NETWORK WITHIN MINHA METROPOLIS

A FINAL YEAR PROJECT

BY

SALIFOU SANDAGOU
90/1565

DEPARTMENT OF ELECTRICAL \& COMPUTER ENGINEERING FEDERAL UKIVERSITY OF TECHNOLOGY, MINNA NIGER STATE, NIGERIA

DECEMBER 1996.

11.

DECLARATIO:

I hereby declare that this project vork is the result of my om research and has never been subaitted by anybody anywhere. It was conducted under the suparvision of Professor S O Ajose, (HOD), Dapartment of Electrical and Computer Engineering, Federal Daiversity of Technology, Minna, Nigaria.

APPROVAL PAGE

I hereby certify thet I hava apervised, read and approved thia project work which I found to be up to standard for the pertial fulfilment of the avard of Bachelor's Degree in Elactrical © Computer Engineering.
iv.

DEDICATION

This work is humbly dedicated to Almighty Allah, to my loving parents and the entire members of the family.

v.

ACXNOWLEDGEMENT

My sincere gratitude goes to my parents for their love and support. I specially thank my funior brother, Boubacar for the financial and moral support he gave me during my studies.

I vould also like to thank my project supervisor, Professor S O Ajose for his timely advice and his encouragement during the conduction of this work.

My thanks also go to my classmates, friends for their different advice and support.

My special thanke to NEPA Minna Staff for their help in getting the data I needed.

For the Lecturers in the School of Angineering, specially in the Electrical/Computer Department for the knowledge they have inpacted, a big thank you to all.

I specially thank Mr. Jibril from the computer science department for helping me to write the computer program.

ABSTRAC:

This report presents the losd flow ansiyais and load forecasting for NEPA 11 Kv distribution network within Minns Metropolis.

The theory of load flow and load forecasting has been diacuseed. The variou methods of load $f 10 \mathrm{problem}$ solutiona ere covered through this theory. The various types of load forecazting are also covared.

And finally, the load flow analyais is applied to NEPA IIRV distribution network within Minna Metropolis, where the different quantities associated with the various luses, that 18, the voltages, the power real and reactive atc ... have been calculated.

TABLE OP CONTENTS

Title page 1
Declaration. 11
Approval 111
Dedication iv
Acknowledgement. v
Abstract. vi
CRAPTER 1
1.1 Introduction 1
1.2 Distribution networks 7.
1.3 Use of digital computers in lad flow scudies. 2
CHAPTER 2
Theory of load flow and load forecasting
2.1 Theory of load flow. $3 .-52$
2.1.1 Introduction 3
2.1.2 Bus clasaification 4
3.1 .3 Load flow equation formintion 5.
2.1.3.1 Load flow equations formiation using nodal matrix mathod. 6
2.1.3.2 Properties of nodal admittance matrix. 7
2.1.3.3 Advantages of nodal admitcance matrix method 8
2.1.3.4 Development of load flow equations 9
2.1.4 Solution cechniques to load flow equations. $9 . .-10$.
2.1.4.1 Properties required in load flow solution method 10..-Jd.
2.1.4.2 Data for load flow studias. 11.12
2.1.4.3 Direct mathode of solution. 12.13
2.1.4.4 Iterative method of eolution $13-.1 .4$
2.1.4.4.1 Gauss method $14 .-15$
2.1.4.4.1.1 Computational feature $1.5 .=16$
2.1.4.4.2 Gause-8eidal method. $16 .-18$
2.1.4.4.3 Accelaration factors $18 .-19$

2.1.4.4.4	Newton-Raphson method	$19-25$
2.1.4.4.5	Comparison of methods	25
2.1.4.4.6	Approximation to Newton-Raphson method	26
2.1.5	Line flow equations	26-27
2.1 .6	Repreaentation of transformers in load flow studies	27
2.1.6.1	Fixed tap sattiug transiormer	27
2.1.6.2	Phase shifting tranaformers	28
2.1.6.3	Tap changing under lond transformars	$29-31$
2.1 .7	Digital computer studies load flow	30-31
2.1 .8	Information obtained in load flow atudy	31-32
2.2	Theory of load forncasting	
2.2 .1	Introduction	$32-33$
2.2 .2	Types of forecasting	33
2.2 .3	Factors influencing losd forecasting	$33-34$
2.2.4	Load growth equation	34-35
2.2 .5	Forecasting methods	35
2.2.5.1	Poracast by produce growth factora	36
2.2.5.2	Normative method	37
2.2.5.3	Cerelation method	37
2.2.5.4	Porecasting with the upe of time peries	
CHAPTER 3		
Applicatio network for	of load flow calculation to NEPA liRV distribution r Minna metopolis	:
3.1	Introduction	38
3.2	The NEPA LIKV distribution network	38-39
3.3	Data preparation	40-41
3.4	Using of per unit systom	42
3.5	Simulation program	42

It is essential to have information about the continuous evaluation of the current performance of a powar and to analyse the effectiveness of alternative plans for system expansion to meet increased load demand. This analyste requires calculation of numerous losd flows for both normal and emergency operating conditions, hence the necessity of load flow analyais. Load flov analyais is, tharefore, the basic calculation raquired to determine the characteristice of the steady state of electic systems operating under normal conditions.

On the other hand, a reliable and sufficient power system requires comprehensive and caraful operation planning. The planning of the future development of power system in easential because satiafactory operation of the system depends on knowing the effects of ineerconnections with other power aysteas, new loads, etc-- it is also important to know the variations of londs on the system at any particular time. From this, we can see that the need of load forecasting also arisen. Load foracasting is the pradiction of future's load based on the past or today's data.

The aim of this prenant project work, is therefore, to descrike the theory of load flow analyeis and load forecasting and apply load flow analysis to NEPA likv network distribution within kinna netropolis.

1.2 Distribution networke.

Distribution networks differ from transmission networks in several ways, quite apart from voltage maguitude. The unmber of branches and sources ia much higher in distribution networks and the general structure is different. A typical distribution system consists of a step-down (132/11kv) on load tap-
(iv). Effect of temporary loss of generation and transmission circuits on system loading.
(v). Effect of temporary loss of generation and transmisaion circuits on systam loading.
(vi). Optimus syetam running conditions and load distribution
(vii). Optimum system losses.
(viii). Optimum rating and tap ranga of transformers
(ix). Improvement from change of conductor mize and system voltage
2.1.2 Bus Classification

Three types of buses are reprasented in load flow calculations. Associated with each bus are four quantities which are the real and reactive power, the voltage magnitude and the phase angle. At a bus two of these four quantities are epecified. These buses are:
(i). Voltage-controlled bue

Here the voltage magnitude ${ }^{\nabla}$ corresponding to the generation and the real power P corresponding to its ratinge are specified. It is required to find out the reactive power generation Q and the phase angle of the bus voitage . This type of bus generally corresponde to either a generator where P is fixed by turline govenor metting and V is fixed by automatic voltage regulatore acting on the machine axcitation, or bus where the voltage is fixed by applying reactive powar from static shunt capacitors or rotating synchronous compensators, example at substations.
(i1). Load bus

A this bus the real and reactive components of power are specified. It is desired to find out the volcage magaitude and phase angle through the load flow solution. In a phyeical power system, this corresponds to a load center such as a city or an industry, where the customer demands hie power requirements both P and Q are ascumed to be unaffected by small variations in bus voltage.
led to the load flow programs for large power system atudies still employ methods using the bus admittance matrix. This approach remains the most economical from the point of view of computer time and memory requirements.

2.1.3.1

Load flow equations formulation using modal matrix method.

The load flow equations can be formulated using modal matrix method. We shall first consider a three-bus system to derive the load flow equations and, they are thus generalized for en n-bus system. For instance, consider the figure 2.1.1.

fig. 2.1.1 Three-bus system.

