DESICN, CONSTRUCTION AND TESTINC OF A SWITCH MODE POWER SUPPIY (USING FLYBACK TOPOLOCY)

BY

AJAH CHUKWUMA

93/4089

APROJECTREPORT SUBMITEDINPARTIAL FULFILMENT OF THE REQUREMENTS FOR THEAWARD OF BACHELOR OF ENGINEERINC (B.ENG.) DEGREEIN THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY, FEDERAL UNIVERSITY OF TECHNOLOGY, MNNA, NIGERIA

DECLARATVON

hereby declare that the profect was wholly and solely conducted by me wher the wervision of Mr. Brau Athen of the Deparment of Electrical and computer Swincering. Federal miversity of Technology, Mma. Dume the 10981099 cademio sassion.

CERTIFICATION

Thereby cathy that have supervised, read and approved that monet work which dem adequate th scope and quality fer the partan fulhment of the award of a bachelor degree in Electrical and computer Engineering

DEDICATION

The proyect is dedicated to my beloved parents, Mr, and Nrs. Ruhe Chukwh, twy lovely Brohers Andhony Fredrick, Josehh, Emmanuel and my lovely Sixter. Ngozi,

Aso, wo the Amphey God, who in his infinte mory yovided me whth good healh and success in my camer, 1 dedicate this

TABLHOTCONTENXS

TTEE BADE
ФECLAREXGO ；
CERYEGCKHOK B
BEDE CATOM 舜
KCKNOWMEDQKMEDT nay
Abstracs 数

 \｛－2
 3
 （ α
 6

 ．
 ． 7
 8
23 हECTEMCAKEK ． 9.$\}$
 in
2.4 CABKCTOREXTEK ． 3
2．A GWERATONOFACAMACDOK $1 / 43$
 6
 $3 \times n$
2.6 TRANGOQKMEK 19
265 THEOKYOT ODERATMON $17-18$
262 TE \}
 19－20
 20
 2 3
2.8 TYES5STMKEK 22
 22.23
 $25-26$
 23
 $27-28$
 29.31

3.3 CONSTE日GTON： 32.33
32 TESTRQ： 3
3.3 БBC USSOW OF EKSETS 34
C
\＆． 1 CONELDSOM： 35
4．2 KECONKEDBATOW： 35
4． 3 REBERENCE 36
and rehabe, They contrbuted moraly and in some occasions honcinlly to my suecess in the unversity. They are: Andrew (Dre), Kwasu (Mames), Chim, Lynx, Salawdeen, Chbuike, Vhian, Alozie, Benjamin, Chika Anthony and Olowashenn. Lastly, lowe spectal thanks to the fectures of Dectical deparment for the ir immense contributons towards making me what am today.

ABSTRACT

Fresented here in the project is a swith mode power swply wing lyback opology.

The mans ac input is fres recthed drecty ftered and then transformed to the Wered atrble outpon.

Thes is amed at producing a power suppy tat is compact, highemenency, high veght mod wond suply bot negatve and posinve volages to electronc chrits no devies that use de voltage for theiv operations.

CHAPTER ONE:- INTROUDCTION

I. INTRODUCTION

The prohtoration of LST and VLSI temblogy espechally the development of the mivoprocessar and semi-oonductor memory, has spawned a genertion of elec-

The power system based on the hnear series-pass regulned design is bulky membient, and obsolete tor most of today's system designs. The natural trend, therefore, was toware the developanen of a maltsize, lightweight, highy encient power system in the fom of the of the - line swithing power supply hence, the developmen of de-de power supply.

The de-de converters are widely used in regulated power supphes and in domotor drive appleanons.

Figur i. 1 below, shows the bock dagram of de de converter Onen the input to these convertas is an motephated do voltage, which is obtained by rectiving the the whage and therehre t wil fuctuxte due to changes in the lincovolage magninde,
 system

A do-de converter system may be of many designs, swh as halfbidge, hy brek, or forwar, depending many on such dechomg tacors as cost, perfommen, and designers choice (3) ;
 whiversal among ab\} he togohogies and, abo the topie of the project

 the swiching efement whegunte he mompt (7)

1.2

 AMS AND OBFECTIVESOE TIE PROIFCTIt is cyident that mow of today's electronic beviess, such as printers, system unts, television scts, compact dise player sets cto, depend on componbilly and portablity of the componexts. In view ot this, the need arises that a power sumply that wil stand the test of tme and quitty that will povide aconstan obypu voltage irespective of the rabations in the input volage mad the low, be produced.

