IGN OF A PLANT TO PRODUCE 10 TONNES/HOUR OF LIME FROM LIMESTONE

BY

WODUNG STEPHEN 99/8411EH

ARTMENT OF CHEMICAL ENGINEERING RAL UNIVERSITY OF TECHNOLOGY,MINNA, NIGER STATE, NIGERIA.

NOVEMBER, 2005

DESIGN OF A PLANT TO PRODUCE 10 TONNES/HOUR OF LIME FROM LIMESTONE

BY

WODUNG STEPHEN 99/8411EH

A DESIGN PROJECT SUBMITTED TO THE DEPARTMENT OF CHEMICAL ENGINEERING, SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGER STATE, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF ENGINEERING (B.ENG.) DEGREE IN CHEMICAL ENGINEERING.

NOVEMBER, 2005

i

DECLARATION

Wodung Stephen (99/8411EH), hereby declare that this design project, "Design a Plant to Produce 10 Tonnes/Hour of Lime from Limestone", carried out under e supervision of Prof. Odigure, J. O. and presented in partial fulfilment of the puirement for the award of Bachelor of Engineering (B.Eng.) degree in Chemical igineering has not been presented for any degree elsewhere, to the best of my owledge.

odung Ster

CERTIFICATION

his is to certify that this design project tiled "Design of a Plant to Produce 10 onnes/Hour of Lime from Limestone" was carried out by Wodung Stephen 9/8411EH) and submitted to the Department of Chemical Engineering, School of ngineering and Engineering Technology, Federal University of Technology, inna, Niger State, in partial fulfilment of the requirement for award of Bachelor Engineering (B.Eng.) degree in Chemical Enginnering.

222

iii

Prof. Odigure, J. O. (Project Supervisor)

Dr. F. Aberuagba (Head of Department)

External Examiner

Date

Date

Date

DEDICATION

is design project is dedicated to the entire Wodung family and to my younger

others and sisters, for by the grace of God will grow to challenge this project.

iv

ACKNOWLEDGEMENT

I praise and gratitude to God Almighty creator of heavens and earth for giving e the strength, courage, patience and perseverance, the strong will and termination to complete my course successfully,

I must register my sincere appreciation to my parents Engr. S.L Hassan and rs. A.K. Hassan for their love, care and support despite all disappointments. May bd in his infinite mercy reward them abundantly in Jesus name. Amen.

I must also place in record my profound gratitude to my able supervisor of. Odigure, J.O. whose comments corrections, and criticism gave this project a nse of direction. Worthy of mention also are some of my brothers Mr. Gregory odung, Dr. Fidelis Wodung, Ibro and Philip. To my sisters Miss Angela odung, Barrister Martina Wodung, Veronica Bature, Dinah, Abi, Bebo and amari. May God bless you all.

Worthy of mention also are some of my friends Tabat, Huzzy, Lash, John i, Lolo, JD, Lomi, Bafot as well as my entire course mates. In fact it was a pnderful time.

This project would have been incomplete if I fail to acknowledge the kind sistance rendered to me by the entire staff of Chemical Engineering Department, pst especially Engr. A. Jimoh and all others that are too numberous to mention.

ABSTRACT

This project was carried out to design of a plant to produce 10 tonnes/hour of lime from limestone. Even though the product can be produced using another material lime the chalk and phosphate gypsum, the production using limestone was selected because of the availability of the material (limestone). The chemical equation of the reaction involved in the production of the lime from the limestone is given as

CaCO₃ \leftarrow CaO + CO₂ \land H_{1200-1300oC} = +4G1/t of lime The production for the production of the required capacity which was 10 tonnes/hour of lime involved passing 18143.69 kg/hr into the furnace. The various units including the furnace used for the production of the lime from limestone were designed. The economic analysis of the plant showed that the total capital investment of the plant was \aleph 844102901.47. The plant was found to be economically viable with the rate of return of 42.86% and a pay back period of 2.33 years.

1.1

vi

TABLE OF CONTENTS

? 월		
Title F	lage	i
Declai	ation	ii
Certifi	cation	iii
Dedic	ation	iv
Ackno	owledgement	V
Abstra	nct	vi
Table	of Contents	vii
	CHAPTER ONE	
1.0	Introduction	1
	CHAPTER TWO	
2.0	Literature Review	10
	CHAPTER THREE	
3.0	Material Balances	13
	CHAPTER FOUR	
4.0	Energy Balances	21
	CHAPTER FIVE	
5.0	Flow Sheet/Diagram	62a
	CHAPTER SIX	
6.0	Equipment Design	63
	CHAPTER SEVEN	
7.0	Equipment Optimization	112
	CHAPTER EIGHT	
8.0	Safety and Quality Control 🗸	113
	CHAPTER NINE	
9.0	Process Control and Instrumentation	118

vii

1		
	CHAPTER TEN	
10.0	Environmental Acceptability 🥪	121
ł	CHAPTER ELEVEN	
11.0	Start Up and Shut Down Procedure	124
	CHAPTER TWELVE	
12.0	Site for Plant Location	126
	CHAPTER THIRTEEN	
13.0	Economic Analysis	134
	CHAPTER FOURTEEN	
.14.0	Recommendation to the Industrialist	148
	References	149

1.1

£ i

11

.

CHAPTER ÖNE

1.0 INTRODUCTION

1.1 Lime

1.1.1 Lime, what is it?

Lime is caustic solid substance, white when pure, obtained by calcuning chalk and other forms of calcium carbonate. Pure lime, also called quickline, burnt lime, and caustic lime, is composed of calcium oxide (CaO) but commercial preparations usually contain impurities, such as the oxides of aluminium, iron, silicon, and magnesium. When treated with water, lime liberates large amounts of heat and forms calcium hydroxide, sold commercially as a white powder called slaked lime or hydrated lime. Lime is used in the preparation of cement and mortar and as a neutralizer of acid soils in agriculture. It is also used in the manufacture of paper, glass, and whitewash, in leather tanning, sugar refining, and as a water-softening agent. (Encarta, 2004)

1.)

1.1.2 Historical background of lime

In 1816, Thomas Drummond invented limelight, and in 1825 its first use was during a survey of Ireland. Drummond's early limelight was based on a torch that burned hydrogen and oxygen, which had been developed by Robert Hare (1781-1858), an American chemist. Although limelight was considered for lighthouse applications, the cost of production was too high. In 1837, limelight found its niche in the theater, where it was used not only to spotlight actors but also to create realistic special effects such às moonlight on a river or clouds moving through the sky. The light was produced by pointing a hot torch at a solid block of lime (calcium oxide). When heated, the lime gave off a bright, soft white light that was easy to focus on a small area by using a mirror as a reflector. However, limelight had a major disadvantage; it

required constant attention by a stagehand to keep turning the block of lime and tending the gas torch. In the late 1800s, limelight began to be replaced by electric arc spotlights. However, its name has lived on; we still speak today of "basking in the limelight" of popularity or attention. (www.bookrags.com/sciences/chemistry/limewoc.html)

1 I

1.1.3 Properties of lime

General	
Name	Calcium oxide
Chemical formula	CaO
Appearance	White solid
Physical	
Formula weight	56.1 amu
Melting point	2572 K (2927 °C)
Boiling point	2850 K (3500 °C)
Density	$3.3 \times 103 \text{ kg/m}^3$
Crystal structure	Face-Centered Cubic
Solubility	hydrolysed
Thermochemistry	1
$\Delta_{\rm f} {\rm H}^0$ gas	43.93 kJ/mol
$\Delta_{\rm f} {\rm H}^0$ liquid	-557.33 kJ/mol
$\Delta_{\rm f} {\rm H}^0$ solid	-635.09 kJ/mol
S ⁰ gas, 1 bar	219.71 J/mol·K
S_0 liquid, 1 bar	62.31 J/mol·K
S ₀ solid	38.19 J/mol·K

2

 $1 \geq \frac{1}{2}$

J +

1.1.4 Uses of Lime

Mortar (masonry) is mixture of lime or cement with sand and water, used as a binding material for bricks and stone and as a plaster. Lime mortar consists of sand, water, and slaked lime (Ca(OH)₂), a white solid produced when lime reacts with water. Usually one part by volume of slaked lime is used for every three or four parts by volume of sand; enough water is added to make a paste. When exposed to the atmosphere the paste hardens as the result of absorption of carbon dioxide. It does not harden under water and is not as strong as cement mortar. The best type of cement mortar is a mixture of portland cement, sand, water, and a small amount of lime. (Encarta, 2004)

It is also used in water and sewage treatment to reduce acidity, to soften, as a flocculant and to remove phosphates and other impurities; in piper making to dissolve lignin, as a coagulant and in bleaching; in agriculture to improve acid soils: and in pollution control - in gas scrubbers to desulfurize waste gases and to treat many liquid effluents. It is a refactory and a dehydrating agent and is used to purify citric acid, glucose, dyes and as a CO_2 absorber. It is also used in pottery, concrete, paints and the food industry. (http://en.wikipedia.org/wiki/Calcium_o.cide)

1.2 Limestone

Limestone (CaCO₃) is a chemical compound which is commonly used as an antacid, and is the active ingredient in agricultural lime. It is a common substance found as rock in all parts of the world and is the main component of seashells and the shell of snails. (http://en.wikipedia.org/wiki/Calcium_carbonate)

1.1

Limestone is a common sedimentary rock composed primarily of the mineral calcite (CaCO₃). Limestone constitutes approximately 10 percent of the sedimentary rocks exposed on the earth's surface. It forms either by direct crystallization from water (usually seawater) or by accumulation of shell and shell fragments. In the first case, it carries a record of the chemical composition of seawater and it provides evidence of how that composition has changed with time. In the second case, limestone provides a record of the evolution of many important fossils. Limestone usually forms in shallow water less than 20 m (70 ft) deep and thus also provides important geological information on the variation in sea level in the past. Limestone rocks are frequently riddled with caves. Limestone is an important building stone and is used to make cement and concrete. (Encarta, 2004)

Limestone is a sedimentary rock composed of the mineral calcite. It is sometimes formed with the aid of marine organisms, such as shellfish and coral, which acquire calcium carbonate for their protective shells. When the organisms die, these shells form calcite deposits that harden into limestone over millions of years.

When a drop of dilute hydrochloric acid is placed on a piece of limestone, the acid reacts with the calcite and forms bubbles of carbon dioxide. This "fizz" reaction is so characteristic of limestone than many geologists carry a small bottle of dilute hydrochloric acid into the field for a rapid and easy identification of limestone. (Encarta, 2004)

1.2.1 Composition and origin of limestone

The principal component of limestone is the mineral calcite, but limestone frequently also contains the minerals dolomite $(CaMg(CO_3)_2)$ and aragonite $(CaCO_3)$. Pure

calcite, dolomite, and aragonite are clear or white. However, with impurities, they can take on a variety of colours. Consequently, limestone is commonly light coloured; usually it is tan or grey. However, limestone has been found in almost every colour. The colour of limestone is due to impurities such as sand, clay, iron oxides and hydroxides, and organic materials.

All limestone forms from the precipitation of calcium carbonate from water. Calcium carbonate leaves solutions in many ways and each way produces a different kind of limestone. All the different ways can be classified into two major groups: either with or without the aid of a living organism. (Encarta, 2004)

Most linestone is formed with the help of living organisms. Many marine organisms extract calcium carbonete from seawater to make shells or bones. Mussels, clams, oysters, and corals do this. So too do microscopic organisms such as foraminifera. When the organisms die their shells and bones settle to the seafloor and accumulate there. Wave action may break the shells and bones into smaller fragments, forming a carbonate sand or mud. Over millions of years, these sediments of shells, sand, and mud may harden into limestone. Coquina is a type of limestone containing large fragments of shell and coral. Chalk is a type of limestone formed of shells of microscopic animals. (Encarta, 2004)

1.2.2 History of Limestone

In the highly developed cultures of Mesopotamia and Egypt, limestone was used particularly in a religious context. Egypt had, enormous sources of very differing types of stone. Limestone was just one of a range of stones that were quarried and used for carving statues of the deities and the pharaohs, for obelisks, reliefs and sarcophaguses**. Quarrying and processing techniques, in particular the administrative and logistics were highly developed in Egypt. (www.wzu.uniaugsburg.de/English/Projects/History of Limestone.html)

The quarrying companies and companies producing statues employed several thousand people. In the Egyptian culture, stone was the symbol of permanency/eternity and power and this meant that stone had an all-important function to play in society. This importance is very clear to see when we consider the steady increase of the importance of the choice of stone used. (www.wzu.uni-augsburg.de/English/Projects/History of Limestone.html)

Many pharaohs showed their power by having quarries opened up especially for them and having stone quarried, which was for their personal use only. The fight for power and status symbols increased in all cultures corresponding to the continual increase of contact with other peoples, through trade and wars and the jealousies arising from these meetings.

(www.wzu.uni-augsburg.de/English/Projects/History_of_Limestone.html) The natural colouring of marble and its characteristic of light transparency particularly after it has undergone complicated treatment and polishing, let it appear to be like human skin. This material enabled the sculpturers to achieve an actual imitation of nature, a realistic effect. (www.wzu.uniaugsburg.de/English/Projects/History_of_Limestone.html)

1.

1.2.3 Properties of limestone

1.2.3.1	Physical	properties	of	limestone
L + #/ + J + L	x nyoreur	properties	<i>vj</i>	

General	
Molecular formula	CaCO ₃
Molar mass	100.09 g/mol
Appearance	white solid
Properties	
Density and phase	2.8 g/cm^3 , solid
Solubility in water	Insoluble
Melting point	825 °C decomp.

ΕI

1.2.3.2 Chemical properties of limestone

Calcium carbonate shares the typical properties of other carbonates. Notably:

1. it reacts with strong acids, releasing carbon dioxide.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

 it releases carbon dioxide on heating (to above 825 °C in the case of CaCO₃), to form calcium exide.

$$CaCO_3 \rightarrow CaO + CO_2$$

Calcium carbonate will react with water that is saturated with carbon dioxide to form the soluble calcium bicarbonate.

 $CaCO_3 + CO_2 + H_2O \Box Ca(HCO_3)_2$

This reaction is important in the erosion of carbonate rocks, forming caverns, and leads to hard water in many regions.

7

1.1

1.2.4 Occurrence of limestone

Calcium carbonate is found naturally as the following minerals and rocks: (http://en.wikipedia.org/wiki/Calcium_carbonate)

- Aragonite
- Calcite
- Chalk
- Limestone
- Marble
- Travertine

1.2.5 Weathering and metamorphism of limestone

Limestone is easily weathered and eroded. Water trickling through large limestone deposits often erodes extensive underground drainage systems of sinkholes and caves. The land surface above large limestone deposits is often irregular, marked with potholes (formed when the roofs of shallow caves collapse), sinkholes, and few streams, most of which are short in length and end in a sinkhole. The irregular surface is known as karst topography, named after a limestone plateau in the Dinaric Alps of northwest Slovenia and northeast Italy. Within the caverns, secondary precipitation of calcite by percolating waters produces stalactites and stalagmites, and spectacular underground 'scenery' can result. (Encarta, 2004)

When limestone undergoes metamorphism, it turns into marble. If the limestone contains other materials such as sand and clay, the calcite will react with them to produce minerals such as tremolite, epidote, diopside, and grossular garnet. (Encarta, 2004)

1.2.6 Uses of limestone

The main use of calcium carbonate is in the construction industry, either as a building material in its own right (e.g. marble) or as an ingredient of cement.

Limestone is a commonly occurring rock, which can be used not only for building but also for making manyother useful materials including lime, cement and glass. Limestone, which is mainly calcium carbonate, canbe quarried and used as a building material. Powdered limestone can be used to neutralise acidity in lakesand soils. When limestone is heated in a kiln quicklime (calcium oxide) is produced. Quicklime reacts withwater to produce slaked lime (calcium hydroxide) which is used to reduce soil acidity. Roasting powdered limestone with powdered clay in a rotary kiln produces cement. When cement is mixed with water, sand and crushed rock, a slow produces a hard, chemical reaction stone-like building material called concrete. Heating a mixture of limestone, sand and soda (sodium carbonate) makes glass.

Calcium carbonate is widely used in the pharmaceutical industry, either as an antacid or as a base material for tablets of other pharmaceuticals. (http://en.wikipedia.org/wiki/Calcium_carbonate)

11

Calcium carbonate is known as whiting in ceramics/glazing applications, where it is used as a common ingredient for many glazes in its white powdered form. When a glaze containing this material is fired in a kiln, the whiting acts as a flux material in the glaze. (http://en.wikipedia.org/wiki/Calcium_carbonate)

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Description of various processing technologies

The various technologies available for the production of lime include production using:

- industrial by-product containing phosphate commonly referred to as phosphate gypsum;
- 2. soft lime commonly called chalk;
- 3. limestone.

2.2 Detail Description of Selected Technology

Lime has always been a cheap commodity because limestone deposits are readily available in so many areas of Nigeria. It is produced from limestone near centres of consumption so that freight costs are low. The carbonates of calcium and magnesium are obtained from deposits of limestone, marble, chalk, dolomite or oyster shells. For chemical usage, a rather pure limestone is preferred as a starting material because of the high calcium lime that results. (Austin, 1984)

Quarries are chosen which furnish a rock that 'contains as impurities low percentages of silica, clay, or iron. The lumps sometimes found in "overburned" or "deadburned" lime result from changes in the calcium oxide itself, as well as from certain impurities acted upon by excess heat, recognized as masses of relatively inert, semivitrified material. On the other hand, it often happens that rather pure limestone is calcined insufficiently, and lumps of calcium carbonate are left in the lime. The lime is called "underburned" lime. (Austin, 1984)

The reactions involved is given as

 $CaCO_{3(c)}$ + $CaO_{(c)}$ +

$CO_{2(g)}$

Below 650°C, the equilibrium decomposition pressure of CO₂ is quite small. Between 650 and 900°C, the decomposition pressure increases rapidly and reaches 101kPa at about 900°C. In most operating furnaces, the partial pressure of CO₂ in the gases in direct contact with the outside of the lumps is less than 101kPa; therefore the initial decomposition may take place at temperatures somewhat less than 900°C. The decomposition temperature at the centre of the lump is probably well above 900°C. since there the partial pressure of the CO_2 not only is equal to or near the total pressure, but also must be high enough to cause the gas to move out of the lump, where it can pass into the gas stream. The total heat required for calcining per ton of lime produced may be divided into two parts: sensible heat to raise the rock to decomposition temperature and latent heat of dissociation. Theoretical heat requirements per metric ton of lime produced, if the rock is heated only to a calcining temperature of 900°C, are approximately 1.4GJ for sensible heat and 2.7GJ for latent heat. Actual calcining operations, because of practical considerations, e.g. lump size and time, require that the rock be heated to between 1200 and 1300°C, thereby increasing sensible-heat requirements by about 370kJ.

The sequence of steps connected with the manufacturing of lime in the furnace are outlined thus;

- Blasting down of limestone from a quarry face or occasionally from underground veins.
- Transportation from the quarry to mills, 'generally by an industrial rail road.
- Crushing and sizing of the stone in jaw and gyratory crushers.

- Screening to remove various sizes (e.g. 10- to 20-cm stone implies that all pieces passes a 10-cm screen and retained on an 20-cm screen have been separated out.
- Carting of large stones to top of vertical kilns.
- Conveying of small rocks to the furnace.
- Burning of limestone according to size, in furnace to give lump lime.
- Packaging of the finished lime in barrels (80 or 120kg) or sheet-iron drums or convey it to hydrator. (Austin, 1984)

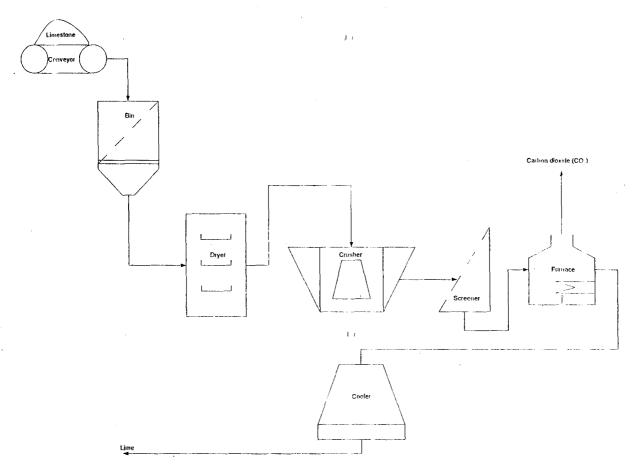


Fig. 2.1: Flow sheet for production of lime using limestone

2.3 Justification of the Selected Technology

The reason for choosing processing technology using limestone for the production of lime is that limestone is available abundantly in many parts of the country. For example, limestone deposits in abundant quantities are found in states like Edo, Ogun, Benue and Sokoto States.

CHAPTER THREE

3.0 MATERIAL BALANCES

Basis: 100.00 kg/hr of limestone

Composition of the raw material (limestone)

Components	mass%							
CaCO ₃	95.00							
H ₂ O	2.30						f	
Impurities	2.70						h	
Total	100.00							
Unit 1: Conveyor	r							
Operation: Trans	portation of li	imestone fi	om field to	bin				
	V 9 2 3 0							
Limestone	-> Conv	eyor		$CaCO_3$ H_2'				
	t			Impulities				
	2 60.5% 2 500 State	1999-94-010-112						
	Ca	03						
	н							
	Impu	rities						
Assumption: Nò	material loss				·····			
	(
		11	١			OU	Г	
	Inpu	······································	Add			DSS	Outp	out
Components	mass, kg/hr	mass%	mass, kg/hr	mass%	mass, kg/hr	mass%	mass, kg/hr	mass%
CaCO ₃	95.00	95.00	0.00	0.00	0.95	95.00	94.05	95.00
H ₂ O	2.30	2.30	0.00	0.00	0.02	2.30	2.28	2.30
Impurities	2.70	2.70	0.00	0.00	0.03	2.70	2.67	2.70
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.00	100.00	0.00	0.00	1.00	100.00	99.00	100.00
Unit 2: Bin							 	
		L			·····		<u> </u>	
Operation: Stora	<u> </u>	1					<u> </u>	<u> </u>
			MA					
CaCO ₃	<u>+</u> ;	Storage	k (j	Ca	0,	}	<u> </u>	
H ₂ O	┼──→	Giorage	· · · · · · · · · · · · · · · · · · ·	H-				
Impurities	<u> </u>			Impu	ities		<u> </u>	
		1		<u> </u>	1			
							1	
		I	N		ł	OU	T	
	Inp	ut	Ado	ied		oss	Out	
Components	mass, kg/hr		mass, kg/hr	mass%	mass, kg/hr		mass, kg/hr	
CaCO ₃	94.05	95.00	0.00	0.00	0.00	0.00	94.05	95.00
H ₂ O	2.28	2.30	0.00	0.00	0.00	0.00	2.28	2.30
Impurities	2.67	2.70	0.00	0.00	0.00	0.00	2.67	2.70
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.00	100.00	0.00	0.00	0.00	0.00	99.00	100.00

.