At nodal 1

$$
\begin{align*}
I_{1} & =I_{11}+I_{12}+I_{13} \\
& =V_{1} y_{11}+\left(v_{1}-v_{2}\right) y_{12}+\left(v_{1}-v_{3}\right) y_{13} \\
& =V_{1}\left(y_{11}+v_{1} y_{12}-v_{2} y_{12}+v_{1} y_{13}-v_{3} y_{13}\right. \\
& =V_{1}\left(y_{11}+y_{12}+y_{13}\right)-v_{2} y_{13}-v_{3} y_{13} \\
& =V_{1} Y_{11}+v_{2} Y_{12}+v_{3} y_{13} \tag{1}
\end{align*}
$$

Where y_{11} is the mint charging admittance at bus 1 and

$$
\begin{aligned}
& Y_{11}=y_{11}+y_{12}+\dot{y}_{13} \\
& Y_{12}=-y_{12} \\
& Y_{13}=-y_{13}
\end{aligned}
$$

Where $Y_{12}{ }^{\nabla}$ and Y_{13} is the self admittances of bus 1.
(ii). It is aymmetrical, since $Y_{k i}=Y_{1 k}$ where k and 1 and node numbers.
(iii). It is complex
(iv). Each off diagonal element $Y_{k i}$ is the negative of the branches adaittance between nodes k and 1 , and is frequency of value zero.
(v). Each diagonal element $X_{k k}$ is the sum of the admittance of the branches which terminate on node k, including branches to ground.
(vi). Because in all but the smalleat practical networks very few non zero mutual admittances exist, the matrix is highly sparse.

2.1.3.3 Advantages of nodal admittance matrix method.

The nodal analysis has been found to be particularly aitable for digital computer work, and is almost exclasively used for routine network calculations. It has the following advantages.
(1). The numbering of nodes, performed directiy from a system diagram, is very simple.
(11). Data preparation is easy
(111). The number of variables and equations is usually less than with meh method for power networks
(iv). Network crossover branches present no difficulty.
(v). Parallel branches do not increase the nutber of variables or equations.

(vi). Node voltages are available diractly from the solution, and branch currents are easily calculated.
(vi1). Off nominal transformer taps can easily be represented.
(1i). Low computer storage.

This is important for large systoms and in the use of computers with small core atorage availability, axample aini-computers for on-1ine application.
(iii). Reliability of solution may be obtained for 111-condicined problems, in outage studies and for real time applications.
(1v). Versability
An ability on the part of laed flow to handle conventional and special features (example: adjustmant of tap ratios on traneformers. different representations of power gytems apparatus), and its guitability for incorporation into more complicated process.
(v). simplicity.

The ase of coding computer progran of the load flow algorithm. The type of solution required for a load flow also deternined the method uaed:

> accurate or approximate
> unadjusted or adjusted
> off-line or on-line
> single case or multiple cases

The first columg are requirements needed for optimal load flow and stability studies, and the second colums those needed for peessing security of system. Obviousiy, solutions may have alxture of thene properties from either column.

2.1.4.2 Data for load flow tudies.

Either the bus self-and mutual admittances which compose the bus admittance matrix $\mathrm{I}_{\text {bus }}$ or the driving point out transiet lipedarces which compose Z bus my be used in solving the load flow problean The etarting point in obtaining the data which mat be furniahed to the computer is the one-1ine diagram of the systen. Values of series inpedances and shunt
admittances of transmission lines are necessary so that the computer can determine all the $Y_{b u s}$ or $Z_{b u s}$ elements. Other essential informations include transformer ratings, and impedances, shunt capacitors ratings and transformer tap settings.

Operating $=0$ rifitions must always be selected for each study. At each bus, except one, the real power into the network must be specified. The power dram by a load is negative power input to the system. The other power inputs are from genarators and positive or negative power entering over interconnections - In addition, at these buses either the net flow of reactive power into the zetwork or the nagnitude of the voltage must be specified, that is at each bus a dacision is required whether the voltage magnitude or the reactive power flow is to be maintained constant. The usual case is to specify reactive power at load buses and voltage magnitude at generator buses, although sometimes reactive power is specified for the generators. In digital computer programs, provision is made for the calculation to consider voltage to be maintained constant at a bus.

2.1.4.3 Direct methods of solution

These basically invert the admittance matrix, a process consuming both in time and computer ctorage. Many methods are available and these include Gaussian elemination. Lirect methods solve onjy linear systems, that is:
$[I]=[Y][V]$ where [I] is specified. The fact thet powers are specified makes, in practice, the problem non lincar. A new value for I must be obtained from $S=V{ }^{*}$ after each direct solution and this value used to obtain a new one.

When solving the set of equatione $[A][x]=[b]$ the resduni vector $x=[b]-[A][x]$ is net zero becauce of zounding errors. Troublea arise when 111-cenditioned equations are obtoined ti which although the residual is small the sciution any be inncurato. Such matrices are often large and sparse and for most rows the diagonal element is equal to the sum of the
the non-diagonal lements and of opposite sign. We can therefore say that the diract wethod is not accurate when dealing will large power systems. Hence the introduction of the iterative methods.

2.1.4.4 Iterative methods of solution.

As the load flow equatione (egn 11) are nonlinear, they can be solved by an iterative method. These iterative methods include:
(1). Gause's method
(1i). Gauss - Seidel method
(111). Rewton - Raplifon method

But before these methode are explained, a apecific example is taken and these methode are applied for the solution of load flow equations. Let un consider the figure 2.1 .2 below.
 buges 2, 4 and 5 . The nodal admittance matrix is also given as follows.

$$
Y_{P q}-\left[\begin{array}{lllll}
Y_{11} & Y_{12} & 0 & Y_{14} & Y_{15} \\
Y_{21} & Y_{22} & Y_{23} & 0 & 0 \\
0 & Y_{32} & Y_{33} & Y_{34} & 0 \\
Y_{41} & 0 & Y_{43} & Y_{44} & Y_{45} \\
Y_{51} & 0 & 0 & Y_{54} & Y_{55}
\end{array}\right]
$$

By using this nodal admittance matrix along with eqn (11), the load flow equations for the 5 - bus syatem are written as follows. Assuming bus 1 as the slack bus,

$$
\begin{align*}
& V_{1}=V_{1} \text { specified fixed value } \\
& V_{2}=\frac{1}{Y_{22}}\left[-P_{2}^{2}-j Q_{2}^{2}-\left(Y_{21} V_{1}+Y_{23} V_{3}\right)\right] \\
& V_{3}=\frac{1}{Y_{33}}\left[\frac{P}{V_{3}^{*}}-j Q 3-\left(Y_{32} V_{2}+Y_{34} V_{4}\right)\right] \\
& V_{4}=\frac{1}{Y_{44}}\left[\frac{P_{4}-j Q 4}{V_{4}^{*}}-\left(Y_{41} V_{1}+Y_{43} V_{3}+Y_{45} V_{5}\right)\right] \\
& V_{5}=\frac{1}{Y_{55}}\left[\frac{\left.P_{5}-j Q 5-\left(Y_{51} V_{1}+Y_{54} V_{4}\right)\right]}{V_{5}^{*}}\right. \tag{12}
\end{align*}
$$

To understand the procedure for solution of these equations, simplifying assumption is made at the stage that all the other buses except bus 1 are load, buses, that is buses where P and Q are specified. The admittances and voltages as used in these equations are complex quantities and the number of nonlinear equations is ($n-1$) where n is the number of buses in the system.

2.1.4.4.1 Gause method

In this method, the same set of voltage is used throughout a complete iteration instead of immediately substituting each new value obtained to calculate the voltage at che next bus. The flow chart for load flow solution using Gauss method is given in appendix A.

$$
\begin{align*}
& \text { Let } A_{p}=P_{P}-j Q p \text { for all } P=1,2, \ldots, R, P \neq S \tag{13}\\
& Y_{p p} \\
& \text { Similarly let } B_{p q}=\frac{Y_{p q}}{Y_{p P}} \text { for all } P=1,2,-\infty \quad 12, P \neq S \\
& \text { and } q=1,2, \cdots-n, q \neq p \text {. }
\end{align*}
$$

With these simplifications, the voltage equation now becomes:

2.1.4.4.2 Gauss - Seidel method

The bus voltage equations (14) can be solved by the Gauss- Seidel method. In this method the new calculated voltage v_{p}^{k+1} immediately replaces v_{p}^{k} and is used in the solution of the subsequent equations. And the process is continued until changes in all bus voltages are negligible. After the solution has been obtained, the power at the slack bus and line flows can be calculated. The equation (12) in this case becomes.