I took the challenge to research into this when discovered a rather mfornnate Situation, that very few engincers are college-traned bo become power swpy chgnees, mad even the ones who get involved and make it a carrier do so ether due to circamstial mvonement or by demand.

Ny researh led me mon designing and hmproving upon a power supply that is compact, sophisticated, ehcient and hght welght whoh has a high power - to volume density ratio whth no compromise in performance. [3]

 combonents were mbroducek into the ciront

 approch wo thes, shouk say hat he dix a gook fob by reduchng the component

 next chanor so ac bome the work easily conprehenthble

Behow are the respectre chaptes mot the ten smmames

 RTM supprssion, Recifonton, peration of the brome rebher, capabor Whes, the swichong trasistor, the transomer and th theory of operaton, the
 Op-Bmp ank the oxymu hter.
 proct, monso the resut obnam ame disenssed.
 bobe conculed.

CHAPTER TWO SYSTEM DESICN

2.0 INPUT SECTION

As aforementioned in the past chapter, an off-he-line switching power sumply rechines the ac line directy withont requing a bow-frequency, line isolanon transhmer between he ac sumb and the recther. Shoe m most of ways electronic equipment the manufacture is gencrally adressing an internatonalmarke the power supply designer mact use an imput civent capable of accepting all word whtages, nomaty 90 to 30 y a or 180 y to 260 y ac. Below are diferent design stages underwent to make the project realisable.

2) THE BNPUT TRANSENT VOLGACE PROTYCTION

Athough the ac mans are nomally rated at $115 y$ ac ar 230 yac , it is common for high-voltage spikes obe induced, caused by nearby inductive swithing or natural canses, such as cectical stoms or hyhing Dung severe thunder stomm activiy, voltage spikes in the order of Sky are not unoommon.

On the oher hand, inductive swithng voltage spikes may have an encrey content.

$$
W=3 / 2 \mathrm{~L}
$$

Where L is the leakage inductance of the inductor, and is the corren fowing throgh the whoding.

Alhough, hese voltage sphes may be shor m duration, hey may prove atal for the imput rathers axd the switching transistors, miness they are succesfluly suppressed.
$24 D Y a c$
Smb

Figze. Zncorde varistor

The hgare above depics a zinc oxide varistor used as a transient voltage suppressor. If acs as a varibe mpedmec, that is when a volage fransimen appars across the varbtor, its impedance sharply decreaser to a how vahe, clamping the impur volage to a safe level. The encry in the transent is dischated in the varistor. For the purpose of this proect $\sqrt{2} 35 \mathrm{~A} 404$ rated at 2757 mond can dissipate a [40. Transiem, is used. 19]

22. ACINYUT LINE FTYERS BOR BHISUPPRYSSION

Uthzation of an LC Giter Go diferemaland commonmode RFi supprssion at swithing power supply ac mans is the most common method of noise supression. Nomally acompled inductor is inserted in sevies with ench achen, while apaltors are placed between hres (called \times capachors) and betwene each hne and the gromad conductor (called Y capaciors)

The capacitance and inductance of the components may be withm the following values.

CX: 0. 1 to 2 F
CV: 2200p wo.033\%

$15 \mathrm{~m} / \mathrm{t}$

$$
\begin{align*}
& \text { Vs = Source Voltage } \\
& V \text { V }=\text { Average ouput voltage } \\
& \text { Yr }=\text { rm.s Vhe of loan voltage } \\
& \gamma_{\text {max }}=\text { Maximam load voltage } . \\
& v d=\frac{1}{\Pi} \int_{0}^{\pi} \sqrt{2} \operatorname{VsSin} \operatorname{st} d(w)
\end{align*}
$$