	<u> </u>							
Jnit 3: Dryer								·
Deration: Dryin	g (Removal o	f moisture))					
		H₂O						
		A						
	÷.K.		AR					
CaCO ₃		Dryer	* <u></u>		0 ₃			
++1 ₂ O				Impuli	ties			
Impurities-	i		<u></u>					
Assumption: Tot	al removal of	moisture						
		IN	11			OUT		
	Inpu		Add		Lo		Outp	
Components	mass, kg/hr		mass, kg/hr		mass, kg/hr		mass, kg/hr	
CaCO ₃	94.05	95.00	0.00	0.00	0.00	0.00	94.05	97.24
H ₂ O	2.28	2.30	0.00	0.00	2.28	100.00	0.00	0.00
Impurities	2.67	2.70	0.00	0.00	0.00	0.00	2.67	2.76
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fotal	99.00	100.00	0.00	<u>,0.00</u>	2.28	100.00	96.72	100,00
	· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·								
Unit 4: Crusher								
Operation: Size								
Operation. Size I	1							
		193 / 19						
CaCO ₃	† сі	usher		CaCO ₃				· · · · ·
H ₂ O	≒ ∙ ,			Impurities	3			
Impurities	+							
	12.0 - 2010 SEE	841. MA S 201, 228.						
	1							
				1				
Assumption: 1.5	% material lo	ss						
Assumption: 1.5	% material lc						T	
Assumption: 1.5		<u> </u>	N	1,				nut
	Inp	I ut	Ade	ded		OSS	Out	
Components	Inp mass, kg/hr	I ut mass%	Add mass, kg/hi	ded mass%	mass, kg/hr	oss mass%	Out mass, kg/hr	mass%
Components CaCO ₃	Inp mass, kg/hr 94.05	1 ut mass% 97.24	Add mass, kg/hi 0.00	ded mass% 0 0.00	mass, kg/hr 1.41	055 mass% 97.24	Out mass, kg/hr 92.64	mass% 97.24
Components CaCO ₃ H ₂ O	Inp mass, kg/hr 94.05 0.00	I ut mass% 97.24 0.00	Add mass, kg/hi 0.00 0.00	ded mass% 0.00 0.00	mass, kg/hr 1.41 0.00	055 mass% 97.24 0.00	Out mass, kg/hr 92.64 0.00	mass% 97.24 0.00
Components CaCO ₃ H ₂ O Impurities	Inp mass, kg/hr 94.05 0.00 2.67	I ut mass% 97.24 0.00 2.76	Add mass, kg/hi 0.00 0.00	ded mass% 0.00 0.00 0.00	mass, kg/hr 1.41 0.00 0.04	055 mass% 97.24 0.00 2.76	Out mass, kg/hr 92.64 0.00 2.63	mass% 97.24 0.00 2.76
$\frac{Components}{CaCO_3}$ H_2O $Impurities$ CaO	Inp mass, kg/hr 94.05 0.00 2.67 0.00	I ut 97.24 0.00 2.76 0.00	Add mass, kg/hi 0.00 0.00 0.00 0.00	ded mass% 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	mass, kg/hr 1.41 0.00 0.04 0.00	0055 mass% 97.24 0.00 2.76 0.00	Out mass, kg/hr 92.64 0.00 2.63 0.00	mass% 97.24 0.00 2.76 0.00
Components CaCO ₃ H ₂ O Impurities	Inp mass, kg/hr 94.05 0.00 2.67	I mass% 97.24 0.00 2.76 0.00 0.00	Add mass, kg/hr 0.00 0.00 0.00 0.00	ded mass% 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	mass, kg/hr 1.41 0.00 0.04 0.00 0.00	0055 1mass% 97.24 0.00 2.76 0.00 0.00	Out mass, kg/hr 92.64 0.00 2.63 0.00 0.00	mass% 97.24 0.00 2.76 0.00 0.00

14

4.5

.

Operation: Classi	fication of pa	articles into	o different si	zes				
	- VOW A	.	\					
CaCO ₃	- So	reener		CaCO3				
Impurities	→		∦= >	-Impuritie	9			
	-		~					
		1	22.5					
	·	•						
		;O ₃ urities						
		UIIII82						
Assumption: 95%	of material	recovered						
		IN				OU	ſ	
	Inpu	h	Adde		Lo		Outp	
and the state of t			mass, kg/hr		mass, kg/hr		mass, kg/hr	
CaCO ₃	92.64	97.24	0.00	0.00	4.63	97.24	88.01	97.24
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Impurities	2.63	2.76	0.00	0.00	0.13	2.76	2.50	2.76
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
Fotal	95.27	100.00	0.00	0.00	4.76	100.00	90.51	100.00
								-
	·							
Unit 6: Furnàce								-
	1 . 1	4	1				1	
Process: Calcinat	ion							
		leat	- CaO	+ 60-				
Process: Calcinat		leat	CaO	+ CO ₂				
		leat	CaO	+ CO ₂				
			€a0	+ CO ₂				
			CaO	+ CO ₂				· · · · · · · · · · · · · · · · · · ·
			CaO	+ CO ₂				· · · · · · · · · · · · · · · · · · ·
	CO3 + 1		CaO	+ CO ₂				
	CO3 + 1		CaO	+ CO ₂				· · · · · · · · · · · · · · · · · · ·
	CO3 + 1							
Calcination 1: Ca		CO2		+ CO ₂ 				
Calcination 1: Ca		CO2						
Calcination 1: Ca		CO2						
Calcination 1: Ca		CO2						
Calcination 1: Ca		CO2						
Calcination 1: Ca CaCO Impuritie		Furnace		— ₽ÇaO	hemical reac	tion shown a	bove	
Calcination 1: Ca		Furnace		— ₽ÇaO	hemical reac	tion shown a	bove	
Calcination 1: Ca CaCO Impuritie		Furnace	and a second sec	— ₽ÇaO	hemical reac	tion shown a		
Calcination 1: Ca CaCO Impuritie		EO2 Furnace	and a second sec	← ÇaO				Dut
Calcination 1: Ca CaCO Impuritie	CO ₃ + I	CO2 Furnace	rance is base	ւaO cd on the c ed		OU	Т	
Calcination 1: Ca CaCO Impuritie NB: The materia	CO ₃ + I	CO2 Furnace	and a second sec	ւaO cd on the c ed	L mass, kg/hr	OU	T Outj mass, kg/hr	mass%
Calcination 1: Ca CaCO Impuritie NB: The materia Components CaCO ₃	CO3 + 1	CO2 Furnace	rance is base	rçaO rçaO ed on the c ed mass% 0.00	L mass, kg/hr 0.00	OU oss mass% 0.00	T Outj mass, kg/hr 0.00	mass% 0.0
Calcination 1: Ca CaCO Impuritie NB: The materia Components CaCO ₃ H ₂ O	CO3 + 1	CO2 Furnaça	rance is base		L mass, kg/hr 0.00 0.00	OU oss mass% 0.00 0.00	T Outj mass, kg/hr 0.00	mass% 0.0 0.0
Calcination 1: Ca CaCO3 Impuritie NB: The materia Components CaCO3 H ₂ O Impurities	CO3 + 1	CO2 Furnace	Image: state	→ÇaO A constraint of the constraint o	L mass, kg/hr 0.00 0.00 0.00	OU oss mass% 0.00 0.00 0.00	T Outj mass, kg/hr 0.00 0.00 0.00	mass% 0.0 0.0 0.0
Calcination 1: Ca CaCO Impuritie NB: The materia Components CaCO ₃ H ₂ O Impurities CaO	CO3 + 1	CO2 Furnace Furnace Jund the fur In ut mass% 97.24 0.00 2.76 0.00	rance is base N Add mass, kg/hr 0.00 0.00 0.00 0.00	⇒ ÇaO ed on the c ed mass% 0.00 0.00 0.00 0.00	L mass, kg/hr 0.00 0.00 0.00 0.00	OU oss mass% 0.00 0.00 0.00 0.00	T Outj mass, kg/hr 0.00 0.00 0.00 49.28	mass% 0.0 0.0 0.0 100.0
Calcination 1: Ca CaCO ₃ Impuritie NB: The materia Components CaCO ₃ H ₂ O Impurities CaO CO ₂	CO3 + 1	CO2 Furnace Furnace	N Add mass, kg/hr 0.00 0.00 0.00 0.00	→ÇaO ed on the c ed mass% 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L mass, kg/hr 0.00 0.00 0.00 0.00 38.72	OU oss mass% 0.00 0.00 0.00 0.00 100.00	T Outj mass, kg/hr 0.00 0.00 0.00 49.28 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Calcination 1: Ca CaCO Impuritie NB: The materia Components CaCO ₃ H ₂ O Impurities CaO	CO3 + 1	CO2 Furnace	N Add mass, kg/hr 0.00 0.00 0.00 0.00	→ÇaO ed on the c ed mass% 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L mass, kg/hr 0.00 0.00 0.00 0.00 38.72	OU oss mass% 0.00 0.00 0.00 0.00	T Outj mass, kg/hr 0.00 0.00 0.00 49.28 0.00	mass% 0.0 0.0 0.0 100.0 0.0

15

,

Unit 7: Cooler								
Operation: Lower	ing the temp	erature of	the product					
	A Serie and	16 - 18 - V						
CaO	- " c	ooler		CaO				
	→	00101		60 2				
	-		§					
								and the second second second
	Inpi	<u>11</u> t	Add	ed	1.0	OU Dss	I Out	wit
Components	mass, kg/hr		mass, kg/hr		mass, kg/hr		mass, kg/hr	
CaCO ₃	0.00	0.00	0.00	0.00	0.00	0.00		0.0
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Impurities	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CaO	49.28	100.00	0.00	0.00	0.00	0.00	49.28	100.0
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	[0.0
Total	49.28	100.00	0.00	0.00	0.00	0.00	49.28	100.0
					<u> </u>		<u> </u>	
				l r			· · · · · · · · · · · · · · · · · · ·	
Calculation of sc	ale factor							
Molecular weigh	s of the com	popents						
Component	kg/kgmol	ponents						
CaCO ₃	100.00							
H ₂ O	18.00							
Impurities	60.00							
CaO	56.00							
CO ₂	44.00							
Conversion facto	1.00	ton/hr =	1016.05	kg/hr				
Lime production	rate =	10.00	tons/hr	which	is equal to	10160.47	kg/hr	
			<u>.</u>					
The total mass of	the compon	ents indica	ites the mass	of time pr	oduced from	the basis.		
So, lime produce	d from the b	l asis (100kg	g/hr) =	49.28	kg/hr			
In other words, th	l	 at =	49.28	kg/day				
				<u> </u>				-
The scale-up fac	or =	206.16		·				
The scale up fact	or will be us	ed to scale	up the mass	es of the d	ifferent com	ponents in ea	ich unit.	
	1]	1	1	1	1	1	1

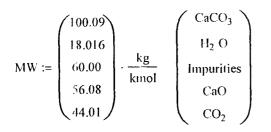
...

nit 1: Conveyor								
				L I				
peration: Conve	yance of the	raw materi	al from the q	uarry to the	e storage tan	<u>k</u>		
ssumption: 1009	% material re	covery						
		4						
		i de la com		Ca	;0,			
	stone-	Conveyor			o			
	1			Impu	rities			
<u> </u>		CaCO ₃						
	4	H ₂ O						
		Impuritie						
						OUT	l	
	Inp	R ut	Add	ed	Lo		Outp	ut
Components	mass, kg/hr		mass, kg/hr		mass, kg/hr		mass, kg/hr	mass%
CaCO ₃	19585.32		0.00	0.00	195.85	95.00	19389.47	95.00
1 ₂ 0	474.17	<u> </u>	0.00	0.00	4.74	2.30	469.43	2.30
mpurities	556.64	1	0.00	0.00	5.57	2.70	551.07	2.70
CaO	0.00		0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00		0.00	0.00	0.00	0.00	0.00	0.00
l'otal	20616.13	100.00	0.00	0.00	206.16	100.00	20409.97	100.00
	<u> </u>							·
Unit 2: Bin	+							
Operation: Stora	ige of the raw	material						
		¥.¥.,	i 🕰 ——					
CaCO ₃	+ i: i	Storage	<u> </u>	Ca	CO3			
H ₂ O	┿			H II	0			
Impuritie	s			Impi	rities			
· · · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>						
			ļ					
Assumption: No	material is l	1 ost in the s	torage					
			N	·	1	OU	Т	L
	Inp		Ado	and the second		oss	Out	· · · · · · · · · · · · · · · · · · ·
Components	mass, kg/hr		mass, kg/hr		mass, kg/hr		mass, kg/hr	
CaCO ₃	19389.47				}	· · · · · · · · · · · · · · · · · · ·		
H ₂ O	469.43		· · · · · · · · · · · · · · · · · · ·			f		
Impurities CaO	551.07				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
CO_2	0.00		•	f		+		
Total	20409.97		1					[
· <u></u>				i +				
Unit 3: Dryer			+					
ona 5. Dryer			+		<u> </u>			
Operation: Dryi	ng (Removal	of moistu	 re)					
- <u></u>		H₂O						
		1 1			·	ļ	ļ	
					<u> </u>			·
		1 612:45:354 -				+		
					d0.	+		+
	5.00 2 555558-300	and the second				1	1	
	 •`	Dryer	×141	Impi	utities		1	1
CaCO _T H₂O Impuritie:		Dryer		Impi	utities		1	

* <u></u>		I	 			 	
	• 						
		:					
				ı			
				1 i			
				:			
				t i			
						1	
					:		•
							,
			s				
				l i			
				!			
		* <u>.</u>		1.1			
		:		11		٠	
•							

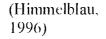
Assumption: All	the water in t	he raw mat	erial was re	moved by	the dryer			
issumption. / m		1						
		IN	1			<u>O</u> IJ	<u>r</u>	
	Inpu	ıt	Add	ed	Lo		Outpu	
Components	mass, kg/hr	mass%	mass, kg/hr		mass, kg/hr		mass, kg/hr i	
CaCO ₃	19389.47	95.00	0.00	0.00	0.00	0.0)	19389.47	97.24
1 ₂ O	469.43	2.30	0.00	0.00	469.43	100.00	0.00	0.0
mpurities	551.07	2.70	0.00	0.00	0.00	0.01)	551.07	2.70
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\overline{CO_2}$	0.00	0.00	0.00	0.00	0.00	0.01)	0.00	0.00
Fotal	20409.97	100.00	0.00	0.00	469.43	100.0)	19940.54	100.00
				()		······································		
Unit 4: Crusher			<u> </u>					
Operation: Size 1	reduction (cru	shing)						
·						·		
			<u> </u>	}				
	+	51.04.2	· • • • • • • • • • • • • • • • • • • •	<u> </u>			<u>├</u>	
	tta 👘	Crusher		CaG	1.		<u> </u>	
	+ *			Impuri	ues			
Impurities_	+) }					
	-							
Assumption: 1.7	'% material lo	SS						
	1	[
		I.	N	- 1		01	JT	
*********	Inp	ut	Ad	ded	L	OSS	Output	
Components	mass, kg/hr	mass%	mass, kg/hi	mass%	mass, kg/hr	mass%	mass, kg/hr	mass%
CaCO ₃	19389.47	97.24	0.00	0.00	290.84	97.21	19098.63	97.2
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0
Impurities	551.07	2.76	0.00	0.00	8.27	2.7	542.80	2.7
CaO	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0
CO ₂	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0
Total	19940.54	100.00	0.00	0.00	299.11	100.0	19641.43	100.0
······································								
Unit 5: Screene	r							
	_ <u> </u>	<u> </u>	<u> </u>	<u> </u>				
Operation: Clas	sification of p	articles int	to different s	sizes				
	¥							
CaCO	nt	Screene	er		CO3			
			· · · · ·	In In	purities			
l	🕅	14 (14) 1	,				+	
		+	+					
Assumption: 95	% of the mate	erial fall w	ithin the spe	cified size	s of 0.64 - 3.4	1 1cm		
		1	1	1	1			
		 I	N	·· Le		<u>O</u> I	JT	
	Ing	out	Ad	ded	L	JOSS	Out	out
	mass, kg/hr		mass, kg/h		mass, kg/hi	the second se	mass, kg/hr	·····
Components					The second s			97.2
Components CaCO ₃	19098.63			0.0	0.00	0.0		0.0
	19098.63	0.00	0.00					2.7
CaCO ₃ H ₂ O		-{	·		0 27.14	2.70	. J JJ.00	L
CaCO ₃	0.00	2.76	0.0	0.0	and an			
CaCO ₃ H ₂ O Impurities CaO	0.00	2.76	0.00	0.0 0.0 0.0 0.0	0.00	0.0) 0.00	0.0
CaCO ₃ H ₂ O Impurities	0.00 542.80 0.00	2.76 0 0.00 0 0.00	0.00 0 0.00 0 0.00 0 0.00	0.0 0.0 0.0 0.0	0 0.00	$\begin{array}{c c} 0.0 \\ \hline 0.0 \\ \hline 0.0 \end{array}$) 0.00) 0.00	0.0

onn 6: Furnace								
Process: Calcinat	ion							
Calcination 1: Ca	CO1 + H	eat	Ca0	+-CO2				
Cacoa	¥	Furnace						
				 ►CaO				
	<u>├</u>		1 · · · · ·					
		C. C	- Andread Contract - In the second					
					······			
Note: The calcina	ation equation	n above wi	I be used to	determine	the material	generated		
······		11				<u>('U')</u>		
	Inpu	the second s	Add		· · · · · · · · · · · · · · · · · · ·	DSS	Outp	
Components	mass, kg/hr		mass, kg/hr		mass, kg/hr		mass, kg/hr	
CaCO ₃	18143.69	97.24	0.00		0.00	0.00		0.00
H ₂ O	0.00	0.00	0.00	0.00	0.00			0.0
Impurities	515.66	2.76	0.00	0.00	0.00	0.00 0.00		0.0
CaO	0.00	0.00	0.00	0.00	7983.23	100.00		0.00
CO ₂		100.00	0.00	0.00	7983.23	100.00		100.00
T-4-1	10650 26			1 0.000	1903.23	1 100.00	10100.47	100.0
Total	18659.36	100.00	0.00					
Total	18659.36	100.00						
Total <i>Unit 7: Cooler</i> Operation: Lowe								
Unit 7: Cooler								
<i>Unit 7: Cooler</i> Operation: Lowe		erature of		(lime)				
Unit 7: Cooler Operation: Lowe Cato				(lime)	0			
<i>Unit 7: Cooler</i> Operation: Lowe		erature of		(lime)	0			
Unit 7: Cooler Operation: Lowe Cato		erature of		(lime)	0			
Unit 7: Cooler Operation: Lowe Cato		erature of		(lime)	0			
Unit 7: Cooler Operation: Lowe Cato		erature of Cooler	the product	(lime)	0			
Unit 7: Cooler Operation: Lowe Cato		cooler	the product	lime) Ca Ca Ca	0 0		//T Out	put
Unit 7: Cooler Operation: Lowe Cato	ring the temp	cooler Cooler I ut mass%	the product of the pr	(lime) Ce Ce Ce Ce Ce	0 0	oss mass%	Out mass, kg/hr	
Unit 7: Cooler Operation: Lowe Cat Cat	ring the temp	erature of Cooler	the product of the pr	(lime) Carteria Carteria Cart	O D ₂ L mass, kg/hr	oss mass%	Out mass, kg/hr	mass%
Unit 7: Cooler Operation: Lowe Cau Cau CO ₂ =	ring the temp	cooler Cooler I ut mass% 0.00	the product of	(lime) Ce Ce Ce Ce Ce Ce Ce Ce Ce Ce	1 0 0 ₂ L mass, kg/hr 0.00	oss mass% 0.00	Out mass, kg/hr 0.00	mass% 0.0
Unit 7: Cooler Operation: Lowe CaO ₂ Components CaCO ₃ H ₂ O Impurities	Inp mass, kg/hr 0.00 0.00	cooler Cooler I ut mass% 0.00 0.00 0.00	the product of the pr	led mass% 0.00 0.00 0.00	0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	055 mass% 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 0.00	mass% 0.0 0.0 0.0
Unit 7: Cooler Operation: Lowe $CaO_2 =$ Components CaCO ₃ H ₂ O Impurities CaO	ring the temp	erature of Cooler I ut mass% 0.00 0.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00	0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47	mass% 0.0 0.0 0.0 100.0
Unit 7: Cooler Operation: Lowe Ca O_2^- Components CaCO ₃ H ₂ O Impurities CaO CO ₂	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 0.00 100.00 0.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe $CaO_2 =$ Components CaCO ₃ H ₂ O Impurities CaO	ring the temp	erature of Cooler I ut mass% 0.00 0.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe Ca O_2^- Components CaCO ₃ H ₂ O Impurities CaO CO ₂	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 0.00 100.00 0.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe Ca O_2 Ca O_2 Components Ca CO_3 H ₂ O Impurities CaO CO ₂ Total Final product (I	ring the temp	erature of Cooler I ut mass% 0.00 0.00 0.00 100.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe Cato Ca_{2} = Components CaCO ₃ H ₂ O Impurities CaO CO ₂ Total Final product (I Components	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 100.00 100.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe Ca \bigcirc Ca \bigcirc Ca \bigcirc Components Ca \bigcirc Ca \bigcirc Cooler Ca \bigcirc Cooler Ca \bigcirc Cooler Ca \bigcirc Cooler Cooler Ca \bigcirc Cooler C	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe CaO $CaO_2 =$ Components CaCO ₃ H ₂ O Impurities CaO CO ₂ Total Final product (I Components CaCO ₃ H ₂ O	ring the temp	eerature of Cooler Cooler I ut mass% 0.00 0.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 100.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe CaO CO_2 Components CaCO ₃ H ₂ O Impurities CaO CO ₂ Total Final product (I Components CaCO ₃ H ₂ O Impurities CaO Co ₂ Total	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0
Unit 7: Cooler Operation: Lowe CaO $CaO_2 =$ Components CaCO ₃ H ₂ O Impurities CaO CO ₂ Total Final product (I Components CaCO ₃ H ₂ O	ring the temp	erature of Cooler Cooler I ut mass% 0.00 0.00 0.00 100.00 100.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.000000	the product of the pr	led mass% 0.00 0.00 0.00 0.00	D2 D2 L mass, kg/hr 0.00 0.00 0.00 0.00 0.00	055 mass% 0.00 0.00 0.00 0.00 0.00	Out mass, kg/hr 0.00 0.00 10160.47 0.00	mass% 0.0 0.0 0.0 100.0 0.0


Ð

•

20

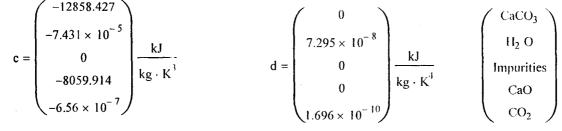

CHAPTER FOUR

ENERGY BALANCES 4.0

Heat capacity coefficients:

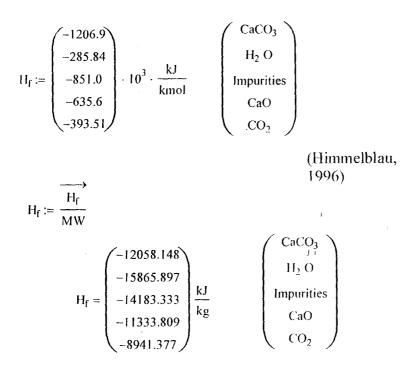
 $cm := \begin{pmatrix} 82.34 & 4.975 \cdot 10^{-2} & -12.87 \cdot 10^{10} \cdot 10^{-5} & 0 \\ 18.2964 \cdot 47.212 \cdot 10^{-2} & -133.88 \cdot 10^{-5} & 1314.2 \cdot 10^{-9} \\ 15.2 & 2.68 \cdot 10^{-2} & 0 & 0 \\ 41.84 & 2.03 \cdot 10^{-2} & -4.52 \cdot 10^{10} \cdot 10^{-5} & 0 \\ 36.11 & 4.233 \cdot 10^{-2} & -2.887 \cdot 10^{-5} & 7.464 \cdot 10^{-9} \end{pmatrix} \begin{pmatrix} CaCO_3 \\ H_2 O \\ Impurities \\ CaO \\ CO_2 \end{pmatrix}$ (Utime

$$\mathbf{a} := \frac{1}{\frac{1}{1}} \underbrace{\frac{1}{1}}{\mathbf{MW} \cdot \frac{\mathbf{k}}{\mathbf{kg}}} \qquad \mathbf{b} := \frac{1}{\frac{1}{1}} \underbrace{\frac{1}{1}}{\mathbf{MW} \cdot \frac{\mathbf{k}}{\mathbf{kg}}} \qquad \mathbf{c} := \frac{1}{\frac{1}{1}} \underbrace{\frac{1}{1}}{\mathbf{MW} \cdot \frac{\mathbf{k}}{\mathbf{kg}}} \qquad \mathbf{d} := \frac{1}{\frac{1}{1}} \underbrace{\frac{1}{1}}{\mathbf{MW} \cdot \frac{\mathbf{k}}{\mathbf{kg}}} \qquad \mathbf{d} := \frac{1}{\frac{1}{1}} \underbrace{\frac{1}{1}}{\mathbf{MW} \cdot \frac{\mathbf{k}}{\mathbf{kg}}}$$


coeff := augment(a,b,c,d)

$$\operatorname{coeff} = \begin{pmatrix} 0.823 & 0 & -12858.427 & 0 \\ 1.016 & 0.0.26 & -7.431 \times 10^{-5} & 7.295 \times 10^{-8} \\ 0.253 & 0 & 0 & 0 \\ 0.746 & 0 & -8059.914 & 0 \\ 0.82 & 0.001 & -6.56 \times 10^{-7} & 1.696 \times 10^{-10} \end{pmatrix}$$

 $\mathbf{a} := \mathbf{a} \cdot \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}} \qquad \mathbf{b} := \mathbf{b} \cdot \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^2} \qquad \mathbf{c} := \mathbf{c} \cdot \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^3} \qquad \mathbf{d} := \mathbf{d} \cdot \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^4}$ $\mathbf{a} = \begin{pmatrix} 0.823\\ 1.016\\ 0.253\\ 0.746 \end{pmatrix} \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}} \qquad \mathbf{b} = \begin{pmatrix} 0\\ 0.026\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^2} \qquad \begin{pmatrix} \mathbf{CaCO_3}\\ \mathbf{H}_2 \mathbf{O}\\ \mathbf{Inpurities}\\ \mathbf{CaO}\\ \mathbf{O} \mathbf{O} \end{pmatrix}$


$$a = \begin{pmatrix} 0.233 \\ 0.746 \\ 0.82 \end{pmatrix} \overline{kg \cdot K}$$

$$b = \begin{pmatrix} 0 \\ 0 \\ 0.001 \end{pmatrix} \overline{kg \cdot K^{2}}$$

21

kJ km Heat of formation:

11

4.3.1 ENERGY BALANCES ACROSS THE BIN

The energy balances of the bin will be calculated using

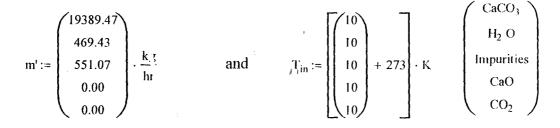
$$\Delta H = m \cdot C_n \cdot \Delta T$$

where

m = "mass"

 C_p = "heat capacity" which is given as $C_p = a + b + T + c + T^2 + d + T^3$

11


which is given as

 ΔT = "change in temperature"

 $\Delta T = T_{in} - T_{ref}$

ENERGY INPUT ACROSS THE BIN

Given the mass and temperatures of the input as

Energy of calcium carbonate (CaCO₃) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $T_{in_1} = 283 \text{ K}$

$$\Delta T_1 := T_{in_1} - T_{re}$$

f

$$a_{1} = 0.823 \frac{kJ}{kg \cdot K}$$
$$b_{1} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{in_1} + c_1 \cdot \left(T_{in_1} \right)^2 + d_1 \cdot \left(T_{in_1} \right)^3 \right]$$

 $\Delta \mathbf{H}_{\mathsf{CaCO3}} \coloneqq \mathbf{m'_1} \cdot \mathbf{C_{p1}} \cdot \Delta \mathbf{T_1}$

 $C_{p1} = -1.03 \times 10^9 \frac{kJ}{kg \cdot K}$

$\Delta H_{CaCO3} = 1.997 \times 10^{14} \frac{\text{kJ}}{\text{hr}}$

 $\Delta T_1 = -10 \text{ K}$

Energy of moisture (H_2O) input

Reference temperature:

$$T_{ref} := (20 + 273) \cdot K$$

1.1

 $T_{in_2} = 283 \text{ K}$

 J^{-1}

11

Inlet temperature:

 $\Delta T_2 := T_{in_2} - T_{ref}$

$$a_2 = 1.016 \frac{kJ}{kg \cdot K}$$

$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

$$c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$$

$$d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$$

 $\Delta H_{H2O} := m'_2 \cdot C_{p2} \cdot \Delta T_2$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{in_2} + c_2 \cdot \left(T_{in_2} \right)^2 + d_2 \cdot \left(T_{in_2} \right)^3 \right]$$

 $C_{p2} = 4.134 \frac{kJ}{kg \cdot K}$

 $\Delta T_2 = -10 \text{ K}$

 $\Delta H_{\rm H2O} = -19404.061 \, \frac{\rm kJ}{\rm hr}$

23

Energy of impurities input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

3.1

1.1

 $T_{ref} := (20 + 273) \cdot K$

11

 $T_{in_4} = 283 \text{ K}$

Inlet temperature:

$$T_{in_3} = 283 \text{ K}$$

$$\Delta T_3 := T_{in_3} - T_{ref}$$

$$a_3 = 0.253 \frac{kJ}{kg \cdot K}$$

$$b_3 = 0 \frac{K^3}{kg \cdot K^2}$$

$$c_3 = 0 \frac{k!}{kg \cdot K^3}$$

$$d_3 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot (T_{in_3})^2 + d_3 \cdot (T_{in_3})^3 \right]$$

$$C_{p3} = 0.38 \frac{kJ}{kg \cdot K}$$

 $\Delta T_3 = -10 \text{ K}$

 $\Delta H_{Impurities} := \mathbf{m'}_3 \cdot \mathbf{C}_{p3} \cdot \Delta \mathbf{T}_3$

$$\Delta H_{\rm Impurities} = -2092.633 \, \frac{\rm kJ}{\rm hr}$$

Energy of calcium oxide (CaO) input

Reference temperature:

Inlet temperature:

$$\Delta T_4 := T_{in_4} - T_{ref}$$

$$a_4 = 0.746 \frac{KJ}{kg \cdot K}$$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

 $\Delta T_4 = -10 \text{ K}$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{in_4} + c_4 \cdot \left(T_{in_4} \right)^2 + d_4 \cdot \left(T_{in_4} \right)^3 \right]$$

 $C_{p4} = -6.455 \times 10^8 \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaO} := m'_4 \cdot C_{p4} \cdot \Delta T_4$

$$\Delta H_{CaO} = 0 \frac{kJ}{hr}$$

 $\Delta T_5 = -10 \,\mathrm{K}$

Energy of carbon dioxide (CO₂) input

Reference temperature:

 $T_{ref} \coloneqq (20 + 273) \cdot K$

1 i

Inlet temperature: $T_{in_e} = 283 \text{ K}$

 $\Delta T_5 := T_{in_5} - T_{ref}$

 $a_5 = 0.82 \frac{kJ}{kg \cdot K}$

$$b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$$

 $c_5 = -6.56 \times 10^{-7} K - (q \cdot 1)^{-7}$

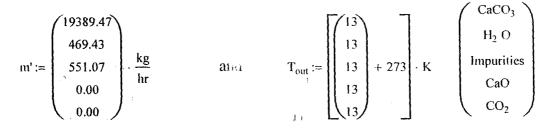
 $d_5 = 1.696 \times 10^{-10} \frac{k}{k_E + k^4}$

$$C_{p5} := \left[a_{5} + b_{5} \cdot T_{in_{5}} + c_{5} \cdot {}^{\prime}T_{in_{5}} \right]^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{3}$$

 $\Delta H_{CO2} := m'_5 \cdot C_{p5} \cdot \Delta T_5$

$$\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$$

 $C_{p5} = 1.044 \frac{kJ}{kg \cdot K}$


Total energy in:

 $\Delta H_{in} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

$$\Delta H_{\rm in} = 1.997 \times 10^{14} \frac{\rm kJ}{\rm hr}$$

ENERGY OUTPUT ACROSS THE 3IN

Given the mass and temperatures of the halput as

Energy of calcium carbonate (CaCO₃) output

Reference temperature: $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

$$T_{out_1} = 286 \text{ K}$$

11

11

J i

$$\Delta T_1 := T_{out_1} - T_{ref}$$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

 $b_1 = 0 \frac{kJ}{kg \cdot K^2}$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{out_1} + c_1 \cdot (T_{out_1})^2 + d_1 \cdot (T_{out_1})^3 \right]$$

$$\Delta H_{C_{1}CO_{3}} := m'_{1} \cdot C_{p1} \cdot \Delta T_{1}$$

$$\Delta H_{CaCO3} = 1.428 \times 10^{14} \frac{\text{kJ}}{\text{hr}}$$

 $C_{p1} = -1.052 \times 10^9 - \frac{kJ}{kg \cdot K}$

Energy of moisture (H_2O) output

Reference temperature: $T_{ref} := (20 + 273) \cdot K$

 $T_{out_2} = 286 \text{ K}$

Outlet temperature:

$$\Delta T_2 := T_{out_2} - T_{ref}$$

 $a_2 = 1.016 \frac{kJ}{kg \cdot K}$

$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

$$c_2 = -7.431 \times 10^{-5} \frac{KJ}{kg \cdot K^3}$$

$$d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$$

26

11

.

 $\Delta T_1 = -7 \text{ K}$

 $\Delta T_2 = -7 \text{ K}$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{out_2} + c_2 \cdot (T_{out_2})^2 + d_2 \cdot (T_{out_2})^3 \right]$$

 $\Delta H_{H2O} := m'_2 \cdot C_{p2} \cdot \Delta T_2$

 $C_{p2} = 4.138 \frac{kJ}{kg \cdot K}$

 $\Delta T_3 = -7 \text{ K}$

$$\Delta H_{\rm H2O} = -13598.963 \frac{\rm kJ}{\rm hr}$$

Energy of impurities output

E eference temperature:

 $T_{ref} := (20 + 273) \cdot K$

ţ

1.1

f(t)

Outlet temperature:

 $T_{out_3} = 286 \text{ K}$

 $\Delta T_3 := T_{out_3} - T_{ref}$

$$\mathbf{a}_3 = 0.253 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{3}}$$
$$d_{3} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{out_3} + c_3 \cdot \left(T_{out_3} \right)^2 + d_3 \cdot \left(T_{out_3} \right)^3 \right]$$

$$\Delta H_{Impurities} := m'_3 \cdot C_{p3} \cdot \Delta T_3$$

$$C_{p3} = 0.381 \frac{kJ}{kg \cdot K}$$

 $\Delta T_4 = -7 \text{ K}$

 $\Delta H_{\rm Impurities} = -1470.012 \frac{\rm kJ}{\rm hr}$

Energy of calcium oxide (CaO) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature: 7

 $T_{out_4} = 286 K$

 $\Delta T_4 := T_{out_4} - T_{ref}$

$$a_4 = 0.746 \frac{kJ}{kg \cdot K}$$

 $b_4 = 0 \, \frac{kJ}{kg \cdot K^2}$

1 i

$$c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{p4} \coloneqq \left[\mathbf{a}_4 + \mathbf{b}_4 \cdot \mathbf{T}_{out_4} + \mathbf{c}_4 \cdot \left(\mathbf{T}_{out_4} \right)^2 + \mathbf{d}_4 \cdot \left(\mathbf{T}_{out_4} \right)^3 \right]$$

 $C_{p4} = -6.593 \times 10^8 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

 $\Delta H_{CaO} \coloneqq \mathfrak{m}_{a}' \cdot \mathfrak{C}_{p4} \cdot \Delta T_{4}$

$$\Delta H_{CaO} = 0 \frac{kJ}{hr}$$

 $\Delta T_5 = -7 \text{ K}$

Energy of carbon dioxide (CO₂) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$ $T_{out_5} = 286 \text{ K}$

11

Outlet temperature:

 $\Delta T_5 := T_{out_5} - T_{ref}$

 $a_{5} = 0.82 \frac{kJ}{kg \cdot K}$ $b_{5} = 0.001 \frac{kJ}{kg \cdot K^{2}}$

$$c_5 = -6.56 \times 10^{-7} \text{ K} \frac{\text{KJ}}{\text{kg} \cdot \text{K}^4}$$

$$d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$$

$$C_{p5} := \left[a_5 + b_5 \cdot T_{out_5} + c_5 \cdot \left(T_{out_5} \right)^2 + d_5 \cdot \left(T_{out_5} \right)^3 \right] \qquad C_{p5} = 1.046 \frac{kJ}{kg \cdot K}$$

 $\Delta H := \Delta H_{out} - \Delta H_{in}$

 $\Delta H_{CO2} := m'_5 \cdot C_{p5} \cdot \Delta T_5$

 $\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$

Total energy out:

Heat load:

 $\Delta H_{out} \coloneqq \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

1 I

11

 $\Delta H_{out} = 1.428 \times 10^{14} \frac{\text{kJ}}{\text{hr}}$

 $\Delta H = -5.692 \times 10^{13} \frac{\text{kJ}}{\text{hr}}$

4.3.2 ENERGY BALANCES ACROSS THE DRYER

The energy balances of the dryer will be calculated using

$$\Delta \mathbf{H} = \mathbf{m} \cdot \mathbf{C}_{\mathbf{p}} \cdot \Delta \mathbf{T}$$

where

m = "mass"

```
C<sub>p</sub> = "heat capacity"
```

which is given as

$$C_p = a + b \cdot T + c \cdot T^2 + d \cdot T^3$$

which is given as ΔT = "change in temperature" $\Delta T = T_{\rm in} - T_{\rm ref}$

ENERGY INPUT ACROSS THE DRYER

Given the mass and temperatures of the input as

$$\mathbf{m}' := \begin{pmatrix} 19389.47 \\ 469.43 \\ 551.07 \\ 0.00 \\ 0.00 \end{pmatrix} \cdot \frac{\mathrm{kg}}{\mathrm{hr}} \qquad \text{and} \qquad \mathbf{T}_{\mathrm{in}} := \begin{bmatrix} 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \end{bmatrix} \cdot \mathbf{K} \qquad \begin{pmatrix} \mathrm{CaCO}_3 \\ \mathrm{H}_2 \mathrm{O} \\ \mathrm{Impurities} \\ \mathrm{CaO} \\ \mathrm{CO}_2 \end{pmatrix}$$

11

11

Energy of calcium carbonate (CaCO₃) input

Reference temperature:

$$T_{ref} := (20 + 273) \cdot K$$

Inlet temperature:

 $T_{in} = 286 \, \text{K}^2$ 11

$$\Delta T_1 := T_{in_1} - T_{ref}$$

 $\mathbf{a}_1 = 0.823 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$

$$b_1 = 0 \frac{kJ}{kg \cdot K^2}$$

 $\Delta H_{CaCO3} := \mathbf{m'}_1 \cdot \mathbf{C_{p1}} \cdot \Delta T_1$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{in_1} + c_1 \cdot (T_{in_1})^2 + \cdots + (T_{in_1})^3 \right]$$

$$C_{p1} = -1.052 \times 10^9 \frac{kJ}{kg \cdot K}$$

 $\Delta T_{\rm F} = -7~{\rm K}$

$$\Delta H_{\rm CaCO3} = 1.428 \times 10^{14} \frac{\rm kJ}{\rm hr}$$

Energy of moisture (H_2O) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

£ i

1.1

11

Inlet temperature:

 $T_{in_2} = 286 \, \text{K}$

$$\Delta T_2 := T_{in_2} - T_{ref}$$

$$a_2 = 1.016 \frac{kJ}{kg \cdot K}$$

 $b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$

$$c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$$

$$d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K'}$$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{in_2} + c_2 \cdot (T_{in_2})^2 + d_2 \cdot (T_{in_2})^3 \right]$$

 $\Delta H_{\text{H2O}} \coloneqq \mathbf{m'_2} \cdot \mathbf{C_{p2}} \cdot \Delta \mathbf{T_2}$

Energy of impurities v of

Reference temperature:

$$T_{tef} = (20 + 273) K$$

 $T_{in_3} = 286 \, K$

Inlet temperature:

 $\Delta T_3 := T_{in_3} - T_{ref}$

$$\mathbf{a}_3 = \mathbf{0.253} \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}}$$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

$$d_3 = 0 \, \frac{kJ}{kg \cdot K^4}$$

$$\Delta T_2 = -7 \text{ K}$$

$$C_{p2} = 4.138 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{\rm H2O} = -13598.963 \, \frac{\rm kJ}{\rm hr}$$

 $\Delta T_3 = -7 \text{ K}$

30

d i

$$C_{p3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot (T_{in_3})^2 + d_3 \cdot (T_{in_3})^3 \right]$$

$$C_{p3} = 0.381 \frac{kJ}{kg \cdot K}$$

 $\Delta H_{Impurities} := m'_3 \cdot C_{p3} \cdot \Delta T_3$

$$\Delta H_{\text{Impurities}} = -1470.012 \frac{\text{kJ}}{\text{hr}}$$

Energy of calcium oxide (CaO) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $I \neq$

11

 $T_{in_4} = 286 \, \mathrm{K}$

11

Inlet temperature:

$$\Delta T_4 := T_{in_4} - T_{ref}$$

 $\Delta T_4 = -7 \text{ K}$

$$\mathbf{a}_4 = 0.746 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

$$\mathbf{b}_4 = 0 \, \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^2}$$

 $c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$

 $d_4 = 0 \frac{kJ}{kg \cdot K^4}$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{in_4} + c_4 + (T_{in_4})^2 + d_4 \cdot (T_{in_4})^3 \right]$$

 $\Delta H_{CaO} \coloneqq m'_4 \cdot C_{p4} \cdot \Delta T_4$

 $C_{p,t} = -6.593 \times 10^8 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

$$\Delta H_{CaO} = 0 \frac{kJ}{hr}$$

Energy of carbon dioxide 'CO₂) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $\Gamma_{\rm in_5} = 286 \, {\rm K}$

$$\Delta T_5 \coloneqq T_{in_5} - T_{ref}$$

 $\Delta T_5 = -7 \text{ K}$

 $a_5 = 0.82 \frac{kJ}{kg \cdot K}$

 $b_5 = 0.00 \, i \, \frac{kJ}{kg \cdot K^2}$

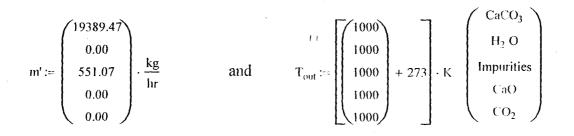
$$c_5 = -6.56 \times 10^{-7} \,\mathrm{K} \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}^4}$$

 $d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$

$$C_{p_5} := \left[a_5 + b_5 \cdot T_{in_5} + c_5 \cdot \left(T_{in_5} \right)^2 + d_5 \cdot \left(T_{in_5} \right)^3 \right]$$

 $C_{p5} = 1.046 \frac{kJ}{kg \cdot K}$

 $\Delta H_{CO2} := m'_5 \cdot C_{p5} \cdot \Delta T_5$


 $\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$

Total energy in: $\Delta H_{in} \coloneqq \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

 $\Delta H_{\rm in} = 1.428 \times 10^{14} \, \frac{\rm kJ}{\rm hr}$

ENERGY OUTPUT ACROSS THE DRYER

Given the mass and temperatures of the output as

11

Energy of calcium carbonate (CaCO₃) output

Reference temperature:

$$T_{ref} := (20 + 273) \cdot K$$

1.1

Outlet temperature:

$$\Delta T_{1} := T_{out_{1}} - T_{ref} \qquad \qquad \Delta T_{1} = 980 \text{ K}$$

 $T_{out_1} = 1273 \,\mathrm{K}$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

$$b_1 = 0 \frac{kJ}{kg \cdot K^2}$$

 $c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{out_1} + c_1 \cdot \left(T_{out_1} \right)^2 + d_1 \cdot \left(T_{out_1} \right)^3 \right]$$

 $\Delta H_{CaCO3} := \mathfrak{m}'_1 \cdot C_{\mathfrak{p}1} \cdot \Delta T_1$

Energy of moisture (H_2O) output

Reference temperature:

 $T_{out_2} = 1273 \text{ K}$

 $T_{\rm ref} \coloneqq (20 + 273) \cdot K$

11

J i

 $\Delta T_2 := T_{out_2} - T_{ref}$

Outlet temperature:

$$a_2 = 1.016 \frac{kJ}{kg \cdot K}$$

$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

$$c_2 = -7.431 \times 10^{-5} \frac{\text{kJ}}{\text{kg} \cdot \text{K}^3}$$

 $d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{out_2} + c_2 \cdot \left(T_{out_2} \right)^2 + d_2 \cdot \left(T_{out_2} \right)^3 \right]$$

(kg · K

 $\Delta H_{\text{H2O}} \coloneqq \mathbf{m'_2} \cdot \mathbf{C_{p2}} \cdot \Delta \mathbf{T_2}$

Energy of impurities output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

11

11

33

Outlet temperature:

 $T_{out_3} = 1273 \, K$

$$\Delta T_3 := T_{out_3} - T_{ref}$$

$$a_3 = 0.253 \frac{kJ}{kg \cdot K}$$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

 $\Delta T_3 = 980 \text{ K}$

 $C_{p1} = -2.084 \times 10^{10} \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaCO3} = -3.959 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

$$C_{p2} = 64.434 \frac{kJ}{kg}$$

$$H_{\rm Hop} = 0 \frac{kJ}{--}$$

$$\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$$

 $\Delta T_2 = 980 \text{ K}$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{3}}$$
$$d_{3} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{\mathfrak{p},\mathfrak{l}} := \left[\left[\mathbf{a}_{\mathfrak{z}} + \mathbf{b}_{\mathfrak{z}} \cdot \mathbf{\Gamma}_{\mathsf{out}_{\mathfrak{z}}} + \mathbf{c}_{\mathfrak{z}} \cdot \left(\mathbf{T}_{\mathsf{out}_{\mathfrak{z}}} \right)^2 + \mathbf{d}_{\mathfrak{z}} \cdot \left(\mathbf{T}_{\mathsf{out}_{\mathfrak{z}}} \right)^{\overline{\mathfrak{z}}} \right]$$

$$C_{p3} = 0.822 \frac{kJ}{kg \cdot K}$$

 $\Delta T_4 = 980 \text{ K}$

11

11

 $\Delta H_{\text{Impurities}} \coloneqq m'_3 \cdot C_{p3} \cdot \Delta T_3$

$$\Delta H_{\rm Impurities} = 4.439 \times 10^5 \frac{\rm kJ}{\rm hr}$$

Energy of calcium oxide (CaO) output

Reference temperature: $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

 $T_{out_4} = 1273 \, \mathrm{K}$

 $\Delta T_4 := T_{out_4} - T_{ref}$

$$v_4 = 0.746 \frac{kJ}{kg \cdot K}$$

$$b_4 = 0 \frac{K^3}{kg \cdot K^2}$$

 $c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{out_4} + c_4 \cdot \left(T_{out_4} \right)^2 + d_4 \cdot \left(T_{out_4} \right)^3 \right]$$

 $C_{p4} = -1.306 \times 10^{10} \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaO} := \mathbf{m'_4} \cdot \mathbf{C_{p4}} \cdot \Delta \mathbf{T_4}$

$$\Delta H_{CaO} = 0 \frac{kJ}{hr}$$

Energy of carbon dioxide (CO₂) uput

Reference temperature:

Outlet temperature: $T_{out_s} = 1273 \text{ K}$

 $\Delta T_5 := T_{out_5} - T_{ref}$

 $\Delta T_5 = 980 \text{ K}$

34

 $T_{ref} := (20 + 27.5) - K$

$$a_{5} = 0.82 \frac{kJ}{kg \cdot K}$$

$$b_{5} = 0.001 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{5} = -6.56 \times 10^{-7} \text{ K} \frac{kJ}{kg \cdot K^{4}}$$

$$d_{5} = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^{4}}$$

 $C_{p5} = 1.332 \frac{kJ}{kg \cdot K}$ $\Delta H_{CO2} = 0 \frac{kJ}{hr}$

Total energy out: $\Delta H_{out} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

11

 ± 1

£ i

Heat load: $\Delta H := \Delta H_{out} - \Delta H_{in}$

 $\Delta H = -3.961 \times 10^{17} \frac{kJ}{hr}$

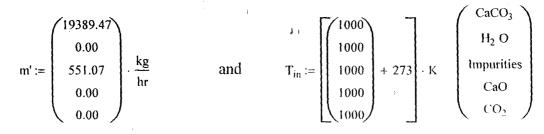
 $\Delta H_{out} = -3.959 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

4.3.3 ENERGY BALANCES ACROSS THE CRUSHER

The energy balances of the crusher will be calculated using

 $\Delta H = m \cdot C_p \cdot \Delta T$

where


m = "mass"

 C_p = "heat capacity" which is given as $C_p = a + b \cdot T + c \cdot T^2 + d \cdot T^3$

 ΔT = "change in temperature" which is given as $\Delta T = T_{in} - T_{ref}$

ENERGY INPUT ACROSS THE CRUSHER

Given the mass and temperatures of the input as

Energy of calcium carbonate (CaCO₃) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

11

1

1.1

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_2} = 1273 \, \text{K}$

Inlet temperature:

 $T_{in_1} = 1273 \, \text{K}$

$$\Delta T_{l} := T_{in_{l}} - T_{ref}$$

$$\Delta T_1 = 980 \text{ K}$$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

$$b_1 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{p1} := \left[\mathbf{a}_{1} + \mathbf{b}_{1} \cdot \mathbf{T}_{in_{1}} + \mathbf{c}_{1} \cdot \left(\mathbf{T}_{in_{1}} \right)^{2} + \mathbf{d}_{1} \cdot \left(\mathbf{T}_{in_{1}} \right)^{3} \right]$$

 $\Delta H_{CaCO3} := m'_1 \cdot C_{p1} \cdot \Box \Gamma_1$

 $\Delta H_{CaCO3} = -3.959 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

 $C_{p1} = -2.084 \times 10^{10} \frac{kJ}{kg \cdot K}$

Energy of moisture (H_2O) input

Reference temperature:

Inlet temperature:

 $\Delta T_2 := T_{in_2} - T_{ref}$

 $a_2 = 1.016 \frac{kJ}{kg \cdot K}$

$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

$$c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$$

 $d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$

$$\Delta T_2 = 980 \text{ K}$$

36

$$C_{p2} := \left[a_2 + b_2 \cdot T_{in_2} + c_2 \cdot (T_{in_2})^2 + d_2 \cdot (T_{in_2})^3 \right]$$

 $\Delta H_{H2O} := m'_2 \cdot C_{p2} \cdot \Delta T_2$

Energy of impurities input

Reference temperature:

Inlet temperature:

$$T_{in_3} = 1273 \, \text{K}$$

$$\Delta T_3 := T_{in_3} - T_{ref}$$

$$\mathbf{a}_3 = 0.253 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

$$d_3 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot (T_{in_3})^2 + d_3 \cdot (T_{in_3})^3 \right]$$

 $C_{p3} = 0.822 \frac{kJ}{kg \cdot K}$

 $\Delta H_{\rm Impurities} = 4.439 \times 10^5 \frac{\rm kJ}{\rm hr}$

.

