

DEPARTMENT OF CHEMISTRY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA SECOND SEMESTER TEST 2018/2019 SESSION

COURSE CODE: CHM 323 COURSE TITLE: Applied

Spectroscopy

TIME ALLOWED: 2 Hours

INSTRUCTIONS: Answer All Questions

1ai) Define and differentiate between auxochromes and chromophores.

ii) Exemplify and explain how auxochrome shifts absorption wavelength of a compound.

b) Given the following:


ii

i.

o) orver the rone wing	₽.
R- (Alkyl Group)	+5 nm
RO- (Alkoxy Group)	+6 nm
X- (Cl- or Br-)	+10
RCO ₂ - (Acyl Group)	0
RS- (Sulfide Group)	+30 nm
R2N- (Amino Group)	+60 nm
C=C (Double Bond)	+30 nm
C ₆ H ₅ (Phenyl Group)	+60 nm
CH ₃	

Calculate the total λ maximum for the above compounds.

2a) The ${}^{1}H$ NMR spectrum for a compound with the molecular formula $C_{7}H_{14}O_{2}$, is shown below:

Determine the structure of this compound. Show your analysis.

b) Express the multiplet splitting patterns expected for common fragments of the following compounds in NMR: i CH₃CH₂X

CH₃
ii Br - CH
CH₃

- c) Briefly state the principles behind NMR Spectroscopy
- 3ai)What is optical rotation and where do they occur? ii) With the aid of a schematic diagram explain how polarimeter operates?
 - bi) What is Specific Rotation $[\alpha]_D$?
- bii) A solution of 2.0 g of (+)-glyceraldehyde in 10.0 mL of water was placed in a 100 mm polarimeter tube. Using the sodium D line, a rotation of 1.74° was observed at 25°C. Calculate the specific rotation of (+)-glyceraldehyde.
 - ci) How do we express optical purity?
- ii) (-)-2-butanol has a specific rotation of 13.5°, while the specific rotation of (+)-2-butanol is +13.5°. A mixture containing (+) and (-)-2-

butanol has an observed rotation of -8.55° . Does the mixture contain more (+) or more (-)-2-butanol? Calculate the optical purity of the mixture.

- di) What are enantiomers?
- ii) What is enantiomeric excess (e.e.)?
- iii) Calculate the e.e. of a mixture containing 25% (+)-2-butanol and 75% (-)-2-butanol.
 - 4a) What is Raman Spectroscopy?
- b) What is the difference between Raman Spectroscopy and Infrared Spectroscopy?
- c) With aid of a schematic diagram, write a short on the basic principle and theory of Raman Spectroscopy to support your explanation.
- di) What is Raman effect? ii) With aid of energy level diagrams explain how Raman Scattering and states involved in Raman signal work?
 - e) Outline five uses of Raman Spectroscopy