Integratmegeqution 2. gives

$$
\begin{aligned}
& \text { Vd }=\frac{\sqrt{2} V_{s}[- \text { Comm }]}{T} \\
& \text { Note: Vmss }=\sqrt[V]{s} \\
& \Rightarrow V d=\sqrt{2}^{2} V_{s} \times 2 \\
& =\frac{2 \sqrt{2} V_{s}}{\square I}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bun Vmax }=\sqrt{2} \text { Vms } \\
& \text { Vma }==240 \mathrm{~V} \\
& \text { Wherefore Vmax } \quad=\sqrt{2 \times 240} \\
& =\quad 339.41 \mathrm{y}
\end{aligned}
$$

PW rating for he bridge rectier $=2 \times$ Vmax

$$
=2 \times 339.411=678.82 \mathrm{y}
$$

23. OPERATMON OF YYH BMIDCE RECTIMTER.

Dumg the positive input halfcycle, teminal Mofhe secondary is positwe and Nis negatve, Diodes B_{8} and D_{3} becone honward based (ON) whereas D_{2} and D_{4} are reverse biased (OFY). Dumg the negatve imputhalf-cycles teminal Nbecones positive and M negative, Dioder D2 and DA conduct white dodes D_{1} amx D_{3} remain reverse biased.

24. CAPACTTOR FILTER

As stated the tast chapter, the de output of the recther is the prisating type. Conseguenty, a capachor is applied across the output of the rectiner to fler of the rimpen, thereby leaving the de as ripple fres as possbble,

Fig. 2.4. Shum capacior hter
Another good functon of the capacior hler is the prevention of noise from being mpressed on the achne,

2.4I OFERATION OF A CAPACTTOR

Duning the positive half cycle of the an input to the bridge rectiter (he 23.) whereby diodes $\mathrm{D}_{\text {, }}$ and D_{3} conduct, the capacior charges up to the peak value of the

recthergoes negative.
Dumg the postive half cycle, the capactor attempts to dseharge through D_{3} and O_{3} but canom because they ame reverse biased, and heme it is forced to diwhage through the hoad from poin 2 to 3 in hg 2.50 and its voltage decreases.

Re which is he discharging tme constant is ahays aboun tho the more than the charging the. The process of charging and bisobarging of the capactor is a contmuous one.

Tge 2.5 . Whterng action of a capacitor
(a) Circut (b) Winon fiter (c) Wum hiter.

WITYRSPECITICATYONS.

The ripple factor for the bridge reciter is as below:
Ripple Factor $n=\frac{V a c}{V d e}=\frac{\sqrt{V^{2} m s \cdot V^{2} d c}}{V d e}$
$V=\frac{V m a x}{\sqrt{2}}, V$ Vac $=\frac{2}{\Pi}$ V max.
$\Rightarrow r_{i}$

$$
=\frac{V \max (0.5-0.405)}{V \max 2 / T} \quad=0.4841
$$

Therefore, $r_{i}=0,484$
Now, the capacitor tier that would reduce the ripple above to a considerable value is designed as below:
$C=\frac{V}{\Delta V}$
$C=$ Capacitance, (UF)

- $=$ Load Current, (A)
- $=$ The the capacitor must supply current (ms)
$\Delta V=$ allowable peak to peak ripple, V

Assuming a mimhum efteiney of 80 \% for a 100 w ovput power
mpun power $p_{m} \frac{=\text { Pont }}{\text { emolency }}=\frac{100}{0.8}=125 \mathrm{~W}$
de output $=350 \mathrm{y}$
load corrent $=P / y=125050=0.36 . A$
For $\quad t=0.3 \mathrm{~ms}$ for a $50 H_{\text {ach }}$ line hechency
then,
$\theta=\frac{36}{\Delta V}=\frac{0.36 \times 0.3 \times 10^{-3}}{0.4841}=2200 \mathrm{WF}$

Therefore
$\mathrm{C}=220 \mathrm{UP}$
From the above calculnton, a capocter with capacitance of 220 wf was cmployed and its working voltage is 450%. (4)

2.5 THE SWITCHNG TRANSISTOR

The selcoton of the swithing transistor from this profect is done by consixering:-

* The maximum collector voltage at tum of and the maximum collector curent at ham on,

The maximum collector voltage at turx - of he given as
Veemax

1. max

In the projec, an Nom N bipolar transistor is used for the switching.