 $\Delta H_{\text{Impurities}} \coloneqq \mathbf{m'_3} \cdot \mathbf{C_{p3}} \cdot \Delta \mathbf{T_3}$

Energy of calcium oxide (CaO) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $T_{in_4} = 1273 \, \text{K}$

$$\Delta T_4 := T_{in_4} - T_{ref}$$

$$a_4 = 0.746 \frac{kJ}{kg \cdot k}$$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

 $c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$

. .

 $\Delta T_4 = 980 \text{ K}$

37

11

$$C_{p2} = 64.434 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$$

 $\Delta T_3 = 980 \text{ K}$

11

 $T_{ref} := (20 + 273) \cdot K$

1 i

1.1

$$\mathbf{d}_4 = 0 \, \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}^4}$$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{in_4} + c_4 \cdot \left(T_{in_4} \right)^2 + d_4 \cdot \left(T_{in_4} \right)^3 \right]$$

 $C_{p4} = -1.306 \times 10^{10} \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

 $\Delta H_{CaO} := m'_4 \cdot C_{p4} \cdot \Delta T_4$

 $\Delta H_{CaO} = 0 \frac{kJ}{hr}$

Energy of carbon dioxide (CO₂) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_5} = 1273 \, \text{K}$

Ł

1

Inlet temperature:

 $\Delta T_5 := T_{in_5} - T_{ref}$

 $\Delta T_5 = 980 \text{ K}$

$$a_5 = 0.82 \frac{kJ}{kg \cdot K}$$

$$b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$$

 $c_5 = -6.56 \times 10^{-7} \, \mathrm{K} \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}^4}$

$$d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$$

$$C_{p5} := \left[a_5 + b_5 \cdot T_{in_5} + c_5 \cdot \left(T_{in_5} \right)^2 + d_5 \cdot \left(T_{in_5} \right)^3 \right]$$

 $\Delta H_{CO2} := m_5' \cdot C_{p5} \cdot \Delta T_5$

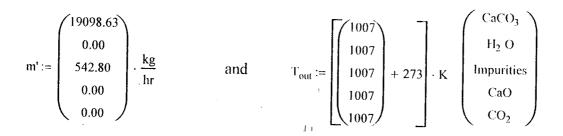
$$\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$$

 $C_{p5} = 1.332 \frac{kJ}{kg \cdot K}$

Total energy in:

 $\Delta H_{in} \coloneqq \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

11


1.1

 $\Delta H_{\rm in} = -3.959 \times 10^{17} \frac{\rm kJ}{\rm hr}$

38

ENERGY OUTPUT ACROSS THE CRUSHER

Given the mass and temperatures of the output as

Energy of calcium carbonate (CaCO₃) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

 $T_{out_1} = 1280 \, \text{K}$

$$\Delta T_1 := T_{out} - T_{ref}$$

 $\Delta T_1 = 987 \text{ K}$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

 $b_1 = 0 \frac{kJ}{kg \cdot K^2}$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{p1} := \left[\mathbf{a}_1 + \mathbf{b}_1 \cdot \mathbf{T}_{out_1} + \mathbf{c}_1 \cdot \left(\mathbf{T}_{out_1} \right)^2 + \mathbf{d}_1 \cdot \left(\mathbf{T}_{out_1} \right)^3 \right]$$

 $\Delta H_{CaCO3} := m'_1 \cdot C_{p1} \cdot \Delta T_1$

 $C_{p1} = -2.107 \times 10^{10} \frac{kJ}{kg \cdot K}$ $\Delta H_{CaCO3} = -3.971 \times 10^{17} \frac{kJ}{hr}$

Energy of moisture (H_2O) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{out_2} = 1280 \, \text{K}$

. .

39 ЛI

Outlet temperature:

 $\Delta T_2 := T_{out_2} - T_{ref}$

 $\mathbf{a}_2 = 1.016 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$

 $\Delta T_2 = 987 \text{ K}$

$$b_{2} = 0.026 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{2} = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^{3}}$$

$$d_{2} = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p2} := \left[a_{2} + b_{2} \cdot T_{out_{2}} + c_{2} \cdot (T_{out_{3}})^{2} + d_{2} \cdot (T_{out_{3}})^{3}\right]$$

$$C_{p2} = 65.786 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{120} := m'_{2} \cdot C_{p2} \cdot \Delta T_{2}$$

$$\Delta H_{120} := m'_{2} \cdot C_{p2} \cdot \Delta T_{2}$$

$$\Delta H_{120} = 0 \frac{kJ}{hT}$$
Reference temporature:
$$T_{out_{3}} = 1280 K$$

$$\Delta T_{3} := T_{out_{3}} - T_{ref}$$

$$a_{3} = 0.253 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$d_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$d_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$d_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$d_{4} = m'_{3} \cdot C_{p3} \cdot \Delta T_{3}$$

$$\Delta H_{inpurities} := m'_{3} \cdot C_{p3} \cdot \Delta T_{3}$$

$$\Delta H_{inpurities} := 4.42 \times 10^{5} \frac{kJ}{kT}$$

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

 $\Delta T_4 := T_{out_4} - T_{ref}$

 $T_{out_4} = 1280 \,\mathrm{K}$

 $\Delta T_4 = 987 \text{ K}$

,

.i i 40

$$a_4 = 0.746 \frac{kJ}{kg \cdot K}$$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{\mathbf{p4}} := \left[\mathbf{a}_4 + \mathbf{b}_4 \cdot \mathbf{T}_{\text{out}_4} + \mathbf{c}_4 \cdot \left(\mathbf{T}_{\text{out}_4} \right)^2 + \mathbf{d}_4 \cdot \left(\mathbf{T}_{\text{out}_4} \right)^{\overline{3}} \right]$$

 $C_{p4} = -1.321 \times 10^{10} \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaO} := m'_4 \cdot C_{p4} \cdot \Delta T_4$

 $\Delta H_{\rm CaO} = 0 \, \frac{\rm kJ}{\rm hr}$

Energy of carbon dioxide (CO₂) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{out_5} = 1280 K$

11

Outlet temperature:

 $\Delta \Gamma_5 := T_{out_5} - T_{ref}$

 $\Delta T_5 = 987 \text{ K}$

- $\mathbf{a}_5 = \mathbf{0.82} \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$
- $b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$

$$c_5 = -6.56 \times 10^{-7} \, \mathrm{K} \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}^4}$$

 $d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$

$$C_{p5} \coloneqq \left[a_5 + b_5 \cdot T_{out_5} + c_5 \cdot \left(T_{out_5} \right)^2 + d_5 \cdot \left(T_{out_5} \right)^3 \right]^{\frac{3}{2}}$$

 $C_{p5} = 1.333 \frac{kJ}{kg \cdot K}$

 $\Delta \mathbf{H}_{\mathbf{CO2}} \coloneqq \mathbf{m'}_5 \cdot \mathbf{C}_{\mathbf{p5}} \cdot \Delta \mathbf{T}_5$

$$\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$$

Total energy out:

 $\Delta H_{out} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

11

11

 $\Delta H_{out} = -3.971 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

Heat load:

$$\Delta H := \Delta H_{out} - \Delta H_{in}$$

 $\Delta H = -1.178 \times 10^{15} \frac{\text{kJ}}{\text{hr}}$

4.3.4 FNERGY BALANCES ACROSS THE SCREENER

The energy balances of the screener will be calculated using

 $\Delta \mathbf{H} = \mathbf{m} \cdot \mathbf{C}_{\mathbf{p}} \cdot \Delta \mathbf{T}$

where

m = "mass"

 C_p = "heat capacity" which is given as $C_p = a + b \cdot T + c \cdot T^2 + d \cdot T^3$

 ΔT = "change in temperature" which is given as $\Delta T = T_{in} - T_{ref}$

ENERGY INPUT ACROSS THE SCREENER

Given the mass and temperatures of the input as μ_{μ}

$$\mathbf{m}' := \begin{pmatrix} 19098.63 \\ 0.00 \\ 542.80 \\ 0.00 \\ 0.00 \end{pmatrix} \cdot \frac{\mathrm{kg}}{\mathrm{hr}} \qquad \text{and} \qquad \mathbf{T}_{\mathrm{in}} := \begin{bmatrix} 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1007 \end{bmatrix} \cdot \mathbf{K} \quad \begin{pmatrix} \mathrm{CaCO_3} \\ \mathrm{H_2 O} \\ \mathrm{Impurities} \\ \mathrm{CaO} \\ \mathrm{CO_2} \end{pmatrix}$$

Evergy of calcium carbonate (CaCO₃) input

Reference temperature:

$$T_{ref} := (20 + 273) \cdot$$

1 i

K

 $\Delta T_1 = 987 \text{ K}$

Inlet temperature: $T_{in} = 1280 \text{ K}$

 $\Delta T_1 := T_{in_1} - T_{ref}$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

$$b_1 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{in_1} + c_1 \cdot \left(T_{in_1} \right)^2 + d_1 \cdot \left(T_{in_1} \right)^3 \right]$$

$$C_{p1} = -2.107 \times 10^{10} \frac{kJ}{kg \cdot K}$$

 $\Delta H_{CaCO3} := m'_1 \cdot C_{p1} \cdot \Delta T_1$

 $\Delta H_{CaCO3} = -3.971 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

Energy of moisture (H₂O) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

,E T

Inlet temperature:

$$T_{in_2} = 1280 \, K$$

$$\Lambda T_2 := \Gamma_{in_2} - T_{ref}$$

 $a_2 = 1.016 \frac{kJ}{kg \cdot K}$

 $b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$

$$c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$$

$$d_2 = 7.295 \times 10^{-8} \frac{\text{kJ}}{\text{kg} \cdot \text{K}^4}$$

$$\mathbf{C}_{p2} := \left[\mathbf{a}_{2} + \mathbf{b}_{2} \cdot \mathbf{T}_{in_{2}} + \mathbf{c}_{2} \cdot \left(\mathbf{T}_{in_{2}} \right)^{2} + \mathbf{d}_{2} \cdot \left(\mathbf{T}_{in_{2}} \right)^{\overline{3}} \right]$$

 $C_{p2} = 65.786 \frac{kJ}{kg \cdot K}$

 $\Delta T_2 = 987 \text{ K}$

 $\Delta H_{\rm H2O} \coloneqq m_2' \cdot C_{\rm p2} \cdot \Delta T_2$

Energy of impurities input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_3} = 1280 \, \text{K}$

J.)

Inlet temperature:

 $\Delta T_3 := T_{in_3} - T_{ref}$

$$a_{3} = 0.253 \frac{kJ}{kg \cdot K}$$
$$b_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$
$$c_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_3 = 0 \frac{1}{\text{kg} \cdot \text{K}^3}$$

$$\mathbf{d}_3 = 0 \, \frac{\mathbf{KJ}}{\mathbf{kg} \cdot \mathbf{K}^4}$$

$$\Delta T_3 = 987 \text{ K}$$

 $\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$

43

 $J \!=\! i$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot (T_{in_3})^2 + d_3 \cdot (T_{in_3})^3 \right]$$

$$C_{p3} = 0.825 \frac{kJ}{kg \cdot K}$$

 $\Delta T_4 = 987 \text{ K}$

 $\Delta H_{limpurities} \coloneqq m'_3 \cdot C_{p3} \cdot \Delta T_3$

 $\Delta H_{\rm Impurities} = 4.42 \times 10^5 \frac{\rm kJ}{\rm hr}$

Energy of calcium oxide (CaO) input

Reference temperature:

 $T_{tef} := (20 + 273) \cdot K$

i

J i

Inlet temperature:

 $T_{in_4} = 1280 \, \text{K}$

 $\Delta T_4 := T_{in_4} - T_{ref}$

 $a_{\downarrow} = 0.746 \frac{kJ}{kg \cdot K}$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

 $c_1 = -8059.914 \frac{kJ}{kg \cdot K^3}$

 $d_1 = 0 - \frac{kJ}{kg \cdot K^4}$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{in_4} + c_4 \cdot (T_{in_4})^2 + d_4 \cdot (T_{in_4})^3 \right]$$

 $C_{p4} = -1.321 \times 10^{10} \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

 $\Delta H_{CaO} \coloneqq m'_4 \cdot C_{p4} \cdot \Delta T_4$

 $\Delta H_{\rm CaO} = 0 \, \frac{\rm kJ}{\rm hr}$

 $\Delta T_5 = 987 \, K$

Energy of carbon dioxide (CO₂) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

j.)

Inlet temperature:

 $T_{in_5} = 1280 \, \text{K}$

$$\Delta T_5 := T_{in_s} - T_{ref}$$

$$\mathbf{a}_5 = 0.82 \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

$$b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$$

$$c_5 = -6.56 \times 10^{-7} \text{ K} \frac{\text{kJ}}{\text{kg} \cdot \text{K}^4}$$

$$d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$$

$$C_{p5} := \left[a_5 + b_5 \cdot T_{in_5} + c_5 \cdot \left(T_{in_5} \right)^2 + d_5 \cdot \left(T_{in_5} \right)^3 \right]$$

 $C_{p5} = 1.333 \frac{kJ}{kg \cdot K}$

 $\Delta H_{CO2} := m'_5 \cdot C_{p5} \cdot \Delta T_5$

 $\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$

 $\Delta T_1 = 1180 \,\mathrm{K}$

Total energy in:

 $\Delta H_{in} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

d i

11

$$\Delta H_{\rm in} = -3.971 \times 10^{17} \frac{\rm kJ}{\rm hr}$$

ENERGY OUTPUT ACROSS THE SCREENER

Given the mass and temperatures of the output as

$$\mathbf{m}' := \begin{pmatrix} 18143.69 \\ 0.00 \\ 515.66 \\ 0.00 \\ 0.00 \end{pmatrix} \cdot \frac{\mathrm{kg}}{\mathrm{hr}} \qquad \text{and} \qquad \mathbf{T}_{\mathrm{out}} := \begin{bmatrix} 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \end{bmatrix} \cdot \mathbf{K} \begin{pmatrix} \mathrm{CaCO_3} \\ \mathrm{H_2 O} \\ \mathrm{Impurities} \\ \mathrm{CaO} \\ \mathrm{CO_2} \end{pmatrix}$$

Energy of calcium carbonate (CaCO₃) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{out_1} = 1473 \, \text{K}$

Outlet temperature:

 $\Delta T_1 := T_{out_1} - T_{ref}$

$$a_{1} = 0.823 \frac{kJ}{kg \cdot K}$$
$$b_{1} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{p1} := \left[\mathbf{a}_1 + \mathbf{b}_1 \cdot \mathbf{T}_{out_1} + \mathbf{c}_1 \cdot \left(\mathbf{T}_{out_1} \right)^2 + \mathbf{d}_1 \cdot \left(\mathbf{T}_{out_1} \right)^3 \right]$$

$$C_{p1} = -2.79 \times 10^{10} \frac{kJ}{kg \cdot K}$$

 $\Delta H_{CaCO3} = -5.973 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

 $\Delta H_{CaCO3} \coloneqq m'_1 \cdot C_{p1} \cdot \Delta T_1$

.

Energy of moisture (H_2O) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{out_2} = 1473 \, \text{K}$

11

11

 (\cdot)

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

 $\Delta T_2 = 1180 \,\mathrm{K}$

$$a_2 = 1.016 \frac{kJ}{kg \cdot K}$$
$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

 $\Delta T_2 := T_{out_2} - T_{ref}$

$$c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$$

$$d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{out_2} + c_2 \cdot \left(T_{out_2}\right)^2 + d_2 \cdot \left(T_{out_2}\right)^3 \right]$$

 $C_{p2} = 111.517 \frac{kJ}{kg \cdot K}$

 $\Delta \mathbf{H}_{\mathrm{H2O}} \coloneqq \mathbf{m'_2} \cdot \mathbf{C}_{\mathrm{p2}} \cdot \Delta \mathbf{T}_2$

 $\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$

 $\Delta T_3 = 1180 \,\mathrm{K}$

Energy of impurities output

Reference temperature: Outlet temperature:

e: $T_{out_3} = 1473 \text{ K}$

- $\Delta T_3 := T_{out_3} T_{ref}$
- $\mathbf{a_3} = 0.253 \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

$$d_3 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{out_3} + c_3 \cdot \left(T_{out_3} \right)^2 + d_3 \cdot \left(T_{out_3} \right)^3 \right]$$

$$C_{p3} = 0.911 \frac{kJ}{kg \cdot K}$$

 f_{-1}

 $\Delta H_{Impurities} := m'_3 \cdot C_{p3} \cdot \Delta T_3$

 $\Delta H_{\rm Impurities} = 5.545 \times 10^5 \frac{\rm kJ}{\rm hr}$

 $\Delta T_4 = 1180 \,\mathrm{K}$

Energy of calcium oxide (CaO) output

Reference temperature:

 $T_{\mathsf{ref}} \coloneqq (20 + 273) \cdot K$

 $T_{out_4} = 1473 \, \text{K}$

11

Outlet temperature:

$$\Delta T_1 := T_{out_A} - T_{ref}$$

$$a_4 = 0.746 \frac{kJ}{kg \cdot K}$$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

 $c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{C}_{\mathbf{p4}} := \left[\mathbf{a}_4 + \mathbf{b}_4 \cdot \mathbf{T}_{\text{out}_4} + \mathbf{c}_4 \cdot \left(\mathbf{T}_{\text{out}_4} \right)^2 + \mathbf{d}_4 \cdot \left(\mathbf{T}_{\text{out}_4} \right)^3 \right]$$

 $C_{p4} = -1.749 \times 10^{10} \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaO} = 0 \frac{kJ}{hr}$

 $\Delta T_5 = 1180 \,\mathrm{K}$

 $\Delta H_{CaO} \coloneqq m'_4 \cdot C_{p4} \cdot \Delta T_4$

Energy of carbon dioxide (CO₂) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

f(i)

 $T_{out_{5}} = 1473 \, \text{K}$

$$\Delta T_5 := T_{out_5} - T_{ref}$$

Outlet temperature:

$$a_5 = 0.82 \frac{kJ}{kg \cdot K}$$

$$b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$$

 $c_5 = -6.56 \times 10^{-7} \, \mathrm{K} \, \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}^4}$

$$d_5 = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^4}$$

47 j.,

$$\mathbf{C}_{ps} := \left[\mathbf{a}_{5} + \mathbf{b}_{5} \cdot \mathbf{T}_{out_{5}} + \mathbf{c}_{5} \cdot \left(\mathbf{\Gamma}_{out_{5}} \right)^{2} + \mathbf{d}_{5} \cdot \left(\mathbf{T}_{out_{5}} \right)^{\overline{3}} \right]$$

 $C_{p5} = 1.356 \frac{kJ}{kg \cdot K}$

 $\Delta H_{CO2} \coloneqq m'_5 \cdot C_{p5} \cdot \Delta T_5$

$$\Delta H_{\rm CO2} = 0 \, \frac{\rm kJ}{\rm hr}$$

Total energy out:

 $\Delta H_{out} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$

11

$$\Delta H_{\rm out} = -5.973 \times 10^{17} \frac{\rm kJ}{\rm hr}$$

Heat load:

$$\Delta H := \Delta H_{out} - \Delta H_{in}$$

$$\Delta H = -2.002 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$$

4.3.5 ENERGY BALANCES ACROSS THE FURNACE

The energy balances of the furnace will be calculated using

 $\mathbf{H} = \mathbf{m} \cdot \mathbf{c}_{\mathbf{p}} \cdot \Delta \mathbf{T} + \mathbf{m} \cdot \mathbf{H}_{\mathbf{f}}$

where

$$C_p = a + b \cdot T + c \cdot T^2 + d \cdot T^3$$

 $H_f =$ "Heat of formation"

ENERGY INPUT ACROSS THE FURNACE

Given the mass and temperatures of the input as

$$\mathbf{m}' := \begin{pmatrix} 18143.69 \\ 0.00 \\ 515.66 \\ 0.00 \\ 0.00 \end{pmatrix} \cdot \frac{\mathrm{kg}}{\mathrm{hr}} \qquad \text{and} \qquad \mathbf{T}_{\mathrm{in}} := \begin{bmatrix} 1011 \\ 1011 \\ 1011 \\ 1011 \\ 1011 \end{bmatrix} + 273 \\ \cdot \mathbf{K} \qquad \begin{pmatrix} \mathrm{CaCO}_3 \\ \mathrm{H}_2 \mathrm{O} \\ \mathrm{Impurities} \\ \mathrm{CaO} \\ \mathrm{CO}_2 \end{pmatrix}$$

Energy of calcium carbonate (CaCO₃) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature: $T_{in_1} = 1284 \text{ K}$

 $\Delta T_1 := T_{in_1} - T_{ref}$

 $\Delta T_1 = 991 \text{ K}$

 $a_{1} = 0.823 \frac{kJ}{kg \cdot K}$ $b_{1} = 0 \frac{kJ}{kg \cdot K^{2}}$

t i

$$c_{1} = -12858.427 \frac{kJ}{kg \cdot K^{3}}$$

$$d_{1} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p1} := \left[a_{1} + b_{1} \cdot T_{in_{1}} + c_{1} \cdot (T_{in_{1}})^{2} + d_{1} \cdot (T_{in_{1}})^{\frac{3}{2}}\right]$$
All $a_{1} = a_{1} - a_{2} - a_{1} + b_{1} \cdot T_{in_{1}} + c_{1} \cdot (T_{in_{1}})^{2} + d_{1} \cdot (T_{in_{1}})^{\frac{3}{2}}\right]$

$$C_{p1} = -2.12 \times 10^{10} \frac{kJ}{kg \cdot K}$$

$$\Delta H_{CaCO3} := m_1 \cdot \left(C_{p1} \cdot \Delta T_1 + H_{f_1} \right)$$

$$\Delta H_{CaCO3} = -3.812 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$$

Energy of moisture (H_2O) input

Reference temperature: $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $T_{in_2} = 1284 \, K$

11

$$\Delta \Gamma_2 := T_{\text{in}_2} - T_{\text{ref}}$$

 $\Delta T_2 = 991 \text{ K}$

 $\mathbf{a}_2 = 1.016 \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}}$

 $b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$

 $c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$

 $d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{in_2} + c_2 \cdot (T_{in_2})^2 + d_2 \cdot (T_{in_2})^3 \right]^{\frac{1}{2}}$$

 $\Delta H_{H2O} := m'_2 \cdot \left(C_{p2} \cdot \Delta T_2 + H_{f_2} \right)$

$$\Delta H_{H2O} = 0 \frac{kJ}{k}$$

 $C_{p2} = 66.567 \frac{kJ}{kg \cdot K}$

$$AH_{112O} = 0 \frac{KJ}{hr}$$

 $\Delta T_3 = 991 \text{ K}$

Energy of impurities input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $T_{in_3} = 1284 \, \text{K}$

$$\Delta T_3 := T_{in_3} - T_{ref}$$

 $a_3 = 0.253 \frac{kJ}{kg \cdot K}$

 j_{-1}

$$b_{3} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{3} = 0 \frac{kJ}{kg \cdot K^{3}}$$

$$d_{3} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p,3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot \left(T_{in_3} \right)^2 + d_3 \cdot \left(T_{in_3} \right)^3 \right]$$

Energy of calcium oxide (CaO) input

 $\Delta H_{lmpurities} := m'_{3} \cdot \left(C_{p3} \cdot \Delta T_{3} + H_{f_{3}} \right)$

$$C_{p3} = 0.827 \frac{kJ}{kg \cdot K}$$

 $\Delta T_4 = 991 \text{ K}$

 $\Delta H_{\text{Impurities}} = -6.891 \times 10^6 \frac{\text{kJ}}{\text{hr}}$

4.1

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_4} = 1284 \, K$

Inlet temperature:

$$\Delta T_4 := T_{in_4} - T_{ref}$$

$$a_4 = 0.746 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$b_4 = 0 - \frac{kJ}{kg \cdot K^2}$$

$$c_{4} = -8059.914 \frac{kJ}{kg \cdot K^{3}}$$
$$d_{4} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{in_4} + c_4 \cdot (T_{in_4})^2 + d_4 \cdot (T_{in_4})^3 \right]$$

 $C_{p4} = -1.329 \times 10^{10} \frac{kJ}{kg \cdot K}$

$$\Delta H_{CaO} := m'_4 \cdot \left(C_{p4} \cdot \Delta T_4 + H_{f_4} \right)$$

$$\Delta H_{CaO} = 0 \frac{kJ}{hr}$$

Energy of carbon dioxide (CO₂) input

Reference temperature: T

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_{5}} = 1284 \, \text{K}$

11

Inlet temperature:

 $\Delta T_5 := T_{in_5} - T_{ref}$

 $\Delta T_5 = 991 \text{ K}$

,

Į I

$$a_{5} = 0.82 \frac{kJ}{kg \cdot K}$$

$$b_{5} = 0.001 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{5} = -6.56 \times 10^{-7} K \frac{kJ}{kg \cdot K^{4}}$$

$$d_{5} = 1.696 \times 10^{-10} \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p5} := \left[a_{5} + b_{5} \cdot T_{in_{5}} + c_{5} \cdot (T_{in_{5}})^{2} + d_{5} \cdot (T_{in_{5}})^{3}\right]$$

$$C_{p5} = 1.333 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{CO2} := m'_{5} \cdot (C_{p5} \cdot \Delta T_{5} + H_{f_{5}})$$

$$J = \Delta H_{CO2} = 0 \frac{kJ}{hr}$$

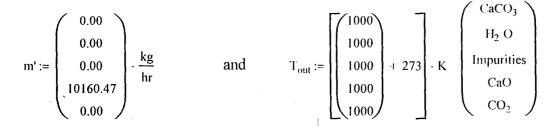
Components' energy in: $\Delta H_{\text{Comp_in}} := \Delta H_{\text{CaCO3}} + \Delta H_{\text{H2O}} + \Delta H_{\text{Impurities}} + \Delta H_{\text{CaO}} + \Delta H_{\text{CO2}}$

$$\Delta H_{\text{Comp_in}} = -3.812 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$$

Total energy in:

The total energy into the furnace will be the sum of the total energy of the components and the energy supplied by the fuel passed to the furnace. Given the energy of the fuel (natural gas) to be

11


 $H_{fuel} := 35615 \cdot \frac{kJ}{hr}$

 $H_{in} := \Delta H_{Comp_{in}} + H_{fuel}$

$$H_{in} = -3.812 \times 10^{17} \frac{kJ}{hr}$$

ENERGY OUTPUT ACROSS THE FURNACE

Given the mass and temperatures of the output as

Energy of calcium carbonate (CaCO₃) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

.

