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ABSTRACT 

In this research work, a mathematical model of the transmission dynamics of typhoid 

fever and its control was developed using a system of ordinary differential equations. 

Local stability analysis on the disease-free equilibrium was done using the Jacobian 

matrix approach. The semi-analytical solutions of the model were obtained using the 

Differential Transformation method and the solutions were plotted using Maple. The 

result of the findings shows that the Disease Free Equilibrium State (DFE) of the model 

is stable if R0˂1.  The result of the numerical simulation shows that a reduction in the 

contact rate with infectious individuals reduces the transmission rate of the disease. The 

simulation also reveals that at high treatment rates for the infected individuals, the 

number of recovered individuals increases. Hence, as the vaccination rate increases, the 

population of the exposed class decreases. However, due to Typhoid fever’s connection 

with malaria and other febrile infections we recommend that those infections should be 

incorporated into the model. 
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CHAPTER ONE 

1.0                                                  INTRODUCTION 

1.1 Background to the Study 

Typhoid fever is an infectious disease caused by a highly infectious and invasive 

Salmonella enteric serovar Typhi (S.Typhi) that affects humans (Nthiiri et al., 2016). It 

is spread through contaminated food, water, or drink. The contaminated food or water 

that contains these bacteria causes illness upon ingestion. They travel in the human 

intestines and then enter the bloodstream (Muhammad et al., 2015). 

It is a global health problem whose impact is difficult to estimate because the clinical 

representation is confused with those of many other febrile infections. The disease has a 

very high social and economic impact because of the hospitalization of patients with 

acute disease and the complications and loss of income attributed to the duration of the 

clinical illness (World Health Organization, 2003). 

The symptoms includes prolonged fever, fatigue, headache, nausea, abdominal pain, 

and constipation or diarrhea (WHO, 2018). Some patients may have a rash; severe cases 

may lead to serious complications or even death (WHO, 2018). The symptoms are 

lessened with antibiotic medications, however, a great number of people treated for 

typhoid fever usually experience relapse, after some time with symptoms that are milder 

and last for a shorter period compared with the initial illness, requiring further treatment 

with antibiotics (Basnyat, 2017).  

Typhoid fever affects millions of people worldwide each year, with an estimated 11-20 

million cases and disease-induced deaths of approximately 128,000-161,000 annually 

(WHO, 2018). People are inoculated using vaccines, even though repeated mass 

vaccinations at intervals of 5 years interval are required to stymie disease incidence. 
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However, they are not 100% efficient. If one acquires a drug-resistant strain of typhoid 

fever and is not treated with effective antibiotics, a serious and prolonged illness may 

result (Nthiiri et al., 2016). 

Typhoid fever is largely controlled in Europe and North America. Typhoid remains 

endemic in many parts of the world, notably Asia and Africa, where it is an important 

cause of febrile illness in crowded, low-income settings. A notable feature of typhoid is 

the carrier state- asymptotically infected individuals who continue to shed Salmonella 

typhi in their stool or urine for many years, thereby sustaining transmission (Watson & 

Edmunds, 2015). 

Despite the recommendation by the World Health Organization in 2003 that typhoid 

vaccination is considered for the control of endemic disease and outbreaks, in the early 

twentieth- century, public health officers were debating the best methods of evaluating 

typhoid vaccine effectiveness, and whether vaccination was a distraction from 

improvements in sanitation and hygiene, These remain contemporary policy issues for 

ministries of health and other health partners who may be considering programmatic 

anti-typhoid vaccination as a counterpart to other anti-typhoid measures such as 

improvements in income distributions, sanitation, water supplies and handwashing with 

soap (post-defecation and before the preparation of food in the home or sold in the 

street) as well as identification and management of carriers (Hardy, 2001). 

1.2 Statement of the Research Problem 

Typhoid fever affects millions of people worldwide each year, with an estimated 11-20 

million cases and disease-induced deaths of approximately 128,000-161,000 annually 

(WHO, 2018). Among the factors that mitigate the control of the disease are the 

asymptotically carrier infected individuals who continue to shed Salmonella typhi 
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bacteria in their stool or urine for many years, thereby sustaining transmission and a 

great number of people treated for typhoid fever usually experience relapse. In 2003, 

WHO recommended the use of vaccines for the control of the disease. Thus, this 

research seeks to formulate a mathematical model that incorporates the aforementioned 

factors. 

1.3  Aim and Objectives of the Study 

This study aims to formulate and validate a mathematical model for the spread and 

treatment of typhoid fever using a system of first-order ordinary differential equations 

with seven compartments.  

The objectives are to  develop mathematical model that: 

i.  Check the epidemiological well-posedness of the model. 

ii.  Obtain both the Disease-Free-Equilibrium (DFE) and the Endemic 

Equilibrium (EE) states of the model.  

iii.  Carry out local stability analysis on the disease-free-equilibrium 

iv.  Obtain the semi-analytical solution of the model using the Differential 

Transformation Method (DTM). 

v. Obtain the Basic Reproduction Number (R0) 

 

1.4  Motivation of the Study 

This research was motivated by the number of Typhoid fever disease-mortalities and 

also because the disease is notably endemic in Africa, with Nigeria among the countries 

affected. 
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1.5  Justification for the Study 

The social and economic impact of the disease due to hospitalization of patients with 

acute disease and the complications and loss of income attributed to the duration of the 

clinical illness necessitates this study. This thesis seeks to help public health 

practitioners make an informed decision such as strategizing ways to control the 

transmission of the disease. Hence, this work will be of immense value to the 

population at large in fighting against the threat of the disease. The compartments are 

susceptible class (S), Exposed Class (E), Asymptomatic infected class (C), 

Symptomatic infected class (I), Hospitalized or Treatment Class (T), Vaccinated class 

(V), and the concentration of Bacteria in the environment (B). 

1.6  Scope and Limitations of the Study 

The model subdivides the human population into seven mutually exclusive 

compartments namely, Susceptible class (S), Exposed Class (E), Asymptomatic infected 

class (C), Symptomatic infected class (I), Hospitalized or Treatment Class (T), 

Vaccinated (V). It also includes the concentration of Bacteria in the environment (B). 

Some of the limitations are;  

i. Lack of proper documentation of data by public servants. 

ii. The model is not age-structured 

1.7  Definition of Terms 

Asymptomatic: Not showing symptoms 

Disease Free Equilibrium (D.F.E): is an equilibrium state that signifies the eventual 

absence of disease. 

Endemic: the presence of a disease in a population 
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Endemic Equilibrium (E.E): is an equilibrium state that signifies the presence of 

disease in a population 

Epidemiology: is the study of the spread and control of disease in a population 

Equilibrium: means a state of rest of a body. 

Exposed: Individuals that are infected but not yet infectious 

Infected: Individuals who have Typhoid fever infection & are capable of infecting 

others. 

A mathematical model: is the representation of a real-life phenomenon in 

mathematical terms. 

An ordinary Differential equation: is an equation involving a dependent variable and 

its derivative with respect to one independent variable 

Recovered:  the class of individuals that have been treated and cured.  

Stable Equilibrium: is the state of a system returning to its original state of rest if 

slightly displaced. 

Susceptible: These are individuals who are prone to infection but not yet infected. 

Symptomatic: showing symptoms 

Treatment: Receiving medical care 

Vaccinate; To inoculate against diseases. 

Immunoglobulins(A,G and M): Is a medical test use to check the amount of certain 

antibodies. 

Immunoglobulin A(lgA): The antibodies are found in areas of the body such the nose, 

breathing passages, digestive tract, ears, eyes, and vagina. 

Immunoglobulin G(lgG): The antibodies found in all body fluids. 

Immunoglobulin M(lgM): The antibodies are the largest antibody. 
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CHAPTER TWO 

2.0        LITERATURE REVIEW 

2.1  Overview of Typhoid Fever 

During an acute infection, Salmonella typhi multiplies in mononuclear phagocytic cells 

before being released into the bloodstream. After ingestion of food or water, typhoid 

organisms pass through the pylorus and reach the small intestine. They rapidly penetrate 

the mucosal epithelium via either microfold cells or enterocytes and arrive in the lamina 

propria, where they rapidly elicit an influx of macrophages that ingest the bacilli but do 

not generally kill them. Some bacilli remain within the macrophages of the small 

intestinal lymphoid tissue. As a result of this silent primary bacteremia, the pathogen 

reaches an intracellular haven within 24 hours after ingestion throughout the organs of 

the reticuloendothelial system (Spleen, liver, bone marrow), where it resides during the 

incubation period, which usually takes 8 to 14 days. The incubation period in a 

particular individual depends on the number of inoculums, that is, it decreases as the 

number of inoculum increases, and on host factors.  

