictions while from 

the bottom row the specificity, on the other hand, measures the true negative rate, which 

is the ability of the system to correctly identify negative instances. 
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From equation (3.2) sensitivity of faults C-G that were correctly classified in the row 1 

 = 𝑇 = 596 == 0.99499 = 99.5% 
 𝑇+𝑇 596+3 

 While the corresponding specificity of faults C-G that were correctly classified in the 

 column 1 = 𝑇 = 596 == 0.9197 = 92%. 
 𝑇+𝑇 596+52 

Subsequently, other rows and columns are thus computed to obtain those results in the 

confusion matrix. 

Overall, the confusion matrix, along with sensitivity, specificity, and the diagonal line, 

provides a comprehensive evaluation of the fault diagnosis model classification tasks 

system's performance in the 330kV transmission line. 
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Figure 4.8: Training Confusion Matrix 
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Figure 4.9: Testing Confusion Matrix 

 4.2 Discussion of Results 

This section presents the discussions of the results obtained from the diagnosis of fault 

scenarios in sequential order. The sensitivity and specificity from the testing and training 

confusion matrix for the various faults in the Figure 4.8 and Figure 4.9. At the first 

instance, the no-fault scenario was discussed. This is followed by Single Phase-toGround 

Fault Scenario, Double Phase-to-Ground Fault Scenario, Three Phase-to- 

Ground Fault Scenario, Phase-to-Phase Fault Scenario, Fault Classification Results, 

Training Fault Detection Result Summary, Testing Fault Detection Result Summary, 

Summary of Results for Intelligent Multi-Fault Classification Model (IMFCM). 

 4.2.1 No-fault case 

The no-fault scenario result is shown in Figure 4.1. it can be seen that the magnitude of 

the three-phase voltage and current are the same for the red, blue, and yellow phases. This 

implies that in the testing and training confusion matrix for the no-fault scenario, the 

sensitivity and specificity are 100%, 98.6%, and 100%, 98.3% as shown in Figures 

4.7 and 4.8 respectively. 

 4.2.2 Single phase-to-ground fault 

The results of the single phase-to-ground fault (B-G) are presented in Figure 4.2. From 

the graph, it can be seen that the magnitude of the faulty line (blue) deviated from the 

other lines from 0.02s to 0.06s which gives a higher voltage and zero current at that time. 

This implies that for a single phase-to-ground fault scenario, the sensitivity and specificity 

obtained for testing and training confusion matrix is 96.2%, 98.3%, and 

95.5%, 98.8% as shown in Figures 4.7 and 4.8 respectively. 
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 4.2.3 Double phase-to-ground fault 

The results of the double phase-to-ground fault (A-C-G) scenario is presented in Figure 

4.3. From the graph, it can be seen that the magnitude of the faulty line (red and yellow) 

deviated from the other lines from 0.02s to 0.04s which gives a higher voltage and zero 

current at that time. This implies that for the double phase-to-ground (A-C-G) fault 

scenario the sensitivity and specificity for testing and training confusion matrix is 100%, 

98.3%, and 99.8%, 98.9% as shown in Figures 4.7 and 4.8 respectively. 

 4.2.4 Three phase-to-ground fault 

The result of the three phase-to-ground fault (A-B-C-G) scenario is shown in Figure 4.4. 

The graph in Figure 4.4 shows the voltage and current waveform of a three-phase-

toground (A-B-C-G) fault. It can be seen that the magnitude of the faulty line (red, blue, 

and Yellow) deviated from the normal lines from 0.02s to 0.06s at that time. This implies 

that for three phase-to-ground faults (A-B-C-G) scenarios, the sensitivity and specificity 

for testing and training confusion matrix is 48.0%, 49.1%, and 53.8%, 55.7% as shown 

in Figures 4.7 and 4.8 respectively. 

 4.2.5 Phase-to-phase fault 

The results of the phase-to-phase fault (A-B) scenario are presented in Figure 4.5 shows 

the voltage and current waveform of phase to phase (A-B) fault. From the graph, it can 

be seen that the magnitude of the faulty line (blue and yellow) deviated from the other 

lines from 0.02s to 0.06s which gives a higher voltage and zero current at that time. This 

implies that for the phase-to-phase fault (A-B) scenario, the sensitivity and specificity for 

testing and training confusion matrix are 99.4%, 99.4%, and 99.8%, 

99.8% as shown in Figures 4.7 and 4.8 respectively. 
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 4.2.6 Faults classification results 

The results obtained from the intelligent multi-faults classification model are described 

in this section. Figure 4.6 shows the trained model, algorithms, and training progress. 