$$
\begin{align*}
& v_{2}^{k+1}=\frac{1}{Y_{22}}\left[\frac{P_{2}-122}{\left(v_{2}^{k}\right)^{*}} \quad\left(Y_{21} V_{1}+Y_{23} v_{3}^{k}\right)\right] \\
& \nabla_{3}^{k}+1=\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q 3}{\left(V_{3}^{k}\right)^{k}}-\left(Y_{32} V_{2}^{k}+1+Y_{34} \nabla_{4}^{k}\right)\right] \\
& \nabla_{4}^{k+1}=\frac{1}{X_{44}}\left[\frac{P_{4}-j Q_{4}}{\left(\nabla_{4}^{k}\right)^{k}}-\left(Y_{41} V_{1}+Y_{43} \nabla_{3}^{k+1}-X_{45} \nabla_{5}^{k}\right)\right] \\
& \nabla_{5}^{k}+1=\frac{1}{Y_{55}}\left[\frac{P_{5}-105}{\left(V_{5}^{k}\right)}-\left(Y_{51} \nabla_{1}+Y_{54} V_{4}^{k+1}\right)\right] \text {. } \tag{15}
\end{align*}
$$

The general load flow equation resultant from Gauthe- Soldel method is given as below:
$\nabla_{p}^{k+1}=\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q p}{\left(v_{p}^{k}\right)^{*}}-\sum_{q-1}^{p-1} Y_{p q} \nabla_{q}^{k+1}-\sum_{q=p+1}^{p} \gamma_{p} \nabla_{q}^{k}\right]$
The flow chart for Guass - Sidel method is given in appendix B.
16.
fig. 2.1.4 Flow chart for Guass - Yeidel method.
The procedure for solution is outlined below.

1. Aserma a flat voltage profile $1+j 0.0$ for all nodal voltages except the slack bus 1 . Assume a sultable value of E the convergence criterion in if the absolute value of the maximum change in voltage between any two consecutive iterations is less than a prespecified value or tolerance E, the convergence is achieved and the iterative procedure is terminated.

1 (a) Set iteration count $K=0$
1(b) Set bus count $p=1$
1(c) Chack for slack bus. If it iz a slack bus, go to step 4(a), otherwise go to next step.
2. Check which of the buses are voltage - controlled buses and which are load buses. For voltage - controlled buses go to next statement, otherwise go to step 4.
3. Replace tine value of the voltage magnitude of voltage - controlled bus in that iteration by the specified value. Keep the phase angle same as in that iteracion. Calculate Q for the generator bus. If Q ifes between the lower and upper bounds, calculate the term (P - jQ) /V for this bus. Repeat this for all voltage - controlled buses and calculate this term and suatitute this term ($V-j Q) / V$ In the load flow equation corresponding to the voltage controlled bus. Calculate the new value of voltage for the bus. It is to be noted that if there are more than one generator buses, the voltage magnitude of that bus only is replaced by its specified value, while calculating Q and P of a particulat bus: The voltage of other generator buses will be corresponding to bar, ofalue in that iteration.

In case any or all the voltage controllad buses violate the reactive power generetion, the bus will be treated $s s$ a load bus and the magnitude

Constant that increases the amount of correction to bring the voltage closer
to the value it is approaching. The multipliers that accomplish this improved convergence are called the acceleration factors. The difference between the newly calculated voltage and the best previous voltage at the bus is multiplied by the appropriate acceleration factor to obtain a better correction to be added to the previous value. The acceleration factor for the real component of the correction may differ from that for the imaginary component. For any system, optimum values for acceleration factor exist, and poor choice of factors may result in less rapid convergence or make convergence impossible. An acceleration factor of 1.6 for both the real and imaginary components is usually a good choice. However studies may be made to determine the best choice for a particular system.

2.1.4.4.4 Newton_Raphson method.

The load flow problem can be, can also be solved by using Newton-Raphon method, using a set of non linear equations to expresse the specified real and reactive powers in terms of bus voltages. The equations for the method are derived as follows:

We know that at any bus , the power is given by,

$$
\begin{aligned}
& P_{p}-j Q_{p}=V_{p}^{*} I_{p}=V_{p}^{*} \sum_{q=1}^{n} Y_{p q} V_{q} \\
& \text { Let } V_{P I}=e_{p}+j f_{p} \\
& \text { and } Y_{p q}=G_{p q}-j B_{p q} \\
& \begin{aligned}
& \bullet \quad P_{p}-j Q p=\left(e_{p}+j I_{p}\right)_{*} \sum_{q=1}^{n}\left(G_{p q}-j B_{p q}\right) V_{q} \\
& \text { Let also } V=e+j £
\end{aligned} \\
& \text { Let also V = } \quad+\mathrm{ff}
\end{aligned}
$$

Separating the real and the imaginary parts we have

$$
\begin{align*}
& p_{p}=\sum_{q=1}^{n}\left\{e_{p}\left(e_{q} G_{p q}+f_{q} B_{p q}\right)+f_{p}\left(f_{q} G_{p q}-e_{q} B_{p q}\right)\right\} \tag{17}\\
& Q_{p}=\sum_{q=1}^{n}\left\{f_{p}\left(e_{q} G_{p q}+E_{q} B_{p q}\right)-e_{p}\left(f_{q} G_{p q}-e_{q} B_{p q}\right)\right\} \tag{18}
\end{align*}
$$

Also $/\left.\nabla_{p}\right|^{2}-e_{p}^{2}+i_{q}^{2}$

This formintion results in a set of nonlinear simultaneous equations. The real and reactive powers P_{p} and Q_{p} are known and the real and imaginary com ponents of voltage ep and f_{q} are unknown for all buses except the slack bus, where the voltage is specified and remains fixed. Thus there are $2(n-1)$ equation a to be solved for a load flow problem where n is the number of buses. The Mevton-Rapheon method required that a set of linear equations be formed expressing the relationship between changes in real and reactive powers and the components of the bus voltages. Assuming there is only one generator bus which is taken as the slack bus and all other buses are load buses. we get:

$$
\begin{aligned}
& \text { + } \square \\
& 2(n-1) \times 1 \quad 2(n-1) \times 2(n-1)
\end{aligned}
$$

Where the coefficient matrix is the Jecolion. In short form this equation (20) can be written as:

$$
\left[\begin{array}{c}
\Delta P \\
\hdashline \Delta Q
\end{array}\right]=\left[\begin{array}{ll:}
J_{1} & J_{2} \\
\hdashline J_{3} & J_{4}
\end{array}\right] \quad\left[\begin{array}{l}
\Delta Q \\
\Delta f
\end{array}\right]
$$

In case the system contains all types of buses, the set of equations is written an:

$$
\left[\begin{array}{c}
\Delta P \\
\frac{\Delta Q}{\Delta Q} \\
\left|\Delta \nabla_{p}\right|^{2}
\end{array}\right]=\left[\begin{array}{c:c}
J_{1} & J_{2} \\
\hdashline J_{3} & J_{4} \\
\hdashline J_{5} & J_{6}
\end{array}\right]\left[\begin{array}{l}
\Delta e \\
- \\
\Delta f
\end{array}\right]
$$

The elemante of the Jecolion matrix matrix can be derived from the three load flow equations (27) - (19).

$$
\text { The off - diagonal elements of } J_{1} \text { are }
$$

$$
\begin{equation*}
\frac{\partial P_{p}}{\partial e_{P}}-e_{P} G_{P_{q}}-f_{p} s_{P_{q}}, q \neq p \tag{21}
\end{equation*}
$$

and the diagonal elements of J_{1} are

$$
\begin{align*}
& \frac{\partial P_{p}}{\partial e_{p}}={ }_{q} e_{P} G_{P_{q}}+f_{p} B_{P q}-f_{p} B_{p p}+\sum_{q=1}^{n}\left(e_{q} G_{P q}+f_{q} B_{p q}\right) \\
& -2 e_{p} G_{p p}+\sum_{q=1}^{n}\left(e_{q} G_{P q}+f_{q} B_{P q}\right) \tag{22}\\
& \text { q } \ddagger p
\end{align*}
$$

The off-diagonal of J_{2} are

$$
\begin{equation*}
\frac{\partial P_{p}}{\partial f_{q}}=0_{p} B_{P q}+f_{p} G_{P q}, q \neq p \tag{23}
\end{equation*}
$$

and the diagonal elements art

$$
\begin{equation*}
\frac{\partial F_{p}}{\partial T P}=2 f_{p} G_{p p q}+\sum_{\substack{q=1 \\ q \neq p}}^{n}\left(f_{q} G_{p q}-e_{q}^{B} B_{p q}\right) \tag{24}
\end{equation*}
$$

