COMPUTER-AIDED CIRCUIT

ANALYSES:
WITH EMPHASIS ON GRAPHICAL

SCHEMATIC ENTRIES

BY

HENRY OLABOWALE AJERE

92/2431

DEPARTMENT OF ELECTRICAL/COMPUTER

ENGINEERING

FEDERAL UNIVERSITY OF TECHNOLOGY

MINNA

 BACEELOR OFENGWEERWODEGKEE

MARCH, 2000

Dedication

Ths propect is bedcated to God amghty, one who has been oy closest companion and work mate. Even amdst problens, mistakes and wheaval, He lef me no doubt he is beside me.

Acknowledgements

I winh to nknowledye he following pophe for their swports and enooumgenens:
Mr. Pan Atal my able supervisor, for his patience and atemion. My late hathe, Pa Aaron Alere of blessed memory. My mother, Mrs. Weher Adeboye gave me all I cyer needed to execute the project. Im indebted to her. Mrs. Spora Daondu my simer for mbtheng my extuction. Adebola Kokow, my hance for her remakable offors in checkny my workaholic excesses. I abo wish to ackowledge all my ssters, Mrs Fumilayo miola, Mrs. Fatima Abdurahaman, Mrs. Abderi Omoyele, Abosede Ajere, Kemi Adeboye, Bukky Adeboye, Sola Adeboye, Abmbola Adeboye and lithe brobner Mathew Adeboye. Also achowledged is my step Cather Mr. Oyebyi Adeboye, my step mother Mrs. Rebecca Adeboye, my step broher and "hend" Rotims Adeboye. Fumblayo Adeboye and all the entre menbers of Adeboye's fanily. Im gratehw to all my hembs, Adeob Tella and Bukola Ognmole for their words of encomagenem, Lamide and Funke, are suoh two wonderul frexds, I also thank hde for helping in sone drawings. Finaly, his acknowiedgement would wot be complete if a frend is not mentoned here, Mr. Aboye Johnon, such a kind and lovely man he powed the teport. May God rewand him abundanty. (Amen)

Abstract

This repon presents the solware design and development of Computer akied Cment Anayses (CACA) program emphasing grophed sohemate comiss. The shware optures the desiguer's circui schematic, whoh is drawn wa the Graphical User membee (OUT) provided by the program, and swosequenty pertorms either AC or DC awalyses as spectied

The program, is desiged to mon on any win2 based operating soltware stob as window S_{x} windows NT x 0 etc. It wes developed with the GUl axd Object-Onented Programming (OOP) fenmes of Morosol Visal $\mathrm{C}+6.0$ to smolate the gencration and soluthon of Modhed Nodal Admitance Matices (MNAM) The matrix equations are solved using LU factonzanon method to detemme the nodal wohages and unkown curremts.

The results genernted for both AC and DC analyses are presemed as tables relang input fremency vs. output voltage and mput volage vs. output volage respectively.

The program will andyae cretuc consisted of passive componoms

TABLE OF CONTENT

 i
CEbTMECATOX 多
B B BCATMOK b）
 若
 （2）

鱼
鱼
 ．
BACKCROUKN ，
 2
10． 1 UEPOSESAND AKMS OF PROTECT： 2
12 STGNETCANCE OF TEE YEOSECT 3
E 2 IMITATON OFTEE PROECT 3
CHEXVEXYO ． 5
20 OONCEPY OF OFSGGN AND ANAEYSIS 5
2．C CRCVITYESTGNANDANAEYSS 6
 In
23 COMEYGER－ATDED CIECUTY DESISM ANT ANAE YSIS ！ 2
24 NODGRN SOETWAREANOPGOGRANMBMGTOOLS 14
2．5 SMMNAEYY 15
 27
3．MATUXX ANAEYSES OF NETWOKK 28
3．2 MODITIED NOOAE IORNULATUN 28
3.3 PROORAMWMNG GUNDAMENTALSANDBASICS 28
3．3．Obiect moned brogamming（OOP） 29
 3
4．5TAOE 1 GIGGMMMAEY 33
12STAO2：GOXEGENTATION 35

Chapter One

INTRODUCTON

Background

 academic and industial commanties. Recenly semmars and womshops were organized by varons bodies and onganzatons across the commes, to enighen the professonals on the technology. Anong such seminas are the one oganied by the Nigera Sociey of

 tecmologial adwanced westom and Asman combes are amburd to the ase of CAD

 govemmenagencics, nom indubtres are known to be makng effectue nthation of hese took However, most of these CAD hook make more mpact on the mednaidal and

 (Simulated Pogran with Integated Crovit Emplasis) vesions, wheh are common th Nigeria today, are hose based on the ondated DOS phtom, Many versions sith rely on codel commands for desonbing cirot connedions.