From the Figure, it can be seen that 6 inputs were used, 40 hidden, and 12 outputs. The 

algorithm converges at 304 iterations with a performance of 0.293 and a gradient of 

0.0145 with 6 validation checks. As also shown in Figure 4.7, The graph shows the 

training and validation state of the model. With a minimum gradient of 0.00040842. 

Figure: 4.6, shows an artificial neural network (ANN) classifier as can be seen, it has six 

(6) inputs, namely, Voltages (Va, Vb, Vc) and Currents (Ia, Ib, Ic), as processed in 

Figure 4. The ANN consists of 40 hidden layers and 12 output layers. Its objective (based 

on its training) is to identify faults in the Gwagwalada-Katampe transmission line. The 

output is trained to give a response to any of the fault conditions presented and thus 

represents a Common Fault Alarm (or Trip). This means that the performance of the ANN 

to identify the faults correctly is good and acceptable. 

Figure 4.8 shows the training confusion matrix of multi-faults classification models. From 

the Figure, the green diagonal boxes indicate the faults that were correctly classified while 

the red boxes show the faults that were wrongly classified. The results show that 596 

faults were correctly classified as C-G. 596 faults were correct as B-G faults, 626 faults 

were correctly classified as A-G faults, and 584 faults were correctly classified as B-C-

G. 628 faults were correctly classified as A-C-G. 618 faults were correctly classified as 

A-B-G, 339 faults were correctly classified as A-B-G, 339 faults were correctly classified 

as A-B-C-G. 583 faults were correctly classified as B-C, and 
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619 faults were correctly classified as A-C faults. 632 faults were correctly classified as 

A-B faults, 333 faults were classified as A-B-C, and 1,658 were correctly classified as 

No-fault. 

Table 4.1 shows the sensitivity and specificity of training fault detection. From the table, 

the No-Fault has the highest sensitivity value of 100 followed by A-B-C and A-C-G with 

a sensitivity value of 99.8 and A-B-C obtained the lowest sensitivity of 53. In terms of 

specificity, B-C obtained the value of 100 which indicate the highest specificity, this is 

followed by A-B with a sensitivity value of 99.8, and A-B-C having the value of the 

lowest specificity of 53.4. The graph in Figure 4.9 Indicates the relationship between 

sensitivity and specificity with the blue line indicating sensitivity and the red line 

indicating specificity. A-B-C-G has the lowest sensitivity peak and A- 

B-C-G with A-B-C are having the lowest specificity peak.  
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 Table 4.1: Training Fault Detection Result Summary 

Faults Sensitivity Specificity 

C-G 99.5 92 

B-G 95.5 98.8 

A-G 98.4 96.8 

B-C-G 92.7 99.3 

A-C-G 99.8 98.9 

A-B-G 96.9 99.5 

A-B-C-G 53.8 55.7 

B-C 94.5 100 

A-C 100 93.4 

A-B 99.8 99.8 

A-B-C 53 53.4 

No-Fault 100 98.3 
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Figure 4.10: Relationship Between Sensitivity and Specificity of Training Fault 

Table 4.2 indicates the sensitivity and specificity of testing fault detection. In the 
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table, the No-Fault and A-C-G have the highest sensitivity value of 100 followed by 

A-B and A-C with a sensitivity value of 99.4 and A-B-C obtained the lowest 

sensitivity of 48.5. In terms of specificity, A-B obtained a value of 100 which 

indicates the highest specificity, this is followed by B-C-G and A-B with a sensitivity 

value of 99.4, and AB-C having the value of the lowest specificity of 48.5, The graph 

in Figure 4.11 indicates the relationship between sensitivity and specificity with the 

blue line indicating sensitivity and the red line indicating specificity. A-B-C and B-G 

have the highest specificity peak. 