251 gIPOLA SUNCTION TRANSISTORS GEVES

 characterintes and the idenized characteribics are shown in ing 2.6. a, band e respectvely. It can be scen from the i - v characteristics, that a sumplenty large base orrent is needed for the device to be hlly on, requming that the wontrol cirout provides a base curem that is sumpienty large so that in

Where P is the de curcnt gan of he device.

Figure 2,6. Bipolar jumtion transistor (a) Symbo, (b) i v Characteristhes, (c) ${ }^{2}$ deanze charactershins.

For the power transistor, be on - state voltage Vce (sat) is uswaly in the $1-2 V$ range, making the conduction power loss in DT qute small. Wig 26 (c) shows the fuealwed DT operamy as a swith - that is in te saturathon mode.

BTS are current - controlled devices and base curent must be suppled कnthuonsy to keen them in the on state. High - power fansishors are nsualy of how do curen gain brange of $5-10$. For the desigy of tha probect a hyh power transistor of do curent gain of 6 is chosen. In

MRAWSYSYOR CALCULATIOWE:

 project construchon.
$\mathrm{ic}=\frac{62 \text { Pout }}{\mathrm{Vm}}$
rom $=100 \mathrm{~W}$
Vm $=350 \mathrm{~V}$
$10=\frac{6.2 \times 100}{350}=18 \mathrm{~A}$
Therefore the collector coment 1 C is 1.8 A

$2 *$ TRANSFORMER

A transformer is simply defied as a machine that changes an altemanng voltage from one value to another, A transformer can be step - up or step -down type. Step -down: If it receives energy at higher voltage and delivers it at lower voltage. Step - up :- If receives energy at lower voltage and delvers the higher voltage, But fr the purpose of their project, the step down transformers are wed. A simple transformer consists of two coils won on a closed from core as represented in fig 2.7. The cols are insulated from each other and from the core. Energy is supplied to one winding, called the primary winding, and s delivered to the secondary winding.

Figure 27:TranstomerchocuiDiagram

26
 THEORY OF OPERATION

A small current called the exciting comment hows when an alternating voltage V_{p} is applied the primary winding of the transformer represented in fare 27 above, will loadswith 5 open.

The exciting comment causes an alternating tux to be sw up in the core, The athmating tux so set up cuts across he hms of bot he primary and the secondary whinge as it merexses mod decrease in alternate directions, thereby inducing an
c.m, in both windigs. The en. c induced in the promay winding opposes the apphed voluge Vp. Since the wm of both whings ase cut by the same hox, the emf induced in cach tum of hoth windings are the same. IfEp is hee m, induced in the pimary wholing and Es is he em, induced the the seconday winding, then the voldage per tum in the two winding, is EpTp and Be/s respectvely and Cp/Tp $=\mathrm{Es} / \mathrm{S}$.
 Gimost cqual to the applied volnge, Vp Neglecting this small diffrence and noting that the secondary teminal voltage Vs will be equal o Es then.

$$
V V_{v_{s}}=N p_{s_{s}}
$$

This eguation shows that the voltage of each winding of a transfomer are drectly provontonal fo the momber of mms in each winding.

The man trantomer wed in this design is T, whoh th high frequency power trashomes. The transfomer core is made of fervite material Ferites do not have very high operatig tux density but they ofer low core losses at hyh frequencies, good willng couphing and ease of assembly, is]

2.62. THY PYCPA CK, CONVERYER TRA NSRORMTR CHOKE

m the hyback converter wo modes of operation are possible for the mansfomerchoke Vizi.
(1) Complete chergy mander where all the encrgy stored ho the inductor - mansfomer is transfered to the secondary betore the swich is tomed on and
(2) In complete enargy thasfer, where nol al the cnergy stored the the tanstomer inductor is transferred to the secondary before the franistor swith is tumed on.

