DESIGN AND CONSTRUCTION OF A DIGITAL

 ELECTRONIC CLOCK
BY

KAREEM. K. ALABA
93/4103

A project report submited IN partial FULFILMENT OFTHE RECUIREMENT FOR THE AWARD OF BACMELOR OF EMCHEERING (B.ENG)DEGREIN THE DEPARTMENT OF ELECRICAL/COMPUTER ENGINEREING, SCHOOL OF ENGINERRING AND ENGINEERING TECHNOLOCY, FEDRRAL UNIVERSITY OF TECHNOLOCY, MINMA, NIGERIA

DECEARATOK

 whion was totaky designed, modeked and constnucter by me, under he supervision and gublane of my superisor in person of mos t. Danuma

C\&RTMKKATBN

This is to certit that the proect ited "ESTEN AND CONSTRUCTON Or A DIGTA ELECTBONC CLOCK" was camed OU by KAREEMK ABABA under
 Enginesme Deparment, Federal Unversity of Technoboy, Mmna, in panian SWhment of the reowements for the award of Qachelor of Engimeering \{e, ENG\}

ENOR $15 S A$ DANUNA PROMECT SUPERVSOR

YR ADEORAN Y. A HEAB OF OEPARTMENT

Or 3.0 OM
EXTERMAL EXAKMMER

Sign \& Date

Sign \& Dak

AbMROYAL

The proked is hereby approved in acoorance wht be sequirementa of be

 Engineameg.

SIONED:
ENGR L. DADUMEA
DATE

SGNED:
OR. Y. A. ADEDRAN
DATE
(MOD. EnECTCOMP, ENG.

DEDICATHO

 have andervoused in me infme search tor knowdedge.

Wy preates growtude, hanks anci teramoe goes to me most bigh who in He intmbe mercies made thossible for me fo anheve my goak acabemicobly up thic tevet
 \{s using to meet my physical neexs. Forever woud ba gratekn to them.

Woud not hoget my promet superisor, Engr. Danjuma, who dw hot her me ane
 of motwation throughout my shay in the deparment

How much woud a aso mention of some of my fiends both home and in schook
 Ramamat, Kota, Gank, Wast, Mumin Fredrck, Opeyemb, Rem, Emoin, Ynus, Olakye, Popola Bokamo Ahaga Ausat and an those 1 samot memton here bue to space conskrands.
 for heir contubtion towards ous camer and pray hat may Amighy Ahah sower His blessinge upon everyone of them. (Amen).

Iplend for the forgueness of he hose hat have helper in wne way or the ober that have not beem mentwnat here and bray hat may Amighy Alth be with evey one ot us (Ament.
 indicate "Tme" of the day.
 crcul) whin generates a fewnency of thth. The trequency diver circuit procsss the signal to give an outpu of tha. This is fed ino the come acumbithr of he seconds
 minute secion. Agan, when the display is 5 g minutes, ouput signal ss sent to the hour section.
 gny outph signal fom the minue achmultor.
 regures a volage between 2.48 and $5 v$ for th operation A regulated voltage of 54 ob supply is used to power at he los used in this project

TADEE OF CONTENTS

CoNTENT $\xi^{2} \mathrm{~K}$
He
Decharation i
Centicaton 3
Approvas \%
Dedoaton is
Acknowledgment v
Abstract vi
Table of Conent Wi
Chk PGE ONE
minoduction 4.3