This infection that grows in the intestine and blood is spread by eating/drinking 

food/water contaminated with the faces of an infected person. The risk factors include 

poor sanitation and poor hygiene. Those who travel to the developing world are also at 

risk and only humans can be infected (WHO, 2003). Diagnosis is by either culturing the 

bacteria or detecting the bacterium’s DNA in the blood, stool, or bone marrow, typhoid 

vaccine can prevent about 30% to 70% of cases during the first two years. It is 

recommended for those at high risk, that is people traveling to areas where the disease is 

common (Anwar et al., 2014). 
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2.1.1  Symptoms of typhoid fever 

The clinical presentation of typhoid fever varies from a mild illness with low-grade 

fever, malaise, and slight dry cough to a severe clinical picture with abdominal 

discomfort and multiple complications (WHO, 2003). The acute non-complicated 

disease is characterized by prolonged fever, disturbances of bowel function, which is 

constipation in adults, and diarrhea in children. Cough is common in the early stage of 

the illness. A complicated case results in an intestinal perforation which is frequently 

fatal as it is accompanied by a sudden rise in pulse rate, hypertension, and subsequent 

abdominal rigidity (Center for Disease Control, 2014). Other serious complications 

documented with typhoid fever include haemorrhages (causing rapid death in some 

patients) hepatitis, myocarditis, pneumonia disseminated intravascular coagulation, etc. 

(WHO, 2003).  

2.1.2  Diagnosis of typhoid fever 

Bone marrow aspirate culture is the gold standard for the diagnosis of typhoid fever, 

and it is particularly valuable for patients who have been tested to have a negative blood 

culture with the recommended volume of blood (Gasem et al., 1995). The volume of 

blood cultured is one of the most important factors in the isolation of Salmonella typhi 

from typhoid patients. In some regions it may be impossible to collect large volumes of 

blood and going for alternative diagnostic methods may be necessary for cases in which 

blood cultures are negative, because reducing the blood volume, reduces the sensitivity 

of the blood culture. However, an effort should be made to draw sufficient blood if at all 

possible. Blood should be taken using sterile techniques of various punctures and should 

be inoculated immediately into a blood culture bottle with the syringe that has been 

used for collection. Testing can take place immediately or storage can continue for a 

week without affecting the antibody titre, (Wain et al., 2001). Stools can also be 
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collected from acute patients and they are especially useful for the diagnosis of typhoid 

carriers. The isolation of Salmonella typhi from stools is suggestive of typhoid fever. 

Stool specimens should be collected in a sterile wide-mouthed plastic container. The 

likelihood of obtaining positive results increases with the number of stools collected. 

Specimens should preferably be processed within two hours after collection. If there is a 

delay, it should be stored in a refrigerator at 40C or in a cool box with freezer packs and 

should be transported to its laboratory in a cool box (Wain et al., 2001). 

In 2003, WHO presented a quick and reliable diagnostic test for typhoid fever as an 

alternative to the Widal test. The recent advances include the IDL tubex test marketed 

by a Swedish company, which reportedly can detect IgM antibodies from patients 

within a few minutes. Another rapid serological test is typhidot, which takes 3 hours to 

perform. It was developed in Malaysia for the detection of specific IgM and IgG 

antibodies. A newer version of the test, typhidot-M was recently developed to detect 

specific IgM antibodies only (Anwar et al, 2014).  

2.1.3  Treatment of typhoid fever 

Fluoroquinolones (ofloxacin, ciprofloxacin, fleroxacin, perfloxacin) are widely regarded 

as optimal for the treatment of typhoid fever in adults (Wain et al., 2001). They are 

relatively inexpensive, well-tolerated, and more rapidly and reliably effective than the 

former first-line drugs; chloramphenicol, ampicillin, amoxicillin, and trimethoprim-

sulfamethaxazole.  

The fluoroquinolines attain excellent tissue penetration, kill S.typhi in its intracellular 

stationary stage in monacytes /macrophages and achieve higher active drug levels in the 

gall bladder than other drugs. They produce a rapid therapeutic response, that is, 

clearance of fever and symptoms in three to five days and very low rates of post-

treatment carriage (Arnold et al., 1993). Treatment at home with antibiotic tablets is 
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treated within seven to 14 days. Incubation period is usually one to two weeks, and 

duration of the illness is about three to four weeks. Surgery is usually indicated in cases 

of intestinal perforation. Most surgeons prefer simple closure of the perforation with 

drainage of the peritoneum. Death occurs on 10 % to 30 % of untreated cases. (WHO, 

2003). 

2.1.4 Prevention from typhoid fever 

The major routes of transmission of typhoid fever are through drinking water or eating 

food contaminated with Salmonella typhi. Prevention is based on ensuring access to 

safe water and by promoting safe food handling practices, health education is 

paramount to raising public awareness and inducing bahaviour change (WHO, 2003). 

Safe Water 

Typhoid fever is waterborne disease and the main preventive measure is to ensure 

access to safe water. The water needs to be of good quality and must be sufficient to 

supply all the community with enough drinking water as well as for all domestic 

purposes.  

 During outbreaks, the following control measures are of particular interest: 

(a) In urban areas control and treatment of the water supply systems must be 

strengthened from catchment to consumer.  

(b) In rural areas, well must be checked for pathogens and treated if necessary.  

(c) At home, particular attention must be paid to the disinfection and the storage of 

the water however safe its source. Drinking water can be made safe by boiling 

for one minute or by chlorination. Narrow-mouthed pots with covers for storing 

water help reduce the secondary transmission of typhoid fever.  
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(d)     In some situations, such as poor rural areas in developing countries or refugee 

camps, fuel for boiling water and storage containers may have to be supplied. 

(WHO, 2003) 

Food Safety  

Contaminated food is another important vehicle for typhoid transmission. Appropriate 

food handling and processing are paramount and the following basic hygiene measures 

must be implemented during epidemics. 

(a) Washing hands with soap before preparing or eating food  

(b) Avoiding raw food, shellfish, ice;  

(c) Eating only cooked and still hot food or reheating it.  

 During, outbreaks, food safety inspections must be reinforced in restaurants and 

for street food vendors’ activities.  

 Typhoid can be transmitted by chronic carriers who do not apply satisfactory 

food-related hygiene practices. These carriers should be excluded from any activities 

involving food preparation and serving. They should not resume their duties until they 

have had three negative cultures at least one month apart. 

Sanitation  

Proper sanitation contributes to reducing the risk of transmission of all diarrhoeal 

pathogens including Salmonella typhi.  

(a) Appropriate facilities for waste disposal must be available for all community  

(b) Collection and treatment of sewage especially during the rainy season must be 

implemented  

(c) In areas where typhoid fever is known to be present the use of human excreta as 

fertilizer must be discouraged. 
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Health Education (Enlightenment Campaign) 

Health education is paramount to raising public awareness of all the above-mentioned 

preventive measures. Health education messages for vulnerable communities need to be 

adapted to local conditions and translated into local languages. In order to reach 

communities, all possible means of communication (e.g. Media, Schools, Women 

groups, religious groups) must be applied. Community involvement is the cornerstone 

of behavior change with regard to hygiene and for setting up maintenance of the needed 

infrastructures. In health facilities, all staff members must be repeatedly educated about 

the need for: 

(a) Excellent personal hygiene at work  

(b) Isolation measures for patient  

(c) Disinfection measure. 

This campaign reduces the rate of transmission because those who are properly 

informed will reduce their exposure to infection whenever they meet any infectious 

opportunity. 

2.1.5 Vaccination against typhoid fever 

Vaccine is a medical product that helps in stimulating the body's immune system in 

order to prevent or control infection. It trains the body's immune system to fight off a 

particular microorganism so that it cannot establish a serious infection. Two safe and 

effective vaccines are now licensed and available. One is based on defined subunit 

antigens and the other on whole-cell live attenuated bacterial. The first of these vaccines 

contain Vi capsular polysaccharide(vicps) which is given in a single dose while the 

other is the live oral vaccine called purified capsular polysaccharide derived from Ty2la 

which is to be taken in three doses for two days apart on an empty stomach (Black et 

al., 1990). The occurrence of S.typhi strains that are resistant to fluoroquinolones 
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emphasizes the need to use safe and effective vaccines to prevent typhoid fever. WHO 

recommends vaccination for people traveling to high-risk areas where the disease is 

endemic. People living in such areas, are people in refugee camps, sewage workers, and 

children should be the target groups for vaccination.  

Mathematical models have played a key role in the formulation of Typhoid fever 

control strategies and the establishment of interim goals for the intervention 

programmes. A model was developed by Cvjetanović et al. (1971), where the number 

of newly infected persons was expressed as a function of the infectious and susceptible 

people in a community within a given time. The age structures of the population are 

established, which enabled a more complicated detailed simulation of the effect of 

various interventions and strategies to control the disease in different age groups. The 

study indicated that once the incidence of the infection has fallen below the threshold, it 

cannot be maintained in a community due to the loss of the main source of infection 

chronic carriers, as they die out naturally. 