The off-diagonal elements of J_{3} are

$$
\begin{equation*}
\frac{\partial Q_{p}}{\partial e_{q}}=e_{p} B_{P q}+f_{p} G_{P q}, \quad q-p \tag{25}
\end{equation*}
$$

and the diagonal elements are

$$
\begin{equation*}
\frac{\partial Q_{p}}{\partial e_{p}}-2 e_{p}-\sum_{q=1}^{n}\left(E_{q} G_{P_{q}}-a_{q} z_{p_{q}}\right) \tag{26}
\end{equation*}
$$

The off-diagonal and diagonal elements of J_{4} respectively are

$$
\begin{align*}
& \frac{\partial Q_{p}}{\partial f_{p}}=2 f_{p} B_{p p}+\sum_{\substack{q=1 \\
q \neq p}}^{n}\left(e_{q} G_{p q}+q_{q} B_{p q}\right) \tag{28}
\end{align*}
$$

The off-diagonal and diagonal elements of J_{5} are

$$
\begin{equation*}
\frac{\partial / v_{p} f^{2}}{\partial \cdot q}=0, \quad q+p \tag{29}
\end{equation*}
$$

and $\frac{\partial / v_{p} \prime^{2}}{\partial \bullet_{p}}=2 e_{p}$
The off- diagonal and diagonal elements of J_{6} are

$$
\begin{align*}
\frac{\partial / \nabla_{p} f^{2}}{\partial f_{q}} & =0, \quad q \psi p \tag{31}\\
\text { and } \frac{\partial / \nabla_{p} f^{2}}{\partial f_{p}} & =2 f_{p} \tag{32}
\end{align*}
$$

Next we calculate the residual colum vector consisting of $\Delta \mathbb{R}, \quad \Delta Q$ and $\mid \Delta \nabla /^{2}$. Let $P_{s p}, Q_{a p}$ and $/ \nabla_{s p} /$ be the specified effationg at the bus p. Assuming a suitable value of solution (flat voltage profiles sour oise) the value of $P, Q, / V /$ at the various buses are calculated.fthen

$$
\begin{aligned}
& \Delta P_{p}=P_{a p}-P_{p}^{0} \\
& \Delta Q_{p}=Q_{a p}-Q_{p}^{0}
\end{aligned}
$$

$$
\begin{equation*}
\left./\left.\Delta v\right|^{2}=/ \nabla_{8 p} f^{2}-/ \nabla_{p}^{0}\right)^{2} \tag{33}
\end{equation*}
$$

Where the superscript zero means the value calculated corresponding to initial guess, that is zeroth iteration.

Having calculated the Jacolian matrix and the residual colum vector corresponding to the intial guess (initial solution) the desired increment voltage vector $\left[\begin{array}{l}\Delta e \\ \Delta f\end{array}\right]$ can be calculated by using any standard technique (preferably Gauss elimination with sparsity techniques). The next better solution will be

$$
\begin{aligned}
& e_{p}^{1}=e_{p}^{0}+\Delta e_{p}^{0} \\
& f_{p}^{1}=f_{p}^{0}+\Delta f_{p}^{0}
\end{aligned}
$$

These values of voltages will be used in the next iteration. The process will be repeated and in general the new better estimates for bus voltages will be

$$
\begin{gathered}
e_{p}^{k+1}=e_{p}^{k}+\Delta e_{p}^{k} \\
f_{p}^{k+1}=f_{p}^{k}+\Delta f_{p}^{k}
\end{gathered}
$$

The process is repeated till the magnitude of the largest element in the residual colum vector is leas than the respecified value.

The flow chart for load flow solution using Newton-Raphson method is given in appendix C.

The procedure of solution is outlined below.

1. Assume a suitable solution for all buses except the slack bus. Let $V_{p}=1+j 0.0$ for $p=1,2-n, p-s, \nabla_{s}=a+j 0.0$.
2. Set convergence criterion - E, that is if the largest of alsoute of the residues exceeds E the process is repeated, otherwise it is terainated.
3. Set iteration count $K=0$
4. Set bus count $P=1$
5. Check if p is a slack bus. If yes, go to step 10 -
6. Calculate the real and reactive powers P_{P} and Q_{p} respecticely using equations (17) and (18) respectively.
7. Evaluate $\Delta p_{p}^{k}-p_{s p}-p_{p}^{k}-$
8. Check if the bus in quegtion is a generator bus. If yes, compare the q_{p}^{k} with the limits. If it exceeds the limit, fix the reactive power generation to the corresponding limit and treat the bus as a load bus for that iteration and go to next step. If the lower limit is riolated set $Q_{p s p}=Q_{p m i n}$ If the limit is not riolated evaluate the following residue

$$
/ \Delta v_{p} f^{2}=/ v_{p} f_{s p}^{2}-/ \nabla_{p}^{k} f^{2} \text { and go to step } 10
$$

9. Evaluate $\Delta Q_{p}^{k}-Q_{s p}-Q_{p}^{k}$
10. Advance the bus count by 1 , that is $p=p+1$ and check if all the buses been accounted. If not, go to stap 5 .
11. Deternine the largest of the alsolute of the residue.
12. If the largest of the alsolute value of the residut is less than E, go to step 17.
13. Evaluate elemants for the Jacobian
14. Calculate voltage increments Δ_{p}^{k} and as
15. Calculata new bus voltages $e_{p}^{k+1}=e_{p}^{k}+\cos _{p}^{k}$ and $f_{p}^{k+1}=f_{p}^{k}+\Delta f_{p}^{k}$
Evaluate $\cos \delta_{p}$ and $\sin \delta_{p}$ of all voltages.
16. Advance iteration count $K=k+1$ and go to step 4 .
17. Evaluate bus and line povere and print the resulcs.

2.1.4.4.3 Comparison of solution methods.

Since the Guauss - Seidel is undoubtediy mupario to Guaus mathod, the comparison is restricted oniy between Cuauss - Soidel method and Newton-Raphoon method and that too when I bus matrix is ueed for problem formulation. From the view of computer memory requirements, polar coordinates are preferred for solution besed on Rewton-Raphson method and rectangular coordinates for Guaues - Seldel method.

The time taken to perform one iteration of the computation is relatively gmaller in case of Cuauss - Seidel method as compared to Newton-Raphson but the number of iterations required by Guaum-Seidel method for a particular system are greater as compared to Xevton-Raphson method and they increase vith the increame in the aize of the system. In caee of Nevtou-Rapheon wethod the numbar of iterations le more or leas indapandent of the aize of the syatem and vary between 3 and 5 itarations. The convargence characteristics of Mewton-Rapheon method are not affected by the eelection of a slack bus whereas that of Cuaus - Seidel is acmetimes very seriously affactad and the selection of a particular bus may result in poor convergence.

The main advantage of programing and most efficiant use of core memory. Nevertheless, for large powar eyatems. Nauton-Paphson is found to be more convergence characteriatica. Buen though Nawtow-Raphan nethod can solve most of the practical probleme, it may fail in respect of some ill-conditioned problema there other advanced mathomatical programaing techniqueg like the nonlinear programing techaiques can be used. To have an approtitita didec: of
 takes less than 10 seconds to obtain a load flow solution of if bus nystem starting with a flat iditage golution of $(1+j 0.0)$. This includes the formulation of nodal blatitance matrix and its etorage time.

It is well knowz that a small change in phase angle changes the flow of active power and dees not affect much the flow of reactive power. Similarly, a small chenge in nodal voltage affects the flow of reactive power whereas the active power practically does not change. Reeping these facts in mind and using the polar coordinates, the set of linear load flow equations can be written in matrix form as follows:

$$
\left[\begin{array}{l}
\Delta P \tag{34}\\
\Delta Q
\end{array}\right]=\left[\begin{array}{ll}
J_{1} & 0 \\
0 & J_{4}
\end{array}\right]\left[\begin{array}{l}
\Delta \delta \\
1 \Delta V /
\end{array}\right]
$$

Here J_{1} corresponds to the elements $\frac{\partial p}{\partial \delta}$ which exist.
J_{2} corresponds to the elements $\frac{\partial P}{\partial h i c h}$ do not exist, therefore, $\partial / v /$ are zero.
J_{3} correaponds to the elements $\frac{\partial Q}{\partial \delta}$ wifich do not exist and, therefore zero.
J_{4} corresponds to the elmenta $\frac{\partial Q}{\partial / v /}$ which exist.
This certainly simplifies the calculation and results in smaller computation time.