1. 10 Ams and Onective - 3-4
1.20 Wterature Review 4.7
2. Eary Amflablook 4.5
122 Fesent day Cock $5 \cdot 7$
CHAPBERTMC
QROMECT OESION ANO THEORY
mooducionF theple of Operation 8
2.1. 6 System Over Vew 8
2.1. Tme Qase Secton §-1角
2.2 Clock Froquency Cabuaton 12
2.3.3 Operaton of 555 Tmer Connected ax Actable Mubibretor 63-15
2.2.0 Fip Flops 15-16
2.2 K Fopmbos 1621
222 Gombers 21
223 Denal Anabsis 22.24
23.0 Frovency Divider section - 25
2.4.0 The Conter Accumumbr sechon 25.26
2.今, Seconds ano Ninutes counter 26
$2 A 2$ Hou Coumer 28.27
24.3 Resethy the Kours Counter 28.29
250 The Decoder section 29.33
25.1 Designof a seven-segmen Decoder 3031
2.5 .2 Choice of Decodermmer 33
28.0 Dgital Dmplay or Readod - 33.34
 $35-36$
27.0 The Power Supply Unt $36-37$
CHAFTERTHREE
CONSTRUCTON TESTMO, TOUQLE SHORTNC AND COSTMG
3.1. Constuction. $39-40$
320 Testing 4)
3.3 .0 Trowbe Shouma 40. A
3.4.0 Costiog Analysis 4142
CHMWER FOUK

a. 1 Discussion and Suggenton
42 Momenance QA- -5
4.3 Conclusion 45
APPENOXXA 4643
AलPEMDXX 48
Reterence 49

CHARTKRONE

INTRODUCTION

IKTRQDUCTION

In the worb today, the increase in teobnobogical growh has made possib\}e the constwothon of measumg inskuments wim a high degree of acouracy. As science is intmrested in makimg hie nore conversent for man, is is therebsk
 human endeavors especialy in ab laboratoy work accuracy is of parmount importance. Theretore measumg instrument must possess bigh degree of acouacy in whion cock is an example of measwing inctument whoh has foumb usage in the sociey.

Sime the use of tme can never ba ignoratit is therefore necescary bo constuct a cevice that wan be used bo measure bme. Gomm down the memory fane here have beisg stages of deveboment in constuction of a whek. th the many

 worimg for several hours, he heth of he gear woud wear out hera by affechng the accurcy of the cook was also atected. Eeside, the accuracy of the cock was also affected by the fricton between the moving mechanical wan and bis fesuthed in the sthmess of the gear system These were the problems associated, wht the construction of a chock in the early days.

Nowachys, raw grom in the electronios (digha) word makes it possible bo constucted a cock wht a high degree of acouracy and one that is fees tedions in is use hormeasurementas it in in the word boday, dightat enantronics is he order of he day due bo many advanages asaociakea with dighat system
such as figh degre of acouacy, high speed of operation and sess power conswmption, hence there is need tot a clock to be conctucted waser on dibim pmomples.

Dighal system nomaly makes use of wo possible sazes denoted a "Eby"
 sablo operate in abmary maner. hother wonds the semiconductors are based \{o operate ony im wo logic stake. By this mode of operathon, problem such as Themat mem away mantamg a fixd quescem pont ctc common when anabue Sysem are made void Therefore a chok constuctedbasedon these pincipes wh be more acourte and ethciem such a cock is said to be a DIGITAK DISPLAY ClOCK.

A dignt display cock is a simple elecronics deviee wh make use of logic cicuts ho coum and chatay he hours, minutes and second of he day. The chock

 e one puse per second ; whon the basc coun of the clock the coun acoumulath consists of decade counens that kaep the ract of the mumber of seconds and mimut hom 00 through 59 and then resets bo bon outpu of t. puse per minute and 1, pute per respeothely. The hout counter counts romat:

 examples of such waces in whoh it is used are:
 recorbers and players bo detemine the time fequired bo complete a process
, a in reconding of determing the capacty of a recorbed cassetke.
(b) Computer symsems if is use to tetemme he bme taken k complatc on operation such as tomothng a disk

 the time requited to contm the seswfs of a parbubar experment.
(d) In sponts: it is used fo debembe when the bme scheduk for amakoh,
(e) Ho \#htary Weamons ; is use m making timing bomb and miseltes

The ams and objectues of has proget are
 fromo 1 hour 12 hours and reses to a hous.
(i) To design a chok of a high degrea of acoumcy less tedious in its use for measurement, consumphon, high speed of operabm and very cheap

TWKK
One facet of human conscousness, wamaness of "Tme" . Human being heethe passage of tme in their personal experiences and abo observe it in their physicat envionmemb h has beimg expenenced, as a one-way now at a pace he whow enough to be percepthle. People teen, think and act im conscloumsess of the how, The Imeversibiny and inexormbily of the passaga of tme is bome on every human being by the tact of "deat". As be Enghth ackage says "ThE AND THE WATs FOR NO NAK".
 seonds tokng note of he fact that, 24 hours make a day. Abthesk hack, onighates

Voreso, gong down has memoy lane there have being dherent fypes of method used in the eaty generation in detembing bime of the day in whoh swom of mem ase discussed bebow.