2.2 Mathematical Models of Typhoid Fever 

Khan et al. (2015) presented a mathematical analysis of the Typhoid model with 

saturated incidence. They formulated a mathematical model of the type SEIR 

(Susceptible, Exposed, Infected, and Removed) to understand the transmission 

dynamics of the disease. Local and global stability analysis was carried out on the 

equilibrium state. The Runge-Kutta method was used to obtain the numerical solution of 

the model. Their result shows that the endemic equilibrium was both locally and 

globally stable. Their model was given as follows; Khan et al. (2015) 
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Where        =Growth rate of the population 

                  = Disease contact rate 

              d  = Natural mortality rate 

  =Rate of flow from class E to class S 

   =Rate of flow from class I to class S 

  =Disease-induced death rate at class E 

  =The rate at which latent individuals are infected. 

 
1

 = Disease-induced death rate at class I 

  =Rate of recovery from infection 

 q =Proportion of individuals joining the class E 

 k=Educational adjustment. 

 

Adetunde (2008) formulated a mathematical model for the dynamics of typhoid fever in 

the Kassena-Nankana District of the upper East Region of Ghana. The equilibrium 

states of the model were obtained and their stability was also investigated. The 

threshold condition for the disease-free equilibrium to be stable was presented. The 
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results showed that the disease-free equilibrium was globally asymptotically stable. The 

formulated model was given as Adetunde (2008) 

  SSI
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bIIISI
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      (2.2)
 

RCbI
dt

dR
 −+=  

Where S(t) = Susceptible class, I(t)= Infected class, C(t)= Carriers, 

 R(t)= Recovered class. 

 = the per capital natural mortality rate 

 = the rate of disease-induced death for infectious class 

 = the rate of infection 

 = Rate of which the infected become carriers 

 = Rate of recovery for the carrier-class 

 = the rate of disease-induced death for a career class 

b= Rate of recovery for the infected class 

Kalajdzievska and Li (2011) developed a mathematical model of the effects of carriers 

on the transmission dynamics of infectious diseases. They investigated that infections 

could be transmitted through carriers, infected individuals who are contagious but do 

not show any disease systems. It was assumed that the disease carriage state is 

infectious while those in the latent period are not. Their model incorporated 

demography and disease-induced death and it allows carriers to become symptomatic 

over time. They carried out local stability on the disease-free equilibrium. Their result 
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showed that a greater probability to develop carriage will increase the basic 

reproduction number which makes the infection persist. Testing and Diagnosis of 

carriers were seen as an effective control measures in a country where infectious 

diseases persist.  

Their model equations were given as Kalajdzievska and Li (2011) 
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Where S= Susceptible class, CI = carrier-class, I= symptomatically infectious or 

infectious class,  

R= Recovered class,  = transmission coefficient for the carrier compartment. 

 = transmission coefficient for the symptomatically infected compartment. 

 = Rate of recovery 

P= Probability of a newly Infected Individual, = Vaccination rate,  

 = Diagnosis rate, b = Rate of recruitment into susceptible class  

d1, d4: Natural death rates for the susceptible and recovered classes 

d2, d3: Death rates for CI and I compartments respectively. 

Liao and Yang (2013) extended the classical SIR framework by incorporating a 

compartment (W) that tracked pathogen concentration in the water. Susceptible 

individuals are infected with multiple transmission pathways in their model titled “The 

Dynamics of a vaccination model with multiple transmission ways of water-borne 
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diseases”. The control reproduction number, stability analysis of both the disease-free 

and endemic equilibrium were carried out. Bifurcation theory was applied to explore a 

variety of dynamics of their model. Their model is given as follows; Liao and Yang 

(2013). 
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Where S= susceptible population, I=Infected class, R= Recovered Class, W= Pathogen 

concentration. 
W
 = transmission rate for the environment to human,

I
 = transmission 

rate for human to human,  = natural human/death rate,  = shedding rate,  = Bacteria 

death rate and  = Recovery rate.  

Rihan et al. (2014) formulated a fractional SIRC model with Salmonella Bacterial 

Infection. The solution for the fractional-order model at any time t* continuously 

depends on all the previous states at t<t*. The Authors stated that fractional-order 

dynamical models are more suitable to model biological systems with memory than 

their integer orders. The presence of a fractional differential order into a corresponding 

differential equation leads to a notable increase in the complexity of the observed 

behavior and enlarges the stability region of the solutions. Numerical solutions of their 

model were obtained using Caputo’s derivative and using an unconditionally stable 

implicit scheme. The disease-free and endemic states equilibrium was confirmed to be 
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asymptotically stable under some conditions. The basic reproduction number 0R  was 

calculated using the next-generation matrix method, in terms of contact rate recovery 

rate, and other parameters in their model. 

Their model was given as Rihan et al. (2014) 
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Where S(t) = Susceptible class, I(t)= Infected class, C(t)= Cross immune 

individuals, R(t)= Recovered class. 

  = Cross immune period,  = Is the fraction of the exposed cross immune 

individuals. = Infectious period,  = Contact rate,  = Rate of recovery for the carrier 

stage,  = Total immune period, m = Disease induced mortality rate and  = Mortality 

rate. 

The fractional-order of their SIRC Epidemic model was given as: 

)())(()()(1 tstitCtsD  +−+=  

          )()()()()()()(2 timtitCtitStiD  ++−+=  

          )()()()()()1()(3 trtititCtrD  +−+−=     (2.6) 
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Mutua et al. (2015) developed a mathematical model for malaria and typhoid fever co-

infection dynamics. They first developed a model for only typhoid fever, their model 
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subdivides the human population of interest into four compartments susceptible 

humans(S), infected human (I), carrier humans(C), and recovered human (R). They later 

considered the incorporation of an additional compartment B, which represents bacteria 

in the Environment. Typhoid is largely contracted from water and food, thus 

transmission of typhoid through direct person-to-person contact was neglected by them. 

They presented that people in tropical communities are living at risk to contact both 

diseases (either concurrently or an acute infection superimposed on a chronic one). 

Through mathematical analysis, they identify distinct features of typhoid and malaria 

infection dynamics as well as the associated relationships. Their result shows that the 

global dynamics of typhoid infection can be determined by a single threshold Ro. The 

typhoid basic reproduction number 0R <1 ( 0R >1) provided conditions for the global 

eradication (uniform persistence of the typhoid infection). Their model was given as 

follows; Mutua et al. (2015). 

S
h

b
hdt

dS
)(  +−=  

I
th

BS
dt

dI
)(  +++−=  

C
h

I
tdt

dC
)(  +−=

       (2.7)
 

R
h

CI
dt

dR
 −+=  

B
b

C
c

PI
i

P
k

B
rB

dt

dB
−++−= )1(  

Where  = contact rate, 
t

 = rate at which the infected individuals either progress to 

carrier-class. 

 = recovery rate for the infected individuals. 
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 = rate at which individuals in the carrier-class recover from typhoid. 

i
P = rate at which the infectious group excretes bacteria. 

c
P = rate at which the carrier group excretes bacteria. 

They assumed that the growth rate of the bacteria in the environment logistic and 

becomes non-infectious at a rate
b

 , r and k represent per capita growth and carrying 

capacity respectively and   denotes typhoid induced mortality in humans. The constant 

recruitment into the susceptible human is represented by 
h

  while the natural death 

rate of a human is represented by
h

 . 

Kgosimore and Kelatlhegile (2016) considered the disease typhoid as a major public 

health concern in tropical developing countries, especially in areas where access to 

clean water and other sanitation measures are limited. Typhoid has complex 

pathogenesis and manifests as an acute febrile disease, with a relatively long incubation 

period that involves the transmigration of the microorganism through the Peyer’s patch, 

localized multiplication in the mesenteric lymph nodes, and subsequent spread to the 

liver and spleen prior to showing clinical symptoms. It is a serious life-threatening 

infection characterized by false diagnosis due to similar signs and symptoms with 

malaria which leads to improper control and management of the disease. They carried 

out a mathematical analysis of Typhoid infection with treatment where a deterministic 

model of Typhoid which accounts for relapse of treatment was considered. 

Mathematical analysis and numerical simulations were carried out to determine the 

transmission dynamics of typhoid in a community. They established that the disease-

free equilibrium is locally asymptotically stable if 0R <1 and unstable if 0R >1. The 

endemic equilibrium exists and is stable if 0R >1. Numerical Simulations suggested that 
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increasing treatment sustains the typhoid epidemic in the population. Implications of 

their result point to an added effect from carriers evolving from treatment relapse. The 

dependence of modification on transmission parameters on treated populations provides 

insight into the role of treatment in the transmission dynamics of the disease. Their 

model was given as Kgosimore and Kelatlhegile (2016) 

SBS
dt

dS
−−=  

I
c

IPBS
dt

dI
)

1
(  ++−+=  

c
ITBSP

dt

c
dI

)()1(  +−+−=
      (2.8)

 

II
dt

dT
)

2
(  +++−=  

RT
dt

dR
 −=  

Where; 

S= the susceptible class, I= Infective, CI = Carrier Infective, T=treated Infective, R= 

Recovered class,  = Recovery rate,  = Natural death rate,  = Relapse rate, B= 

Contact rate,  = Rate at which the carriers develop symptoms, = Recruitment rate of 

susceptible class, 
1
 , 

2
 = disease-induced death rates, P= rate at which a proportion of 

newly infected individuals become carriers. 