Wim 2 based operatug syshem have been designod to exploit the powers and fature of modern PC. Thewhe nany aphcatons have been produed, whoh wh credbly well on this phatom CAD solware tools, whels success relies on the abther to tovegate oher tools, mond not be exemped.

Recesty, there are incrasing number of deeklops, whith ran win32 based operamen sysema mathe combyy.
Hence, a CAD twot, which is designed for has patiom, is highy recommended. This exphens he reasons why this profect is embarked upon.

1.0 Problems Ageinst Computer Aicied-Circuit Analysis

Reconty, choub besign has progessed to the poink where the design process is totaly
 applications has sime been on the market CAD application bece Destanes's Workbench
 recorder some succerses then ther respective appheathons.
 the area of shematic captwe, advanced methob of anaysis, wortome amaksis, che

 Wokk. This atests for the populanty of AntoCAD \{a AD wob based on winh
 besign and analysis.

1.0.1. Purposes and aims of proiect:

To bis end, the provectams bo:
(a) mbtate a wins2 based Computer Aided Chrait Analysis (CACA) sohware

(c) Nakes the sobware extensible and axy to hategrate wibl other wob.
(d) Exploht winh 2 feanures and powar.
(e) Demonstrate the moden sotware developnent apwach for engineering Bohtuon.

1.2 Significance of the Profect

Win32 based CAD for electricalobectronic design is very scany despite the overwheming achevements recorded with other applications. This proect wil increase signifanty, the CAD solutions to mos basic crent design probems.

 analysis. If the proper is furner mproved, it can beome a commechat produes generatug economic values.

13 Limitation of the Project

Moden sofware has been simplifed to make even the most complex application less dificult to develop. This is made possble throwg the use of advanced tools and technologies in sofwate developnent However many appliwation developed today was a rean of temmork among nany developers. It is atmost mpossble to develop any commercil nothware product by one developer. For example, it has been repoted that Whows NT a o was produced by a team comprising well over 130 sotware developers across a networ (Microsob cooperation 1998) Apant fom this, the the taken to design,

Sest and deploy the solware amomnt to Zyants. These are the kind of ehome and the weybucd to produce a commervia sotware product
 the fact thet it was cambed ont by a single wnemgraduate shotent. As yated in the ams
 sohware prodwead is lmoted to acadeanc communties and subject to fumber hoprovemexa im the kflux.

Since the sofware is bascd on win32 operabng system, it can only be ran on PC opentug Whathws $95,98, \mathrm{ND}, \mathrm{OS} 2$, and other win 32 bascd operatug system.
 axalyses perfommed ane rextmoted to AC and oC.

Chapter Two

LTerature Review

 The main objectve as pomber ox, was to indut the development ob compuber anded

 Geas on the bhownes

* Concep of design and andyma.
* Circuif design ama analyss.
- Types of amysis
* Trend tan be movem cirove design.
* Computar Aided Bengn mod Ambusis.
* Concept or Mobem molware and programming toois.

ahemanve. Therefore, in all the hoblds of engmeerivg, besigh is seck as one mosh mporami nctivity.

 decide if it meets the spechacations. Nost of the thme thas pocess is terative m mature and there are always predefned methots bos doing it There may be mathematical

 a common prabice. Thenefore, anaysis ofmos engheerny designs involve iteratve and mothematical processes, As con beem seen analysis is a wot, wheh is weet to chose, tost and whe the hest desigh ahematve. And a design process precedes in

21 circuit Desion and Analysis

 the bobownes:

1. Block biogram
2. $\log \mathrm{ge}$ dagrom.
3. Schembatic disglomb
4. Whing diagram.
 What make ug the overan cincut bemag destemed. The symbols are then connecied by Smably lines in such a way as to describe the chomu

Bhock diagram

Wook dixgrams do not commetely describe an elecheal circme but do modione the

Dogic dixgrams are simblar to block diagrams, in that they describe the logicab progession of the eccirical signals in a cirevi as bey go from one component or bego chemen to another. Eowever, the symbols bake tomes that are manue to a pamenka

Schemattc dag\%am

Schematic biagrams describe the piobure of an clectricak crrent in furber detat,

 most exsty wndersfors.

 assembly to is uned not for anaysis or explanation of a citcant but as an ascembly drawne in be blog.

Wabl of this as said eaher, is an onpur of any circuit design process. Therefore it can be said that etront design ams ar producng any of the above dagmms based on the problen specincations.