2.1.5 Line flow equations.

After the iterative solution of bus voltages is completed, line flows can be calculated. The current at bus P in the line comnecting bus p to q is $\quad 1 p q=\left(v_{p}-V_{q}\right) y_{p q}+v_{p} y_{p q}^{t}$

$$
2
$$

Where $y_{p q}$ is the line admittance
$y_{p q}^{1}$ is the total 1 ine charging admittance.
$v_{p} y_{\text {pq }}^{1}$ is the current contribution at bus p due to line charging. 2

The pown flow, real and reactive, is

$$
\begin{aligned}
& P_{p q}-1 Q_{p q}=\nabla_{p}^{*}\left(\nabla_{p}-\nabla_{q}\right) y_{p q}+\nabla_{p}^{*} \nabla_{p} y_{p q}^{\prime}
\end{aligned}
$$

Where $P_{p q}$ in the real power flow from bue p to q and $Q_{p q}$ is the reactive power flow frow bue p to q.

Similarly at bus q, the power flow from bua q to p is:

$$
P_{p q}-1 Q_{p q}-\nabla_{q p}^{*}\left(v_{q}^{*}\left(v_{q}-\nabla_{p}\right) y_{p q}+v_{p q}^{*}+V_{q}^{*} V_{p q}^{*}\right.
$$

2

The power lots in line $p-q$ is the algebraic gum of the power flows $\left(P_{p q}-1 Q_{p q}\right)$ and $\left(P_{q p}-1 Q_{q p}\right)$.

2.1.6 Representation of transormars in load flow studiee.

The capped transformex operating at off-nominal tap ponitions provide mant of exchanging reactive power between networies operating at different voltager, and between generators and the metwork aystom to wich thay are conmacted, it is therefore required to raflect this into potrer balance equatione.

2.1.6.1 Fixed sapseting trangormarg.

A trantormer with off - nominal turn ration can be repranented by its tupedance. or adriteance, connected in eeries with an ideal auto-transm former. An equivatent cricuit representation to be used in load in load flow studies is shown in the figure 2.1 .6 .

Where a is the turns ratio.

The parameters of the equivalent circuit are as follows. When the off nominal turns ratio is representated at bus p for a transformer connecting p and q, the self - admittance at bus is:

$$
x_{p q}=y_{p 1}+y_{p 2}-\frac{y_{p q}}{q^{2}}+y_{p n}
$$

The wutual admittance from p to q is:

$$
Y_{p q}=-\frac{y_{p q}}{a}
$$

The self - admittance at bus q is:

$$
x_{q q}=y_{q 1}+y_{q 2}+-+y_{q p}+-y_{q n}
$$

The mutual - admittance from q to p is:

$$
Y_{\text {qP }}=-\frac{y_{\text {GP }}}{}
$$

2.1.6.2 Phase shifting transformers.

A phase shifting transformer can be represented in load flow studies by its impedance or admittance, connected in series with an ideal auto-
transformer having a complex turns ratio as shown in figure 2.1.7. Then the terminal voltages are related by $E_{p}=a_{s}+j b s$ where E_{p} and E_{s} are the primary and secondary voltages respectively, and $a_{B}+j b s$ is a complex turns ratio.

fig. 2.1.7 Phase shifting transformer representation.
The different admittances are as follows:
The self-admittance at bus is given by:

$$
z_{p p}-y_{p 1}+y_{p 2}-\frac{y_{p q}}{\frac{a_{8}^{2}+b_{8}^{2}}{}-y_{p n}}
$$

The mutual admittance is:

$$
\begin{aligned}
Y_{q P}=- & Y_{p q} \\
& a s+j b s
\end{aligned}
$$

Similarly the self-admittance at bus q is:

$$
Y_{q q}=y_{q 1}+y_{q 2}-+y_{q p}-\infty+y_{q n}
$$

Anol the mutual admittance is:

$$
Y_{p q}=-\frac{y_{p q}}{a_{8-} j b_{B}}
$$

2.1.6.3 Tap changing under load transformers.

 it is necessary to change the turns ratio to obtain the dtrimaingaicude of voltage at a specified bus. Thia can be accomplished by changing the turns ratio by a small in crement Δ a once in any iteration when the voltage
magnitude of bus 4 is auch that

$$
/ / \nabla_{q}^{k} /-/ \nabla_{q} / \text { scheduled } />E
$$

The etandard change in tap setting of TCUL traneformers is $\pm 5 / 8$ percent per step. The self-adaittance $Y_{p p}$ and the mutual admittance $X_{p q}$ - X_{Ap} must be recalculated for every change in the tap setting of the transformer connecting buses p and q. The equivalent circuit with the ahunt and aeries adaittances in shown in the Eigure 2.1.8.

Where ∇_{p} and ∇_{q} are the voltages at bus p and q respectively.

2.1.7 Digital conputer gkudias of load flou.

Pover companies uee very claborate programs for making load flow studies. A typical program is capable of handing aystema of mora than 200 buses, 3000 1ines and 500 transformers. Programs can be expanded to evan greater size provided the available computer facilitien are aufficiently large.

Data supplied to the computar mat include numerical values such as impedances of the different lines and an indication of whether a bus is a awing bua, or regulated bus whare the voltage magnitude is held eppyteint by generation of reactive power Q, or a bus with fixed P umbtheitit of P and Q generation ually must be specified as wall as the lintto of line kilovoltampares. Unless otherwise apecified, program wevally assume a base of 100 MVA.

Total line charging in megavars specified for each line accounts for shunt capacitance and equals $\sqrt{3}$ times the rated ine voltage in kilovolts times $I_{\text {chg, }}$ divided by 10^{3}. This equals wCn $/ V /^{2}$ where $/ V /$ is the rated line-to-line voltage in kilovolts, and Cn is the line-to-neutral capacitance In forads for the entire length of the line. The program creates a nominal - representation of the line by dividing equally between the two ands of the line the capacitance computed from the given value of charging megavers. For a long line, the computer could be programmed to computer the equivalent for capacitance distributed evenly along the line.

2.1.8 Inforaation obtained in a load-fiowstudy.

The information which is obtained from digital solutions of load flow is an indication of the great contribution digital computers have made to the power system engineer's ability of obtain operating information about the system not yet built and to analyse the effects of changes existing systems. the following discussion is not meant to list all the information obtainable but should provide some insight into the great inportance of digital computers in power gystem engineering.

The print out of results provided by the computer consists of a number tabulations. Usually the most important information to be considered first Is the table which lists each bue number and name, bus - Noltage magnitude In per unit and phase angle, generation and road at each bus in mawatts and megavars, line charging, and megavars of static capacitors or reactors on the bus. Accompanying the bus information is the flow of megawates and megavars from that bus over each tranamission line connected to the bus. The totals of system generation and loads are listed in megawatts and megavers,

In the operation of power systems any appreciable droptitpltese on the primary of a transformer caused by a change of load may to change the tap setcing on transformers provided with adjustable taps in order to maintain proper voltage at the load. Where a tap-changing trans-
formax has been specified to keep the voitage at a bus within deaignaced
tolerance limits, the voltage is exmined before convergence is complete. If the voltage is not within the limits apecified, the program caumes the computer to periorm naw set of iterations with a one-step change in the appropriate tap aetting. The process is repeated as many times as necassary to causa the solution to conform to the desired conditions. The tap setting is Ifeted in the rabulated results.

A syatom may be divided into areas, or one etudy may include the eytama of sevaral companies ach designated as different area. The computer will exanine che flow batween areas, and deviations from the prescrited flow will be ovarcome by causing the appropriate change in generation of a alected generator in each area. In actual systes operition interchange of powar between areas is monitored to deternine whether a given area is producing that amount of power which will reaule in the deaired interchange.

Anong other information that may be obtained is a listing of all buses where the voltage magnitude is above or below some limits that mat be specified. A list of line loadings in magavoltampers can be obtained. The printout will also list the total megaivate $\left(/ 1 /^{2} R\right)$ and megavar $\left(/ I /^{2} X\right)$ loases In the system and both P and Q mismatch at each bue. Mimatch in an indication of the preciaenese of the alution and is the difference between P (and alao uaully Q) atering and leaving each bus.
2.2 THEORY OP LOAD PORECASTHE

2.2.1 Incroduction.

It is evident that load forecanting is a crutial activity ingelactricity mupply. Forecate are based on the previous year'6 leadne tor the period in question updated by factore such general load ineroadee, mor nev loads, and weather trends. Boch power demad and energy forecasts are used. the Latcex often being the moxe readiy obtained. From energy foracasts
domand valuea may be determined. Energy tronds tend to be leme erratic than paak powar domande and are coneldered bectar grouth indicators; however load forecants are also erratic in mature.