(1-p) = Rate at which newly infected individuals became symptomatic. 

Nthiiri et al. (2016) developed a mathematical model of Typhoid Fever Disease 

Incorporating protection against infection. They assumed that the bacteria are 

transmitted through food and water contaminated with faeces and urine of an infected 

patient or a carrier. Sign and symptoms include sustained fever, poor appetite, vomiting, 
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severe headache, and fatigue. The treatment is based on antibiotic susceptibility of the 

patient blood culture. The Authors presented that the chronic carrier state may be 

eradicated using oral therapy (Ciprofloxacin or norfloxacin). The basic reproduction 

number of the model formulated was computed using the next generation matrix 

approach. Stability analysis of the model was carried out to determine the conditions 

that favour the spread of the disease in a given population. Results from numerical 

simulation of their model showed that an increase in protection leads to low disease 

prevalence in a population. 

Their model equations were given as Nthiiri et al. (2016) 

P
dt

dP
)(  −−=  

SP
dt

dS
)()1(  +−+−=

      (2.9)
 

         
IS

dt

dI
)(  ++−=  

Where p= Protected class, S= susceptible class, I= Infected class, and T= Treated class. 

 = Is the recruitment rate in the susceptible class,    =the mortality rate,   = is the 

disease-induced mortality rate,   is the rate of treatment, and  = the rate at which 

protection is lost by the protected class. Their model captures the transmission dynamics 

of Typhoid fever and its control using an extension of the standard SEIR model under 

some assumptions by adding some compartments like the IT (Infected but on Treatment 

class), V (Vaccinated Class), and the Bacteria class (B). Three control measures 

considered are treatment, vaccination, and enlightenment campaign.  

Peter et al. (2017) formulated a mathematical model that incorporated vaccination and 

treatment classes. They obtained the equilibrium states of the model. They carry out 

TI
dt

dT
 −=
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stability analysis on the disease-free equilibrium. Their model is as follows; Peter et al. 

(2017). 

( )

(1 )

( )

( )

dP
P

dt

dS
P SI S R

dt

dI
SI I

dt

dT
I T

dt

dR
T R R

dt

  

    

   

  

  


=  − + 


= −  + − − +




= − + + 



= − + 

= − −


      (2.10) 

Tilahun et al. (2018) developed a mathematical model that examined the co-infection of 

Pneumonia and Typhoid fever. They obtained the equilibria of the model and also 

analyzed them for stability. They also obtained the basic reproduction number. Their 

optimal control analysis showed that prevention of Pneumonia and Typhoid fever cost 

less. Their model is as follows; Tilahun et al., (2018) 
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Abboubakar and Racke (2019) developed a mathematical model for the spread and 

control of Typhoid fever.  Their model was in two phases, a model without control and 

a model with control. They obtained the equilibrium states of the model, analyzed the 

disease-free equilibrium for both local and global stability using Lyapunov's theory. 

Their model equation is as follows; Abboubakar and Racke (2019) 
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      (2.12) 

Peter et al. (2021) formulated a model that took into account both direct and indirect 

transmission. They used an optimal control strategy to obtain the optimal path using 

Pontryagin's maximum principle. Their model equation is as follows; Peter et al. (2021) 
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CHAPTER THREE 

3.0     MATERIALS AND METHODS 

3.1  Model Formulation 

Formulation of the model is the combination and the extension of the model reviewed in 

chapter two. The model considers the salient transmission properties. The model 

subdivides the human population into seven (7) mutually exclusive compartments, 

which are; Susceptible humans (S), Exposed humans (E), Asymptomatic infected 

humans (C), Symptomatic infected humans (I), humans who are receiving Treatments 

(T), and Vaccinated humans (V), And one compartment for the environmental Bacterial 

of the reservoir (B). 
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                        Interaction Flow 

Figure 3.1: Schematic Diagram of the Model 
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3.1.1 Model assumptions 

The population of the susceptible humans ( )S  increases through constant recruitment 

 of individuals into the population by birth or immigration, also due to relapse at the 

rate ( )1  − where  0,1 , and also due to the rate at which vaccinated humans lose 

immunity at  . It decreases as susceptible humans move to the Exposed compartment 

(E) through interaction with the contaminated environment ( )B  at the rate  , and 

further decreases through natural death at the rate μ and vaccination at the rate  ; The 

population of the exposed human compartment ( )E  decreases due to natural death at 

the rate   and also due to movement to infected classes after the incubation period at 

the rate . A Proportion of α move to the symptomatic infected compartment ( )I  at the 

rate ,   while the remainder of the proportion move to the asymptomatic carrier 

infected compartment ( )C  at the rate ( )1  − , where  0,1  . The population of the 

asymptomatic infected carrier compartment increases due to relapse at the rate   and 

decreases due to movement to symptomatic infectious class at the rate,   , and also due 

to natural death at the rate,  . The population of the symptomatic infected compartment 

decreases due to treatment at the rate , also due to disease-induced death,  , and 

natural death at the rate  . 

The population of the treatment compartment ( )T  decreases due to relapse at the rate , 

also due to disease-induced death  , and also due to natural death at the rate (  ). 

The population of the vaccinated class increases at the vaccination rate   and decreases 

due to waning of immunity at the rate   and also due to natural death at the rate  . The 
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concentration of the bacteria is proportional to contamination from asymptomatic 

carrier, symptomatic carrier, and hospitalized classes at the rate, , ,    respectively. 

And, it decreases at the decontamination rate  . 

From the diagram and the assumption, we have the following system of coupled 

nonlinear ordinary differential equations; 

 ( ) ( )1
dS

T V BS S
dt

     =  + − + − − +      (3.1) 

 ( )
dE

BS E
dt

  = − +        (3.2) 

 ( ) ( )1
dC

E T C
dt

    = − + − +       (3.3) 

 ( )
dI

E C I
dt

    = + − + +       (3.4) 

 ( )
dT

I T
dt

   = − + +        (3.5) 

 ( )
dV

S V
dt

  = − +         (3.6) 

 
dB

C I T B
dt

   = + + −        (3.7) 
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3.1.2 Description of variables and parameters 

Variable/Parameter               Description 

S                                          Susceptible Humans 

E                                          Exposed Humans 

C                                           Asymptomatic Carrier humans 

I                                            Symptomatic infected 

T                                            Treated humans  

V                                            Vaccinated Humans 

B                                             Bacteria Concentration 

                                             Recruitment rate for the Human Population 

                                            Relapse rate 

                                            Proportion of   that move to asymptomatic carrier Class 

( )1 −                                    Proportion   that move to symptomatic infected Class 

                                            Infectious rate 

                                           Natural Death Rate for humans 

                                           Rate of Loss of Immunity 

                                          Progression rate from Exposed to infected classes 

                                           Proportion of    that move to Symptomatic Infected class 
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( )1 −                                   Proportion of   that move to Asymptomatic Carrier class 

                                           Progression rate from asymptomatic carrier toSymptomatic  

                                              Infected class 

                                          Treatment Rate for Symptomatic infected class 

                                           Disease-induced death rate 

                                           Rate of environmental contamination by asymptomatic  

                                              Carrier class 

                                          Rate of environmental contamination by symptomatic  

                                              Infected class 

                                           Rate of environmental contamination by hospitalized class 

                                          Environmental Decontamination Rate 

3.2 The Positive Invariant Region 

The total human population is N S E C I T V= + + + + +     (3.8) 

Where, 

dN dS dE dC dI dT dV

dt dt dt dt dt dt dt
= + + + + +      (3.9) 

Adding equation (3.1) to (3.7), yield for (3.10) 

( )
dN

N I T
dt

 =  − − +      (3.10) 
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Theorem 3.1 

The solutions of the system of equations (3.1) through (3.7) are feasible for 0t  if they 

enter the invariant region D. 

Proof 

Let  

( ) 7, , , , , ,D S E C I T V B R += 
 (3.11) 

Be any solution of the system of equations (3.1) to (3.8) with positive initial conditions. 

Suppose there are no disease-induced deaths, equation (3.10) becomes
 

dN
N

dt
  −   (3.12) 

That is, 

dN
N

dt
+     (3.13) 

Multiplying both sides of equation (3.130 by its integrating factor  te   gives   

t t tdN
e e N e

dt

  +     (3.14) 

( )t td Ne e dt      (3.15) 

Integrating both sides gives 

t tNe e c 




 +  (3.16) 
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tN ce 



−
 +  (3.17) 

Applying the initial condition, t=0, N(0)=N0 in (3.17) gives 

0c N



+   (3.18) 

0c N



 −  (3.19) 

Substituting (3.19) into (3.17) gives 

0

tN N e 

 

−  
 + − 

 
 (3.20) 

Similarly, 

dB
B

dt
 −  (3.21) 

Separating variables gives 

dB
dt

B
 −  (3.22) 

Integrating both sides gives 

tB ce −  (3.23) 

Applying the initial condition B(0)=B0 gives 

0

tB B e −  (3.24) 
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As t → , the human population N approaches K



=  ,where K is the carrying 

capacity of the human population. 