 Table 4.2: Testing Fault Detection Result Summary 

Faults Sensitivity Specificity 

C-G 98.0 92.3 

B-G 96.2 98.3 

A-G 96.9 96.3 

B-C-G 92.1 99.4 

A-C-G 100 98.3 

A-B-G 95.0 98.7 

A-B-C-G 48.0 49.1 

B-C 95.0 100 

A-C 99.4 93.8 

A-B 99.4 99.4 

A-B-C 48.5 48.0 

No-Fault 100 98.6 
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Figure 4.11: Relationship Between Sensitivity and Specificity of Testing Fault 

 Table 4.3: Summary of Results for IMFCM 

 Accuracy (%) Sensitivity Specificity 

Training 91.500 90.6583 90.4917 

Testing 90.800 89.0416 89.3500 

CHAPTER FIVE 

 5.0 CONCLUSION AND RECOMMENDATIONS 
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 5.1 Conclusion 

This research work proposed the application of an Intelligent multi-fault classification 

model using an artificial neural network on the 330kV Gwagwalada-Katampe 

transmission line for various possible faults namely single line-to-ground, line-to-line, 

double line-to-ground, and three-phase faults have been taken into consideration. The 

data set used for training the intelligent model was first extracted by simulating the 

network fault conditions. For each fault type, six features were collected including the 

type of fault as the class. The data set was then pre-processed, partitioned, and used to 

train the model. The model was trained and validated using training and testing data. 

Therefore, the work proved that an average of 91.5% model accuracy can be achieved for 

fault and no-fault conditions. The results of the work also showed the sensitivity and 

specificity of the sample of three-phase faults which produced the lowest values of 48%. 

From the foregone, it can be deduced that: (i) An intelligent multi-fault detection and 

classification model can be simulated to detect faults and classify the nature of the faults. 

(ii) Among all the faults considered, the three-phase faults were the most difficult to 

classify. Their detection rates were the lowest compared to other faults. (iii) The simulated 

model produced high detection rates for single phase-to-ground and double phase-to-

ground and phase-to-phase faults. (iv) The low detection rates of the threephase faults 

may be attributed to the similarities between the features of the three-phaseto-ground 

faults and three-phase faults. 

 5.2 Recommendations 

i. The detection and classification of three-phase to ground and three-phase faults be 

improved to enhance the overall network performance. 
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ii. More machine learning models like deep neural networks (DNN) can

 be 

investigated for performance comparison. 

iii. Some data filtering techniques be applied to the data to improve detection rates. 

iv. This model can also be added with distance location for a prompt response. 

 5.3 Contribution to knowledge 

This research work contributed to the body of knowledge in the following ways: 

The artificial neural network model was applied with 70%, 20%, and 10% of the data 

used for training, testing, and validation respectively, the training and testing were 

achieved with an accuracy of 91.5% and 90.8% respectively and a total of eleven (11) 

different faults were successfully classified as single phase-to-ground faults, double 

phase-to-ground faults, three phase-to-ground faults, phase-to-phase faults, and 

threephase faults finally, this can be deployed to detect and classify the types of faults in 

the 

Gwagwalada-Katampe transmission lines. 
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Appendix A: 

The waveform of other faults in the research work. 

Appendix A1: 

 

The Single Phase-to-Ground fault A-G Appendix 

A 2: 

 

The Single Phase-to-Ground fault C-G 
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Appendix A3: 

 

The Double Phase-to-Ground faults A-B-G Appendix 

A4: 

 

The Double Phase-to-Ground Faults B-C-G 
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The Phase-to-Phase Fault A-C 

Appendix A5: 

 

The Phase-to-Phase Fault B-C Appendix A6: 
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Three Phase-to-Phase Faults (A-B-C)  
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Appendix B: 

Table 3.2: Shows sample of generated data for each fault type 

 

Fault Type Vc Vb Va Ic Ib Ia 

 

 0 0.38360 0.51380 5.47450 0 0 

 0 0.36990 0.52540 5.48410 0 0 

C-G 

 0 0.35610 0.53680 5.49220 0 0 

 0 0.34220 0.54810 5.49910 0 0 

0 0.32820 0.55930 5.50450 0 0 

 0.00017 0 0.46914 0 5.00560 0 

 0.00019 0 0.45790 0 5.03020 0 

B-G 

 0.00021 0 0.44499 0 5.05252 0 

 0.00229 0 0.43059 0 5.07311 0 

 0.00025 0 0.41480 0 5.09288 0 

 0.11549 0.00024 0 0 0 5.22471 

 0.13358 0.00019 0 0 0 5.23339 

A-G 

 0.15309 0.00147 0 0 0 5.24052 

 0.17363 0.00104 0 0 0 5.24397 

 0.19441 0.00006 0 0 0 5.24256 

 0 0 0.00062 4.48697 1.25122 0 

B-C-G 
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 0 0 0.00065 4.45212 1.34788 0 