For the purpose of the profed, complete enegy transter is used. It

The steps as shted below were taken to design a hyback converter monsfomer - ohoke for a complete energy transfer mode:
(i) The core geomery and fervic material were chosen. For he purpose of the design, a ferroxcube pot-core fervite of $3 C 8$ material was chosen.
(2) A working Drax ohosen. From the Feroxcube catolog spechcations for the $3 C 8$ materal, the fux densty at 1000 is $\mathrm{Bmax}=3300 \mathrm{C}$. Half of Brat is wed therefore Bmax is given to be 1660 C
(3) The maximum working primary curcot was found using the equation below $\mathrm{m}=\frac{3 \mathrm{POD}}{\mathrm{Vm}}=\frac{3 \times 100}{350}=0.85 \mathrm{~A}$
4. The core bobbin and size were determined. A woming cirrent density of qoo cmi wh chosen and the equation below was usen to caloniate the Ae Ac product. Where

$$
\begin{aligned}
& \text { Ae }=\text { core effectivearea, cm }{ }^{2} \\
& \text { Ac }=\text { Dobbin winding area, } \mathrm{cm}^{2} \\
& \mathrm{Ae} \mathrm{Ac}=0.68 \times 100 \times 400 \times 10^{3} \\
& 20 \times 10^{3} \times 16000 \\
& =0.850 \mathrm{~cm}^{6}
\end{aligned}
$$

A core size chose to the calculated Aedo product of 0.8 cme was chosen. From the data sheet, 1515512 A femore cobe put core was chosen. Also from the manbhachres's data we get $\mathrm{Ae}=2.02 \mathrm{~cm}^{2}$ and $\mathrm{Ac}=0.748$ yiching $A \mathrm{Ac}=1.5 \mathrm{~cm}{ }^{4}$.

Takng the worstase opratang conditon of $90 \mathrm{Vac}, \mathrm{Vm}, \mathrm{Mm}=90 \times 1.4-20 \mathrm{~V}$ de mple and recther drop $=107 \mathrm{Vd}$.

Now, for tee momber of than in he prinary:
$\mathrm{Np}=\quad 350 \times 10^{8}$

$$
\begin{aligned}
& 4 \times 1600 \times 20 \times 10^{5} \times 2.02 \\
& =124.73 \mathrm{mms} \\
& =125 \mathrm{mms}
\end{aligned}
$$

6. The waviomer secondary tums is then catcuated using the equaion below.

$$
\begin{aligned}
\mathrm{NS} & =\mathrm{NeV} \mathrm{VP} \\
& =\frac{125 \times 25}{350}=9.76=10 \mathrm{hms}
\end{aligned}
$$

2.7. THE OPYCAL, COUPE WR OW OWYOSORATOD

The optocouple is used pimanly to provide iwhtaon between the inpu and butwe of the power sumply, whic at the same the providing a signal pat for reguationcontrol.

The optccoupler consiss of two main components the light soure, whel coud be an incandescent hamp or a hehemithen dode (CED), whe the dector, which cout be a photovoltic cell, photodiode, photomansistor, or figh-sensinve

Figut28A TYPCA orrocoupher crrcurt

22% OPTOCOUPYE CIECUTT DESIGN

Optocomper when used in an offheline swithmy power supply for the pumpere of providng impat - to - oupht isolation, the followny design critera mave bekepinmind.
(I) The optocopler mus sustain m isolation break bown voltage as detated by local andor internatomal safey standards.
(2) The amphter circitry driving the comper must be well designed to compens sate for the couplers themal inctabilty and drit.
(3) An optocoupler withagood conpling efthency is preferred.

Every necessary obseration was made before choosing a very suitable optocoupler (PCl.3) from the data bonk, and was comected as blow in

Figure 2:9 An Optocouple mabasic
Ginear mode.

Asinfgure 2.1, resistors $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and Capacitor in the tme during wholuthe capacitor attemately charges and disoharges to provide m owtux signaloschllang betwen levels near Oy and Yec.

Capactor C charges twam+ Vec with time constant $\left\langle{ }_{\alpha}+\mathrm{R}_{\mathrm{B}}\right\rangle$ C. When this capacitor voltage reaches the threshold level of (2/3) Vec, the omptut swiches how and the disharge transistor tums on during the disoharge whon low Capactore
 mpuleve, (h) Voe The hip - Hop is mgered, whothat thengomg high, the discharge tansistor is tumed of, and the capacitor begins to charge agan.