Similarly at t → , the concentration of Bacterial B approaches B0. 

Hence all feasible solution set of the human population and the concentration of 

contaminant of the model (3.1) to (3.8) enter the region, 

( ) 7

0{ , , , , , , : , , , , , , 0; , }D S E C I T V B S E C I T V B NR B B


+


=      (3.25) 

Therefore, region D is positively-invariant (A region is positively-invariant if the 

solution that starts in it remains in it 0t  ). That is, if (0)N



  then N




  and if 

0(0)B B  then 0B B  . Hence, region D is positively invariant and equations (3.1) 

through (3.7) are epidemiologically meaningful and mathematically well-posed in the 

domain D. Therefore, in this region it is appropriate to consider the dynamics of flow 

generated by the model (3.1) through (3.7). In addition, the usual existence, uniqueness, 

and continuation of the results hold for the system. 

3.3 Positivity of Solutions 

Let the initial condition be  (0), (0), (0), (0), (0), (0), (0) 0S E C I T V B D  , Then the 

solution set  , , , , , , ( )S E C I T V B t of the system of equations (3.1) through (3.7) is 

positive for all 0t  

Proof 

From equation (3.1), we have 
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( ) ( ) ( )1
dS

B S T V B S
dt

        =  − + + + − +  − + +    (3.26) 

( )B

dS
S

dt
   − + +                    (3.27) 

Where, B B =          (3.28) 

From equation (3.27), separating variables, we have 

( )B

dS
dt

S
   − + +         (3.29) 

Integrating both sides gives 

( )ln( ) BS t c   − + + +         (3.30) 

Taking exponents of both sides gives 

( )B t
S Ae

  − + +
          (3.31) 

Where 
cA e=           (3.32) 

Applying the initial condition S(0)=S0 in (3.31), we have 

0S A                      (3.33) 

Therefore, 

( )
0

B t
S S e

  − + +
          (3.34) 

Similarly, from equation (3.2), we have 

( ) ( )
dE

BS E E
dt

    = − +  − +                (3.35) 
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Separating variables, we have 

( )
dE

dt
E

  − +          (3.36) 

Integrating both sides gives 

( )ln( )E t c  − + +                   (3.37) 

Taking exponents of both sides gives 

( )t
E ke

 − +
           (3.38) 

Where ck e=           (3.39) 

Applying the initial condition E(0)=E0 in (3.38) gives 

E0=k           (3.40) 

Hence, 

( )
0

t
E E e

 − +
           (3.41) 

Similarly, it can be verified that the rest of the equations are positive for all t˃0 since 

er˃0 r R   

3.4 Equilibrium States of the Model 

At equilibrium, 0
dS dE dC dI dT dV dB

dt dt dt dt dt dt dt
= = = = = = =     (3.42) 

This implies, 

( ) (1 ) 0BS S T V     − − + + − + =       (3.43) 
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( ) 0BS E  − + =          (3.44) 

(1 ) ( ) 0E T C    − + − + =        (3.45) 

( ) 0E C I    + − + + =         (3.46) 

( ) 0I T   − + + =                     (3.47) 

( ) 0S V  − + =          (3.48) 

0C I T B   + + − =         (3.49) 

         Let  

a

b

e

x

y

z

 

 

 

  

  

 

+ = 
 

+ =
 
 + =
 

+ + = 
 + + =
 

+ = 

                  (3.50) 

Substituting equation (3.50) into equations (3.43) through (3.49) gives 

(1 ) 0BS aS T V   − − + − + =        (3.51) 

0BS bE − =                     (3.52) 

(1 ) 0E T eC  − + − =         (3.53) 

0E C xI + − =          (3.54) 

0I yT − =           (3.55) 

0S zV − =           (3.56) 

0C I T B   + + − =         (3.57) 



35 

 

From equation (3.54),  we have, 

E C
I

x

 +
=          (3.58) 

From equation (3.55), we have 

I
T

y


=           (3.59) 

Substituting equation (3.58) into (3.59) gives 

( )E C
T

xy

  +
=          (3.60) 

Substituting (3.60) into (3.53) gives 

( )
( )

1 0
E C

E eC
xy

  
 

+
− + − =       (3.61) 

(1 ) 0xy E E C xyeC   − + + − =      (3.62) 

( )(1 )xy E
C

xye

  



− +
=

−
       (3.63) 

Substituting (3.63) into (3.58) gives 

 ( ) ( (1 ) )

( )

xye xy E
I

x xye

     



− + − +
=

−
     (3.64) 

Substituting equation (3.64) into (3.59) gives 

 ( ) ( (1 ) )

( )

xye xy E
T

xy xye

      



− + − +
=

−
    (3.65) 
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Let m xye = −          (3.66) 

And ( )(1 )l xy   = − +        (3.67) 

Substituting equations (3.66) and (3.67) into equations (3.63), (3.64) and (3.65) gives 

lE
C

m
=           (3.68) 

( )m l E
I

xm

 +
=          (3.69) 

( )m l E
T

xym

  +
=          (3.70) 

Substituting equations (3.68), (3.69), (3.70) into equation (3.57) gives 

( ) ( )m l m l Ekl
E B

m xm xym

     


+ +
+ + =      (3.71) 

 ( ) ( )lxy y m l m l E
B

xym

      



+ + + +
=      (3.72) 

From equation (3.52), we have 

BS bE =           (3.73) 

From equation (3.56), we have 

S
V

z


=           (3.74) 

Substituting equations (3.70), (3.73) and (3.74) into (3.51) gives 
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( ) ( )1
0

m l E
bE a S

xym z

    − +  
 + + + − = 

 
     (3.75) 

( ) ( )1xym bxymE m l E az
S

xym z

     + + − + − 
=  
 

    (3.76) 

( ) ( )[ 1 ]

( )

z xym bxymE m l E
S

az xym

   



 + + − +
=

−
     (3.77) 

Substituting equations (3.72), (3.77) into equation (3.520 gives 

( ) ( )
2 2 2

[ 1 ][ ( )( )]
0

( )

z xym bxymE m l E lxy m l y E
bE

x y m az

         

 

 + + − + + + +
− =

−
 (3.78) 

This implies 

Either 

0E =                (3.79) 

Or 

( ) ( )
2 2 2

[ [ 1 ][ ( )( )]

( )]

z xym bxymE m l E lxy m l y

b x y m az

         

 

 + + − + + + + =

−
 (3.80) 

2 2 2

[ (1 ) ( )][ ( )( )]

( ) [ ( )( )]

z b xym m l lxy y m l E

b x y m az zxym lxy y m l

         

       

 + − + + + + = 
 

− − + + + 
  (3.81) 

This implies, 

2 2 2 ( ) [ ( )( )]

[ (1 ) ( )][ ( )( )]

b x y m az zxym lxy y m l
E

z b xym m l lxy y m l

       

         

− − + + +
=

 + − + + + +
  (3.82) 

Substituting equations (3.79) into equations (3.63), (3.64), (3.65) and (3.72) gives 
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C=I=T=B=0          (3.83) 

Substituting (3.79) into (3.77) gives 

z
S

az 


=

−
          (3.84) 

Substituting equation (3.840) into (3.74) gives 

V
az






=

−
          (3.85) 

 

3.4.1 Disease-free equilibrium state (DFE) 

Equations (3.79), (3.83), (3.84), (3.85) give the disease-free equilibrium state. 

That is,  

 , , , , , , ,0,0,0,0, ,0
Z

S E C I T V B
AZ AZ



 

  
=  

− − 
    (3.86) 

3.4.2 Endemic equilibrium state 

Substituting equation (3.82) into (3.68) gives 

2 2 2 ( ) [ ( )( )]

[ (1 ) ( )][ ( )( )]

l b x y m az zxym lxy y m l
C

zm b xym m l lxy y m l

       

         

 − − + + + 
=

 + − + + + +
  (3.87) 

Substituting equation (3.82) into equation (3.69) gives 

( ) 2 2 2 ( ) [ ( )( )]

[ (1 ) ( )][ ( )( )]

m l b x y m az zxym lxy y m l
I

zmx b xym m l lxy y m l

         

         

 + − − + + + 
=

 + − + + + +
 (3.88) 

Substituting equation (3.82) into (3.700) gives 
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( ) 2 2 2 ( ) [ ( )( )]

[ (1 ) ( )][ ( )( )]

m l b x y m az zxym lxy y m l
T

zmxy b xym m l lxy y m l

          

         

 + − − + + + 
=

 + − + + + +
 (3.89) 

Substituting equation (3.82) into (3.72) gives 

( )( )
2 2 2 ( ) [

( )( )]

[ (1 ) ( )][ ( )( )]

b x y m az zxym lxy
lxy y m l

y m l
B

zm xy b xym m l lxy y m l

   
    

   

          

 − − +
 + + +   

+ + 
=

 + − + + + +
  (3.90) 

Substituting equations (3.82) and (3.90) into equation (3.73) gives 

( )( )

b xym
S

lxy y m l y



      
=

 + + + 

      (3.91) 

Substituting equations (3.91) into (3.74) gives 

( )( )

b xym
V S

z lxy y m l y

 

      
= =

 + + + 

     (3.92) 

Hence equations (3.87) to (3.92) gives E.E.S 

3.5 Basic Reproduction Number 

The basic reproduction number, R0,is defined as the number of secondary infections that 

an infective individual produces throughout the infectious period in an entirely 

susceptible population. A basic reproduction number is a threshold number that if it is 

less than unity, that is if R0<1 then the disease-free equilibrium (DFE) is locally 

asymptotically stable, and if it is greater than unity, that is if R0>1 then the disease-free-

equilibrium is unstable. In this study, we employ the next generation matrix approach as 

described by Van den Driessche and Wathmough (2002) to obtain our Basic 

Reproduction Number. We take the basic reproduction number as the spectral radius of 

the product of the two matrices,  
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F and V-1, that is, R0=ρ(F V-1).  