 

 0 0 0.00069 4.41532 1.44322 0 

 
0 0 0.00073 4.37822 1.53881 0 

 
0 0 0.00077 4.34217 1.63603 0 

A-C-G 

0 

0 

0.00017 

0.00014 

0 

0 

13.8188 

13.9743 

0 

0 

4.364322 

4.442191 

 0 0.00011 0 14.131 0 4.520082 

 
0 0.00008 0 14.2864 0 4.596287 

 
0 0.00005 0 14.4361 0 4.669349 

A-B-G 

0.00020 

0.00020 

0 

0 

0 

0 

0 

0 

3.59342 

3.52247 

0.41790 

0.76713 

 0.00020 0 0 0 3.45269 1.12862 

 
0.00020 0 0 0 3.38345 1.49605 

 
0.00020 0 0 0 3.31359 1.861530 

A-B-C-G 

0 

0 

0 

0 

0 

0 

-5.76198 

-5.79205 

20.4036 

20.4269 

-14.9839 

-14.8596 

 0 0 0 -5.8212 20.4447 -14.7304 

 
0 0 0 -5.84931 20.4408 -14.5804 

B-C 

0 0 0 -5.87608 20.4050 -14.4000 

 0.000010 0.320228 0.320218 0 4.932641 -

4.932641 
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 0.000020 0.313605 0.313603 0 3.733939 -

3.733939 

 
0.000023 0.306666 0.306664 0 3.904537 

-

3.904537 

 
0.000030 0.299418 0.299415 0 4.066464 

-

4.066464 

 
0.000036 0.291823 0.291820 0 4.221701 

-

4.221701 

A-C 

0.044984 

0.059489 

0.045004 

0.059491 

0.044985 

0.059499 

5.341208 

2.452453 

0 

0 

-

5.341208 

-

2.452453 

 0.073726 0.073730 0.073728 2.579165 0 -

2.579165 

 
0.087742 0.087746 0.087742 2.675997 0 

-

2.675997 

 
0.101598 0.101598 0.101600 2.748055 0 

-

2.748055 

A-B 

0.275229 

0.254194 

0.00003 

0.00004 

0.00003 

0.00004 

-8.042600 

-4.034505 

8.042600 

4.034505 

0 

0 

 0.233254 0.00006 0.00006 -4.411748 4.411748 0 

 
0.212601 0.00008 0.00008 -4.751151 4.751151 0 

 
0.192395 0.00009 0.00009 -5.059980 5.059980 0 

A-B-C 

0 

0 

0 

0 

0 

0 

-4.74760 

-4.51378 

-4.37941 

-4.35701 

9.36949 

9.11614 

 0 0 0 -4.28141 -4.33586 8.86539 

 
0 0 0 -4.04639 -4.31314 8.61034 

 
0 0 0 -3.80457 -4.28651 8.34449 
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Appendix C: 

 Table 3.3: Target Encoding Scheme for IMFCM 

Fault 

Type 

     

Line Fault Type 

     

 C-G B-G A-G B-C-G A-C-G A-B-G A-B-C-G B-C A-C A-B A-B-C No 

Fault 

C-G 1 0 0 0 0 0 0 0 0 0 0 0 

B-G 0 1 0 0 0 0 0 0 0 0 0 0 

A-G 0 0 1 0 0 0 0 0 0 0 0 0 

B-C-G 0 0 0 1 0 0 0 0 0 0 0 0 

A-C-G 0 0 0 0 1 0 0 0 0 0 0 0 

A-B-G 0 0 0 0 0 1 0 0 0 0 0 0 

A-B-C-G 0 0 0 0 0 0 1 0 0 0 0 0 

B-C 0 0 0 0 0 0 0 1 0 0 0 0 

A-C 0 0 0 0 0 0 0 0 1 0 0 0 

A-B 0 0 0 0 0 0 0 0 0 1 0 0 
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A-B-C 0 0 0 0 0 0 0 0 0 0 1 0 

No-Fault 0 0 0 0 0 0 0 0 0 0 0 1 

 