As weather has mach granter influance on residential than on industrial demande, it may be preferabla to assemble the load forecast in conetituent parts to obtain the total. In many cases, the seasonal variations in peak demand are caused by weather-raneitive appliances auch an heaters, air conditioners etc --m. A knowledge of the increasing use of such appliances is charefore easantial. The many physical factors affecting loads, axample vather, national econoaic haalth, populax T.V programs, public holidays etcmake forecasting a complax process demandins axperiance and analytical ability.

2.2 .2 Types of forecantinge

Tvo common tima ecale of importance to load forecasting exist. These are
(1) long-tern forecasting, with time horizons on the order of 15 to 20 years and
(11). Shore-term forecasting of an incegrsted active load demand of an urban pover oystem is often required for econonic ganeration scheduling and security checking. It also helps the powar plant operator in allocating the generator epinning reserve to met the peak loed dowand for the area - Long-tere forecasting is an esential necessiey for any country in view of the long gestertion period for the power projecta. Demand for much electricity io forecasting by agencien such as HRPA (National Power electric Authority). The tectniques used by thepe agenclat are mainly based on the asoumption of taking on avarage yoar and thar projacting tudtenth every year based on a cartain pattern of asaumption.

```
2.2.3 Factors influencing load forecast._
```

The load growth of a geographical area served by a utility company 1* the most important factor influencing the expansion of the distribution nato. The figure 2.2 .1 indicates some of the factors which influence the load forecast.

f1g._2.2.1 Factors influencing load forecast.

As one would expect, lad growth is very much dependent on the community and its development. Thus the level of the overall economic activity, the relative levels of the activity, the relative levels of the activity in the different sectors of the economy, the technologies which are adopted for production of goods and services etc --, are all, factors that influence the load forecasting. Economic indicator a demographic data, and official land use plans all serve as raw input to the forecasting procedure.

2.2.4 Load growth equation

The load growth of the geographical area served by a utility company is the most important factor influencing the explosion of the distribution
systom. Therefore, load forecasting of load increases in tesential to the planing procedure. Pitting trends after transformation of data is a common practice in cechnical forecasting. An arithmatic staight lina that vill not fit the original data may fit for example, the logarithms of the data as typified by the axponential trend,

$$
\begin{equation*}
y_{c}=a b^{x} \tag{2.2.1}
\end{equation*}
$$

This axpression is moutmas called a growth equation, ince it is after ueed to explain the phenomanon of growth through time. For example, if the load growth rate is known, the load at the end of nth gear is given by

$$
\begin{equation*}
P_{n}-P_{0}(1+g)^{n} \tag{2.2.2}
\end{equation*}
$$

Where $P_{n}=$ load at the and of tha $n^{\text {th }}$ year
P_{0} - initial load
8 - annual growth rate
n number of yeras.

Now, if it is so that $P_{n}=y_{t}, p_{0}=a, 1+g=b$ and $n=x$, then equation 2.2 .2 is identical to the exponantial trand equation 2.2 .1 .

2.2.5 Forecast mathods.

The forecast method are diverse and based on extrapolation, that is the ability to look into the fucure proceeding from the pare and boday information. Many works relating to the onergy problens reveal the poasibiLity of uide-acale employment of the probality theory methode and mathematical statistice for solving the plaming problems.

A number of most populaz methods in loed forecasting include
(1). foracast by produce growth factors
(1i). normative wethod
(111). corralation method
(iv). forecasting with the use of tim settion.

2.2.5.1 Forecast by produce growth factors.

This is made by progjecting the growth trend in the past into the future. For instance, if the growth factor X_{T-1} of the power consumption for the past years is know, the forecast for the Tth year is:

$$
\begin{equation*}
C_{T}=\left(1+K_{T-1}\right) \quad C_{T-1} \tag{2.2.3}
\end{equation*}
$$

and $\mathrm{K}_{\mathrm{T}-1}=\frac{\mathrm{C}_{\mathrm{T}-1}}{\mathrm{C}_{\mathrm{T}-2}}$

Where C_{T-1}, C_{T-2} are the consumption for the (T-1) th and (T-2) th years.
This method is simple but inaccurate because the data in the past (growth factor $\mathrm{K}_{\mathrm{T}-1}$) are applied to the future without any refinement. On some occassions, this technique offers tolerable occuracy, however the advent of computers make it obsolete.

2.2.5.2 Normative method.

The power demand is also forcast by the somcalled normative method which normalizes specific power consumption per unit produce of various enterprises and branches. Now the foracast 18:

$$
\begin{equation*}
c_{T}=\sum_{i} c_{T,}{ }_{i} F_{i} \tag{2.2.4}
\end{equation*}
$$

Where $1=$ number of branch or enterprise

$$
\begin{aligned}
& \mathbf{C}_{\mathrm{T}, 1}=\text { forecast specific power consumption } \\
& \mathrm{Fi}_{1}=\text { forecast output. }
\end{aligned}
$$

This method is widespread for forecasting power demand for 5 - 20 years over separate areas. It is also applicable to shorted period but, likewise the first method, involves gross errors. Besides the use of this technique is limited because the power syatems are not furnished withofintimation on the expansion of the energy consuming branches of industry.

2.2.5.3 Correlation method.

This is a mathematical modelling method. It relates the statistical data of power consumption with main factors affecting the power demand. Extrapolating such relations for the future gives the forecasting. The correlations may exist between the power consumption and gross product, labour productivily, power availability per man etc - - - The relation between the power generation and the gross product is more rigid for forecasting 5 to 10 years into the future. The correlation are also used for ghort-term forecasting though the number of the main variables increases with reduction of the forecasting period.

2.2.5.4 Forecasting with the use of time series.

This is also a mathematical modeling. This method is based on the extrapolation of correlation method. The time series is striturally represented as two components taking the form.

$$
\begin{equation*}
Y(t)=\varphi(t)+V(t) \tag{2.2.5}
\end{equation*}
$$

Here $\varphi(t)$ descrites the determinate component of the series and is called a trend; the component $V(t)$ gives the random deviations from the trend which axe probaliatic or indeterminate.

The trend reflects the average steady laws of the value Y variation as a function of time, such as the consumers comprising the system and the basic particular of their operation, average weather indicators and the like. However the unsteadiness of many factors affecting the power consumption causes the random demotions from the trend, example at the ambient tempperature fluctuations-

If a mathematical model can be selected $Y(t)$, it is readilfeapplicable for forecasting by extrapolation for a period of $(t+t)$. That forest for the moment $(t+\Delta t)$ will be:

$$
\begin{equation*}
Y_{f}(t+\Delta t)=\varphi_{f}(t+\Delta t)+\nabla_{f}(t+\Delta t) \tag{2.2.6}
\end{equation*}
$$

Where

$$
\varphi_{f}(t+\Delta t) \text { is the value obtained by extrapolating the series }
$$

3.1 Introduction

In the present chapter, the load flow analysis is applied to the NEPA llkv distribution network within Minna metropoils.

Four different feeders supply Minna matropolis in electricity. The llkv network distribution comprises six buses.

3.2 The NEPA 11 kv distribution network.

Two 33kv lines cone from Shiroro hydroductric power station. At the Shiroro substation situeted near Shiroro Hotel, two 15MVA step-down trangformers are used to step-down the 33 kv to 11 kv . At this stage, there is a bus where four 11 kv feeders take their power to supply Minna metropolis. These four fqeders are commonly named:
(1). the parliamentary feeder,
(ii). the piggery feeder,
(iii). the Shiroro feeder,
(Iv). the Chanchage feeder.

The Chanchaga feeder supplies the area comprising custom house, Niger State Secretariat complex and Chanchaga quaters. The Shiroro feeder is the one supplying the Shiroro quaters, bay cilnic quaters and Maitumbi area. The piggery feeder supplies Mina down town, Bosso town and Maikunkule area. And finally the parliamentary feeder is concerned with the area of Kpa bungu and its surroundings.