SHADOW KLOEKOR SUNOHAKS

The Grsk device tor moicating "ThE" of the day is "ShabOW ClOCK SuhbiAls ${ }^{n}$, when people bbened hat tree and other obeck cask shabows whin move wim sum.

Dhelsk , cask, shadow on maked arass of the ground as he sum moved. The sundiat work ony on shmy days and when if is fight but inethetwe at nigh and on a moudy day.

Warm Clock

The probem of teling tme mit mint or on a obudy was solved by the ancient Egyptans whi the use of "Water Clock ". The water chok operate by measuring Water thet boks reghaty fom one conamer to anomer in ha5ADYz, the Chmese had an elaborate waterwhel dock, and later they buth a 40 -foot (2 -matre high pagociaHe observatoy water chek.
 codser cimases and coud not easily be used no menoy objects such as ships.

SkWD KWASSES

Along with the develomment of water chocks sard giasses, whon measured tme

 stant the sand poung. There exissa kather case with four sand ghases fited so that

WECHAWUCAK CKOCRS

The constuction of mechanion cock began in the 1 A the centuy, Abhough there wera
 cocks. They han no faces or hands to tok at but a bell hat hang a humber of kme ach day. More advanced versions of behl wock were diven by a weight atached to a cond that was wrapped around a cylmon. The weight puldown the com to rmathe helt but suck clock were not very reguar or eftcient.

The "pRESENT DAY CLOCKS" wh hands and a blat developed and powered in diferent ways.

FKNDUMUM CLOCK

WATCHES

hn 1500 AD, Peter Hekem made the hsk wathes in Cemany. They were abobrate, expensive hoys of the not kat kept bme quite poory.

ATOMC CLOCKS

The atry clock were not very regubar of accurate. They were aftected by graviv, bcation, movement, wear, and temperabue, and they nembed conctant comectom. A pendum chock woub be of hthe use in a bssing whip at sea. The movement of such
 me b hanges of atone naricles or he movement of bodies in outer space.

For these purposes, scientist nemed a sheay ano bekmbed sandards that abo were being atheted as lthe as possbie by extemat intwences. They eventualy found the ancwer in atoms themseves. Scientists detemmed that the reguar padictable
 coud tuncion as a tme standad.

The no of osclations of element caesimm in one seond is $9,192,631,77$, h
 he dehmbon of one second, Yaus are now offolal measured in second, whiob at one
 corminpuposes. The atomb cock ony in accurabe by one second mmany housands

CHAPTERTMO

The mosy besic representabon of an wectronic chock is shown betow in has. 20

Fig. 20

The dyiat obok is a sysem consming of byic gates, be-fop and subsystems
 takes piace in he frequmncy divider, coum accumblars and deaoder sechons. Storage
 ouput is the dighat tme dioplay, There is a power supply abs to keep me systen
 are discussem in the folowing sections.

QASY ORERKTOMOF SSETHEEK

 input vokage of the comperator is rekered to as HPESHOLD VOLTAGE and the menting input votage as he CONTROL VOLTAQE. When me RS merbig set, ie wh a voluge equal to the suphy voltage at obput Q and outpu α at Ow, he high volage

 Df giveg way to the capachor noterse exponentaly as shown in (ig. 2.11 (w) above
 Suppy votage, immednatey ha volage is slight geater than thy, He ouput of te
 Q now becomes high (15v). The proces is repeated so long as he suppy votrage

fis importank to noke thak the rate at which the output wotage swithes state depends on the rase of charghy and diseharging of capacitor C. Theretora, F and C in
 gxponentat in nature as in the same volage across the capactor.