51

 $T_{out_1} = 1273 \, \text{K}$

$$\Delta T_{1} := T_{out_{1}} - T_{ref}$$

$$a_{1} = 0.823 \frac{kJ}{kg \cdot K}$$

$$b_{1} = 0 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{1} = -12858.427 \frac{kJ}{kg \cdot K^{3}}$$

$$d_{1} = 0 \frac{kJ}{kg \cdot K^{4}}$$

$$C_{p1} := \left[a_{1} + b_{1} \cdot T_{out_{1}} + c_{1} \cdot (T_{out_{1}})^{2} + d_{1} \cdot (T_{out_{1}})^{3}\right]$$

$$\Delta H_{CaCO3} := m'_{1} \cdot (C_{p1} \cdot \Delta T_{1} + H_{f_{1}})$$

Energy of moisture (H_2O) output

Reference temperature: $T_{ref} := (20 + 273) \cdot K$ $T_{out_2} = 1273 \, \text{K}$ Outlet temperature: $\Delta T_2 := T_{out_2} - T_{ref}$ $a_2 = 1.016 \frac{kJ}{kg \cdot K}$ $b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$ $c_2 = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^3}$ $d_2 = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^4}$ $C_{p2} := \left[a_2 + b_2 \cdot T_{out_2} + c_2 \cdot \left(T_{out_2} \right)^2 + d_2 \cdot \left(T_{out_2} \right)^3 \right]^2$ 11 C $\Delta H_{H2O} := m'_2 \cdot \left(C_{p2} \cdot \Delta T_2 + H_{f_2} \right)$.

 $\Delta T_1 = 980 \text{ K}$

 $C_{p1} = -2.084 \times 10^{10} \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

$$\Delta \Pi_{CaCO3} = 0 \, \frac{k^3}{h_1}$$

$$\Delta T_2 = 980 \text{ K}$$

$$C_{p2} = 64.434 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

$$\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$$

Energy of impurities output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

11

11

J I

Dutlet temperature:

 $T_{out_3} = 1273 \, \text{K}$

$$\Delta T_3 := T_{out_3} - T_{ref}$$

$$\Delta T_3 = 980 \text{ K}$$

 $C_{p3} = 0.822 \frac{kJ}{kg \cdot K}$

 $\Delta H_{Impurities} = 0 \, \frac{kJ}{hr}$

 $\Delta T_4 = 980 \,\mathrm{K}$

$$a_{3} = 0.253 - \frac{kJ}{kg \cdot K}$$

$$b_{3} = 0 - \frac{kJ}{kg \cdot K^{2}}$$

$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

$$d_3 = 0 \frac{kJ}{kg \cdot K^4}$$

$$\mathbf{F}_{p3} := \left[\left[\mathbf{a}_3 + \mathbf{b}_3 \cdot \mathbf{T}_{out_3} + \mathbf{c}_3 \cdot \left(\mathbf{T}_{out_3} \right)^2 + \mathbf{d}_3 \cdot \left(\mathbf{T}_{out_3} \right)^3 \right]$$

$$\Delta H_{\text{Impurities}} := m'_{3} \cdot \left(C_{p3} \cdot \Delta T_{3} + H_{f_{3}} \right)$$

Reference temperature:

 $T_{out_4} = 1273 \, K$

 $T_{ref} := (20 + 273) \cdot K$

$$\Delta T_4 := T_{out_4} - T_{ref}$$

Outlet temperature:

$$a_4 = 0.746 \frac{kJ}{kg \cdot K}$$

$$b_4 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_4 = -8059.914 \frac{kJ}{kg \cdot K^3}$$

$$d_4 = 0 \frac{kJ}{kg \cdot K^4}$$

$$C_{p4} := \left[a_4 + b_4 \cdot T_{out_4} + c_4 \cdot \left(T_{out_4} \right)^2 + d_4 \cdot \left(T_{out_4} \right)^3 \right]$$

$$C_{p4} = -1.306 \times 10^{10} \frac{kJ}{kg \cdot K}$$

 $\Delta H_{CaO} \coloneqq m'_4 \cdot \left(C_{p4} \cdot \Delta T_4 + H_{f_4} \right)$

$$\Delta H_{\rm CaO} = -1.301 \times 10^{17} \frac{\rm kJ}{\rm hr}$$

Energy of carbon dioxide (CO₂) output

Reference temperature:

$$T_{ref} := (20 + 273) \cdot K$$

11

 $T_{out_s} = 1273 \text{ K}$

£4

Outlet temperature:

$$\Delta T_5 = 980 \text{ K}$$

$$a_5 = 0.82 \frac{kJ}{kg \cdot K}$$

 $\Delta T_5 := T_{out_5} - T_{ref}$

 $b_5 = 0.001 \frac{kJ}{kg \cdot K^2}$

$$c_{c} = -6.56 \times 10^{-7} \text{ K} \frac{\text{kJ}}{\text{kg} \cdot \text{K}^{2}}$$

 $d_{c} = 1.696 \times 10^{-10} \frac{\text{kJ}}{\text{kg} \cdot \text{K}^{2}}$

$$kg \cdot K^4$$

$$C_{p5} := \left[a_{5} + b_{5} \cdot T_{out_{5}} + c_{5} \cdot \left(T_{out_{5}} \right)^{2} + d_{5} \cdot \left(T_{out_{5}} \right)^{\frac{3}{2}} \right]$$

$$C_{p5} = 1.332 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{CO2} := m'_{5} \cdot \left(C_{p5} \cdot \Delta T_{5} + H_{f_{5}} \right)$$

$$\Delta H_{CO2} = 0 \frac{kJ}{hr}$$

Total energy out:
$$\Delta H_{out} := \Delta H_{CaCO3} + \Delta H_{H2O} + \Delta H_{Impurities} + \Delta H_{CaO} + \Delta H_{CO2}$$

$$\Delta H_{\rm out} = -1.301 \times 10^{17} \, \frac{\rm kJ}{\rm hr}$$

Heat load:

 $\Delta H := \Delta H_{out} - \Delta H_{in}$

 $\Delta H = 2.671 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$

4.3.6 ENERGY BALANCES ACROSS THE COOLER

The energy balances of the cooler will be calculated using

 $\Delta \mathbf{H} = \mathbf{m} \cdot \mathbf{C}_{\mathbf{p}} \cdot \Delta \mathbf{T}$

where

;

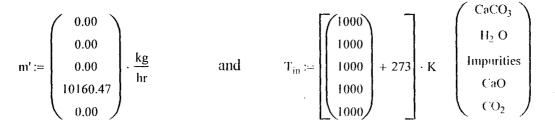
m = "mass"

C_p = "heat capacity"

which is given as $C_p = a + b \cdot T + c \cdot T^2 + d \cdot T^3$

 ΔT = "change in temperature"

 $\Delta T = T_{in} - T_{ref}$


54

11

which is given as

ENERGY INPUT ACROSS THE COOLER

Given the mass and temperatures of the input as

Energy of calcium carbonate (CaCO₃) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

11

Inlet temperature:

 $T_{in_1} = 1273 \, \text{K}$

$$\Delta T_1 := T_{in_1} - T_{ref}$$

 $a_1 = 0.823 \frac{kJ}{kg \cdot K}$

$$b_1 = 0 \frac{kJ}{kg \cdot K^2}$$

 $c_{1} = -12858.427 \frac{kJ}{kg \cdot K^{3}}$ $d_{1} = 0 \frac{kJ}{kg \cdot K^{4}}$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{in_1} + c_1 \cdot \left(T_{in_1} \right)^2 + d_1 \cdot \left(T_{in_1} \right)^3 \right]$$

 $C_{p1} = -2.084 \times 10^{10} \frac{kJ}{kg \cdot K}$

 $\Delta H_{CaCO3} = 0 \frac{kJ}{hr}$

 $\Delta T_1 = 980 \text{ K}$

 $\Delta H_{CaCO3} := m'_1 \cdot C_{p1} \cdot \Delta T_1$

Energy of moisture (H_2O) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

 $T_{in_2} = 1273 \, \text{K}$

11

Inlet temperature:

$$\Delta T_2 := T_{in_2} - T_{ref}$$

$$a_2 = 1.016 \frac{kJ}{kg \cdot K}$$
$$b_2 = 0.026 \frac{kJ}{kg \cdot K^2}$$

 $\Delta T_2 = 980 \text{ K}$

$$c_{2} = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^{3}}$$

 $d_{2} = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^{3}}$

$$l_2 = 7.295 \times 10^{-6} \frac{10}{\text{kg} \cdot \text{K}^4}$$

$$C_{p2} := \left[a_2 + b_2 \cdot T_{in_2} + c_2 \cdot \left(T_{in_2} \right)^2 + d_2 \cdot \left(T_{in_2} \right)^3 \right]$$

 $\Delta \mathbf{H}_{\mathrm{IPO}} \coloneqq \mathbf{m'_2} \cdot \mathbf{C}_{p2} \cdot \Delta \mathbf{T}_2$

 $C_{p,2} = 64.434 \frac{kJ}{kg \cdot K}$

 $\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$

t i

14

Energy of impurities input

Reference temperature: $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $T_{in_3} = 1273 \, K$

 $\Delta T_3 = 980 \text{ K}$

$$a_3 = 0.253 \frac{kJ}{kg \cdot K}$$

 $\Delta T_3 := T_{in_3} - T_{ref}$

$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$

$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

 $d_3 = 0 \frac{kJ}{kg \cdot K^4}$

$$C_{p3} := \left[a_3 + b_3 \cdot T_{in_3} + c_3 \cdot \left(T_{in_3} \right)^2 + d_3 \cdot \left(T_{in_3} \right)^3 \right]$$

$$C_{p3} = 0.822 \frac{kJ}{kg \cdot K}$$

$$\Delta H_{\text{Imputities}} := m'_3 \cdot C_{p3} \cdot \Delta T_3$$

 $T_{in_4} = 1273 \, \text{K}$

$$\Delta H_{Impurities} = 0 \frac{kJ}{hr}$$

Energy of calcium oxide (CaO) input

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Inlet temperature:

 $\Delta T_4 := T_{in_4} - T_{ref}$

 $\Delta T_4 = 980 \text{ K}$

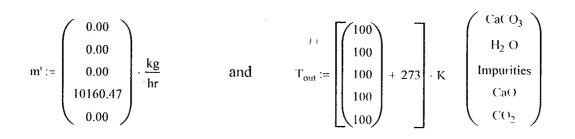
$$\mathbf{a}_4 = 0.746 \frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}}$$

, i 56

$$\begin{split} b_{4} &= 0 \frac{kJ}{kg \cdot K^{2}} \\ c_{4} &= -8059.914 \frac{kJ}{kg \cdot K^{2}} \\ d_{4} &= 0 \frac{kJ}{kg \cdot K^{4}} \\ C_{p1} &:= \left[a_{4} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= \left[a_{4} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{4} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{4} \cdot T_{in_{4}} + c_{4} \cdot \left(T_{in_{4}} \right)^{2} + d_{4} \cdot \left(T_{in_{4}} \right)^{2} \right] \\ C_{p1} &:= (a_{1} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p2} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p2} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T_{in_{5}} + c_{5} \cdot \left(T_{in_{5}} \right)^{2} + d_{5} \cdot \left(T_{in_{5}} \right)^{2} \right] \\ C_{p3} &:= (a_{2} + b_{2} \cdot T$$

Total energy in:

 $\Delta H_{\text{in}} \coloneqq \Delta H_{\text{CaCO3}} + \Delta H_{\text{H2O}} + \Delta H_{\text{Impurities}} + \Delta H_{\text{CaO}} + \Delta H_{\text{CO2}}$


$$\Delta H_{\rm in} = -1.301 \times 10^{17} \, \frac{\rm kJ}{\rm hr}$$

hr

57

ENERGY OUTPUT ACROSS THE COOLER

Given the mass and temperatures of the output as

Energy of calcium carbonate (CaCO₃) output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

11

£ i

Outlet temperature:

 $T_{out_1} = 373 \text{ K}$

 $\Delta T_1 := T_{out_1} - T_{ref}$

 $\Delta T_1 = 80 \,\mathrm{K}$

$$a_1 = 0.823 \frac{kJ}{kg \cdot K}$$

 $b_1 = 0 \frac{kJ}{kg \cdot K^2}$

$$c_1 = -12858.427 \frac{kJ}{kg \cdot K^3}$$

$$d_1 = 0 \frac{KJ}{kg \cdot K^4}$$

$$C_{p1} := \left[a_1 + b_1 \cdot T_{out_1} + c_1 \cdot (T_{out_1})^2 + d_1 \cdot (T_{out_1})^3 \right]$$

 $\Delta H_{CaCO3} := m'_1 \cdot C_{p1} \cdot \Delta T_1$

$$C_{p1} = -1.789 \times 10^9 \frac{kJ}{kg \cdot K}$$

 $\Delta H_{CaCO3} = 0 \frac{kJ}{hr}$

 $\Delta T_2 = 80 \text{ K}$

Energy of moisture
$$(H_2O)$$
 output

Reference temperature:

 $T_{ref} := (20 + 273) \cdot K$

Outlet temperature:

 $T_{out_2} = 373 \text{ K}$

$$\Delta T_2 := T_{out_2} - T_{ref}$$

 $a_2 = 1.016 \frac{kJ}{kg \cdot K}$

$$b_{2} = 0.026 \frac{kJ}{kg \cdot K^{2}}$$

$$c_{2} = -7.431 \times 10^{-5} \frac{kJ}{kg \cdot K^{3}}$$

$$d_{2} = 7.295 \times 10^{-8} \frac{kJ}{kg \cdot K^{3}}$$

$$C_{p2} := \left[a_{2} + b_{2} \cdot T_{out_{2}} + c_{2} \cdot \left(T_{out_{2}}\right)^{2} + d_{2} \cdot \left(T_{out_{2}}\right)^{3}\right]$$

$$\Delta H_{H2O} := m'_{2} \cdot C_{p2} \cdot \Delta T_{2}$$

$$Energy of impurities output$$
Reference temperature:
$$T_{ref} := (2)$$
Outlet temperature:
$$T_{out_{3}} = 373 \text{ K}$$

 $C_{p2} = 4.237 \frac{kJ}{kg \cdot K}$

 $\Delta H_{\rm H2O} = 0 \, \frac{\rm kJ}{\rm hr}$

 $\Delta T_3 = 80 \text{ K}$

F

 $f := (20 + 273)^{1/2} K$

1 i

Outlet temperature:

 $\Delta T_3 := T_{out_3} - T_{ref}$

$$a_3 = 0.253 \frac{kJ}{kg \cdot K}$$
$$b_3 = 0 \frac{kJ}{kg \cdot K^2}$$
$$c_3 = 0 \frac{kJ}{kg \cdot K^3}$$

$$\mathbf{d_3} = 0 \, \frac{\mathbf{k} \mathbf{J}}{\mathbf{kg} \cdot \mathbf{K}^4}$$

 $C_{p3} \coloneqq \left[a_3 + b_3 \cdot T_{out_3} + c_3 \cdot \left(T_{out_3} \right)^2 + d_3 \cdot \left(T_{out_3} \right)^3 \right]$

 $C_{p3} = 0.42 \, \frac{kJ}{kg \cdot K}$

 $\Delta H_{Impurities} := m'_3 \cdot C_{p3} \cdot \Delta T_3$

 $\Delta H_{\rm Impurities} = 0 \, \frac{\rm kJ}{\rm hr}$

Energy of calcium oxide (CaO) output

Reference temperature:

 $\dot{T}_{ref} := (20 + 273) \cdot K$ J I

t i

Outlet temperature:

 $T_{out_4} = 373 \text{ K}$

 $\Delta T_4 := T_{out_4} - T_{ref}$

 $\Delta T_4 = 80 \text{ K}$

$$\begin{aligned} u_{4} &= 0.746 \frac{kJ}{k_{B} \cdot K^{2}} \\ b_{4} &= 0 \frac{kJ}{k_{B} \cdot K^{2}} \\ c_{4} &= -8059.914 \frac{kJ}{k_{B} \cdot K^{2}} \\ d_{5} &= 0 \frac{kJ}{k_{B} \cdot K^{4}} \\ C_{p4} &= -1.21 \times 10^{9} \frac{kJ}{k_{B} \cdot K} \\ C_{p4} &= -1.21 \times 10^{9} \frac{kJ}{k_{B} \cdot K} \\ \Delta H_{CaO} &= m^{2} \cdot C_{p4} \cdot \Delta T_{4} \\ \Delta H_{CaO} &= m^{2} \cdot C_{p4} \cdot \Delta T_{4} \\ \Delta H_{CaO} &= -9.115 \times 10^{16} \frac{kJ}{k_{B} \cdot K} \\ Dullet temperature: T_{ref} &= (20 + 273) \cdot K \\ Outlet temperature: T_{ref} &= 373 K \\ \Delta T_{5} &= 7 \omega t_{5} - 7 \omega t_{5} \\ a_{5} &= 0.82 \frac{kJ}{k_{B} \cdot K} \\ b_{5} &= 0.001 \frac{kJ}{k_{B} \cdot K^{2}} \\ c_{5} &= -6.56 \times 10^{-7} \frac{K}{k_{B} \cdot K^{4}} \\ C_{p5} &:= \left[a_{5} + b_{5} \cdot T_{out}_{5} + c_{5} \cdot (T_{out}_{5})^{2} + d_{5} \cdot (T_{out}_{5})^{2} \right] \\ C_{p5} &= 1.097 \frac{kJ}{k_{B} \cdot K} \\ \Delta H_{CO2} &= m^{2} \cdot C_{p5} \cdot \Delta T_{5} \\ \Delta H_{CO2} &= m^{2} \cdot C_{p5} \cdot \Delta T_{5} \\ \Delta H_{CO2} &= m^{2} \cdot C_{p5} \cdot \Delta T_{5} \\ \Delta H_{co1} &= -9.115 \times 10^{14} \frac{kJ}{k_{T}} \\ Heat load: \Delta H_{co1} - \Delta H_{on} \\ \Delta H &= 1.291 \times 10^{17} \frac{kJ}{k_{T}} \\ \end{array}$$

.

4.4 MOMENTUM BALANCE

Momentum is a fundamental quantity characterizing the motion of any object (see Mechanics). It is

the product of the mass of a moving particle multiplied by its linear velocity. Momentum is a vector

i i

quantity, which means that it has both magnitude and direction. The total momentum of a system

made up of a collection of objects is the vector sum of all the individual objects' momenta.(Encarta,

2004)

Momentum = $m \cdot v$

Mathematically, momentum is given as

where m is the mass of the body and v is its velocity.

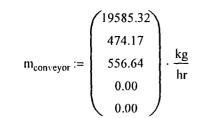
For this plant, only conveyor is moving. So, it is the only unit having velocity, hence, it is the only

unit that will have the momentum balance because all other units have their momentum to be equal

to zero since they are stationary.

A ----- +1- -+

mass of conveyor before loading, $v_1 := 50 \cdot \frac{kn}{hr}$


mass of conveyor before loading, $m_1 := 101000 \cdot kg^{++}$

The momentum of the conveyor before loading the chalk is therefore calculated as

Momentum₁ := $m_1 \cdot v_1$

Momentum₁ = 1.403×10^6 N · s

Given that the masses of the materials in the conveyor is

The total mass of the materials is calculated as $M_{material} := \sum m_{conveyor}$

 $M_{\text{material}} = 20616.13 \frac{\text{kg}}{\text{hr}}$

When the conveyor is loaded with the material, the total mass of the conveyor with the material is

,Ł т

 $M_{Tconveyor} := m_1 + M_{naterial} \cdot hr$

 $M_{Tconveyor} = 1.216 \times 10^5 kg$

 $m_2 := M_{Tconveyor}$

Momentum balance equation is given as

 $\mathbf{m}_1 \cdot \mathbf{v}_1 = \mathbf{m}_2 \cdot \mathbf{v}_2$

 $\mathbf{v}_2 := \frac{\mathbf{m}_1 \cdot \mathbf{v}_1}{\mathbf{m}_2}$

 $v_2 = 41.524 \,\frac{\mathrm{km}}{\mathrm{hr}}$

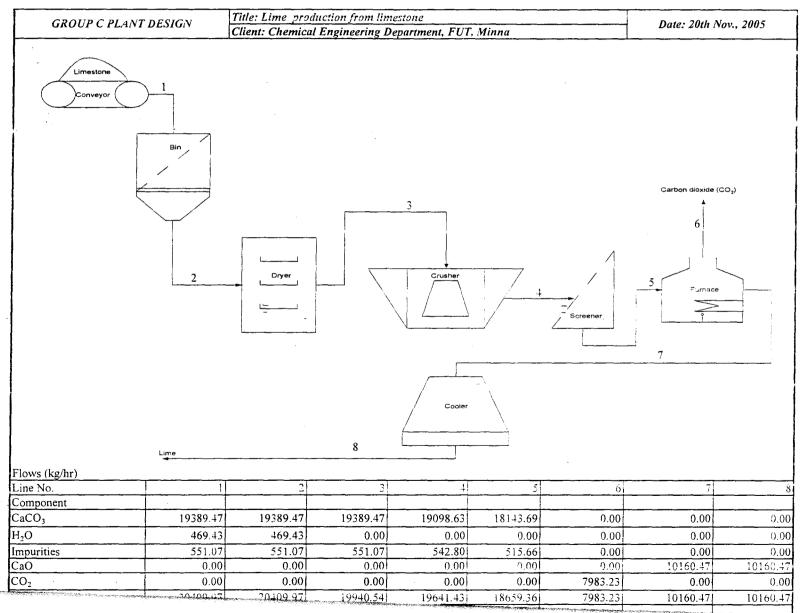
 $v_2 = 11.534 \frac{m}{s}$

This means that the conveyor must move at the rate of $v_2 = 41.524 \frac{\text{km}}{\text{hr}}$ after it is loaded with the limeston

11

11

11


j i

t

CHAPTER FIVE

5.0 FLOWSHEETING

-

CHAPTER SIX

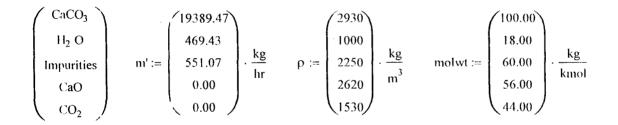
6.0 DESIGN OF EQUIPMENTS

6.1 CHEMICAL ENGINEERING DESIGN OF EQUIPMENTS

6.1.1 DESIGN OF 'BIN

Type: Cylindrical-top and cone-based container

Material of construction: Carbon steel


Denoting the mass of the components by m', the density by ρ , the molecular weight by molwt; and

1.1

11

amount in moles n.