Our model has five infected classes; hence we have the next generation matrices F and 

V for new infection terms and transmission terms respectively as 

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

z

az

F





 
 −
 
 

=  
 
 
 
 

       (3.93) 

0 0 0 0

(1 ) 0 0

0 0

0 0 0

0

V

 

    

    

   

   

+ 
 
− − + − 
 = − − + +
 

− + + 
 − − − 

     (3.94) 

Let 

,

,

,

f

g

h

q

 

 

  

  

= + 
 

= +
 
 = + +
 

= + + 

         (3.95) 

Substituting equation (3.95) into (3.94) gives 

0 0 0 0

(1 ) 0 0

0 0

0 0 0

0

f

g

V h

p

  

 



   

 
 
− − − 
 = − −
 

− 
 − − − 

      (3.96) 

Using Maple software, 



41 

 

( )

( )

1

0 0 0 0

(

)
0

0
1

0

V

ghq

f

hq hq
qh h

f

q g
q qg

f

gghq
g hg

f

hq hq

q gq

q

g q hq gv gq hq

f



 


 

   
 

   
 

 

  


     

         

  

− =

−

− −

+
− − −

− −
− − −

− −−
− − −

− + 
 

− − 
 − + − − − − − −   
     

− − − +      1gh 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

−   
 
   

                                 (3.97) 

( )

( )

( )

( )

( )

( )

( )

1FV

hq hq

q gq

z q

z q z gv z hq

g hq gq gh

az az az az

ghq f ghq ghq g

 

  

       

       

     

      

    

− =

− 
 
+ − 
  − − − − −     
       
+ −  −  −  −       
       − − + −       

− − − −

− − − −( )

( )

( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

z

az

hq ghq



 



 
 
 
 
 
 
 
 

− 
 

− 
 
 
 
 
 
  

                                                      

                                                                                                                                    (3.98) 
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The characteristics equation is 

( )

( )

( )

( )

( )

( )

1 0FV I

z

hq hq

z z zq gq

q

q gv hq

g hq gq gh

az az az a

ghq f ghq ghq

 

 

    

     

    

     

     

   

− − =

 

− 
       + − 
 − − − − −     
       
+ − − − −       
       − − + −       −

− − −

− − −

( )

( )

( )

( )

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

z

z az

ghq ghq



  

 


=

− −

− −

−

−

−

−

 

                                                                                                                               (3.99) 

( )( )
( )( )( )1 ( ) 0

hq hq q gq q
z

g
FV I

az ghq f

      
 

    

  

−

 − + − − 
  

− + − −  − = − − − − − =
 − −
 
 

 

      (3.100) 

Hence, The Eigenvalues are 

( )

( )( )1

2

3

4

5

0
0

0

0

0

z hq hq q gq q g

az ghq f

             

  

  − + − − − + − −
   

− −   
   
  = = 
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                                                                                                                                  (3.101) 

Therefore, 

( )

( )( )
0

z hq hq q gq q g
R

az ghq f

             

  

 − + − − − + − −
=

− −
 

(3.102) 

3.6   Local Stability Analysis of the Disease-Free Equilibrium State (DFE) 

We recall from equation (3.51) through (3.57) that the system of equations of the model 

at equilibrium gives:  

(1 ) 0BS aS T V   − − + − + =                (3.103) 

0BS bE − =                    (3.104) 

(1 ) 0E T eC  − + − =                 (3.105) 

0E C xI + − =                  (3.106) 

0I yT − =                              (3.107) 

0S zV − =                    (3.108) 

0C I T B   + + − =                  (3.109) 
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Where, 

a

b

e

x

y

z

 

 

 

  

  

 

+ = 
 

+ =
 
 + =
 

+ + = 
 + + =
 

+ =                    (3.110)

 

Recall from (3.86) that the disease-free equilibrium state is expressed as 

 0 , , , , , , ,0,0,0,0, ,0
z

D S E C I T V B
az az



 

  
= =  

− −                          (3.111) 

The Jacobean matrix of the system of equations at disease-free equilibrium state gives: 

( )

0

0 0 0 1 0

0 0 0 0 0

0 (1 ) 0 0 0( )

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

z
a

az

z
b

az

eJ D

x

y

z


 







  

 





   

 
− − − −
 

 
− −

 
− − =

 
− 

 −
 

− 
 − 

            (3.112) 

Using Maple with elementary row operation, we transform (3.112) into upper triangular 

matrix as 
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( )0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

z
a

az

z
b

az

eJ

x

y

z


 











 
− − − −
 

 
− −

 
− =

 
− 

 −
 

− 
 − 

                         (3.113) 

From equation (3.113) we obtain the characteristics equation as 

( )0 0 0 1 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

z
a

az

z
b

az

eJ I

x

y

z


 












− − − −

−


− −

−

− −− = =

− −

− −

− −

− −

   (3.114) 

That is, 

( )( )( )( )( )( )( ) 0J I a b e x y z − = − − − − − − − − − − − − − − =
        

  (3.115) 

Either ( 0a− −=  or 0b− −= or 0e− −= or 0x− −= or 0y− − = or 

 0z− −=  or 0− −=  )              (3.116) 

It implies that,  

( 1 2 3 4 5 6 7, , , , , ,a b e x y z  = −  = −  = −  = −  = −  = −  = − )                       (3.117) 

From equation (3.117),  
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1 2 3 4 5 6 7, , , , , , 0         , 

 Hence, the disease-free-equilibrium state is stable 

3.7 Analytical Solution of the Model 

3.7.1   Differential transformation method 

The differential transformation method is based on Taylor series expansion, to obtain a 

semi-analytical solution to both linear and nonlinear differential equations, (Ertürk, 

2007). 

The differential transformation of nth order derivative is given as; 

0

1 ( )
( )

!

n

n

x x

d y x
Y n

n dx
=

 
=  

 
                            (3.118) 

And the inverse differential transformation method of Y(n) is  

0

0

( ) ( )( )n

n

y x Y n x x


=

= −                   (3.119) 

Using the method, finite terms of the transformation are considered. Therefore, equation 

(3.119) can be expressed as 

0

0

( ) ( )( )
k

n

n

y x Y n x x
=

= −                            (3.120) 

From equations (3.118) through (3.120), the following properties are proven and 

established according to (Jang et al, 2000) and (Hassan, 2004). 

1. if ( ) ( ) ( )y x u x v x=  , then ( ) ( ) ( )Y n U n V n=       

2. If ( ) ( )y x au x= , then ( ) ( )Y n aU n= , where a is a constant 
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3. if 
( )

( )
m

m

d u x
y x

dx
= , then 

( )!
( ) ( )

!

m n
Y n U m n

n

+
= +  

4. if ( ) ( ) ( )y x u x v x= , then 
0

( ) ( ) ( )
n

m

Y n U m V n m
=

= −      

5. if ( ) ky x x= , then ( ) ( )Y n n k= − , where 𝛿(𝑛 − 𝑘) = {
1      𝑤ℎ𝑒𝑛 𝑛 = 𝑘
0      𝑤ℎ𝑒𝑛 𝑛 ≠ 𝑘

 

3.7.2   Analytical solution of the model using differential transformation method 

Consider our model  

( ) ( )1
dS

T V BS S
dt

     =  + − + − − +                (3.121) 

( )
dE

BS E
dt

  = − +                  (3.122) 

( ) ( )1
dC

E T C
dt

    = − + − +                 (3.123) 

( )
dI

E C I
dt

    = + − + +                 (3.124) 

( )
dT

I T
dt

   = − + +                 (3.125) 

( )
dV

S V
dt

  = − +                             (3.126) 

dB
C I T B

dt
   = + + −                 (3.127) 

With initial conditions  



48 

 

0

0

0

0

0

0

0

(0)

(0)

(0)

(0)

(0)

(0)

(0)

S S

E E

C C

I I

T T

V V

B B

= 
 

=
 
 =
 

= 
 =
 

= 
 

= 

                                    (3.128) 