Whatever the targeted onput dagrmm, Busholl (1988) ropoted that design of a chent

 Unombately, designers camot forese all the consequences of then high fevel design decinons and when they intially make hose choiees, therefore sone choices will head to motrect design.

The owpht diagram producel as a resul of these design process are used for vanons
 assembling the cheuns. For example the choun bock diagrams are manly used in
 chovit assembharg and schenate dagrans are used for circit analyses (Machover, 19893

2.1.2 Crrab Anatysis

Cront andysis involves application of varons circut theories to detemne circuit desived parametess such onton cument voltage etc. As noted canlics, circuit anaysis depends on the schematic output diagram produced at the end of design. And shoe most
 design. When designer designed a schematic diagram based on the probiem specifcation,

Fig2. 3 heratve Desigs
processes in whath one complements the other.

Ther of Anabysis

In electical or electronic ormit analysis, there are for basic types of anaysis.
(i) Opeating poin
(i) DC
(ii) AC
(iv) Trassient

Operating Pown Anabysis: - As the name suggest, opemang pont analysis is used to detemine he parameler value (comrent, voltage power etc) of the chewt when no Gpus shal except for the power supy- is apphed It is sometmes called bas pomt H drecty afects the gain and lneatity charateristios of the chrom

DC Analysis: - This measmes or delemines ontpu chanctenctues of chowits as the amplude of the mput signal is vaned. For example, a ciment might be design in way that is ontput volage should not exceed 100 V The schematic design can be analyzed to verty this cmout spechincation. Schematic can be redesigned, or components values adusted to correct this. Usually whats bone is to plot vaned input values with its consequen omputs.

AC Analysis: - This detemines the output chatachertics as the tequency of the nput sigmal varies. This type of andysis is common in commonicaton application, where frequency responses of circuis ave vind

Tramsient Analysis: - This is sometmes retered to as tme invamant analyss ft measure the chent rexpone to the For hashoce a chom migh be cxpected to gath a patheular output woltage after the mpat signal is apphed

2.2 Trend in circute design

Year back, crown designers have to contend with the necesty of buthing breadboard, Wht them whth wors-case of hmit devices (ie active device whose characteristucs were at the bigh or low spechfarion fimis), and then see whener the cirunt perfomed satwhctorly, The profession has come a long way then, whe over the hat fewdecades the complexites of crouts has made it pate dimoult to adapt his method to design hargeindustial cronis. This morased complexity is due both to advanoed in techology and the need for meeting a number ofsimulaneous design specifcations (Fink, 1984).

This complexty has forced circui designer bo thm to computer. Today, there are Computr-anded design, Computeraded cirat anayses and Computeraded cicuit mannherang packages, wheh are used for chont design, analyses and manhommeng.

Th the fume, Mahover (1982) predicted the increasmg avabbithy of EXPCRT prograns, wheh are essennally sotware minics of the way an expert analyes a probem

2.3 Computer-Aided Circuit Design and analysis

 whectives. As a specthe examble of the ase of computer as a desigh wo wombiter the

a) Dne computer progrom to modes the 2 wimonsionak effect of semionduchor devises.
 cucte to detemme the mrocess of varation.
c) A begie simaktor to verify the logical opeation of the desigh
0) A hayou program to keb with the phacement of the many thousands of the fansistors ot the Vast chodit on a chis.

 whin they are acheved has mande the Vast circmit design a mabstic.

On of bese mocessas, (e) reman the arget of ths propec, computerized detemmatom

 have to be genemad by appying appopmate cimot theones Consequenty the equanons are solved to obtan the desired outpo Fron tha, wo thens are obvon in anayzang a cicont

1) Generation of smohtaneons equations describing the circut
2) Solutions to the equations.

For a computer, numerical mehod is the prefered option than anaytical method. And The followings ae rembed of computeraded chomitanysis sonware:
(i) Agombm for describug the crovit shematic.
(i) Agonthm for generanay smultaneons equations hom the shomanc.
(in) Alyonthm for solving smultaneors equanons In the proeet, () was abheved by alowng schematic description hrough diagrans. Though there are many technmues used in fommating set of equatom descrbing an
 theory behm this aproach is explaned in the next chapten Finding a nomerical
 a DC solution, and a set of smukneous monhear diterental cenaton for a trastent solution foms the cone of ay cirwit analysis progran. To this end, a matrix menod, which is fom suiable for progranming wil be ased in the moivet