It is also important to mention that, at the different load centers, 11kv/415v step - down transformers are used to supply customers.

3.3

 Data preparation.Por the computer program that is to be used for simulation, data have to be prepared. These data comprise the resistances, the admittances and susceptances of the different lines connecting the different buses together. These are obtained by first measuring the lengths of the various lines. Then the following formulae are used to calculate the values of the different parameters, that is, the resistances, the reactances and the susceptances.
(1). Calculation of the resistance of a conductor (ine).

The active resistance per kiloncter r_{0} is given by:

$$
\begin{array}{r}
r_{0}(\Omega) / \text { ken }=\frac{\rho}{F} \text { where } \rho \text { is the resistivity of the conductor used, } \\
F \text { is the cross-sectionsl area. }
\end{array}
$$

The total resistance of the particular line is obtained by mitiplying r_{0} by the total length of the line in km.
(ii). The reactance x_{0}

$$
x_{0}(\Omega) / \mathrm{km}=0.1445 \log _{10} \frac{B_{M D}}{R}+0.0157 \text { where }
$$

\mathbb{R} is the radius of confuctor, $D_{G M D}-1.26 D$ for horizontally arranged conductors.

The total reactance of the line is obteined by multplying x_{0} by the total length of the line in kn.
(1i1). The eusceptance b_{0} is given by:

$$
b_{0}(1) / \mathrm{km}=\frac{7.58}{\log _{10} \frac{\mathrm{D}_{\mathrm{GMD}}}{\mathrm{R}}}
$$

For the present project work, practical values of $r_{0}=0.155 \Omega / 8 / \mathrm{km}$, $x_{0}=0.41 \Omega / \phi / \mathrm{km}$ and $b_{0}=7.59 \mathrm{fmh} \Omega / / / \mathrm{km}$ are used. And the following table is obtained.

Bus n°	name	Bus n°	name Length (km)	Resistance (Ω)	Reactance (Ω)	Suscaptanfonmou
1	Shiroro Substation	2	Shiroro Hotel $\quad 1.071$	0.166	0.439	8.129
1	Shiroro Substation	3	Power Statio 4.428	0.686	1.815	33.608
1	Shiroro Substation	4	Chanchage Water works 9.428	1.461	3.865	71.558
1	Shiroro Substation	5	$\begin{array}{ll}\text { IBB House } & 8.428\end{array}$	1.306	3.455	63.968
1	Shircro Substation	6	NAA 11KV panel 27.714	4.30	11.362	210.350
2	Shiroro Hotel	3	Power Station 4.785	0.741	1.961	36.318 -
2	Shiroro Hotel	4	Chanchaga Water Works 9.214	1.417	3.748	69.387
2	Shiroro Hotel	5	IBB House 7.071	1.096	2.900	53.668
3	Power Station	4	Chanchaga Water works 9.214	1.428	3.778	69.934
3	Power Station	5	IBB House 5.071	0.786	2.079	38.488
3	Power Station	6	NAA llkV panel 22.714	3.520	9.312	172.400
5	IBB House	6	NAA 11KV panel 23.857	3.700	9.781	181.075

Table 3.1: Line data.

In this project work a base of 100 MVA is used. The base KV is 11 KV . From these two values a base impedance is calculated and is given by:

$$
\begin{aligned}
\text { base impedance } & =\frac{(\text { base_, } \mathrm{ky})^{2}}{\text { base MVA }}-\frac{11^{2}}{100} \\
& =1.21
\end{aligned}
$$

This will enable us to express the impedance (hence the admittances) of the different lines in per unit values.

The bus data, that is, the voltage, the active and reactive power associated with each bus are given ${ }^{\vee}$ the table 3.2. These values are in per unit.

		Load			Generation	
Bus	name	volts	MW	MVAR	MW	MVAR
1	Shiroro Substation	$1.06+j 0.0$	0	0	0	0
2	Shiroro Hotel	$1.0+j 0.0$	0.01275	0.0078	0	0
3	Power Station	$1.0+j 0.0$	0.0034	0.00208	0	0
4	Chanchaga water works	$1.0+j 0.0$	0.0085	0.0052	0	0
5	IBB House	$1.0+j 0.0$	0.0085	0.0052	0	0
6	NAA 11KV panel	$1.0+j 0.0$	0	0	0	0

Table 3.2: bus data

3.5 The similation program.

For the simulation of the present work, a PASCAL program is used. The program is given in appendix D. The Guauss-Seidel method is used.

CHAPTER FOUR

RESULTS AND DISCUSSION

The result from the simulation program are printed out in appendix E. The bus voltages associated with each bus are first printed out. This is followed by the print out of the real and reactive powers flowing between the various luses. As we have a total number of six luses, six different values of voltages are printed out.

Concerning the line flows, the real and reactive power flowing in each line connecting one bus to another is printed out.

For example hus 1 is connected to all other five buses. To the computer prints the real and reactive power flowing from lus 1 to each of the other five luses. It is to be noted that bus 1 is the slack bus. The total bus power is obtained by sumaing the flows on the lines terainating at the bus. So a sumenary of the bus powers is given below.

Load

Bus no	active power (Kw)	reactive power (RVAR)
1	30.74	22.42
2	22.1	16.18
3	2.08	1.52
4	11.8	8.6
5	10.6	7.75
6	1.41	1.03

It is to be noted, however, that the resulte printed out by computer are In per unit values. A base MVA of 100 is used. So the actual value is obtained by multiplying the p.u value by the base value, that is, 10^{8}, to get the real value in watts. So the values of power given above
are the real values.

Looking at these results we can see that the largest real and reactive powers are at bus one. And the amallest real and reactive powers are bus 6. From the print out we can also see that there is no any generation. This is due to the fact that the system under study does not include any power generation system. The one in the system, that is, bus no. 3 Is not more generating. So all the buses are load buses.

CHAPPER FIVE

CORCLUSION AND RECOMADMDATIOR

5.1 CONCLOBION

A review of the objectives of this work is briefly highlighted in thia section. The work has taken general look on load flow analyais and load foracaacing and the various methode of solution used in both cases.

However, the min area of contribution of this project work is the development of the simulacion program. The program is wricten in PASCAL using Gaus-Seidel method of solution. With this program, the user vill be able to calculate the bus voltages, the real and reactive powera associated with each bus in apower distribution network. therefore the imulation progran is the major contribution of this present project work.

5.2 RECOMMENDATIONS

A practical project of this type neede a lot of finance, which of course is the brain behind this simulation program. The achool of Engineering in general and the department in particular should normally help the studente to carry out such projects by providing them adequate financial assiatance, as it is done in some of the bigher inetitutions of learning in the country. This proposition should be taken into account for the next coming years.

Finally I aggest that, soma companies, lika the National glectric Power Authority (NEPA) in the present case, should be aosociated in carrying out such projects.

Appendix A
Flow chart uing.Gauss method of solution
Start
Read in system data and form nodal admittance matrix
Assume bus voltages as $V_{p}=1+j 0.0$ for $p=1,2,3, \ldots, n, p \neq s$
and $V_{s}=a+j 0.0$

Set iteration count $k=0$
Set emergence criterion $\mid \Delta V_{\text {mar }} /=\varepsilon$
J
\rightarrow Set ins count $\mu=1$

Solve voltage equation for bus $力$

$$
V_{\mu}^{k+1}=\frac{1}{Y_{\mu \mu}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{\substack{q=1 \\
q \neq \mu}}^{n} Y_{p q} V_{q}\right] \quad \begin{aligned}
& q=1,2,3, \ldots, n \\
& q=1,2,3, \ldots, n \\
& \psi
\end{aligned}
$$

Calculate change in voltage $\Delta v_{p}^{k}=V_{p}^{k+1}-V_{n}^{k}$
Advance hus count $p=p+1$
Check if all tureshase taken into
account, $n=n$?
Determine the largest absolute value change in outage, it $/ \Delta V_{\text {man }} /$

Calculate line flows and slack bus powers

Appendix B
Flowchart using Gauss-Scidel method of solution

Start
\downarrow
Read in system and form nodal admittance matrix
Assume bus voltage as $1+j 0.0$ for all buses except $~ R=s$ where $V_{s}=a+j 0.0$
Yet iteration count $k=0$
Form parameters of voltage equations A_{p} and $B_{p \eta}, p=1,2, \ldots, n$

$$
q=1,2, \ldots, n
$$

\rightarrow Set maximum voltage change $\Delta V_{\text {max }}=0$ and hus count $p=1$