Taking differential transformation of equations (3.121) through (3.128) gives 

0

1
( 1) ( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( )

1

n

l

S n n B l S n l S n T n V n
n

      
=

 
+ =  − − − + + − + +  

  (3.129) 

0

1
( 1) ( ) ( ) ( ) ( )

1

n

l

E n B l S n l E n
n

  
=

 
+ = − − + +  

                          (3.130) 

 
1

( 1) (1 ) ( ) ( ) ( ) ( )
1

C n E n T n C n
n

    + = − + − +
+

            (3.131) 

 
1

( 1) ( ) ( ) ( ) ( )
1

I n E n C n I n
n

    + = + − + +
+

              (3.132) 

 
1

( 1) ( ) ( ) ( )
1

T n I n T n
n

   + = − + +
+

                         (3.133) 

 
1

( 1) ( ) ( ) ( )
1

V n S n V n
n

  + = − +
+

              (3.134) 

 
1

( 1) ( ) ( ) ( ) ( )
1

B n C n I n T n B n
n

   + = + + −
+

            (3.135) 

When 0n = ,  

From equation (3.129) we have 
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0

0

1
(1) (0) (0) (0) ( ) (0) (1 ) (0) (0)

1 l

S B S S T V      
=

 
=  − − + + − + 

 
                   (3.136) 

0 0 0 0 0(1) ( ) (1 )S B S S T V     = − − + + − +                          (3.137) 

From equation (3.130), we have  

0

0

1
(1) (0) (0) ( ) (0)

1 l

E B S E  
=

 
= − + 

 
                 (3.138) 

0 0 0(1) ( )E B S E  = − +                     (3.139) 

From equation (3.131), we have 

 
1

(1) (1 ) (0) (0) ( ) (0)
1

C E T C    = − + − +               (3.140) 

0 0 0(1) (1 ) ( )C E T C    = − + − +               (3.141) 

From equation (3.132), we have 

 
1

(1) (0) (0) ( ) (0)
1

I E C I    = + − + +                (3.142) 

0 0 0(1) ( )I E C I    = + − + +               (3.143) 

From equation (3.133), we have 

 
1

(1) (0) ( ) (0)
1

T I T   = − + +               (3.144) 

0 0(1) ( )T I T   = − + +                (3.145) 

From equation (3.134), we have 
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1

(1) (0) ( ) (0)
1

V S V  = − +               (3.146) 

0 0(1) ( )V S V  = − +                (3.147) 

From equation (3.135), we have 

 
1

(1) (0) (0) (0) (0)
1

B C I T B   = + + −             (3.148) 

0 0 0 0(1)B C I T B   = + + −               (3.149) 

When n=1, 

From equation (3.129), we have 

1

0

1
(2) (1) ( ) (1 ) ( ) (1) (1 ) (1) (1)

2 l

S B l S l S T V      
=

 
=  − − − + + − + 

 
            (3.150) 

 
1

(2) ( (0) (1) (1) (0)) ( ) (1) (1 ) (1) (1)
2

S B S B S S T V     = − + − + + − +        (3.151) 

Substituting equations (3.128), (3.137), (3.145) and (3.149) into equation (3.151) gives 

( )

( )

( )

( ) ( )

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

( ) (1 )

(0)

1
(2) ( ) ( ) (1 )

2
(1 ) ( ) ( )

B B S S T V

S C I T B

S B S S T V

I T S V

     


   

       

         

   − − + + − + +
  

 + + −  
 

= − + +  − − + + − + 
 
− − − + + − − + 
 
 

       (3.152) 

From equation (3.130), we have 

( )
1

0

1
(2) ( ) (1 ) (1)

2 l

E B l S l E  
=

 
= − − + 

 
                     (3.153) 
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( ) ( )
1

(2) (0) (1) (1) (0) (1)
2

E B S B S E   = + − +                                 (3.154) 

Substituting equations (3.128),(3.137), (3.139), (3.149) into (3.154) gives 

( )

( )

( )( )

0 0 0 0 0 0

0 0 0 0 0

0 0 0

( ) (1 )
1

(2)
2

( )

B B S S T V

E S C I T B

B S E

     


   

    

   − − + + − +
  

 = + + + −  
 
− + − +  

             (3.155) 

From equation (3.31), we hav 

( ) ( )
1

(2) 1 (1) (1) (1)
2

C E T C     = − + − +                 (3.156) 

Substituting equations (3.129), (3.141), (3.145) into equation (3.156) gives 

( ) ( ) ( )

( )( )

0 0 0 0 0

0 0 0

1 ( ) ( )1
(2)

2 (1 ) ( )

B S E I T
C

E T C

         

      

 − − + + − + +
=  

− + − + − +  

           (3.157) 

From Equation (3.132) we have 

 
1

(2) (1) (1) ( ) (1)
2

I E C I    = + − + +                (3.158) 

Substituting equations (3.139), (3.141), (3.143) into (3.158) 

( ) ( )

( )

0 0 0 0 0 0

0 0 0

( ) (1 ) ( )1
(2)

2 ( ) ( )

B S E E T C
I

E C I

         

       

 − + + − + − +
=  

− + + + − + +  

               (3.159) 

From equation (3.133), we have 

( )
1

(2) (1) (1)
2

T I T    = − + +                 (3.160) 

Substituting equations (3.139) and (3.145) into equation (3.160) 
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( ) ( )( )0 0 0 0 0

1
(2) ( ) ( )

2
T E C I I T             = + − + + − + + − + +        (3.161) 

From (3.134), we have 

 
1

(2) (1) ( ) (1)
2

V S V  = − +                (3.162) 

Substituting equations (3.137) and (3.147) into equation (3.162) gives 

( )

( )

0 0 0 0 0

0 0

( ) (1 )1
(2)

2 ( ) ( )

B S S T V
V

S V

      

    

 − − + + − +
=  

− + − +  

           (3.163) 

From equation (3.135), we have 

 
1

(2) (1) (1) (1) (1)
2

B C I T B   = + + −               (3.164) 

Substituting equations (3.141), (3.143), (3.145) and (3.149) into (3.164) gives 

( ) ( )

( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0

(1 ) ( ) ( )1
(2)

2 ( )

E T C E C I
B

I T C I T B

           

         

 − + − + + + − + +
=  

+ − + + − + + −  

      (3.165) 

From equation (3.120), the solutions to our model using differential transformation 

method are: 

2

0

( ) ( ) n

n

S t S n t
=

=                  (3.166) 

2

0

( ) ( ) n

n

E t E n t
=

=                   (3.167) 

2

0

( ) ( ) n

n

C t C n t
=

=                   (3.168) 
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2

0

( ) ( ) n

n

I t I n t
=

=                  (3.169) 

2

0

( ) ( ) n

n

T t T n t
=

=                            (3.170) 

2

0

( ) ( ) n

n

V t V n t
=

=                 (3.171) 

2

0

( ) ( ) n

n

B t B n t
=

=                 (3.172) 

Substituting equations (3.128), (3.137) and (3.152) into equation (3.166) gives 

( )

( )

( )

( )

( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

2

0 0 0 0 0

0 0 0 0

( ) (1 )

( ) (1 )

(0)
( ) 1

( ) ( ) (1 )
2

(1 ) ( ) ( )

S B S S T V t

B B S S T V

S C I T B
S t

B S S T V t

I T S V

     

     


   

       

         

 +  − − + + − + −
 

   − − + + − + +
  

 + + −   
=  

+ +  − − + + − + 
  − − − + + − − + 
 
  










         (3.173) 

Substituting equations (3.128), (3.139) and (3.155) into equation (3.167) gives 

( )

( )

( )

( )( )

0 0 0 0

0 0 0 0 0 0

2

0 0 0 0 0

0 0 0

( )

( ) (1 )
( ) 1

2
( )

E B S E t

B B S S T V
E t

S C I T B t

B S E

  

     


   

    

 + − + +
 

   − − + + − + 
=    

 + + + −   
  
− + − +    

          (3.174) 

Substituting equations (3.128), (3.141) and (3.157) into equation (3.168) gives 

( )

( ) ( ) ( )

( )( )

0 0 0 0

0 0 0 0 0 2

0 0 0

(1 ) ( )

( ) 1 ( ) ( )1

2 (1 ) ( )

C E T C t

C t B S E I T
t

E T C

    

         

      

 + − + − + +
 

 = − − + + − + + 
  
− + − + − +    

         (3.175) 
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Substituting equations (3.128), (3.143) and (3.159) into equation (3.169) gives 

( )

( ) ( )

( )

0 0 0 0

0 0 0 0 0 0 2

0 0 0

( )

( ) ( ) (1 ) ( )1

2 ( ) ( )

I E C I t

I t B S E E T C
t

E C I

    

         

       

 + + − + + +
 

 = − + + − + − + 
  
− + + + − + +    

          (3.176) 

Substituting equation (3.128), (3.145) and (3.161) into equation (3.170) gives 

( )

( ) ( )( )

0 0 0

2

0 0 0 0 0

( )

( ) 1
( ) ( )

2

T I T t

T t
E C I I T t

   

            

 + − + + +
 =
  + − + + − + + − + +   

       (3.177) 

Substituting equations (3.128), (3.147), and (3.163) into equation (3.171) gives 

( )
( )

( )

0 0 0 0 0 2

0 0 0

0 0

( ) (1 )1
( ) ( )

2 ( ) ( )

B S S T V
V t V S V t t

S V

      
  

    

   − − + + − +
= + − + +  

− + − +    

  (3.178) 

Substituting equations (3.128), (3.149) and (3.165) into equation(3.172) gives 

( )

( ) ( )

( ) ( )

0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 0 0

( ) (1 ) ( ) ( )1

2 ( )

B C I T B t

B t E T C E C I
t

I T C I T B

   

           

         

 + + + − +
 

 = − + − + + + − + + 
  
+ − + + − + + −    

  (3.179) 

Hence the analytical solutions of the model is given by (3.167) to (3.179)  
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Results 

The Table 4.1 present the initial conditions and parameter values used for the simulation 

of the model. 