2.4 Modern sofware and programming tools

Not very long ago, hage-scale mbsion-sitical enternise aphicabons were the exchsive province of massive mantrame compntar (MSDN, 1098). Thats changing rapoly, This change is due to the rapid increase in hardware sophistichton and mprovement Sonware monstres quickly took advantaye of thes. By the Eyonomes became the center focus in sofware prohuthon A headne software
 (Graphical User hnerhace) opeating system by eany 90s (Microsoh comporion, 1008). Pror to this, the compotion was known for its popular Tutonented Text User Interace) DOS operating systom. Wheh tha operathy sofware, a User typer heher commands at the commomb pronph However, because of the dfrcuty in leaming to use these commands, and the needs to make computer sysiems more Userffonty, the conmany released windows 30 . This was iater uphated to windows?, 3,3 , 3 , 2 ete However, Windows $3 x$ is made to work dependenty on Dos, which makes th to be an crpansion of DOS rather than an operang system thent Clamons for an independent apating system led to the release of Windows 5 , followed by windowsos, the carrent whobws operating systm. Micoron has anomeed windows200, wheh is the for in

Improvencm in the operating sofware is alway grected win improved aphication sohware. Hemee the advent of windows operang software hed to the release of senes of aphicaton hee word pertect for windows, offce95-2000, Dlase for windows, to

Whater

 solware, hewise the toon for kevoloping these aplications. following ane some of the bobs used in beveloping soma apphicatons
(i) Visuablasic
(i) Visuab ClCt
(घi) Visuns \}ava
(w) Visbal goaPro

 proganming tods by smoly wing a pombing device (mouse) The task is permmed in
 dekns.

2.50 Kmby

 wny design work is a dagmm specifing sobuton to the problons at hand Specincaly,

Conseguemtry, the equations are solved to obtan monired ongnt parameter The use of computer ta domg tha was abo axphaned.

 sophisticasod progamming tools ohranges programming from the ob cobe-orented to vinuak onemed ayproack.

3. 1 Matrix Anayses of network

Employng Thoyenimwoton heomem or stardeta tranomation, followed by combnaton of series and paralle combination, can weduce the intriases in cront ankyas fowever computer cannot be progranmed for such ask. Hence computer needs a general pedetmmed nethod to perom anaysis.

3.2 Modifed Nodal Formulation

The Mooffer Nodal Approach (MNX) is a bybrat equation fommation method that allows voltage amk ourent varable to be whowns. That is, manown current and whages ate pat of the equatons generated. In fact, if circut contams only lnear wnductance and independen curtent sources, the MNA reduced to the nodal equation

 In the MNA equathon, the MNA is able to acceptallthe tou type of controlled sources, the independen curen and volage sources, any tye of non-lnearity and linear R, I, C clemente.

By considerng Kmoher \& law at ead node the modine nodal equatons are gencated (Ee. the coment leaving a node is zaro). However, to consider cumen as mbnown requres the brame tehtionship (Wh) of the denem to be added to the set of node cantions. The sexult for linear networ, is a act of equations of the fom

$$
\left[\begin{array}{l}
y_{8} B \\
C D
\end{array} l_{3} b_{3}\right]-\left[\begin{array}{l}
b \\
p
\end{array}\right] \quad \text { Equanon } 31
$$

 chamenks

 regutes the branch rehionmbit (ph) of the ehement to be aded to the set of node

$$
\left[\begin{array}{l}
y, b \\
\mathrm{CO}
\end{array}\right] y_{n}\left[=\left[\begin{array}{l}
y \\
y
\end{array}\right] \quad \text { Equation } 3,\right\}
$$

where,
the nowe.
rembonciag
bam-side (bxis) mbics.

 is a conductance Gk, and it is conncoled between modes \{ and $\}$, and the current hrough the conductance is not a desired ontwuy vatable, the smomy wowld be

3.1 Matrix Analyses or nework

 amalyss Howeve compter camot be progymmed for subh hak hene compater needs a general predermined method to perbm andysis.

3.2 Modified Nodal Formuation

 whages are pary of the equations generated. In het if chont contains ony hear

 qembers

 cquatoms. The resply for hacar nemork is a sat of equatons of the bom

$$
\left(\begin{array}{l}
Y, B \\
C H
\end{array} V_{n}:=\left[\begin{array}{l}
j \\
\beta
\end{array}\right]\right.
$$

(a) The curcat though the spechic dement is desired as an onput.
(b) Of there are other ements in the cincut, wher controlled sources or nonHearines that degend on the cument

Given a general node below, the stomps for the ciments are generated. Table 3.3 Shows samys for vanous elements comected to the node,

Tig 3.1 Generat whehne stamps for ciement

Fas 3.2 Cmont example

Waving defned shaps fr elements, an atempt will mow be made to aply then to the circuit above:

Appying the stamp for each eloment, the following math cquaton ate genowhed:

Matrix equatons generabed.