DESTGN CALCULATONS

Fgure 2.12 Wave fom for 55 astable mutivibrator.

$$
\begin{aligned}
& =0.7\left(\mathrm{~K}_{\mathrm{A}} \mathrm{~T} 2 \mathrm{R}_{\mathrm{n}}\right) \mathrm{C} \\
& =0.7\left(18 \times 10^{3}+2\left(24 \times 10^{3}\right)\left(0.0022 \times 10^{6}\right)\right. \\
& T=10.2 \text { Usec }
\end{aligned}
$$

The frequency of operation, \hat{i} is

$$
\begin{aligned}
i=1 & \frac{143}{\left(\mathrm{R}_{\mathrm{B}}+2 \mathrm{R}_{\mathrm{B}} \mathrm{C}\right.} \\
= & 1 \\
& =102 \times 10^{\circ} \\
& =100 \mathrm{KH}
\end{aligned}
$$

represerning the percentage of time the outpuis how

$$
\begin{aligned}
& \frac{D=T_{60}}{T} \times 100 \% \\
&= \frac{0.7 \mathrm{R}_{3} \mathrm{C}}{\mathrm{~T}}=\frac{0.7 \times 2.4 \times 10^{3} \times 0.0022 \times 10^{6} \times 100}{10.2 \times 10^{6}} \\
&= 0.36 \times 100 \% \\
&= \frac{36 \%}{=} \\
& \text { TheretorecheDuty cycle }=36 \%
\end{aligned}
$$

282

 BUESE WIDTE MODUL ATION GEWMAthongh many switwhag techmiges can be enphoyed to hmplemena a switched
 chome. In this system (WM) a square wave pube is nomally generated to drive the swiching transistor on or of. The conduchon time of the transistor is accordingly mereased or decrasch, by varying the pulse widh, hereby, reghlating the outwt voltage.

Here, the swich control shanal is generated by commaing asignal hevel control
 The contol voldage signal is generated by amplifyng the error, or the diference betwern the actual ontput and the desired value. As shown below, the sawtooth mepettire waverm with aconstan peak, estabishes he swithing frequency. (t)

To chect the comparison, a 555 ther 1 C operang in tux monostable state was wed. The figure 2.14 below, shows the circut comection of the 555 ther.

Fig $2 \cdot 14$ Monostable Mulwibratorncing 555 times The oscillator frequency is determined by

$$
\begin{aligned}
\mathrm{P}_{\mathrm{ass}}=\frac{1 .}{\mathrm{RC}} & =\frac{1.1}{3.3 \times 10^{3} \times 0.0033 \times 10^{6}} \\
& =100 \mathrm{NH}
\end{aligned}
$$

Hence, the fequency of oschation of he 555 mer is $100 \mathrm{H}_{2}$
It can be nighty sem from the above dagram that the Vconmol (e the mpine eror) is fed into pins. This (Vcontrol) is used to moduhat the sawtoothpulses that are fed mon pin 6 , to get a square wave at the owput of the tmer (pin 3), whoh drives the power transistor from on to off. [1]

29 THE OPYRATIONAL AMPYFIER

An Oparahonal amplither is a very high gann, high mpat resistance $n_{\text {in }}$ fixectycompled negatye-feetbok amplifer which can ampliy signals having frequency ranging fon OH, to a hitue beyond MH. They are made with diterent intemat confexations in mear ICs. Figure $2 \cdot 15$ below shows the symbol: [2]

Freze 2. 15 OP-ANP SYMDOL

The OP - AMP's mput can be single-ended or dowbe-endel (or dherentab (mpu) depending on whether the imut voltage is appled to one imput herminal only or to boh.