The masses, densities, molecular weights and number of moles of the components in the bin are thus;

The number of moles of each components, n, is calculated using

$$p := \frac{m'}{molwt}$$

$$\begin{array}{c} CaCO_3 \\ H_2 O \\ mpurities \\ CaO \\ CO_2 \end{array} \end{array} \qquad n = \begin{pmatrix} 193.895 \\ 26.079 \\ 9.184 \\ 0 \\ 0 \end{pmatrix} \frac{kmol}{hr}$$

The average density of the components is calculated as;

$$\rho_{av} := \left(\frac{n_1}{\sum n} \cdot \rho_1 + \frac{n_2}{\sum n} \cdot \rho_2 + \frac{n_3}{\sum n} \cdot \rho_3 + \frac{n_4}{\sum n} \cdot \rho_4 + \frac{n_5}{\sum n} \cdot \rho_5 \right)$$

 $\rho_{av} = 2683.102 \frac{\text{kg}}{\text{m}^3}$

The total mass of the components in the bin is equal to $m_{bin} := \sum m'$

$$V_{bin} \coloneqq \frac{m_{bin}}{\rho_{av}} \qquad \qquad V_{bin} \approx 7.607 \frac{m^2}{hr}$$

The bin is cylindrical with conical bottom, hence

 $V_{soap_blender}$ = "volume of cylindrical top + volume of conical bottom"

11

1

$$V_{top} = \pi + R^2 \cdot H$$

$$V_{\text{bottom}} = \frac{1}{3}\pi \cdot R^2 \cdot h$$

Total volume of the bin is then

$$V_{bin} = V_{top} + V_{bottom}$$

$$V_{bin} = \pi \cdot R^2 \cdot H + \frac{1}{3}\tau \cdot R^2 \cdot h$$
$$R = \frac{D}{2}$$

$$V_{\text{bin}} = \pi \cdot \left(\frac{D}{2}\right)^2 \cdot H + \frac{1}{2}\pi \cdot \left(\frac{D}{2}\right)^2 \cdot h$$

Assuming that
$$\frac{H}{D} = t$$
 and $h = k \cdot H$

where

$$r := 2$$
 and $k := 0.23$

That is,

$$H = r \cdot D$$
 and $h = k H$

$$h = k \cdot D$$
 implies that $h = k \cdot r \cdot D$

So,

$$\mathbf{h} = \mathbf{k} \cdot \mathbf{r} \cdot \mathbf{D}$$

After ubstitution,

$$V_{bin} = \pi \cdot \left(\frac{D_{bin}}{2}\right)^2 \cdot H + \frac{1}{3}\pi \cdot \left(\frac{D_{bin}}{2}\right)^2 \cdot h$$

becomes

$$V_{\text{bin}} = \pi \cdot \left(\frac{D_{\text{bin}}}{2}\right)^2 \cdot \mathbf{r} \cdot D_{\text{bin}} + \frac{1}{3}\pi \cdot \left(\frac{D_{\text{bin}}}{2}\right)^2 \cdot \mathbf{k} \cdot \mathbf{r} \cdot D$$

$$V_{bin} = \frac{\pi \cdot r}{4} \cdot (D_{bin})^3 + \frac{\pi \cdot k \cdot r}{12} \cdot (D_{bin})^3$$
$$V_{bin} = (D_{bin})^3 \cdot \left(\frac{\pi \cdot r}{4} + \frac{\pi \cdot k \cdot r}{12}\right)$$
$$(D_{bin})^3 = \frac{V_{bin}}{\left(\frac{\pi \cdot r}{4} + \frac{\pi \cdot k \cdot r}{12}\right)}$$

Making the diameter of the bin (D_{bin}) the subject of the formular

1.)

1 i

$$D_{\text{bin}} = \left[\frac{V_{\text{bin}}}{\left(\frac{\pi \cdot r}{4} + \frac{\pi \cdot k \cdot r}{12}\right)}\right]^{\frac{1}{3}}$$

 $V_{bin} \coloneqq V_{bin} \cdot hr$

 $D_{\text{bin}} := \left[\frac{V_{\text{bin}}}{\left(\frac{\pi \cdot \mathbf{r}}{4} + \frac{\pi \cdot \mathbf{k} \cdot \mathbf{r}}{12}\right)} \right]^{\frac{1}{3}}$

Based on the assumption that H = 2D,

 $H_{top} := \mathbf{r} \cdot \mathbf{D}_{bin}$

 $h_{bottom} := k \cdot H_{top}$

 $h_{bottom} = 0.759 \,\mathrm{m}$

 $H_{bin} = 4.061 \, m$

 $H_{top} = 3.301 \,\mathrm{m}$

 $D_{bin} = 1.651 \,\mathrm{m}$

Total height of the bin is therefore,

$$H_{bin} := H_{top} + h_{bottom}$$

The area of the bin is thus calculated as the sum of the area of cylindrical and the

frustrum part. That is,

$$A_{\text{bin}} \coloneqq \left[2 \cdot \pi \cdot \left(\frac{D_{\text{bin}}}{2} \right) \cdot H_{\text{top}} + 2 \cdot \pi \cdot \left(\frac{D_{\text{bin}}}{2} \right)^{\overline{2}} \right] + \pi \cdot \frac{D_{\text{bin}}}{2} \cdot h_{\text{bottom}}$$
$$A_{\text{bin}} = 23.369 \,\text{m}^2$$

.

6.1.2 DESIGN OF DRYER

The rotary drier forms an important part of the plant. The drier has a capability of removing the moisture associated with the chalk (raw material) lime. The drier is a counter current drier, with air as the heating medium. The Relative Humidity (RH) of the air entering is 15%. The air entering is heated to a temperature of 170°C.

11

Amount of water in dryer feed, $W_f := 469.43 \cdot \frac{\text{kg}}{\text{hr}}$

Solid in dryer feed, $S_f := 19940.54 \cdot \frac{\text{kg}}{\text{hr}}$

Water content in dryer output, $W_p := 0 \cdot \frac{kg}{hr}$

Hence, water removed by the dryer is

$$W_d := W_f - W_{p_i}$$

$$W_d = 469.43 \frac{\text{kg}}{\text{hr}}$$

Inlet air temperature, $T_{ia} := (170 + 273) \cdot K$

Outlet air temperature, $T_{oa} := (90 + 273) \cdot K$

Inlet temperature of feed, $T_{if} := (27 + 273) \cdot K$

Discharge temperature, $T_d := (1000 + 273) \cdot K$

The temperature of the air leaving the dryer should be selected on the basis of an economic

balance between dryer and fuel cost. It has been that dryers are most economically

operated when the total Number of Transfer Units (NTU) range from 1.5 to 2.0. Assuming that

J +

So, assuming that

NTU := 1

Knowing that,

$$NTU = \ln \left[\frac{(t_{g1} - t_w)}{t_{g2} - t_w} \right]$$
$$t_{g1} := T_{ia}$$

 $\mathfrak{t}_w\coloneqq T_d$

$$t_{g_{2}} := \frac{\left(\exp(NTU) \cdot t_{w} + t_{g_{1}} - t_{w}\right)}{\exp(NTU)} \qquad \qquad t_{g_{2}} = 967.66 \text{ K}$$

The heat balance of the dryer has revealed that the total heat required to raise the product to the

11

discharge temperature is

$$Q_t := -4.107 \times 10^1 \cdot \frac{kJ}{hr}$$

$$Q_t = -4.107 \times 10^{17} \frac{kJ}{hr}$$

The Log Mean Temperature Difference (LMTD) across the dryer, ΔT_m is

$$\Delta T_{m} := \left| \frac{\left[\left[T_{ia} - T_{if} \right] - \left(T_{d} - T_{oi} \right] \right]}{\ln \left[\frac{\left[T_{ia} - T_{if} \right]}{\left[T_{d} - T_{oi} \right]} \right]} \right| \qquad \Delta T_{m} = 414.46 \text{ K}$$

The minimum velocity of air is set based on the particle size. Air flow rate of

 $v_{air} := 23 \times 10^{12} \cdot \frac{\text{kg}}{\text{hr} \cdot \text{m}^2}$'s sufficient for lime. Hence this will be used in application.

11

The minimum velocity is used since it gives the smallest possible size of dryer.

Amount of air required is calculated using the relatioship

 $Q_t = M \cdot C_p \cdot \Delta T$

$$M = \frac{|O_t|}{(C_p \cdot \Delta T)}$$

Given that

$$|Q_t| = 4.107 \times 10^{17} \frac{\text{kJ}}{\text{hr}}$$
$$C_p := 4.187 \cdot \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$$

 $\Delta T := T_{ia} - T_{oa}$

So,

$$M_{air} := \frac{|Q_t|}{(C_p \cdot \Delta T)}$$

Area of dryer is thus calculated to be

$$A_{dryer} := \frac{M_{air}}{v_{air}}$$

$$M_{air} = 1.226 \times 10^{15} \frac{\text{kg}}{\text{hr}}$$

 $A_{dryer} = 53.309 \,\mathrm{m}^2$

11

Using the formula for the area of dryer which is

$$A_{dryer} = \pi \cdot R_{dryer}^{2}$$

where Λ_{dryer} is the area of dryer

 R_{dryer} is the radius of dryer

Denoting the diameter of the dryer as D_{dryer}

$$A_{dryer} = \pi \left(\frac{D_{dryer}}{2}\right)^{2}$$

$$A_{dryer} = \pi \cdot \frac{D_{dryer}^{2}}{4}$$

$$4 \cdot A_{dryer} = \pi \cdot D_{dryer}^{2}$$

$$D_{dryer}^{2} = \frac{4 \cdot D_{dryer}}{\pi}$$

The diameter of dryer is thus equal to

$$D_{dryer} := \sqrt{\frac{4 \cdot A_{dryer}}{\pi}} \qquad \qquad D_{dryer} = 8.239 \,\mathrm{m}$$

Length of transfer unit has been related to mass velocity and diameter by the following relation,

÷,

$$LTU = 0.0064 \cdot C_{p} \cdot (G)^{0.84} \cdot d_{dryer}$$

where G is the mass velocity which is equal to $G := v_{air}$, that is,

$$G = 5.52 \times 10^{14} \frac{\text{kg}}{\text{day} \cdot \text{m}^2}$$

So,

$$LTU := 194 \cdot 10^{-9} \cdot \frac{C_p}{\frac{kJ}{kgK}} \cdot \left(\frac{G}{\frac{kg}{daym^2}}\right)^{0.4} \cdot D_{dryer}$$

Length of the dryer is given as

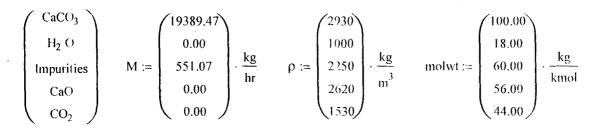
 $L_{dryer} := LTU \cdot NTU$

 $L_{dryer} = 5.276 \,\mathrm{m}$

 $LTU = 5.276 \, m$

68 J 1

j i


6.1.3 DESIGN OF CRUSHER

Type: Jaw crusher

Material of construction: Steel

The crusher is used to reduce the size of the chalk with the aid of the crushing ability it posseses. The crushing ability of the crusher is carried by the rolls inside the crusher. Therefore, the design of the crusher will take the space of the rolls into account so as not to underestimate the capacity of the crusher.

Given the the amount of mass and characteristics of materials in the crusher to be:

The average density of the materials in the crusher can be calculated as;

$$\rho_{av} \coloneqq \frac{\left(M_1 \cdot \rho_1 + M_2 \cdot \rho_2 + M_3 \cdot \rho_3 + M_4 \cdot \rho_4 + M_5 \cdot \rho_5\right)}{\left(\sum M\right)}$$

 $\rho_{av} = 2911.208 \, \frac{\text{kg}}{\text{m}^3}$

The total mass of the materials in the crusher is given as

$$\sum M = 19940.54 \frac{\text{kg}}{\text{hr}}$$

So, the volume is calculated to be

$$V_{\text{crusher}} := \frac{\sum M}{\rho_{\text{av}}}$$

$$V_{\text{crusher}} = 6.85 \frac{\text{m}^3}{\text{hr}}$$

The volume of the occupied by the rolls canbe given as

$$Q = \frac{d \cdot L \cdot s}{2.96}$$

where

Q is the capacity of the crusher occupied by the rolls in d is the distance between the rolls

L is the length of rolls

s is the peripheral speed

J.

Given that,

 $d := 1.33 \cdot cm$

 $L := 1.15 \cdot cm$

 $s' := 7 \cdot \frac{cm}{min}$

$$Q_{\text{crusher}} \coloneqq \frac{(d \cdot L \cdot s')}{2.96}$$

The total volume of the crusher is thus

 $Q_{crusher} := Q_{crusher}$

 $V_{Tcrusher} := V_{crusher} + Q_{crusher}$

 $V_{\text{Terusher}} = 6.85 \frac{\text{m}^3}{\text{hr}}$

 $Q_{crusher} = 0 \frac{m^3}{hr}$

11

1.1

The volume of the crusher is given as:

 $V = \pi \cdot r^2 \cdot h$

and, since

$$\mathbf{r} = \frac{d}{2}$$
$$\mathbf{V} = \pi \cdot \left(\frac{d}{2}\right)^2 \cdot \mathbf{h}$$
$$\mathbf{V} = \pi \cdot \frac{d^2}{4} \cdot \mathbf{h}$$

Let h = kd, where k is a constant

substituting for h,

$$V = \pi \cdot \frac{d^2}{4} \cdot (k \cdot d)$$

 $4 \cdot V = k \cdot \pi \cdot d^3$

Making d the subject of the formular

$$d = \left(\frac{4 \cdot V}{k \cdot \pi}\right)^{\frac{1}{3}}$$

70

J I

assuming that k := 1.87

 $V_{\text{Terusher}} := V_{\text{Terusher}} \cdot hr$

$$d_{ernsher} := \left(\frac{4 \cdot V_{Terusher}}{k \cdot \pi}\right)^{\frac{1}{3}}$$

From

 $h_{crusher} := k \cdot d_{crusher}$

 $h_{crusher} = 3.124 \, m$

 $A = 20.784 \,\mathrm{m}^2$

 $d_{crusher} = 1.671 \, m$

The area of the crusher is therefore.

$$\Lambda := 2\pi \cdot \frac{d_{crusher}}{2} \cdot h_{crusher} + 2\pi \cdot \left(\frac{d_{crusher}}{2}\right)^2$$

The net power to drive a roll ball was found to be

 $E = [(1.64 \cdot L - 1) \cdot K + 1](1.64 \cdot D)^{2.5} \cdot E_2$

where

E is the net power to drive a roll

L is the inside length of the crusher, m

D is the mean inside diameter of the crusher, m

 E_2 is the net power used by a 0.6 - 0.6-m roll under similar operating conditions K is a constant which is 0.9 for rolls less than 1.5m long and 0.85 for crushers over 1.5m long

11

Now, choosing

 $L = 0.011 \, m$

 $K_r := 0.9$

 $D := d_{crusher}$

 $E_2 := 9.5 \cdot W$

(Ernest, 1995)

So, the net power used by the roll is

 $E_{\text{roll}} := \boxed{(1.64 \cdot L - 1 \cdot m) \cdot K_{\text{r}} + 1 \cdot m} (1.64 \cdot D)^{2.5} \cdot E_2 \cdot m^{-3.5}$

 $E_{roll} = 13.811 \text{ W}$

71

1.1

6.1.4 DESIGN OF SCREENER

Screening is the separation of a mixture of various sizes of grains into two or more portions by means of a screening surface, the screening surface acting as a multiple go-no-go gauge and the final portions consisting of grains of more uniform size than those of the original mixture.

11

Material that remains on a given screening surface is the oversize or plus material, material passing through the screening surface is the undersize or minus material, and material passing one screening surface and retained on a subsequent surface is the intermediate material.

The screening surface may consist of woven-wire, silk, or plasticcloth, perforated or punched plate,

1.1

grizzly bars, or wedge wire sections.

(Perry, 1998)

Screen Efficiency

A sound method of evaluating screen performance is given by W. S. Tyler, Inc., Mentor, Ohio, in

its Sieve Handbook, no. 53. In this formula, when material put through the screen is the desired

product, "efficiency" is the ratio of the amount of undersize obtained to the amount of undersize in

the feet $E = \frac{R \cdot d}{r}$

where

E = "efficiency"

R = "percent of fines through the screen"

d = "percent finer than the designed size in screen fines"

b = "percent finer than the designated size in screen feed"

When the object is to recover an oversize product from the screen, efficiency may be expressed

as a ratio of the amount of oversize obtained to the amount of true oversize:

$$E = \frac{0 \cdot c}{a}$$

O = "percent of oversize over the screen"

c = "percent coarser than the designated size in screen oversize"

a = "percent coarser than the designated size in screen feed"

Other formulas for the derivation of screen efficiency are used by Taggart (Handbook of

Mineral Dressing) gives the formula

$$E = 100 \cdot \frac{100 \cdot (e - v)}{e \cdot (100 - v)}$$

where

E = "Efficiency"

e = "percentage of undersize in the feed"

v = "percentage of undersize in the screen oversize"

Calculation of screen efficiency

In this project, the efficiency of the screen will be given as

 $E = \frac{R \cdot d}{b}$

when

d := 1.3%

b := 15%

Therefore, from

$$E := \frac{R \cdot d}{b}$$

E = 0.78

1.1

Estimating Screen Capacity

Various methods of predicting screening capacity have been proposed, and each has its limitations. The throughflow n = 0 of Matthews uses the following equation:

$$A = \frac{0.4 \cdot C_t}{C_u \cdot F_{oa} \cdot F_s}$$
 (Perry, 1998)

where

A = "screen area"

C_t = "throughflow rate"

C_u = "unit capacity"

Foa = "open-area factor"

73

d i

 $F_s =$ "slotted-area factor"

Given that,

 $C_{t} := 19641.43 \cdot \frac{kg}{hr}$ $C_{u} := 0.05 \cdot \frac{tonne}{hr \cdot ft^{2}}$ $C_{u} = 538.196 \frac{kg}{hr \cdot m^{2}}$ $a_{1} := 0.1 \cdot cm$ $a_{2} := 2 \cdot cm$ (Perry, 1998) $d_{1} := 0.15cm$ $d_{2} := d_{1}$ $F_{oa} := 100 \cdot \left[\frac{a_{1} \cdot (a_{2} + 2 \cdot a_{1})}{(a_{2} + 2 \cdot a_{1} + 3d_{2}) \cdot (a_{1} + d_{1})} \right]$ (Perry, 1998) $F_{s} := 0.065\% \cdot F_{oa}$ So, from,

$$A_{\text{screener}} \coloneqq \frac{C_{\text{t}} + C_{\text{t}}}{C_{\text{u}} + F_{\text{oa}} + F_{\text{s}}}$$

 $A_{screener} = 20.366 \text{ m}^2$

(Perry, 1998)

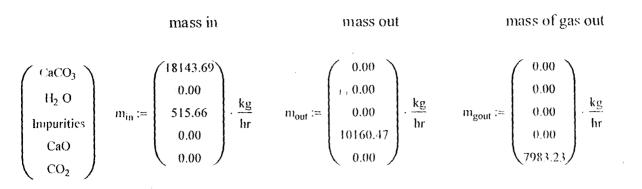
The diameter of the α mer can be estianted from

$$D_{\text{screener}} := \sqrt{\frac{4 \cdot A_{\text{screence}}}{\pi}}$$

 $D_{screener} = 5.092 \,\mathrm{m}$

(Perry, 1998)

 $F_{oa} = 33.208$


Assuming the height to be 1.5 of the diameter,

 $H_{screener} := 1.5 \cdot D_{screener}$

 $H_{screener} = 7.638 \,\mathrm{m}$

6.1.5 DESIGN OF FURNACE

Given below is the mass in, mass out and mass of the gas out of the furnace.

PROPERTIES OF PROCESS FLUID

The thermal properties of the process fluid flowing through the furnace are extremely important to the furnace designer. These properties not only have a direct affect on the amount of heat transferred, they also are important in predicting the pressure loss and furnace coking rates, etc. For single phase fluids, liquid or vapor, the properties can normally be assumed to change on a straight line basis from the inlet to the outlet of the heater. Therefore, providing the designer with the properties of the process fluid at the inlet and outlet conditions will normally suffice.

The one exception to this, is the viscosity. And this problem is made even worse when an attempt to extrapolate from two given points, such as the inlet and outlet, to get a value for the process fluid at a higher temperature which may occur due to the film temperature rise in the heat absorbing tubes. The following formula may be used to correct the viscosity using the two given values.

11

11

75

$$\mu_{\text{new}} = A \cdot e^{\left(\frac{B}{T_{\text{ney}}}\right)}$$

where

$$A = \mu_{in} \cdot e^{\left(\frac{-B}{T_{in}}\right)}$$

$$B = \frac{\ln\left(\frac{\mu_{in}}{\mu_{out}}\right)}{\left(\frac{1}{T_{in}} - \frac{1}{T_{out}}\right)}$$

k

 μ_{new} is the corrected viscosity

 μ_{in} is the inlet viscosity

 μ_{out} outlet viscosity

 Γ_{new} is the temperatre at new condition

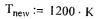
 Γ_{in} is the temperature at the inlet

 Γ_{in} is the temperature at inlet

 T_{out} is the temperature at outlet

In this case,

 $\mu_{in} := 0.1057 \cdot \text{poise}$


 $\mu_{out} := 0.107 \cdot \text{poise}$

 $T_{in} := 1500 \cdot K$

 $T_{out} := 1100 \cdot K$

$$B := \frac{\ln\left(\frac{\mu_{in}}{\mu_{out}}\right)}{\left(\frac{1}{T_{in}} - \frac{1}{T_{out}}\right)}$$

 $A := \mu_{in} \cdot e^{\left(\frac{-B}{T_{in}}\right)}$

 $\mu_{\text{new}} \coloneqq \mathbf{A} \cdot \mathbf{e}^{\left(\frac{\mathbf{B}}{\mathbf{J}_{\text{new}}}\right)}$

$$B = 50.424 \,\mathrm{K}$$

11

11

$$A = 0.01 \frac{\text{kg}}{\text{m} \cdot \text{s}}$$

 $\mu_{new} = 0.011 \frac{\text{kg}}{\text{m} \cdot \text{s}}$

76

t i

INTUBE PRESSURE DROP

The intube pressure drop may be calculated by any number of methods available today, but the following procedures should give sufficient results for furnace design. The pressure loss in furnace tubes and fittings is normally calculated by first converting the fittings to an equivalent length of pipe. Then the average properties for a segment of piping and fittings can be used to calculate a pressure drop per foot to apply to the overall equivalent length. This pressure drop per foot value can be improved by correcting it for inlet and outlet specific volumes.

1.1

11

The friction loss is given by:

$$\Delta_{p} = \frac{0.00517}{d_{i}} \cdot G_{2} \cdot V_{lm} \cdot F \cdot L_{equiv}$$

where

 Λ_p is the pressure drop

 d_i is inside diameter of the tube

G is the mass velocity of fluid

 $v_{\mbox{\scriptsize Im}}$ is the log mean specific volume correction

F is the Fanning friction factor

 L_{equiv} is the equivalent length of pipe run

The log mean specific volume correction is given by

$$V_{lm} = \frac{\left(V_2 - V_1\right)}{\ln\left(\frac{V_2}{V_1}\right)}$$

where

 v_1 is the specific volume at start of run

 V_2 is the specific volume at end of run

Given that,

$$V_1 := \sum \frac{\overline{m_{ir}}}{\rho}$$

$$V_1 = 6.422 \frac{m^3}{hr}$$

$$V_{2} := \sum \frac{\overrightarrow{m_{out}}}{p}$$

$$V_{2} = 3.878 \frac{m^{3}}{hr}$$

$$V_{lm} := \frac{(V_{2} - V_{1})}{\ln\left(\frac{V_{2}}{V_{1}}\right)}$$

$$V_{lm} = 0.001 \text{ m}^{3} \text{ s}^{-1}$$

Fanning Friction Factor:

The Moody friction factor, for a non-laminar flow, may be calculated by using the Colebrook equation relating the friction factor to the Reynolds number and relative roughness. And the Fanning friction factor is 1/4 the Moody factor. For a clean pipe or tube, the relative roughness value for an inside diameter given in inches is normally 0.0018 inch. With this, the friction factor

1.1

was found to be 0.00457 (that is, $F := \frac{0.00457}{m^2 \cdot s}$).