The exampte given above demonstrates the une of Mha to generate set of equanoms,
 equations.

Sakx

There are many methots for solving matrix equathons. Among the mothobs are the 6ोlowing:

1. Winect sokkton
2. Gubssing naxix reductuon.
3. K bobrizabion

LU Grionization, a method amployed in this probec win be discussen,

CH G6c

 poduct of lower hangobar matrix L and an veper wanghar manix of

$$
[A]=[L T U] \square \text { Equation } 33
$$

 W obtin mithe unknown cochorents.

The mam use of trangubr deommosthon is at the hest thae of the sobmon of a set
 sages as follows

$$
\mathrm{YX}=\mathbb{Y} \cdot \text { Backwarl Swhsulanion }\}
$$

 the bamgular form of their coeffecent matrices

$$
A^{F} \cdots=\left[\begin{array}{cccc}
z_{n 2} & \xi_{12} & \ldots & b_{n} \\
l_{3} & k_{22} & \ldots & k_{2 n} \\
l_{n k} & \xi_{n 2} & \ldots & z_{n n}
\end{array}:=Z+U \ldots 1\right)
$$

 wherunced vanables ha the holowing 3×3 decomposinom

The brmalac or compuning element ${ }^{\text {F }}$ are:
$Z_{y}=\frac{a_{i j}-\sum_{i=2}^{k_{i s} u_{k y}}}{b_{k}}(j<i)$ Equation 3.4

Equatcon 3.5
c) It is possible to overwite A with the elenents of $A^{\text {g }}$ as hey are Fomed thereby wdwemg the compunt memory used in the computation.
d) The compmation of each chment may be cameab ont wht bouble pracision arithmethe by using an maner product routhe
 overwitten in man by ank then X.
F) The operamon on the sight-frank side represented by stases 2 and 3 can be camex ont indeyendenty of the decomponthon (sage)
 decompostrion.


```
MOR|=1/GN
{
    }
        MOR}=\MON
            X=A{(, N
            y = = 3-1
            GORK={TOJ
            {
            X=X-A({,K)* A (%,s)
```



```
\/ENOFERST {OOF
```


To perfom the stage 2 backswbtitutom, ine following agentum is mplemented

There are m mghthand siows
जGR M = TON
(

! $=$ = $=1$

;
$\chi:=\}(3)$
GOKK $=1$ TON
;
$\left.X=X \cdot X(X, k\}^{*}\right\}(K, B)$

$\mathrm{Z}(1,3)=\mathrm{XA}(1, \mathrm{~B}\}$
// END SBCONO KOOP
WENDEmSTMOOB

A succesphat implementation of tranguna decompocinon depends on he divisor beng mon-zero at every stage. Kowever, NNA produces wol- conduboch matrices, wheh may not encomber zero stagone shemant

3. 3 Programming fundamentals and basics.

The world is made wh of both physicel objeok and concepts. To efeetwely mode or Shmukate the reat work and human processes in code, it wonk be good if sofweme couk be make up of representanoms of these real-wond objeos. Thes is exacty what obect oriented programs atwompt to do.
 exambles of these real 'objechs':

- A Component
- R Kesistor
- A Cument
* A Branch
* A Node

An of these are objects in the physicat word, and the whole tea behnd using sohware

Taduthal mograms are centered around the pocesses and procedures bar the progam

 identined and modeled, one con whe progams bat usc these obgect to simblate the
processes and procelures in a much stmper and ciener way han other programmeng approaches woud acomplish in this project, as will hater be shown in the next chapter, many of such obects ave noded such as: componen, rexisor, indwor, capactor ete.

3.3. 3 Object Rnking And Tmbedding \{OLE\}

OLE is a mechanism that alows users to create and edt docaments containg tems or "object" created by multiple apphcations. If apphotion A produce "Rob" object, and appheation B produces "Bob" object Anoher apphcation C can be used to edit these obects at they belong to it. This fonter aphicaton integration and reduces the burdens of programmag. For instance a cicout CAD applicaton might be developed that produces chomitshematic dagran. Another CAD developed hoperfom ctratanalyses. The later can call the object produced by the fomer, wom on it whout any data conversion.

3.3 .3 Chass Library

This compises sets of object classes, whoh can be accessed to pertom various taks. Meroson Fondation Class lbrary (MFC) compnes of chasses which dehne varous object used in this proect For instance, Devoe Conter, a class that cncopsuates whows graphoal functions, is pant of the MFC lbrary

 apybations can simbuneously access the content of a single copy of a Dix in

 Wh h, the can be abig somgs in bisk space and monory.

 back to the doenment any data changes.