 The fequency fomula for the NE 55 timer is given as

$$
\tilde{r}=\frac{p}{T}=\frac{14 \alpha}{\left\{\mathrm{R}_{3}+2 \mathbb{K}_{k} \mathrm{C}\right.}
$$

$$
=\left\{A A \times 10^{4}\right.
$$

$\mathrm{B}+2 \mathrm{~F} 2=34400$
A standar tesishe value of byn ss chosen for R1

$$
\begin{aligned}
& =\$ 4400-880 \\
& =\$ 3720 \\
& F 2=\frac{13720}{2} \\
& =6860 \mathrm{~A} \approx 68 k 0
\end{aligned}
$$

 of buer comparator is comected to the threshot input (pim b) anc these two poink ase now commeter acoss capactor C. When the votage at pin 2 is atble tower than one

 orrent hows though the samsistor and will he cument from the suphy fows mrough R1 and ha to charge up capacior C. As this capachar charges up, the votage across h
 invertme mput of the hwer composibr is grater than be volage hrea at the nonmueting mou and the ouptu of the comparato goes low This has no effect on 0
 Then, the theshola volage ss sighty graake than the vobage at pin 5 . The tums the

 Gound as explinem on hs basic opention. The votape at ph 7 is gronder meanny hat capacion wh now discharge theugh R2 and wa he discharge fansistor to groumb
 Tha, the uper comparator ouput is swthed bow. But the does not afect the output Q. The vollage across C tails to F Vo and slighty below the ouph of the bwer Comparator hen swthes high. The Rs fach is then wat and the process is repeateb. The contmues charging and dishbarging of capactor C matus im the rectangutar

volage across capacibr C abodecreases and increases axponentely am shown he the

 contrat wotage. If the reset terminat (pind) is connected to the ground, it will hot hactwate the whole crout and hence th aways conneced to the supply terminat as shown hn the frue above.

Howeves, hoving caloulated the values of Rt a $6.8 \mathrm{~K} \Omega$ whth chosen values of a
 This NE 655 ther is able to finchion as detemined. Besides, h order to generata one
 Comers im cascade for fequency dwish

$22.0 \mathrm{FM} \mathrm{F}_{\sim} \mathrm{KOP}$

 They are cinum with the ablty to retmpresent state athe oupht when the hout atates are harged. Sum chrumane COUNTERS, REOISTERS, PUSEEGENERATOR Etc.

Fig 22.0
The are wo bpes of seovental crobt and bey are:
 depends upon the other in whot is mput signas onarge and cam be aftected at any matance of trme
 has abehavour that can be defned from the knowerge of is signate at thacrebe metanss of time.

The sequenthal hogic chcuiss which consists of memory chement are comer

Fio-fops have the following basio eharacherstics.
(i) They have the abimy to store one bit of binam intomatom.
(i) They have wo oumut wheh are complementay hane hor he nomatvane and the other for the complementary value of the bis stored in it

A herfop chcut can mantan binary skates indehnibey (ac bong as powat is delvered to the chemb wnd drected by an input signat os swich state.

 fefmemem of the R-S mp-thops in hat the indeteminate state of the R-S he-fop is

 oparaed smbunneoushy. The wo asynchonous mpus atfect me \}opops independent of the cock and the tho synchronous mputs le 3 and k for sxample.