Equivalent Length Of Return Bends:

The equivalent length of a return bend may be obtained from the following curves based on Maxwell

table and can be corrected using the Reynolds number correction factor.

 $L_{equiv} = Fact_{Nre} \cdot L_{rb}$

where

Fact_{Nre} Reynolds number correction

L_{rb} Equivalent length of return bend

If

 $Fact_{Nre} := 0.115$

 $L_{tb} := 2.3 \cdot m$

 $L_{equiv} := Fact_{Nre} \cdot L_{rb}$

 $L_{equiv} = 0.265 \, m$

Given

 $d_i := 0.153 \cdot m$

1.1

Assuming that, $G_2 := 1.034 \times 10^3 \cdot \frac{\text{kg}}{\text{m}^2 \cdot \text{s}}$, the friction is, therefore, calculated as

$$\Delta_{p} \coloneqq \frac{0.00517}{d_{i}} \cdot G_{2} \cdot V_{lm} \cdot F \cdot L_{equiv}$$

$$\Delta_{\rm p} = 5.917 \times 10^{-5} \, {\rm s}^{-1} \, \frac{\rm N}{\rm m^2}$$

HEAT TRANSFER COEFFICIENTS

The inside film coefficient needed for the thermal calculations may be estimated by several different methods. The API RP530, Appendix C provides the following methods,

1.1

For vapour flow with $\text{Re} \ge 10,000$,

$$\mathbf{h}_{v} = 0.021 \cdot \left(\frac{k}{d_{i}}\right) \cdot \mathbf{R} e^{0.8} \cdot \mathbf{P} r^{0.4} \cdot \left(\frac{T_{b}}{T_{w}}\right)^{0.5}$$

where

 $\boldsymbol{h}_{\boldsymbol{v}}$ is the vapour phase heat transfer coefficient

k is the thermal conductivity

 T_b is the bulk temperature of vapour

 T_w is the wall temperature of the vapour

Re is the Reynolds number which is calculated as $Re = \frac{d_i \cdot G}{\mu_b}$ and Pr is the Prandtl number calculated as $Pr = \frac{C_p \cdot \mu_b}{k}$

 $d_i = 0.153 \, m$

$$k := 3.808 \times 10^{-5} \cdot \frac{kJ}{s \cdot m \cdot K}$$

$$G_2 = 1034 \frac{kg}{m^2 \cdot s}$$

$$G_{t} := G_2$$

$$\mu_b := 5.002 \times 10^{-6} \cdot \frac{kg}{m \cdot s}$$

$$C_p := 1.279 \cdot \frac{kJ}{kg \cdot K}$$

So,

 $Re := \frac{d_i \cdot G}{\mu_b}$

 $Re = 3.163 \times 10^7$

79

 $I \rightarrow$

$$Pr := \frac{C_p \cdot \mu_b}{k} \qquad Pr = 0.168$$

$$T_b := 367 \cdot K$$

$$T_w := 378 \cdot K$$

$$h_v := 0.021 \cdot \left(\frac{k}{d_i}\right) \cdot Re^{0.8} \cdot Pr^{0.4} \cdot \left(\frac{T_b}{T_w}\right)^{0.5} \qquad h_v = 2.523$$

$$h_v = 2.523 \frac{kJ}{s \cdot m^2 \cdot K}$$

Bare Tube Pressure Loss:

For bare tubes, the method presented by Winpress (Hydrocarbon Processing, 1963) can be used. In the method,

1.1

1.1

$$\Delta P = \frac{P_v}{2} \cdot N_r$$

where,

 $\Delta \Gamma$ is the pressure drop

 P_v is the velocity head of gas

 N_r is the number of tube rows

The velocity head can be described as,

$$P_{v} = 0.0002317 \cdot \left(\frac{G_{n}}{1000}\right)^{2} \cdot \rho_{g}$$

where

 G_n is the mass velocity of gas

 ρ_{g} is the density of gas

$$G_n = \frac{W_g}{A_n}$$

where

 $w_{\rm g}$ is the mass gas flow

 \boldsymbol{A}_n is the net free area

80'

$$A_{n} = A_{d} - \frac{d_{o}}{12} \cdot L_{e} \cdot N_{t}$$
$$A_{d} = \left(N_{t} \cdot \frac{P_{t}}{12}\right) \cdot L_{e}$$

 A_d is the convection box area

 d_o is the outside tube diameter

 L_e is the tube length

 P_t is the transverse pitch of tubes

 N_t is the number of tubes per row

Now,

 $P_t \coloneqq 0.203 \cdot m$

 $L_e := 7.925 \cdot m$

$$A_{d} := \left(N_{t} \cdot \frac{P_{t}}{12}\right) \cdot 1_{e}$$

 $A_d \approx 0.536 \,\mathrm{m}^2$

 $A_n^{l} = 0.235 \,\mathrm{m}^2$

 $G_{n} = 9.432 \frac{kg}{m^{2} \cdot s}$

1.1

1.1

Also,

d_o := 0.114 · m

- $A_{n} := A_{d} \frac{d_{o}}{12} \cdot L_{e} \cdot .$
- $W_g := \sum m_{gout}$

$$G_n := \frac{w_g}{\Lambda_n}$$

 $\rho_g \coloneqq 0.308 \cdot \frac{kg}{m^3}$

$$P_{v} := \frac{0.0002317 \cdot \left(\frac{G_{n}}{1000}\right)^{2}}{\rho_{g}}$$

$$P_{v} = 6.693 \times 10^{-8} \frac{N}{m^{2}}$$

 $N_r := 4$

$$\Delta P := \frac{P_v}{2} \cdot N_r$$

$$\Delta P = 1.339 \times 10^{-7} \frac{N}{m^2}$$

1.1

11

Fin Tube Pressure Loss:

For the fin tube pressure drop, the Escoa method will be used

$$\Delta P = \frac{\left[(f + a) \cdot G_n^2 \cdot N_r \right]}{\dot{r}_b \cdot 1.083 \cdot 10^9}$$

For inline layouts,

where

 ΔP is the pressure drop ρ_b is the density of bulk gas ρ_{out} is the density of outlet gas ρ_{in} is the density of inlet gas G_n is the mass gas flow Nr is the number of tube rows d_o is the outside tube diameter d_f is the outside fin diameter

$$f = C_2 \cdot C_4 \cdot C_6 \cdot \left(\frac{d_f}{d_9}\right)$$
$$a = \left[\frac{\left(1 + B_2\right)}{\left(4 \cdot N_r\right)}\right] \cdot \rho_b \cdot \left[\frac{1}{\left(\rho_{out}\right)} - \frac{1}{\left(\rho_{iy}\right)}\right]$$
$$B = \frac{A_n}{P}$$

For staggered tubes with corbels or inlune tubes,

 $A_{d} = \left(\frac{N_{t} \cdot P_{t}}{12}\right) \cdot L_{e}$

 A_{d}

Net Free Area, A_n:

$$\Lambda_{n} = A_{d} - A_{c} \cdot L_{e} \cdot N_{t}$$

 \boldsymbol{A}_d is the cross sectional area of box

A_c is the fin tube cross sectional area per m,

 \boldsymbol{L}_{e} is the effective tube length

 N_t is the number tubes wide

and

$$A_{c} = \frac{\left(d_{o} + 2 \cdot l_{f} \cdot r_{f}\right)}{12}$$

 t_f is the fin thickness

 $n_{\rm f}$ is the number of fins

Reynolds correction factor, C₂:

$$C_2 = 0.07 + 8 \cdot Re - 0.45$$

$$R_e = \frac{G_n \cdot d_o}{12 \cdot \mu_b}$$

 $\mu_{\mathfrak{b}}$ is the gas dynamic viscosity

Geometry correction

C₄: For segmented fin tubes arranged in, for an inline pattern,

$$C_4 = 0.80 \cdot \left(0.15 \cdot \frac{P_t}{d_g}\right) \cdot \left[-1.1 \cdot \left(\frac{l_f}{s_f}\right)^{0.20}\right]$$

where

 I_f is the fin height

 $\ensuremath{\mathsf{s}_{\mathsf{f}}}$ is the fin spacing

Non-equilateral & row correction

C6: For fin tubes arranged in, an inline pattern,

11

1.7

$$C_6 = 1.6 + \left[0.75 - 1.5 + e^{\left(-0.70 \cdot N_1\right)}\right] + e^{\left[-2.0 \cdot \left(\frac{P_1}{P}\right)^2\right]}$$

.Е.т

4 i

 N_r is the number of tube rows P_1 is the longitudinal tube pitch

 P_t is the transverse tube pitch

 $P_1 := 0.176 \cdot m$

 $P_t = 0.203 \, m$

 $N_r = 4$

$$C_6 := 1.6 + \left[0.75 - 1.5 \cdot e^{\left(-0.70 \text{ N}_r\right)}\right] \cdot e^{\left[-2.0 \left(\frac{P_1}{P}\right)^2\right]}$$

 $C_6 = 1.747$

 $l_f := 0.019 \cdot m$

 $s_f := 0.0013 \cdot m$

$$C_{4} := 0.80 \cdot \left(0.15 \cdot \frac{P_{1}}{d_{0}}\right) \cdot \left[1.1 \cdot \left(\frac{f_{f}}{s_{f}}\right)^{0.20}\right] \qquad \qquad C_{4} = 0.402$$

$$R_{e} := \frac{G_{n} \cdot d_{0}}{12 \cdot \mu_{b}} \qquad \qquad R_{e} = 17913.813$$

 $C_2 := 0.07 + 8 \cdot Re - 0.45$

 $t_f := 0.0127$

 $n_f := 4$

$$A_{c} := \frac{\left(d_{o} + 2 \cdot I_{f} \cdot t_{f} \cdot \eta_{f}\right)}{12}$$

$$A_n \coloneqq A_d - A_c \cdot L_e \cdot N_t$$

$$A_d := \left(\frac{N_t \cdot P_t}{12} \right) \cdot L_e \cdot$$

 $\mathbf{B} := \frac{\mathbf{A}_{\mathbf{n}}}{\mathbf{A}_{\mathbf{d}}}$

 $C_2 = 2.53 \times 10^8$

$$A_{\rm n} = 0.23 \,{\rm m}^2$$

 $A_{c} = 0.01 \text{ m}$

 $\Lambda_d=0.536\,\mathrm{m}^2$

B = 0.429

.

Ъī

$$\rho_{b} := 0.394 \cdot \frac{kg}{m^{3}}$$

$$\rho_{in} := 0.327 \cdot \frac{kg}{m^{3}}$$

$$\rho_{out} := 0.497 \cdot \frac{kg}{m^{3}}$$

$$a := -\left[\frac{\left(1 + B^{2}\right)}{\left(4 + N_{f}\right)}\right] \cdot \rho_{b} \cdot \left[\frac{1}{\left(p_{out}\right)} - \frac{1}{\left(p_{ip}\right)}\right]$$

$$d_{f} := 0.0127 \cdot m$$

$$f := C_{2} \cdot C_{4} \cdot C_{6} \cdot \frac{d_{f}}{d_{p}}$$

 $\Delta P := \frac{\left[\left(f+a\right) \cdot G_n^2 \cdot N_1\right]}{\rho_b \cdot 1.083 \cdot 10^9} \qquad \qquad \Delta P = 16.501 \frac{N}{m^2}$

jt i

a = 0.03

 $f = 1.979 \times 10^7$

Stud Tube Pressure Loss:

For the stud tube pressure loss, the Muhlenforth method will be used. The general

1.5

equation for staggered or inline tubes is given as,

$$\Delta P = N_r \cdot 0.0514 \cdot n_s \cdot \left[\frac{(C_{\min} - d_o - 0.8 \cdot l_s)}{\left[\left[n_s \cdot (C_{\min} - d_o - 1.2 \cdot l_s)^2 \right]^{0.555}} \right]^{1.8} \cdot G_s \cdot \left(\frac{T_g}{1460} \right) \right]$$

where,

 ΔP is the pressure drop across tubes

 N_r is the number of tube rows

 $C_{\mbox{\scriptsize min}}$ is the minimum tube space, diagonal or transverse

 d_o outside tube diameter

 I_s is the length of stud

G is the mass gass velocity

 T_g is the average gas Temperature

85

1.

đ i

Correction for inline tubes

$$\Delta P = \Delta P \cdot \left[\left(\frac{d_o}{C_{\min}} \right)^{0.333} \right]^2$$

$$G = \frac{Wg}{(A_n \cdot 3600)}$$

$$A_n = L_e \cdot N_t \cdot \frac{\left[P_t - d_o - \frac{(t_s \cdot r_s \cdot r_s)}{12} \right]^2}{12}$$

12

where,

 W_g is the mass flow of gas

 A_n is the net free area of tubes

 1_e is the length of tubes

 N_t is the number of tubes wide

 P_t is the transverse tube pitch

 I_s is the length of stud

 $t_{\rm s}$ is the diameter of stud

 r_s is the rows of studs

 $l_s := 0.0127 \cdot m$

 $r_s := 4$

 $t_s := 0.0127 \cdot m$

 $P_t = 0.203 \, m$

 $d_0 = 0.114 \,\mathrm{m}$

$$\Lambda_{n} := L_{e} \cdot N_{t} \cdot \underbrace{\left[\frac{P_{t} - d_{o} - \frac{\left(l_{s} \cdot t_{s} \cdot r_{s}\right)}{12 \cdot m} \right]}{12}}_{12}$$

 $A_n = 0.235 \,\mathrm{m}^2$

Еī

.L→

d a

$$G := \frac{W_g}{\left(A_n \cdot 3600\right)}$$

$$G = 0.003 \frac{\text{kg}}{\text{m}^2 \cdot \text{s}}$$

 $\Delta P = 28.569 \frac{N}{m}$

Assuming that the tube space is $C_{min} := 50 \cdot mm$

$$\Delta P := \Delta P \cdot \left[\left(\frac{d_o}{C_{min}} \right)^{0.333} \right]^2$$

This pressure loss can normally be considered as a sudden entry since the area of the outlet gas plenum in the heater is usually much greater than the area of the inlet to the transition. A sudden entry pressure loss can be approximated by the following equation.

J I

1.1

 $\Delta P = 0.34 \cdot V_h$

 ΔP is the pressure drop

 $v_{\rm h}$ is the velocity head at inlet area

PRESSURE LOSS ACKOSS DAMPER

This pressure loss is normally accounted for by rule of thumb. This may be 0.5 or 0.25 velocity

head. Assuming 0.25.

 $\Delta P = 0.25 \cdot V_{\rm h}$

where

 ΔP is the pressure drop

 \boldsymbol{v}_h is the average velocity head of stack

Stack friction loss:

For the stack friction loss, we can use the following equation.

$$\Delta P = \frac{\left(0.002989 \cdot 0.018 \cdot r_g \cdot V_g^2\right)}{D_s \cdot L_s}$$

87

1.1

where

 ΔP is the pressure drop

 \boldsymbol{v}_{g} is the average velocity of stack

 r_g is the density of flue gas

 D_s is the stack diameter

 L_s is the stack length

Stack draft gain:

The draft gain will be taken based on the height, "A" on above sketch.

$$G_{d} = \frac{\left(\rho_{a} - \rho_{g}\right)}{5.2} \cdot H_{g}$$

where

 $G_{\rm d}$ is the draft gain

 ρ_g is the density of flue gas

 ρ_a is the density of ambient air

 H_g = Height of gas path

Pressure loss across stack exit:

This pressure loss, since it normally exits to atmosphere, can be considered as a sudden exit. A

sudden exit pressure loss can be approximated by the following equation.

 $\Delta P = 10 \cdot V_h$

where

 ΔP is the pressure drop

 v_h is the velocity head at inlet area

Velocity head of gas:

$$V_{h} = V_{g}^{2} \cdot \frac{\rho_{g}}{2 \cdot 32.2 \cdot 144} \cdot 27.67783$$

Now, calculating,

$$V_{g} := 2.365 \cdot \frac{kg}{s}$$

$$V_{h} := V_{g}^{2} \cdot \frac{\rho_{g}}{2 \cdot 32.2 \cdot 144} \cdot \frac{kg^{2}}{m^{2}} \cdot 27.67783$$

$$V_{h} = 0.005 \frac{N}{m^{2}}$$

$$\Delta P := 10 \cdot V_{h}$$

$$\Delta P = 0.051 \frac{N}{m^{2}}$$

$$\rho_{a} := 1.216 \cdot \frac{kg}{m^{3}}$$

$$H_{g} := 0.914 \cdot m$$

$$G_{d} := \frac{(\rho_{a} - \rho_{g})}{5.2} \cdot H_{g}$$

$$G_{d} = 0.16 \text{ kg m}^{-2}$$

$$D_{s} := 0.863 \cdot m$$

$$L_{s} := 6.325 \cdot m$$

$$(0.002989 \cdot 0.018 \cdot \rho_{g} \cdot V_{g}^{-2})$$

$$\Delta P := \frac{1}{D_{s} \cdot L_{s}} + \frac{1}{D_{s} \cdot$$

Ducting Pressure Losses

Furnace designers utilize ducting for many purposes in a fired heater design. They are used for connecting flue gas plenums to stacks, distributing combustion air to burners, transfering flue gas to

8.1

m²

and from air preheat systems, etc. The pressure losses through ducting pieces may be individually analyzed or the may be analyzed as a system.

Straight duct run friction loss:

$$\Delta P = \left(0.002989 \cdot F_{r} \cdot r_{g} \cdot V_{g}^{2}\right) \cdot \frac{L_{e}}{D}$$

where,

 ΔP is the pressure drop

 F_r is the Moody friction factor r_g is the average gas density V_g is the velocity of gas L_e is the equivalent length of piece D_e is the equivalent diameter of piece For round duct, D_e = diameter

90° Round section elbow loss:

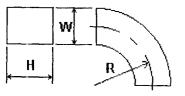
 $\Delta \mathbf{P} = \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{1}}$

where

 V_h is the velocity head of gas

 C_1 is the loss coefficient

For $C_1 := 0.33$


 $\Delta \mathbf{P} := \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{I}}$

$$\Delta P = 0.002 \frac{N}{m^2}$$

Jт

J i

90° Rectangular section elbow loss:

where

 v_h is the velocity head of gas

 C_1 is the loss coefficient

J i

For $C_1 := 0.37$

 $\Delta P \coloneqq \nabla_h \cdot C_1$

$$\Delta P = 0.002 \frac{N}{m^2}$$

 $\mathbf{1}$

1 i

3.1

Elbow of any degree turn loss:

This may be used for a rectangular or round duct elbow of N ° turn.

$$\Delta \mathbf{P} = \mathbf{V}_{\mathrm{h}} \cdot \mathbf{C}_{90} \cdot \frac{\mathbf{N}}{90}$$

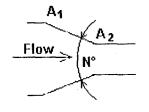
where

 \bar{v}_h is the velocity head of gas

 $_{C_{90}}$ is the loss coefficient from above for $90^{\circ}\,\text{turn}$

N is the number of degrees of turn

Given that,


$$C_{90} := 0.25$$

N' := 90

$$\Delta \mathbf{P} := \mathbf{V}_{\mathfrak{h}} \cdot \mathbf{C}_{90} \cdot \frac{\mathbf{N}'}{90}$$

$$\Delta P = 0.001 \frac{N}{m^2}$$

Gradual contraction loss:

 $\Delta P = V_h \cdot C_1$

where

 v_h is the velocity head of gas

 C_1 is the loss coefficient

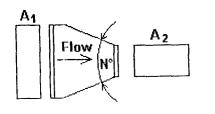
.

L)

Ð

Given that,

 $C_1 := 0.04$


 $\Delta P := V_h \cdot C_i$

$$\Delta P = 0 \frac{N}{m^2}$$

j į

1.1

No contraction change of axis loss:

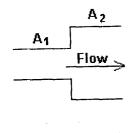
 $\Delta \mathbf{P} = \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{l}}$

where

 v_h is the velocity head of gas

 C_1 is the loss coefficient

Given that,


$$C_1 := 0.15$$

 $\Delta \mathsf{P}\coloneqq \operatorname{V}_{\mathfrak{h}}\cdot\operatorname{C}_{\mathfrak{l}}$

$$\Delta P = 0.001 \frac{N}{m^2}$$

1.

Sudden enlargement loss:

 $\Delta P = V_{h} \cdot C_{l}$

where

 v_h is the velocity head of gas

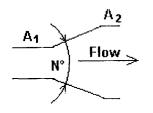
 C_1 is the loss coefficient

Given that,

C₁ := 0.49

92 ,

4.4


Ш

$$\Delta \mathbf{P} := \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{i}}$$

 $\Delta P = 0.003 \frac{N}{m^2}$

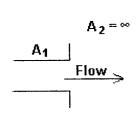
()

Gradual enlargement loss:

$$\Delta \mathbf{P} = \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{l}}$$

where

 v_h is the velocity head of gas


 C_1 is the loss coefficient

Given that,

$$\Delta \mathbf{P} := \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{l}}$$

$$\Delta P = 0.003 \frac{N}{m^2}$$

Sudden exit loss:

.

 $\Delta \mathbf{P} = \mathbf{V_h} \cdot \mathbf{C_l}$

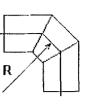
where

 v_h is the velocity head of gas

 C_1 is the loss coefficient

Given that,

$$C_1 := 1.0$$


 $\Delta P := V_h \cdot C_l$

$$\Delta P = 0.005 \frac{N}{m^2}$$

93 (

90° Round miter elbow loss:

D 3-Piece Shown

. 11

11

11

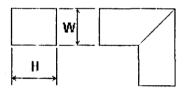
 $\Delta P = 0.002$

N

 $\Delta \mathbf{P} = \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{1}}$

where

 v_h is the velocity head of gas


 C_1 is the loss coefficient

Given that,

$$C_1 := 0.47$$

$$\Delta \mathbf{P} := \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{l}}$$

90° Rectangular miter elbow loss:

$$\Delta \mathbf{P} = \mathbf{V}_{\mathbf{h}} \cdot \mathbf{C}_{\mathbf{l}}$$

where

 v_h is the velocity head of gas

 C_t is the loss coefficient

. .

Given that,

$$C_1 := 1.5$$

 $\Delta \mathsf{P} \coloneqq \mathsf{V}_{\mathsf{h}} \cdot \mathsf{C}_{\mathsf{I}}$

$$\Delta P = 0.008 \frac{N}{m^2}$$

TUBE WALL TEMPERATURE CALCULATION

The temperature of the tube wall may be calculated using the following equations. This method

1.1

1.1

ł

does not take coking into account.

$$\Gamma_{w} = Flux \cdot \frac{d_{o}}{d_{i}} \cdot R_{fi} + Flux \cdot \frac{d_{o}}{d_{i}} \cdot \frac{1}{h_{i}} + flux \cdot \frac{d_{o}}{(d_{o} - t_{w}) \cdot \frac{t_{w}}{(k_{w} \cdot 12)}} + \Gamma_{f}$$

where

 T_w is the tube wall temperature

Flux is the flux rate of bare tube

 d_o is the outside tube diameter

 d_i is the inside tube diameter

 t_w is the tube wall thickness

 $R_{\rm fi}$ is the inside fouling factor

 h_i is the fluid film coefficient

 \boldsymbol{k}_w is the thermal conductivity of tube wall

 T_f is the bulk process fluid temperature

$$Flux := 1.136 \times 10^{5} \cdot \frac{kJ}{hr \cdot m^{2}}$$

$$R_{t\bar{i}} := 4.892 \times 10^{-5} \cdot \frac{hr \cdot m^{2} \cdot K}{kJ}$$

$$h_{i} := 1.635 \times 10^{4} \cdot \frac{kJ}{hr \cdot m^{2} \cdot K}$$

$$T_{d\bar{i}} := 0.102 \cdot m$$

$$T_{d\bar{o}} := 0.114 \cdot m$$

$$t_{w} := T_{d\bar{o}} - T_{d\bar{i}}$$

 $k_{w} \coloneqq 155.766 \cdot \frac{kJ}{hr \cdot m \cdot K}$

 $T_f := 533 \cdot K$

$$T_{w} := Flux \cdot \frac{d_{o}}{d_{i}} \cdot R_{fi} + Flux \cdot \frac{d_{o}}{d_{i}} \cdot \frac{1}{h_{i}} + Flux \cdot \frac{d_{o}}{(d_{o} - t_{w})} \cdot \frac{t_{w}}{(k_{w} \cdot 12)} + T_{f}$$

$$T_{w} = 543.133 \text{ K}$$

The minimum volume of the furnace can be calculated with the knowledge of the mass and density of the materials inside it. Therefore, if the densities of the components, having given the mass before as

Гī

$$m_{in} = \begin{pmatrix} 18143.69 \\ 0 \\ 515.66 \\ 0 \\ 0 \end{pmatrix} \frac{kg}{hr}$$

The volume occupied by each material can thus be calculated as

$$Vol := \sum \frac{\overrightarrow{m_{in}}}{\rho}$$

$$Vol = 6.422 \frac{m^3}{hr}$$

The minimum volume of the furnace is thus equal to

 $V_{\text{furnace}} := Vol$

$$V_{\text{furnace}} = 6.422 \frac{\text{m}^3}{\text{hr}}$$

In order to estimate the diameter, height and area of the furnace tube, an assumption

that the tube is cylindrical will be made.