291 OP-AMP ABPLTCATIONS

The aphications of $\mathrm{OP}-\mathrm{AMP}$ are as hitel below:
(a) Mase lwyontor
(b) Scale Chwer
(c) Volage follower
(d) Smmoning Amphticer
(e) Diference Ampliner
(o) megrator
(a) Difermator
(h) Summing integrator
(i) Summing Doterenmor
(1) Logatmmic Ampliterand
(k) Exponental Amphter

DTferenhat Amplifer Circuit

Vo, of the above Cwome
 Votomby

$$
\text { Now whe } V_{;}, V_{3}^{3}=\frac{-Z_{Y} Y_{3}}{Z_{3}}
$$

What $_{2} V_{2}, Y_{0}:=\frac{y_{2} X Z_{3}}{Z_{3}+Z_{2}} \quad \frac{(1+Z n)}{Z_{3}}$

Thewhe Vo $=\frac{-Z Y_{i}+Z_{3}}{Z_{i} \quad Z_{2}+Z_{3}} \frac{\left(Z_{1}+Z_{i}\right) V_{2}}{Z_{i}}$
$V_{b}=Z_{e}\left(V_{2}-V_{i}\right)$
Z
$76=4.7 \mathrm{k}$
Zh $=0 \mathrm{~m}$
Vobe ㅍ.. V SV
Vref= $\quad V 2=12 \mathrm{~V}$

$$
\nabla_{0}=47(12-5)
$$

10
$=235 \mathrm{~V}$

2.0 OUTPUT GITER CAPACITOR

The choice of the ouput fiter capachor depends upon the type of converter being used as well as maximum operatng curens and swithing fequency. Most of today's aphications axe electroythe capacitors, prefeably of the low ESR has a
 of capachor mannhacturers ofer low ESR electrolythe capacitors with guaranteed pertomance at wookt.

Regadess of the type of capactor ased for the output fletme, the analysix below perains to the calculation of tes value.

Fis (a) The ouput section of a PWM hyback converter (ble) its associated voltage and comem wave foms.
 is centred about zero and has an amplitude of DI. Notice that the curem wavefom
mosses the zero werence in the positve drection at T, when is the midule of the
 Whe negative drection. The the chrent will prodnce a npye voltage $A V$ wholy is givenby

Vout $=1 /$ Cout $_{2}^{2}$ idt \qquad

But the average dumg the time interaits and t_{2} ($\left.\Delta y_{\text {w }} / 2\right) / 2$ or $\Delta y_{m} / 4$. Thercfore, integraing eq, fabove gives

$$
V_{\mathrm{sen}}=\frac{i_{\mathrm{m}}}{4 c_{\mathrm{m} k}} \cdot \frac{T}{2} \frac{\left(\left.\Delta\right|_{\mathrm{m}}\right) T}{8 c_{\mathrm{m}}}=\frac{\Delta i_{\mathrm{mu}}}{8 \mathrm{c}_{\mathrm{m}} \mathrm{C}}
$$

Where t is the total period of On thet and OFe met.
Rearanging tems, the minmum output capactoris

$$
\mathrm{C}_{\mathrm{m}}=\frac{\Delta \eta_{\operatorname{sy}}}{8 \mathrm{~B} \Delta V_{\mathrm{tu}}}
$$

Where $x_{\text {wh }}=0.25 \hbar_{3} h_{2}=$ Speched owput chem

$f=$ Operating frequency
For the pupose of the projec, an electrolyth capacitor of the value as catculated below was used:
giventhat

$$
C_{m t}=\frac{\Delta\rangle_{x}}{8 \times r \times \Delta \gamma_{m}}
$$

Where $\Delta \sum_{\operatorname{msi}}=\frac{1}{4}$
$\mathrm{Bn}_{\mathrm{mp}}=8 \mathrm{~A}$
Therefore $\Delta y_{m}=8 /=2 A$
f(trequency of operation) $=100 \mathrm{KH}_{3}$
Ripple voltage $\Delta V=0.1$
Therefore
$C_{x a d}=2$
$8 \times 100 \times 10^{3} \times 01$
$=2.5 \times 10^{5} \mathrm{~F}$
$=250 \mathrm{nE}$
Hence the capacitance of the output capactor is 250 ne

CHAPTJR QLYEE

CONSTRUCTION, TESTINGANDRESUYTS

is CONSTRUCTION

To exhance the constructon of the project, the conaponens as speched by the design were all brongh and caretuly assembed together in the with the design corcutry. The was done modnes as moderisted:

The impursate
The Swichnag and feobwok stage and
The ouput sage.
To alow hor modifications, necessary corections mo to elmimate manecessaxy wase of the and the profec was intholy constructed on a bread board, tested and bberved working m confomity with the design goal. Aher whin it was tranemen to some vero Boards where pennament soldering was effected.

 dryer, fong nose plon, wero board and Dread boand were ased. To wondwe the design on the vero boards, the following steps were taken.
(i) The hayout design plan of the components position on the vero board was made makng sure that umecessay distance beween, compononts were avoldel to reduce the lengly of wire used components were abo not placed too chose to cach oher to avoid shorts.
(1) LC sockens were soldered onto the vero board in phaces allocated to them in the layout.
(ai) The switchng twmsistos was then monnted on its heat sink and soldered to the board.
(a) The diserete componentsi~ resistors, capacitors and diodes were soldered drectly to the board.
(v) Instiled components were then contected to one anoher using the connecting wires
(vi) The transfomers were monnted as whwn no the circuit dagram.
(vi) Atmereach conmection made, the dightal multmeter was used to whed for contunty and morts.
(win) The ICs were then pluged into the circmit, and the circuit was then ready to be tested.

Also in consthoting the casing appropriate measurenents were taken to swit the shape and size of the hardware components of the project. Some perforations were abo made to allow for coolng of the components. A well polshed white painhing was weed to give it a stateon thrathook, and also mmed at reducing the EMH from externalbodes

TESTING

The testmy of thas project staved from the constwetion stage, as cach of the modnes on completion was tested before moving on to the next one, The crouk Was in each case checked for commbiy uswe a digtal multheter. Also, ,he required behaviour of each componen anter soldering was teshed.

The output of the transfomers were aso tetted hen, on completion of the chne contruction, the oupur was tested to contm its proper hochoning.

In terting, all measurements were taken with refernce to the ground.

3. DISCUSSION OF RYSUYTS

The onfur was meanmed wh referace to gromd and an onfut voltage Vous of 123 V was obtand when is an confomity wh the dested $12 V$ output vohage. Frow the above, can really say that the am of the propet has been achieved as the The diference io vaime is pratically considered neytyble.

The reason for this difermee in value cond not he far feched from the very low hapu resistance observed on the pronary wimber of the high fequency trasformer choke.

CHA ETER ROUR

4. COMCXYSYOE

I woud the to say that the resul of this project has proved it a success as the Oumut obained is prachexly considered the same as the desmed output

The mafor obstacle cncontered in making this project a success was the provishon of the high frequency tranfomer choke used in the construction, as it is not casy to cone-by in the market.

Also, the solderng exercise was not so cary a bask, but it was skifuly done and progress was made.

42. RECOMMENDATION

It in apparent that the drean of mont sthonom underaking a hat year project is to produce a project that will stand the test of qualty, but in sather whomant that this dream rarly comes the, due manly to mproper funding.

In-view of the, I would recommend that:

1. The shool anthonty sponsor abon 80% of the tot finmelat requacment of the project.
2. Naxy student be grouped together and given a substantial project to exeme, as it is smid that wo grod heads are beter than one.
3. The projects to be executed in the deparmonth habombry by the concemed sthdens tnder the strict supervision of their supervisors.

The above recommendathons if hearkened to, beheve would go a long way in boosting the deparments, the schoots and the ontre insthuthon's ego.

4.3 REFERENCE:

1. D. W, Whlihms, Power Electronce: Devices, Drivers

2. Bind, B. M. and King, K. G., Introduction to Fower Dlectronics, Tohn Whey and sons, New York, Y6at.
3. George Chmsis, When Frequency Switchny power smply theory and Design, MOORAWHML. 1985.
4. Honateke H, Design and Solid Stato Power Suppliex, 198\%.
5. M. . Fwher, Power Electonics, PWS-Ken, , 991 .
6. M. Remhid, Power Electronics, Frentice Kal, 199
 and Design, Whey, 2nd EDtion 1995.
 Constucton and Bevelopmem (D. W)Ld, New Dehi, ws
7. Whmes Lionel, Electonic and Electrical Enginecing, Macmillan Press LTD, Second Edtion, 998 .