Fresent State of the Oumbut	Next shate of the oupht	mputs	
0	$Q(t+1)$	3	k
0	0	0	*
0	\uparrow	1	x
1	0	x	β
1	$\stackrel{1}{1}$	\times	0

Table 2.2.\{(m)THE EXCIMAGNTABL E OF A 3 K FLIPFLOP
From the table shown above, it cam be saen that when $3=0, k$ can ember be
 that the 1 mput cetemmes the output This taso he case when $\}=1$. When k
 dekemines the state of he outwt. Hence x represent he "DONT CARE"

The gresent state on the table represents the stake betore the wocurrance of the cock pulse, while the next stats is the state of the ouput of he fipubp ather he ocomence of the cock puse.

 diatram, a skate is sepresented by a civele and the fransion beheen skaks is holicated by drected hnes connecting the cichas. An example of wis is shown in

STATE2.2. ASTATE DAACRAKOF A LOCLC COUNTER

The binay number inside anch circha wenthes the shate tz repsesents. The
 vabe causes the stake transhonis labeled frot he number aher the symbolgives
 to ot is labebd th meaning that the sequentab chcut is in apresent state wo when $x=0$ ard $Y=0$ and hat on the termination of the nex pubs, the circul poes to the
 hat no change of state occurs.

Besides, the stak diagram provides the same mormubion as the kuta kable. There is no diterence betveen a stake table and a stata diagram except in the mamer of represencuion. The stme dhorm gives a piotomat vews of a shate

 to deseribe the behaviou of the logio state of a the-lop. th is an agebraic
 is obtaned tom the k map. A state equation is simbim in form to a he-fop characteriatos equation, accept that it spechies the next atake condion m tems of
 denotes the next stata of a ferfop, and the righ side, a Bookem function hat speches the present vate condhion that makes the next state. An wample of a stake equation is

$$
A(\{+1)=\{A B+A B+A B\} X+A B X
$$

of the equaton is met mer the ocourence of he cock puke. The bme the Art) chows that it is appleable ony im obock seguentai circuis.

Couter cheut is a sequental cirno which goes mough a prescrbed seguence of states when mput pukes ate appled. These mput puses are cabech "COUNT PULSEs".

Councrs generaly obey he nue 2 " when n represent he number of hpfops needed k implement a counter has wit coum hrough 2 " m mumber of sates in binary. The ingest binay number counter by n ascaded tim-zops has a decmal equivalent of 2^{n-3}. St shouk be noted that counters can be designed to skin some states tepending on what is in the mind of he designer, Suck countmrs are called "RUNCATED COUNTERS".

Thers ane wo mab categoses of countess namek, synohonous and Asynchonozs counters
 are conected in such a way that hey are nggered amost at he same whe by he same dock puse \{parabs connection\}.
 Thops. The disadyantage of the conection ts the spead which is bw since hes outut of one tip top s ssed to triger the other and so on, which resubs in a cumbake setung tme.

What the necessary infomaton on - 6 har-fops in the previous secton, inerehore we proceed b desthn counter (mod- 1 O counter) Wecabe counter used hor this project.

State diagrams (Mod- 10 counter)

(in)
K-maps to implement the state table
(iv)

Mod-5 counter

2.3 FEEQUEVCY OWIEER SECTOH

Fig. 23 Feguency owider ormb

2.4 THE GOUNT ACCUMELATOR SECTON

 seconds from wo though 59 and then resets to 00 win an oukut of one puse pes moute. The moutes ounter receves the one pues per mimute ouput pube from the seconds counter as is own mput and then count the number of minutes fom 00 to 59 and then resers to 00 . The ouph of the chrub is one puse per hour. The one pube per hours conter cons fom ot hours to th hous amd hen resets so 0 hous.

The couters used m the seconds and mones cond acombiabore (0.59
 g countr). The decate conters ane coupled whe foblace of the display The moduo - 6 conker is coubd win the 10 s place of the displace. In me mamer,
 is a fip in this case. The decade conker is couphed to the s'a phese of the display whe the tho-fop is convertex to the tox phee of the display,

The seconds comberic wo 3901 C conners. The frot is wiyed for adeade count bproide me knim seconds. These wo countershtectvely cary out a coun 0 0-59 mod her reseks. The output is one puss per mbute whin is apphed to the minte counter. The minutes counters are cxacty the same wh an outpur of one pulse per hour. The second mad minues comber, cirwits shown behow in fe.