Chapter Four

Design And implementarion

 Nodal Abmbtmoe (MNA) mamices (theoretical backbone of the pojeco, , U
 क्यcs meaner.

In this chater, the processes and sheps that leat to the development and subsembent implementmon of the procen with be exphaned in stases. Yence the chapter covers he folbwing:

* Sagel: Pebmbuxy
* Stage 2. Imphementakion and Testmg

1×1 Staget Preiminary

 and ha subsenuent (etemmation of what are sequined in mplementing the progran.
 design apprasch:

The regnements were ohtamed hom the schario deschbed below

Wrom the scenamo descnbed above th is requed that:

1. User internce allows for schembuc envies.
2. There must be mechanism for schematic entries
3. The system must be able to camure the shenatic
4. There mus be mechanism for interyehng the schenatic
5. There must be menhominm br comerting sohematic to the sysem specte data

6. There are yper on andyses
7. There are diferent ouph fommas hat can be chosen

 apyrach, whens tends to motek-m onde-physical objects and heir weraction, as they
 and obects, whach can be modeled as proytamming cothes Therefore, in thes ateg,

examme the words in the scenanos and the youmenents outhed hat are howns. Every
 identhed as the prospective oblects:

1. Cicun designer.
II. Usermbendy mberace.
III. Croum Schematic.
V. Component
V. Symbol.

VI Connecting Lines.
VI. Nodes.
VII. Sysiem.

X System Specife Dada (MNAM)
X. Kerwts
X. Sutput homat.

Shee obects interact with each oher, thatonshos exit between them Hat as obects repremts mons in the sconario and the entisted requrements, the frotionditer that
 connect then. Hence the following reatonships are obamed:

1. Designer Dses the UT

前 Designer Laxers shematic.
III. Systom Captures schertatics.
V. System Vablates shemates
V. System Interprets schematics.
ve. System Cencemtes MNAM.
VI. Sysem Solves MNAM
VII. System Analyzes
IX. Un Ges the oxpur fommat.

X Us Oumut reswits.
XI. Component Is-a Schematic
XII. Nodes ${ }^{\text {Smas Schemakic. }}$
XII. Connecting Line Is-a Schenatic.
XV. Resitor 16 an Componert
XV. Inductor $18-3$ Componeat
XV. Capactor 变a Component.

Chearly, whe of the poschbe bbecs hsed wont end up being mokeled as obeets th the sotware. For instance designer object whik not need to be modeke hence it is mooved Gomble tisk
 what was later obtained in bo process.

Fig 4,1 Objects, atributes, behavions and retabonchips

The prevous stage provides a hamework that wobuces the obecos, bject ambutcs,

Vomal Ct is widely regarded as a tree obectoriented programing too bechuse of the ase it empoyed in mplemening the thee frndamentan cerures ofoop namely:
i. Encapmation/ageregation
ii. mbernance.
iit. Polymomhism.
Since sace would not pemit to describe these feanmes, any interester reater is hereby refered to books, which explan the detaned concepts One of stoh book is the 'Professonal /assal Basic 5.0 buminess ohect'

Howeyer, because the feathes are yey imporam in implonenting he obects and functonatites obtaned in the course of thas proce is the ratonal bembe the choice of
 Microsof Visual Sudio 6.0) : wees.

Appling the Microsof Fondation Class (MEC) applation famowork and vanous feature in the version of MS VCt the followig bumazacs the stens undetaken to mpement the design requirement obtaned in the previons stage.

4.2. Step : Creatumg Skebon Appheabion

App Wizard-an apphation geneation wizard provided by the hanewot- creates the
 and frame whoows, a resonce fhe a poyed fie, and others - - ant tatored to specinations.

 phions were chosen.

1. Docmmentivew Atehbecture
iii. AceveX Conmol
iv. Docking Toobar
v. Indeat Same bas
vi. Prentyent Provew
vii 3 B Controls
viti. MEC Sandand
2. Fixe Extersions (*, col)
X. Use MEC as ashared ME
 C for the chases and hes that were antomatmony

Trem the viabat ct fregrater Develogment Envitomment, oherwise brown as
 skebeton applicathon,

 Gmotonal Whedow mena were inchoded and the hamework manages crenton,

4. 23 Step3: Modfying the resonces generated in the skeleton applications

The defant resonce fle crated by AppWizard suphes many of the resoneer nexed, Memuresomee, toobar fesomes, icon resome and bimap resomee in this sep, some of these resonter were modned and aditional resouces ndded Fecisely,
 were modned th the Visul $\mathrm{C}+\mathrm{t}$ rasomes edtor.