Table 4.1: Initial conditions and parameter values 

Parameters and State Variables   Value Source 

( )0S    10000 Nthiiri et al. (2016) 

( )0E    3500 Nthiiri et al. (2016) 

( )0C     1000 Nthiiri et al. (2016) 

( )0I     1500 Mutua et al. (2015) 

( )0T     2000 Assumed 

( )0V
 

( )0B  

   5000 

    100 

Assumed 

Assumed 

     0.0357 Nthiiri et al. (2016) 

     0.03 Nthiiri et al. (2016) 

     0.0002 Assumed 

     0.016 Nthiiri et al. (2016) 

     0.9 Assumed 

     0.81 Nthiiri et al. (2016) 

Σ    0.7 Nthiiri et al. (2016) 

     0.8 Assumed 

     0.9 Nthiiriet al. (2016) 
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The time t consider for this result simulation is in year. The Figure 4.1 – Figure 4.7 

present the graphical simulation of the model 

 

 

 

 

 

 

 

 

 

Λ    0.005 Nthiiri et al. (2016) 

  

  

  

  

  

    0.009 

    0.014 

   0.004 

0.0345 

0.5 

 Assumed 

Assumed 

Mutua et al. (2015) 

Assumed 

Assumed 
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Figure 4.1: Effect of infectious rates on the infected class 

From Figure 4.1, it can be seen that as the infectious increases, the population of the 

symptomatic infectious class also increases. The implies infectious rate, as the direct 

impact of the infected population. It is there by important to consider all necessary 

precaution needed to control the increase in infection rate of the disease. 

 

 

 

(year) 
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Figure 4.2: Effect of vaccination rates on the susceptible class 

From the Figure 4.2, it can be seen that as the vaccination rate increases, the population 

of the susceptible class decreases. The susceptible population decreases and attained an 

equilibrium position, due to enlightenment campaign, encouraging people to go for 

vaccination against the disease and to avoid being exposed to contaminated water 

polluted food. 

t (year) 
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Figure 4.3: Effect of incubation rate on the asymptomatic carrier-class 

From the Figure 4.3, it can be seen that as the incubation rate increases, the population of 

the asymptomatic carrier-class increases. This implies that incubation rate influence the 

population of the asymptomatic carrier of typhoid diseases. In order to manage the 

infection rate, there is need to consider incubation rate. 

 

(year) 
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Figure 4.4: Effect of recovery rate on the treatment class 

From Figure 4.4, it can be seen that as the recovery rate increases, the population of the 

hospitalized class decreases. This means as people recover from typhoid fever, they will 

be no need to still be on treatment, the population will decrease due to relapse and many 

also decrease due to disease induce death, due to negligent from the health practitioner, 

when wrong treatment is being administered. 

 

 

 

t (year) 
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Figure 4.5: Effect of Vaccination Rate on the Vaccination Class 

From Figure 4.5, it can be seen that as the vaccination rate increases, the population of 

the vaccination class also increases. This implies that when there is awareness on 

collection of vaccination, more individual will be found in the vaccination centre and this 

help to control the spread of the diasease among infected and susceptible individuals. 

 

 

 

 

 

 

t (year) 
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 Figure 4.6: Effect of Vaccination Rate on the Exposed Class  

From Figure 4.6, it can be seen that as the vaccination rates increases, the population of 

the exposed class decreases. More so if there is no interaction with the contaminated 

environment, their will be reduction in the exposed individuals, and this might in turn 

control infection rate. 

 

 

 

 

t (year) 
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Figure 4.7: Effect of Infectious Rate on the Asymptomatic Carrier Class 

From the Figure, 4.7, it can be seen that as the infectious rate increases, the population of 

the asymptomatic carrier increases. This depict that the infection rate has direct effect on 

asymptomatic carrier individuals. Hence there is no need to consider coreponding 

treatment given to infectious individual to  asymptomatic carriers. 

4.2 Discussion of Results 

The objective of this study was to develop and authenticate a mathematical model for the 

transmission and management of typhoid fever, employing a system of first-order 

ordinary differential equations comprising seven distinct compartments. The different 

compartments within the system under study include the susceptible class (S), exposed 

class (E), asymptomatic infected class (C), symptomatic infected class (I), hospitalised or 

t (year) 
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treatment class (T), vaccinated class (V), and the concentration of bacteria in the 

environment (B).  

this study on typhoid fever has taken different dimensions compared to existing models, 

as so many mathematical models in the past have assumed that susceptible individuals 

recovered with immunity against the disease, that is, there is no re-infection once an 

individual has recovered from the infection  (Adetunde, 2008; Mutua et al., 2015; Nthiiri 

et al., 2016). This assumption is not realistic as fully recovered individuals still stand the 

risk of re-infection if they are exposed to the bacteria again which is the main target of 

the present study. 

The findings indicate that there is a positive correlation between the infection rate and 

the size of the symptomatic infectious class. Furthermore, as the rate of vaccination 

increases, the size of the susceptible population decreases. This finding corroborated the 

claims made by Nthiiri et al. (2016) and Mutua et al. (2015). 

This study's findings also revealed a positive correlation between the incubation rate and 

population growth. As the rate of recovery increases, there is a corresponding decrease in 

the population of individuals who are hospitalised. The findings indicate a positive 

correlation between vaccination rates and the size of the vaccinated population, as well 

as a negative correlation between vaccination rates and the size of the exposed 

population. This finding corroborated the claim made by Nthiiri et al. (2016). 
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CHAPTER FIVE 

5.0       CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this work, a mathematical model for the spread and control of Typhoid fever by 

incorporating vaccination, treatment, waning rate, relapse rate was formulated. The 

equilibrium states of the model were obtained and analyzed. Local stability analysis was 

carried out on the disease-free equilibrium using the Jacobian matrix approach. 

According to the findings of this work, it can be deduced that the Disease Free 

Equilibrium State (DFE) of the model is stable if R0˂1. We obtained the semi-analytical 

solutions of the model using the Differential Transformation method and the solutions 

were plotted using Maple.  

 The result of the numerical simulation showed that reduction in the contact rate with 

infectious individuals reduces the transmission rate of the disease. Also, the findings of 

the study revealed that at high treatment rates for the infected individuals, the number of 

recovered individuals increases thereby leading to eventual dying out of the disease. It 

can also be concluded that as the vaccination rates increases, the population of the 

exposed class decreases. 

5.2  Recommendations 

(i) Policymakers and health practitioners are greatly advised to sensitize the 

people on the need to be vaccinated. Since, the model shows that the 

transmission of Typhoid fever infection rests greatly on the contact with the 

bacteria present in the environment 

(ii) Infected and treated individuals should be retested after recovery to avoid 

relapse. 
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(iii) Health workers are greatly advised to uphold prevention and control 

measures when treating infectious individuals.  

(iv) One of the constraints of this study is the unavailability of records of 

Typhoid fever cases; therefore, we recommend that health workers should 

keep proper records to make data available for researchers. 

(v)  Due to Typhoid fever's connection with malaria and other febrile infections, 

co-infection of Typhoid fever and those infections can be incorporated into 

the model 

5.3  Contribution to Knowledge 

(i)  We formulated and validated a mathematical model for the transmission and 

control of Typhoid fever by incorporating vaccination, treatment, waning rate, 

relapse rate.  

(ii)  The work has shown that the disease-free equilibrium is stable. 

(iii)  The work has also shown that infected individuals recovered when the 

treatment rates and their efficacy are high.      
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Appendix  A 

Maple code For computation of R0 
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Appendix  B 

Maple code For Figure 4.1 
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Appendix C 

Maple Code for Figure 4.2 
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Appendix D 

Maple code for Figure 4.3 
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Appendix E 

Maple Code for Figure 4.4 
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Appendix F 

Maple code for Figure 4.5 
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Appendix G 

Maple code for Figure 4.6 
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Appendix H 

Maple Code for Figure 4.7 
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