 cobnker in the unts positon. The output of this counter is hvened by an ic inversion, to provide the unt hours teset so mat at 12.68 .59 , the dook resets to

is discissed nebw. 787E16
(i) Logic Symbot

MODE OF OPERATION	MPUTS					OPS	
	ASYNCHRONOUS		STNCHRONOUS			Q	Q
	$P S$	CLR	CLK	3	k		
Asynchronous set	0	1	x	x	X	;	0
Asynehronous reset	\%	0	x	\%	\times	0	\%
Prohbited	0	0	*	x	X	$\}$	\%
Hold	\}	1	m	0	0		ange
Reset	t	\%	L	0	4	\%	\%
Set	\uparrow	\%	M	\}	0	1	9
Togye	\%	1	\%	\uparrow	+		

(i) Truth able X-imelevan tve ck puse

Fim. 24.2

The fogic symbol is in tig. 2.4 . 2 (\} above, showimy he wo asynchnonons input (the customary Q and Q ouputs. Aso the detailed thm table is shown m my. 2.4.2

 the clear imput the thenop resets. This feature is used im resebting the hour counter.
conected to the clear input of the 747 A the clear nems is active and merefore the

 74 OO comners back to 00. However, thare is an active hw inverter at the aA ouput which is actwated and hermber there is a coun of on hage. The hobss comber therbfore sesets from thous to of hours.

2.5 THE DEGODER SECTOW

 intormation at the ouput of the counter are in binay fommerefore, it necessary
 interpet and a crout required for this pupose is known as a "ECOOk\%".
 Intometon fom nimput hes to a maximum of 2^{2} unque output bes. If the nbt cecoder miommaton has unused combinatons as is the case whe he speciah

 equat to 2".

A seven segment decoder is used for this project. the a - to -7 lines
 seven semment dsplay.

2.

OENAPY DIGT	WPUTS				SECNENT $\{0 \mathrm{~W}=1\}$								
	Q0	Qc	Q8	QA	${ }_{3}$	b		c	d	\%	\%		9
0	0	0	9	0	1	,		3	\%	3	1		ξ
i	0	0	a	1	0	,		\%	\bigcirc	0)	0
2	3	0	\$	0	1	,		0	\square	ξ		,	β
3	0	0	1	\%	1	1		$\stackrel{\beta}{1}$	$今$	3		0	¢
4	0	\%	\bigcirc	\bigcirc	0	1		$\stackrel{1}{1}$	\%	0		\%	1
6	0	ξ	\square	?	\%	0		\%	\%	0		\%	1
6	0	3	1	0		3)				1	\$	\dagger
7	0	3	1	?	\%	1		\%	0	,		0	0
8	\}	0	\square	0	ξ	1		\uparrow	;	1		\ddagger	\%
9	1	0	0	1	;	1		1	\$	0		\%	1

Table 2.5. T Tublabie for ha seven sebment Geoodet

As is can be seen in fig. 2.5.t. fons is able bo implement the circuit using single scate megrated chrot, the number of componemta requred ts whomons. For example, the project requind six sevensegment deconers. |f six of such crevit ake to be molemented at he end of the ©ay, the cosk of production wouk be wey

 decoder. If is a decoderdwer used to drive a seven sepment display in his project

Fig 2 5.2 A seven segmem Decober (7ans ahtic

2. W DIGEM DSK AYOK READOUT

The display employed in this poiget is the seven segment disviay which is wioby used as a seavou for moden dipital egupment.

There are thee ypes of seven-segment display, These are
(i) Wht eminmy diode \langle LED\}
(m) Lquid Cystal dsplay (LCD) and
(im) Gas dscharge display (COD).
 embung dodes (ED) constucter onaveroboathmageomebratpatten, diphing
 Thmmated as show in the tigure 26 bebw The LED was chosen because t was chasp and ayablable in the market.

 connecter together white the cathodes ane hdependent as if is shown in th 2.6.
 posthe volkge The cumen howing throuh each dode must be bmined ko abot 20 m whin is the maximum amoun of curvent hat must pass brough eack for sabety. Theretore, in order to prevent cument passmb hrough hase whom, a cumen liming resistor must be introduced in series with each dione at then raspembe canoode.