ToWR CRCUTYPE, the fllowing were added:
a). Andyse, popmp memo win DC (is resoure id is D ANALYSE DC) and AC (tus resoure id is M ANACYE DC memu commands
b) Oriontation, pop-up mens with cascaded mena commands, Donzonat, Vertical popsum mexns.

TO DR MANFR AME toobar, the following bunons were added:
a) A buthon with the an id number ID ANAL XSE AC (shonout to the Anayse/fic menu command.
b) A buthon wht the an ammber D ANALYSE DC (sinotent to the Anakse/DC menu command.
c) A buton with an anmber ID DELETEAC menh command.

An exar toobser was abo crented (it is called toobox) The contans commands for creang ciment compments. An Adition to the CAbostbly (IDO ABOUNBON) wx generated h the beleton application, two exim daloy boxes were crated:
a) CcompobidgWDD COBMONENE VALUE, which accepts a component value from the user.
b) Crouredg (TDD SOURCE YAUUE, which acceps the vahe of a soure from the user.

The modfications nade to the tolbars mon men bar need hander hanchons (Anctoms to be executed when a user va the uscr inerace sends any of the commands to the progran. However, he hactions are delayed wnithe docnmem whects are ceated.

4.2.4 Sicph: Creatwor Adithonal Chases

 been implemented in the skelon apphcation generated by Applizard. Infact, the System object was implemented by the framework docomentwow archtecture. This
 Uf was implemented by the franework windows objects subt as cohidhtome (chent window) and Cmom Frome (application window).

The remaming objects: Schematic, Component, Resistor, Inductor, Capacitor and the Sowe were created whe thei implenentations listed in the appendx.

However, the char below ammatize their organization as mamaned in the code.

4.2.5 Stcy

 Gowever, modibuabon is necessany to custonize to sut the proee requmements. To
 fus chase:

Favishles:

 the elements that bescribe a cirnit.
b) m tacken - a Chectracker objech, wheh povides a viswa feedback when an whement is selecied.
 of we NMAM.
 side vechormatix of the MEAVE

For the whetwos mplemented in the docmment chass refer to the Combonch header Khe m mbe appendix.
 dose domment hat However, to read and whe he doenments data, and handle other
 amperdx for the listing

 customize the skeloton appheaton, To the ond, Fhowings wera adiod

Fisquybex;

 be wement curently selectert.
 boknon of ancwly cserted shenent

Fiwsemors:

 aypendix
 Debung ing and kumbng were perfomed Dowever, the way these were caned ont was

Chapter Five

Testing, Results and Discussion Of Results

The has chapter explains the processes and the implenentatons that led to the sofware develoyed in this projec. This chapter ams at explaing the tecting and the smatopent results obtaned. This is done to evaluate the extent to which the prope mita obecives have been met.

3. 1 Testing and Results

Kuming the debug version of the appleation (Chroxt exe), the circuil below was inputer and componont values entered accordngly.

Fig st Example Circuil Tested

Ferforming AC andyses br frecuency range of o-50nz step 10 , the bollowng tabe smmanizes the resuts obtaned.

${ }^{\text {Fsmax }}$	
0.9	W以ण0:
10.0	
20.6	
30.4	
40.0	
50.0	

Table 5i kesule Obaned For AC malyses

 resultas.

	Vout
0.0	
20.0	
800	1.42470027925558 E -006-1.53030980497613E-005
60.3	
80.0	$29533529 \% 245076 \mathrm{E}-0063.05958082574523 E 0051$
900.0	3.77c7831905035E-006-3.22426000¢7977E.006\%

Tabse 5, 2 kesmbs Obtamed For BC andyses

Analyang the same circut manamy (by applyng circut rules and theory) yedd the following rexult for both AC and DC (using the same values as previously analyzed by arcuitexe).

Freg	Yoxd
0.1	0.5
10.0	-3.30¢ -007+6.390E-0046
20.0	2.46EE005.9332E-005
30.0	1. 610 E -006-1.38E-0953
80.5	-400E-DOS 3 30E-OOS
50.0	361 E-50\% 3.72 E 005

Table 5.3 manuat resblts for $A C$

$20.65006 E 007.23 E-0063$
40.0 1.59\%008- $1.503 \mathrm{E}-606 \mathrm{~B}$

Table 54 mamal resulte for DC

5. 2 Discussion of the results

The results show that:

 ciment exe shows some varabons, whoh may be due to memory oventows, and

Chapter Six

Conclusion and Recommendation

 factornation was uned to solve the set of cquakons.
 Qumbes on QOR

Tothe end, 统 chapher amms o:

- state and sxpham the problems enconntered h the course of developing the sohware,
* state the program shotcominge and hmitations, and
* recommemd futher mbovemenk, which can ve mode to extend the capabintes of the proyzmon.