$A_{t p e n d i x} C$
Flowchart using Newton. Raphan method of solution
Start
Read in system data and form nodal admittance matrix
Assume bus voltage $\bar{V}_{p}^{(0)}, \mu=1,2,3, \ldots n, p \neq A$

\rightarrow Calculate real and reactive powers ruing equations (17) and (18)
Calculate differences between scheduled and calculated powers

$$
\begin{aligned}
& \left.\Delta P_{\mu}^{k}=P_{p(s c h)}\right)-P_{p}^{k} \\
& \left.\Delta Q_{p}^{k}=Q_{p(s c h)}\right)-Q_{\mu}^{k}, p=1,2,3 \ldots, n, p \neq \Delta
\end{aligned}
$$

Determine the largest change in power, is, $\Delta P_{\max }^{k}$ and $\Delta Q_{\text {max }}^{k}$

Colum late bus currents $I_{\mu}^{k}=\frac{P_{r}^{k}-j Q_{n}^{k}}{\left(V_{n}^{k}\right)^{*}}, p=1,2,3, \ldots, n, p \neq s$.
Calculate elements fo Jacobian

Replace e_{p}^{k} by e_{p}^{k+1} and f_{p}^{k} by $f_{n}^{k+1}, p=1,2,3, \ldots, n, p \neq s$
 fictwork within minna Metropoiis.

Ueveioped dy :-
Saiifou sandagou (90̂/ī6̄)
Department of Eiectrical/Computer Engincering Federai üniversity of Techonoiogy Minna.

Datc : January, i99̄7 j
uscs
crit ios:
cuñs
itcrmax $=1 \overline{1} 0 \overline{0} ;$
$\mathrm{n}=\widehat{\mathrm{G}}$;
TYPE
$\operatorname{arrayz}=\operatorname{array}[i . . \overline{0}, \overline{1} . . \overline{\mathrm{u}}$] ồ rcai; arrayi $=\operatorname{array}[i ., 00]$ ồ rcai;
${ }_{\mathrm{V}}^{\mathrm{A}} \overline{\mathrm{K}}$
$\bar{Y}, \bar{Y} \overline{\mathrm{~S}}, \overline{\mathrm{Y}}, \mathrm{Yac}, \mathrm{Frc}:$ arrayz ;
V, Vinstar, $\mathrm{A}^{\text {, }}$ Vold : arrayi;
toi, sumi, sumz, sum : rcai;
p, α, iter, row, coi : integer;
converged : booican;

Froccdurc read data;
BEGIN

Y$[1,0]:=0.30$;

Y[z, $\overline{0}]:=\hat{u}, \hat{U}$:

$\bar{y}[3,0]:=\bar{u}, 0 \bar{E} ;$

$\bar{Y}[\dot{4}, \hat{0}]:=\bar{u}, \hat{u} \tilde{0}$;

toi $:=\bar{u}, \hat{u} \bar{i} \bar{i}$
end;
Proccaure computc \mathfrak{V};
Begin
iticr: $=0$;
KEFEAT
itcr: = itcrol;
FUK $\mathrm{p}:=1$ Tū n ìu
Voiditpl:= $\mathrm{V}[p]$;
Fữ $\mathrm{p}:=\mathrm{i}$ Tū n iñ
BEGīín
sum: $=$ û.û;
fữ $a:=i$ tú n ín
if pぐ〉q THEN
sum: $=\operatorname{sum}+\bar{Y}[p, q] * \bar{V}[q] ;$

converged: $=$ abs(ivipj-Voldipi) © toi;
END:

```
p:=ü;
KEFEAT
p:=p+1;
convergcd:=absivi[pj-voldipj) ; toi;
UMTIL (p=ni ÜG NÖT convcrged;
```

UNTiL converged $\overline{\text { U }}$ (iter $=$ itermax);
writcin;
IF NOT converged Then
writei'no: ${ }^{\prime}$;

END：
Proccdure compute power；
Begin
fữ $\mathrm{p}:=\overline{1}$ Tún n 代
Fữ $a:=i \quad$ Tū n $\bar{d} u ̄$
if $p \ll a_{a}$ then
Ecgin

EÑ：
EÑD；

```
(* beginning of the main program *)
```

```
beginin
cirscr:
rOH:=3;
guTuXy(zu,ió);
writc('Plcasc wait computation in progrcss...');
rcad data;
compute V;
computc powcr;
(* Eesuits Section *)
cirscr:
writcini"sus yoitages }\mathfrak{v}:j
writcln(:---------------);
FUN
    writcin('V:,p,' = ',V[pi):
    writcin;
    writci'Frcss [Enter] Eoninuc...');
    repeat until keypreascd;
cirser:
ron:=3
qotomyiy,ij;writcin('Active Fowcr ',', Keactive Powcr');
gotoxy(iy,Z);writcin('-------------------------------
    Fữ p:=i Tu n ìu
        FOU\ q:=i TOU n \̀u
        if p<>q THEN
        BEGIN
        gotoxy(iú,row);writcin('P`,p,q,' = ',Pacip,q], : ',Prcip,qj);
        row:=row+1;
        IF rOW=険 THEN
            BEGIN
                    gotoxy(i0̂,row+\hat{Z}); writei`Prcss [Enterj to continuc...'i;
                row:=3; rcadin;
                repcat until kcyprcsscà; cirscr;
            gotoxy(î,i);writcin('Active Fower ',: E
            gotoxy(iy,2);writcin(:-------------}
            ENND;
        EMD:
        writcin;
        writein(`maximum number of itcrations ailowed is ',itcrmax);
        writcin;
        writcin('No of itcrations after which convergence occured is ',iter);
        writcln;
        writci'Press [Entcr] kcy to exit...'];
        rcadin;
        rcpcat unitil kcyprcsscd;
ENÑ.
```


$\bar{V} 1=-6.5 \overline{1} \overline{1} 8 \overline{8} \overline{8} \bar{Y} \overline{1} \bar{E}-\bar{U} \overline{3}$
$\overline{\mathrm{V}}=7.72 \overline{2} 3185384 \mathrm{E}-0 \hat{3}$

$\mathfrak{V} \dot{4}=1.40 \overline{0} 30 \overline{5} 4 \hat{9} \hat{Z} 1 E-0 \hat{Z}$
$\overline{\mathrm{V}}=8.83532756 \overline{4} 4 \mathrm{E}-0 \overline{3}$

Press [Entcr] to coninuc...

Press [Enter] to convinuc...

		Activc Power	Feactive Powcr
P43	$=$		
P45	$=$		u. ữũữũ̃úe + ũo
P40	$=$		
P5i	=	6. 9 ¢ū	
P52	$=$	2. $5551730502 ¢ 500$	$1.8637732837 \mathrm{E}-00$
P5s	$=$		
P54	$=$		
P50	$=$		-7.12i1632348E-07
PGi	$=$		
Puz	$=$		
Рせ̄	$=$	2. 3102025859E-û	1. $6851527120 E-00$
P0¢	$=$		
P65	$=$	-2.576250255 ${ }^{\text {2 }}$ - 00	-1.8751472452E-00

maximum number of itcrations ailowed is 150
No of itcrations after which convergence occurcd is 4
Fress [Ēnterj key to cxit...

REYERENCES

1. Computar Mathode in Pover Systeme analyais by Colenn W. Stagt * Ahmed R. El-Ablad. (Mc Graw Hill internation Edition)
2. Computer analysia of power ayseme by J. Arrillagon C P Arnold (John Kilay Sonn)
3. Elactrical powar syateme 2nd edition by C L Wadta (John Milay sons)
4. Electric power systen 3rd edition by B M Weedy (John Wilay Sons)
5. Optimal operator of power plants and electric syerems by V. Venikov, V. Zhurauleu, T. Filippora (Mir Publishars Moscow)
6. Computar applications in large acale power aystems Edited by B R Subramanyam. Volume 1.
7. Elemant of powar syates analyais, 4 th edition by Willian D Stevenson, Jr (Mc Gray Hill International editions)
8. Pourer syetem planning, by Sulliran R. C (Mc Grav Mill International edition)
9. Computational numerical methoda by C. Philips and B. Cornelius (Ellis Hozwood Linited)