Fie. 2.0 m
 in the diode is nos va 53.0

Where Vs \{supply voltage\} $=5 \mathrm{y}$
d (diode comment $=20 \mathrm{~mA}$.
(a) For Vo (mm) of fob
from,

$$
\begin{array}{r}
V_{s}=V_{c}+V_{b} \\
V_{b}=V_{s}-V_{a} \\
=\left\{b_{0}+V^{2}\right. \\
=\Delta y
\end{array}
$$

Thus.

$$
\begin{aligned}
& v_{y}=1 p_{p}
\end{aligned}
$$

$$
\begin{aligned}
& =200 \Omega
\end{aligned}
$$

(b) For $V V_{0}(\max)$ of $3 V$
from.

$$
\begin{aligned}
V_{x} & =V_{0}+V_{n} \\
V_{x} & =v_{s}-V_{b} \\
& =(5-3) V \\
& =2 y
\end{aligned}
$$

Thus,

$$
V_{x}=\left\{R_{z}\right.
$$

$=1009$
Therefore, me ramge of the valus of imming resistor is
$R 2 \leq R \leq R G$
$1000 \div \mathrm{R} \mathrm{Q} 200 \mathrm{O}$
$\therefore \quad R=150 \Omega$ was chasem.

h onder io remove he stress hom the pover supply unt , mis poiect design

 cursent being drawn by the circut together accoring to the Kirhots current haw. The comection of the powey supply as shown in tig. 2.7.
 the dione reother to produce a on volage ontwn Some capacitors of spechea capactance values were usso to remove neples by way of huthmy. The wo 7805

 replay, decoder and accumulator sextons while the second $+5 y$ is used to power lime base and frequency wider sections.

Fig $2 \% .0$

3.1 COKSTKUCTOM

In the conchuction of each of the sectons that make up the Dichral
 used hathe proper is texthed to patichar one Tr k. atter conshermo he problems associated with the interaming of wheranh hoios. However the constuchin of each of the sections are discussed below.

A regutated power supply sechion was conchucter on veroboard uming
 27 of the chapter wo feedmy a bridge secther conctrucher by fourfa genera\} purpose dode and he ontut of the now mer by capacher Co, whoh ta toou yf.
 because the fotal cument congume by the, whe chout is more then 1 , and wits
 ouput of one woud supphy boh decoder and hen secton while the second one
 stage in lie clrout.

The puse geveschor was conctucked uming 555 hme as an AS TAEm

The requency divider secton wes constructed using threa dacade couner

The coum accomuator Were constuchedusing decade. Counter The unt
 fom phet wim pim 2, 36, 7and 10 grombed. The tens of second and minuse are
 7 grounder 乡im 2 and

The unt of hour was constucted wh a becade couter wht an hwerter at pin Koutput while the teng of hour was conctructed using a hip-fop, Anv gake and inverter.

The decoderfover and dimplay section wets constucked using the outph of the cout accmmabor as is own inputand a hmbing reximion of thon were used to fmit the current from whint of the decoderdruer to the sever-segment dephay which were constucter using the ligh emithorghodes.

However, the stages were armoged han sum way hat he outpu of one stage serves as the mput to the other stage.

32 TESTM

Eachothe section wese frst tester one whet the obser on abead broma ank considerable the was given to each modul under test fo fespond as desired so
 disconnected from the breadboarb and then kansterred to the veroboard for permanen sobderng. And proper soderng technoues wese casebuly observed.
 section by multmetre to make sure the they are workig as desired.

3.3 TROUELESHOOTMQ

It is dested that in mproving the maintenance comue, one shobl aso be

enumerated and simple sugnestons on how to go about rechymy themenisied m the table below

FAUsT $\mathrm{S}_{\text {S }}$	POSSBLECAUSE(S) succeston	TOOLSEQUPRENTS TOUSE
Supply mans on, power stppy not working	Fusa might have got bumt, os tanchomer bumb or any of he componens in the powst sumply section, Camy out कheck on each of thess as appropriaze	Wubli-meter, Oschbscope, whbermg Tron, \{eadisucker
Supply maim On, power supply unt working but clock not working	Seven-segment heD imdicator might have been bum, countas mignt have Gebed, clock generator 10 mght have faned. study the detal cirn diagram and cary out fatit kacing as 	Mubmeser, osciloscope, sobsernตg そron, \}eadsucker, 1 C axdaeror and pher.