6. 1 Project Assessments and Conclusion

There ane wo areas in accessing the groject, thes; areas of shemothe owhes and woubses.
 cimbit comvembonas symbots were wect ho describe the schembe and his has been very 3uccessham.

Wowever, in the area of andyses, the hrogran recorde mone abintes to bonde pasive
 Thee cimats prodneed wrong resnits when tested whic two fated completely The anomaly noticed ta mone chonts may be due bagey to matme bugs, wheh were not dicovered dumg the sofvare deveboment.

By and karge, to can be conchuded that the project bas crebbly acheved tos man obectrves.

 valumbe time was spent koking for matermás.

The following are the shotconnings ascovered in the program

1. The User Gumboe (on the progrm bektop) has no visuak Sedback to indicate the object selected fom the apphcation desktop

Nomatyy the bithon whoul stay depressed nmbitheselecied component is drawe
2. When AC menu commands ss wesmed wice ha secton, he debug verion of the ayphoation assers. Thes is a besp tan needs w be conected

 which can easisy be used to modehed transimors, diodes mad soon
 More accumey with be acheved if User mathace of the ambicaton (chentexe) is
 andyan while the appleaton convers schematic shtered grapheally ino SpleE commande.

-Appendix-

CircutView Header


```
/%
```



```
#%
```



```
#% N8S VE&> - 100%
#\mp@code{wgmaomes}
#mow/h NSC YG<> \00
```



```
{
```



```
    cemumyVewo;
```



```
|/ \mmbues
pmblc:
```



```
    //CReerrackerm macker.
//Operamons
m%b%:
// लvembles
```



```
        pable:
```



```
        mowewe:
```



```
        MBREX Vm@TUKL
```



```
    mwb}<:
        wymal MCmomeviow!;
    W&ef WWELO
```



```
#cum
            Celemesx*mySckctex;
```


"Apperndix-


```
"%%c%d
    CkcoSemechmblemomeme
```



```
    a<< mxeg wobl On\bowscse}ecte,
```



```
    ak mesg von Omb{yec},
```



```
    ##AXX #G<
```



```
\xi
```


/ Whano

Honviel

CircuitDoc Header

 //

Wamble complex

- ppedirdix-


```
#molule <a&kemplb>
##
```



```
#% NSC Vek> W00
#pagmasome
#cxb\|% MSC VER > 1000
wnge mamespace sut,
was CNote;
```



```
    &
                \N\mp@code{wolmbu, mw,}
                wmylw,lowb vaduc,
    };
```



```
{
    EmT rom:
```



```
;;
```


Cstamp Header

Wh/Wh/Wh/Wh/h/Wh/Wh/h/Wh/Wh//W/Wh/Wh/i

```
\(1 /\) Cstanm ckose
```



```
\&
WECLRESERABCSMmp)
/Womatwom
```



``` /IAtwbutes GnTl!
```



```
/Wyembuss
/Wvervides
```



```
3
```


- Appendix-

Cendpoin Header


```
cuss Compomb : pubherobect
}
mble:
    / 0%nctucmos
```



```
    OERXRESERUAUCen@omm
    #Nmbubes
```



```
    ONode *a m\odeCmuncem;
    #%есви%%
    wouk wowem\,
    worduscmmect%,
    vimat wom SembmetCAmbuve Sam;
    /Tm,\mp@code{comeramom}
W/W0%s Combwin}
```


Celement Header


```
/ Cobemend dechamben
```



```
dass Commen rabio Cobyen
!
```



```
乡घbka:
```



``` DECARE WORAR(Celmmm)
//Ambumes
```


－apperirdix－


```
    &\sumer m wymbobwos:
    Hyecabm!s
/mbu%c:
```


Ccomponent Header

／f
／Ches Q Commbencen

if skats Cosmbqunent bobarabom：

；
／／Conatuchotuesmobm

Commb\％\％m及

vitax vok sewpo
／A 细butes

 0，

乡口马⿸厂：
Wpermberas
book Selvale；
凹on Sembal
groctux：

-Appendix-

pobe:
Gonam hequexcy;

CResistor Header

(
pmbe
/20\%

vomaz wod Soup ;

CRembry
//abubues
//Opemimb

proveral:

pobic:

;

Cinductor Header

hemen name Cbmber
/Amse ofsas Componem
वns Cimbum : pable Composent