Table 3.3

3. COSTANAGYSK

 The \{st mobues ony hose components used in the hat produchon and exoludes those that bumt or dmaped dumg the coume of groduction.

4.5 நISCUSERON AND SUGGESTOW

The prohet is amed at design and consturtion of achek with a high degree of accuracy and one that k hess tedious in is use bor measuement. The gim was achever hough wht some technical stheutes.

Problems were encountered in the area of getmy an accurabe puse
 the 555 bmer that was why the bme base was mabe to generate tono puse per seond and this was diver using thee decatse counters whioh their blal outphe Que 1 puse per scoond whoh is the requived puse tor coumbmo by accumblator. Woreover, problem wese encoumbered in the power whit section because the puput
 proben was sohed by using wo seguktors m maralle h when the duput of one feguator wits seve decoder ano dmplay module whte the second wil serve he fack of the cirwit. Aso heat shk is used for the regwabr hC to condwot he heat away and feb are used in suck awey hat they are aranged in numericat order for the display chent

Besides, in the area of getma components for he priact work shes sone difubles were mek. When some components gets bumt at the cobsse of
 a hot of the mbl cauces delay me constmotion.

However, atter the sathtmety iob that we have done the possble fubse mprovement on the proct are as blows:
(i) incompration of has mode selact swith to sesel the hour and minule dight
(i) The ciear reset swbh or buton may aiso be incomorated.
(m) The atam clowit wich wiz operabe houm,
 of bis projech, hereby suggerkin
that the unveraty or depatment shobl embrace the culure of hebing ams

Besides. adso suggest, that swonts of the deparment shouk be made bo start embarkmy on min project wot from 300 heveluphand. This wigo aboy way in exposing and prepanm the elecrimat studens tor ther hat year propect.

 Ghown for swomens.

4.2 MAnt

 m fom of hook or measumg mstruments) is very necessay and mporank since contmous and constant mambenance of eabmments kads to inceased me span of such equimems mon hemee higher probubimy
 for measumy tme, Hence, the need to take gown cara of if is mandabory to generate its durabimy.

 oveneatms. to ab proper heat sinmbl by tansfomer and oher heat generatimg componemts
 or casing of the cock as exectronics components do not compathbe with them.
 the clock from famg which coud tead to the mathunctomitu or compleke bamage of the cock.
4. Always eneuse that the power cork toes not whe as kinhing couk damage he oom and can couse shor cirout

8. 3.0 ONEWUSOM

The aim of this projec has wnobbteoly beat ambeved hough some biscrepancies is aways ocur when the clock is comector to bhe power suphy mon Wis is due to fabe figgermg of dighat ic used and this conis be overcome by alowing the system to atraim a staday state. That is ho say that the required chon has bean designed, conshucted and it is woming satistacony. The dexign was camed out by he knowedge amuitak hom Electronc and Mighat courses whered in out deparmemt as well as industriat traning

WEFKRENCES

 \}" edmon, Von. 28.
2. Donbuy and Conmetiout (187\}) "The New Book of knowisge", Grober mooppormed, U.S.A.Vol. \{8t.
 orgmamaton And Design", bm Whey \& Sons, 3^{*} edibon.
A. WeClusky. E. $3 .(1973)$. The avobion of compubing machimes, andsybem Joumat, New row, Vol. 50
 Edyons, New Yok, 4 edthon.
6. Wmam, 3. S. (109) "Oight Cimuts", The Qoou Heart - Wheox Company. inc.
7. Stong 3. A. (1891) "Easic Digital Electronics", St Eomundsbuy Fress ha. Greaz Eman.
8. Jhm (1980). Dight Hardware Design " Mo Craw Hot