If the tube of the furnace is assumed to be cylindrical, its volume is given as

 $V = \pi \cdot R^2 \cdot H$

and, since

$$R = \frac{D}{2}$$
$$V = \pi \cdot \left(\frac{D}{2}\right)^2 \cdot h$$
$$V = \pi \cdot \frac{D^2}{4} \cdot h$$

Assming that H=kD, where k is a constant

96

÷т

substituting for H yields,

$$V = \pi \cdot \frac{D^2}{4} \cdot (k \cdot D)$$

 $4 \cdot V \coloneqq \mathbf{k} \cdot \mathbf{\pi} \cdot \mathbf{D}^3$

Making d the subject of the formular

$$D = \left(\frac{4 \cdot V}{k \cdot \pi}\right)^{\frac{1}{3}}$$

For a standard tube, k := 2

 $V_{\text{furnace}} := V_{\text{furnace}} \cdot \mathbf{hr}$

$$D_{\text{furnace}} \coloneqq \left(\frac{4 \cdot V_{\text{furnace}}}{k \cdot \pi}\right)^{\frac{1}{3}}$$

From

 $H_{furnace} := \mathbf{k} \cdot \mathbf{D}_{furnace}$

The area of the furnace is therefore,

$$A_{\text{furnace}} := 2\pi \cdot \frac{D_{\text{furnace}}}{2} \cdot H_{\text{furnace}} + 2\pi \cdot \left(\frac{D_{\text{furnace}}}{2}\right)^2$$

Coolers play an essential role in chemical processing. They are services in which heat is transferred from a hot material to cold material which actually occurs as a result of temperature difference between the two streams. This method is used in proper process plants to bring the feed to the required specified state of the reaction before it enters the reactor.

11

11

t i

D_{furnace} - 1.599 m

 $H_{\rm furnace} = 3.198\,{
m m}$

 $\Lambda_{furnace} = 20.08\,\text{m}^2$

SPECIFICATIONS

Heat capacity coefficients:

1.1

At this temperature, the specific capacity of fatty acids product is given as

 $c_b := Data_{1,3}$ $b_{\mathfrak{h}} := \text{Data}_{1,2}$ $d_b := Data_{1,4}$ $a_b := Data_{1,1}$ $b_{b} = 0.05$ $c_b = -1.287 \times 10^6$ $d_b = 0$ $a_{b} = 82.34$ $C_{p} := \left[a_{b} + b_{b} \cdot \frac{T_{b}}{K} + c_{b} \cdot \left(\frac{T_{b}}{K} \right)^{2} + d_{b} \cdot \left(\frac{T_{b}}{K} \right)^{3} \right] \cdot \frac{kJ}{kmol \cdot K}$ $C_p = -8.717 \times 10^{11} \frac{kJ}{kmol \cdot K}$ $n_{comp} := \sum (\frac{m'}{mw})$ $n_{comp} = 181.178 \frac{kmol}{hr}$ Heat_duty := $n_{comp} \cdot C_p \cdot (T_{out} - T_{in})$

Heat_duty = 3.948×10^{13} kW

 $Q = 3.948 \times 10^{13} kW$

As a trial, the mean temperature of the water is taken to be equal to the inlet temperature,

100°C; specific heat capacity at this temperature is

$$a_w := Data_{3,1}$$
 $b_w := Data_{3,2}$ $c_w := Data_{3,3}$ $d_w := Data_{3,4}$
 $a_w = 15.2$ $b_w = 0.027$ $c_w = 0$ $d_w = 0$

 $t \rightarrow$

 $c_w = 0$ $b_{w} = 0.027$ $a_{w} = 15.2$

 $T_w := (35 + 273) \cdot K$

1.1

PHYSICAL PROPERTIES:

LIME

Heat capacities of the lime at the inlet, outlet and mean condition:

$$T_{bi} \coloneqq T_{in} \qquad T_{bo} \coloneqq T_{out} \qquad T_{bm} \coloneqq T_{b}$$

$$c_{pbi} \coloneqq \left[a_{b} + b_{b} \cdot \frac{T_{bi}}{K} + c_{b} \cdot \left(\frac{T_{bi}}{K} \right)^{2} + d_{b} \cdot \left(\frac{T_{bi}}{K} \right)^{3} \right] \cdot \frac{kJ}{kmol \cdot K} \qquad c_{pbi} \approx -2.086 \times 10^{12} \frac{kJ}{kmol \cdot K}$$

$$c_{pbo} \coloneqq \left[a_{b} + b_{b} \cdot \frac{T_{bo}}{K} + c_{b} \cdot \left(\frac{T_{bo}}{K} \right)^{2} + d_{b} \cdot \left(\frac{T_{bo}}{K} \right)^{3} \right] \cdot \frac{kJ + k}{kmol \cdot K} \qquad c_{pbo} \approx -1.791 \times 10^{11} \frac{kJ}{kmol \cdot K}$$

$$c_{pbm} = \left[a_{b} + b_{b} \cdot \frac{T_{bm}}{K} + c_{b} \cdot \left(\frac{T_{bm}}{K} \right)^{2} + d_{b} \cdot \left(\frac{T_{bm}}{K} \right)^{3} \right] \cdot \frac{kJ}{kmol \cdot K} \qquad c_{pbm} = -8.717 \times 10^{11} \frac{kJ}{kmol \cdot K}$$

Therefore, the properties of fatty acids at the inlet, outlet and mean conditions are

$$\begin{pmatrix} \text{Inlet} \\ \text{Mean} \\ \text{Outlet} \end{pmatrix} = \begin{bmatrix} T_{bi} \\ T_{bm} \\ T_{bo} \end{bmatrix} = \begin{bmatrix} c_{pbi} \\ c_{pbm} \\ c_{pbo} \end{bmatrix} = \begin{bmatrix} 0.0413 \\ 0.0324 \\ 0.0355 \end{bmatrix} \cdot \frac{W}{m \cdot K}$$

$$\rho_{comp} := \begin{pmatrix} 840 \\ 844 \\ 846 \end{pmatrix} \cdot \frac{kg}{m^3} \qquad \qquad \mu_{comp} := \begin{pmatrix} 9.707 \\ 10.233 \\ 10.003 \end{pmatrix} \cdot mN \cdot s \cdot m^{-2}$$

99

11

.

WATER

Heat capacities of the water at the inlet, outlet and mean condition:

 $T_{wi} := (35 + 273) \cdot K \qquad T_{wo} := (90 + 273) \cdot K \qquad T_{wm} := \frac{T_{wi} + T_{wo}}{2}$ $c_{pwi} := \left[a_w + b_w \cdot \frac{T_{wi}}{K} + c_w \cdot \left(\frac{T_{wi}}{K}\right)^2 + d_w \cdot \left(\frac{T_{wi}}{K}\right)^3\right] \cdot \frac{kJ}{kg \cdot K}$ $c_{pwo} := \left[a_w + b_w \cdot \frac{T_{wo}}{K} + c_w \cdot \left(\frac{T_{wo}}{K}\right)^2 + d_w \cdot \left(\frac{T_{wo}}{K}\right)^3\right] \cdot \frac{kJ}{kg \cdot K}$ $c_{pwo} = 24.928 \frac{kJ}{kg \cdot K}$ $c_{pwm} := \left[a_w + b_w \cdot \frac{T_{wm}}{K} + c_w \cdot \left(\frac{T_{wm}}{K}\right)^2 + d_w \cdot \left(\frac{T_{wm}}{K}\right)^3\right] \cdot \frac{kJ}{kg \cdot K}$ $c_{pwm} := \left[a_w + b_w \cdot \frac{T_{wm}}{K} + c_w \cdot \left(\frac{T_{wm}}{K}\right)^2 + d_w \cdot \left(\frac{T_{wm}}{K}\right)^3\right] \cdot \frac{kJ}{kg \cdot K}$

In summary, the properties of water at the inlet, outlet and mean conditions are

$$T_{woter} := \begin{pmatrix} T_{wi} \\ T_{wn} \\ T_{wo} \end{pmatrix} \qquad c_{p_water} := \begin{pmatrix} c_{pw} \\ c_{pwm} \\ c_{pwo} \end{pmatrix} \qquad k_{water} := \begin{pmatrix} 0.59 \\ 0.60 \\ 0.61 \end{pmatrix} \cdot \frac{W}{m \cdot K}$$

$$\rho_{water} := \begin{pmatrix} 980 \\ 990 \\ 1000 \end{pmatrix} \cdot \frac{kg}{m^3} \qquad \mu_{water} := \begin{pmatrix} 0.8 \\ 0.85 \\ 0.9 \end{pmatrix} \cdot 10^{-3} \cdot N \cdot s \cdot m^{-2}$$

OVERALL COEFFICIENT

For a cooler of this type, the overall coefficient will be in the range 300 to 500 W/m²oC,

Figure 12.1 and Table 12.1 (Richardson and Coulson); taking $U := 380 \cdot \frac{W}{m^2 \cdot K}$

COOLER TYPE AND DIMENSIONS

An even number of tube passes is usually the preferred arrangement, as this positions the inlet and outlet nozzles at the same end of the exchanger, which simplifies the pipework. Starting with one shell pass and 2 tube passes,

$$\Delta T_{lm} := \left| \frac{\left(T_{water_1} - T_{comp_1} \right) - \left(T_{water_3} - T_{comp_3} \right)}{ln \left[\left(T_{water_1} - T_{comp_1} \right) \right]} \right| \Delta T_{lm} = 208.992 \text{ K}$$

$$R := \frac{T_{water_1} - T_{water_3}}{T_{comp_3} - T_{comp_1}} \qquad R = 0_r 961$$

$$S := \frac{T_{comp_3} - T_{comp_1}}{T_{water_1} - T_{comp_1}} \qquad S = 0.933$$

From Figure 12.19, $F_t := 7 \cdot 10^9$, which is acceptable.

$$\Delta T_m := F_t \cdot \Delta T_{lm}$$

 $\Delta T_{\rm m} = 1.463 \times 10^{12} \, {\rm K}$

HEAT TRANSFER AREA

From the formula given as

$$Q = U \cdot A \cdot \Delta T_{m}$$

$$A_{\text{cooler}} \coloneqq \frac{|Q|}{U \cdot \Delta T_{m}}$$

$$A_{\text{cooler}} \approx 71.025 \text{ m}^{2}$$

LAYOUT AND TUBE SIZE

Using a split-ring floating head exchanger for efficiency and ease of cleaning.

Neither material is corrosive, and the operating pressure is not high, so a plain carbon steel can be used for the shell and tubes.

11

Using 19.05 mm (3/4 inch) outside diameter (i..e, $^{1}D_{0} = 19.05 \text{mm}$), 14.83 mm inside

diameter (i.e. $D_i := 14.83$ mm), 5 m long tubes (i.e. L := 5m) (a popular size) on a triangular

23.81 mm (i.e. $p_t := 23.81 \cdot mm$) pitch (pitch/dia. = 1.25).

NUMBER OF TUBES

Area of one tube (neglecting thickness of tube sheets) is given thus;

 $A_{one_tube} := \pi \cdot D_o \cdot L$

 $A_{one_tube} = 0.299 \,\mathrm{m}^2$

Number of tubes

$$N_t := \frac{A_{cooler}}{A_{one_tube}} \qquad N_t = 237.35$$

So, for two passes, tubes per pass is

tube_per_pass :=
$$\frac{N_t}{2}$$
 tube_per_pass = 118.677

Check the tube-side velocity at this stage to see if it looks reasonable.

 $A_{\text{tube}} \coloneqq \frac{\pi}{4} \cdot \left(D_i^2 \right)$ $A_{\text{tube}} = 0.0001727 \text{ m}^2$

So,

area_per_pass := tube_per_pass $\cdot A_{tube}$

area_per_pass = 0.02 m^2

 $u_t = 1.163 \frac{m}{s}$

$$m_{water} := 85000 \cdot \frac{kg}{hr}$$

$$Volumetric_flow_t := m_{water} \cdot \frac{1}{\rho_{water_2}}$$

$$Volumetric_flow_t = 85.859 \frac{m^3}{hr}$$

Tube side velocity, $u_t := \frac{\text{Volumetric_flow}_t}{\text{area_per_pass}}$

The velocity is satisfactory but this will show up when the pressure drop is calculated.

BUNDLE AND SHELL 1 ETER

. .

From Table 12.4, for 2 passes, $K_1 := 0.249$, $n_1 := 2.207$

$$D_b := D_0 \cdot \left(\frac{N_t}{K_1} \right)^{\frac{1}{n_1}} D_b = 0.426 \,\mathrm{m}$$

For a split-ring floating head exchanger the typical shell clearance from Figure 12.10 (Richardson and Coulson) is 56 mm (i.e. $s_c = 56 \cdot mm$), so the shell inside diameter,

$$D_{s} := D_{b} + S_{c}$$
 $D_{s} = 0.482 \,\mathrm{m}$

102

Еī

TUBE-SIDE HEAT TRANSFER COEFFICIENT

$$Re = \frac{G_{s} \cdot d_{e}}{\mu} = \frac{u_{s} \cdot d_{e} \cdot \rho}{\mu}$$

$$Re := \frac{\rho_{water_{2}} \cdot u_{t} \cdot D_{i}}{\mu_{water_{2}}}$$

$$Re = 20095.533$$

$$P_{r} = \frac{c_{p} \cdot \mu}{k}$$

$$P_{r} := \frac{c_{p_water_{2}} \cdot \mu_{water_{2}}}{k_{water_{2}}}$$

$$P_{r} = 34.271$$

$$\mu := 0.99N \cdot m \cdot s^{-2}$$

$$\mu_{w} := 1 \cdot (N \cdot m \cdot s^{-2})$$

From figure 12.23 (Richardson and Coulson), $j_h := 3.2 \cdot 10^{-3}$

$$Nu := j_{h} \cdot Re \cdot P_{r}^{\frac{1}{3}} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$

$$Nu = 208.584$$

$$h_{i} := Nu \cdot \left(\frac{k_{water_{2}}}{D_{i}}\right)$$

$$h_{i} = 8439.009 \frac{W}{m^{2} \cdot K}$$

This is clearly too low if U_0 is to be 370 W/m²oC. The tube-side valocity did look low, so the number of tube passes will be increased to 4. This will have the cross-sectional area in each pass and double the velocity.

$$u_{t} := 2 \cdot u_{t}$$

$$u_{t} = 2.327 \frac{m}{s}$$

$$Re := 2 \cdot Re$$

$$Re = 40191.067$$

$$j_{h} := 3.8 \cdot 10^{-3}$$

$$Nu := j_{h} \cdot Re \cdot P_{r}^{\frac{1}{3}} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$

$$Nu = 495.387$$

$$h_{i} := Nu \cdot \left(\frac{k_{water_{2}}}{D_{i}}\right)$$

$$h_{i} := 20042.646 \frac{W}{m^{2} \cdot K}$$

SHELL-SIDE HEAT TRANSFER COEFFICIENT

Using Kern's method,

For 4 passes, $K_1 := 0.175$ and $n_1 := 2.285$

$$D_b := D_o \cdot \left(\frac{N_l}{K_l}\right)^{\frac{1}{n_1}} \qquad D_b = 0.447 \,\mathrm{m}$$

The bundle to shell clearance is still around 56 mm, giving:

 $D_s := D_b + S_c$ $D_s = 0.503 \, m$

As a first trial, the baffle spacing is taken as $I_b := \frac{D_s}{5_{j+1}}$. This spacing should give good heat transfer

J i

without too high a pressure drop.

$$A_{s} := \frac{\left(p_{t} - D_{o}\right) \cdot D_{s} \cdot I_{b}}{p_{t}}$$

$$A_{s} = 0.01013 \text{ m}^{2}$$

Volumetric flow-rate on shell-side

Volumetric_flow_s :=
$$\frac{n_{comp} \cdot mw_5}{\rho_{comp_2}}$$

Volumetric_flow_s = 226.739 $\frac{m^3}{2}$

Shell-side velocity

$$u_s := \frac{\text{Volumetric_flow}_s}{A_c}$$

$$u_s = 0.259 \frac{m}{s}$$

day

 $Re := \frac{\rho_{comp_2} \cdot u_s \cdot D_i}{\mu_{comp_2}}$

Re = 316.758

 $P_r := \frac{c_{p_comp_2} \cdot \mu_{comp_2}}{k_{comp_2} \cdot mw_5}$

$$P_r = -6.256 \times 10^{12}$$

Using segmental baffles with a 25% cut. This should give a reasonable heat transfer coefficient

without too large a pressure drop.

From Figure 12.29 (Richardon and Coulson), $j_h = 4.52 \cdot 10^{-3}$.

Neglecting the viscosity correction

$$h_{s} := \frac{k_{conp_{2}}}{d_{e}} \cdot j_{h} \cdot Re \cdot P_{r}^{\frac{1}{3}}$$

$$h_{s} = 31611.588 + 54752.877i - \frac{W}{m^{2} \cdot K}$$

1.1

$$f_{water} := 2857.14 \cdot \frac{W}{m^2 \cdot K}$$
 $f_{comp} := 5000 \cdot \frac{W}{m^2 \cdot K}$

$$U_{0} := \left[\underbrace{\left(\frac{1}{h_{i}} + \frac{1}{f_{water}}\right) \cdot \frac{D_{0}}{D_{i}} + \frac{D_{i} \cdot \ln\left(\frac{D_{0}}{D_{i}}\right)}{k_{comp_{2}}} + \frac{1}{h_{s}} + \frac{1}{f_{comp}} \right]^{-1}}_{U_{0}} = 8.67 + 0.001i \frac{W}{m^{2} \cdot K}$$

PRESSURE DROP

1

TUBE SIDE

240 tubes, 4 passes, $D_i = 0.0148 \text{ m}$, $u_i = 2.327 \text{ m s}^{-1}$, Re = 316.758. From Figure

12.24 (Richardon and Coulson), $j_f := 5 \cdot 10^{-3}$.

$$\Delta P_{t} := 4 \cdot 8 \cdot j_{f} \cdot \left(\frac{D_{s}}{d_{e}}\right) \cdot \left(\frac{L}{l_{b}}\right) \cdot \frac{\rho_{water_{2}} \cdot u_{s}^{2}}{2} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{-0.14}$$

$$\Delta P_{t} = 9835.747 \frac{N}{m^{2}}$$

1.)

6.2 MECHANICAL DESIGN OF EQUIPMENTS

£ i

11

11

6.2.1 MECHANICAL DESIGN OF COOLER

Working pressure, $P_w := 0.101 \cdot \frac{N}{mm^2}$

Design temperature, $T_d := 423$

Design pressure, $P_d := 0.1084 \cdot \frac{N}{mm^2}$

Number of tubes, $N_t = 237$

Shell diameter, $D := 540 \cdot mm$

1. Shell thickness

Material: IS 2825 - 1969 Grade I plain carbon steel

Shell thickness is given as

$$t_{s} = \frac{P \cdot D}{2 \cdot f \cdot J + P}$$

where ts is the thickness

P is the design pressure

D is the diam

f is the permissible stress

$$J = 0.85$$

•••

Given that,

 $P := P_d$

 $D_i = 0.015 \,\mathrm{m}$

$$J := 0.85$$

 $\mathbf{f} := 9.5 \cdot \frac{\mathbf{N}}{\mathbf{mm}^2}$

$$t_{s} := \frac{P \cdot D_{i}}{2 \cdot f \cdot J + P}$$

 $t_{s} = 0.099 \,\mathrm{mm}$

106

1.1

It has been found from the literature that the minimum shell thickness when severe conditions are

11

11

not expected is 8mm, which includes corrosion allowance.

2. Nozzles

Taking the inlet and outled nozzles as 100mm diameter,

Vent nozzle diameter, $V_n := 25 \cdot mm$

Drain nozzle diameter, $D_n := 25 \cdot mm$

Relief value diameter, $R_v = 50 \cdot mm$

Given that,

 $\mathbf{P} := \mathbf{P}_{\mathbf{d}}$

 $D_{i} = 0.015 \,\mathrm{m}$

J := 0.85

$$f := 9.5 \cdot \frac{N}{mm^2}$$

$$t_s := \frac{P \cdot D_i}{2 \cdot f \cdot I + P}$$

 $t_s = 0.099\,mm$

Minimum nozzle thickness is 6mm and 8mm is chosen which includes the corrosion allowance.

Also, only the inlet and outlet nozzles need compensation. The compensation required is minimum

11

and is given by pads of 10mm thickness *Heads*

Torispherical heads are taken for both ends.

Crown radius, $R_c := 540 \cdot mm$

Knuckle radius, $R_{nk} := 54 \cdot \min$

Head thickness,
$$t_h = \frac{P \cdot R_c \cdot W'}{2 \cdot f \cdot J}$$

where

W' :=
$$\frac{1}{4} \cdot \left[3 + \left(\frac{R_c}{R_{nk}} \right)^{0.5} \right]$$

W' = 1.541

Head thickness is therefore given as

$$t_h := \frac{P \cdot R_c \cdot W'}{2 \cdot f \cdot J} \qquad t_h = 5.584 \, \text{mm}$$

Therefore, the head thickness is taken as that of the shell thickness, that is, 3mm.

4. Transverse Baffles

Number of baffles, $N_b := 1$

Baffle cut, $B_c := 25\%$

Baffle thickness, $B_t := 6 \cdot mm$ (standard)

5. The Rods and Spacers

Diameter of the rods, $D_r := 10 \cdot mm$

Diameters of spacers, $D_s := 8 \cdot mm$

6. Flange Design

Flange is a ring type with plain face.

Design pressure, $P_d = 0.108 \frac{N}{mm^2}$

Flange material: IS 2004 - 1962 Class 2 Carbon Steel

Bolting steel: 5% Chromium, Molybdenum Steel

Gasket material: Asbestos

Shell OD D = 0.54 m

Shell thickness, $t_s = 9.888 \times 10^{-5} \text{ m}$

Shell ID, $D_i := D - t_s$

 $D_i = 0.54 \, m$

Allowable stress for flange material, $\sigma_{\text{flange}} := 100 \cdot \frac{N}{mm^2}$

Allowable stress of bolting material, $\sigma_{\text{bolting}} = 138 \cdot \frac{N}{mm^2}$

6(i) Determination of Gasket Width

$$\frac{d_o}{d_i} = \left[\frac{(y - P \cdot m)}{y - P \cdot (m + 1)}\right]^{0.5}$$

Assume a gasket thickness of 1.6mm

Minimum design yield stress, $y = 25.5 \frac{N}{mm^2}$

Gasket factor, m' := 2.75

do_di :=
$$\left[\frac{(y - P \cdot m')}{y - P \cdot (m' + 1)}\right]^{0.5}$$

do_di = 1.002

11

Let $d_i := 0.550 \cdot m$

Minimum gasket width, $N_m := d_i \cdot \frac{(do_di - 1)}{2}$

Choosing $N_m := 40 \cdot mm$

 $d_0 := 0.630 \cdot m$

Basic gasket seating width, $b_0 := \frac{N_m}{2}$

Effective gasket seating width, $b := 2.5 \cdot \left(\frac{b_0}{mm}\right)_{l=1}^{0.5} \cdot mm$

Diameter of location of gasket load reaction is $G' := d_i + N_m$

6(ii) Estimation of bolt loadsy

Under atmospheric conditions, the bolt load due to gasket reaction is given by

 $W_{gr} \coloneqq \pi \cdot b \cdot G' \cdot y$

 $W_{gr} = 528.442 \, \text{kN}$

 $L_{p} = 29.636 \, \text{kN}$

Load due to design pressure

 $L_p := \pi \cdot \frac{G'^2 \cdot P}{4}$

11

109

 $N_{\rm m}=0.593\,{
m mm}$

 $d_0 = 0.63 m$

 $b_0 = 0.02 \,\mathrm{m}$

b = 11.18mm

 $G' = 0.59 \,m$

Load to keep joint right under operation

$$L_{j} := \pi \cdot G' \cdot (2 \cdot b) \cdot m' \cdot P_{d}$$

Total operating load,
$$L_{total} := L_p + L_j$$

 $L_{total} = 41.991 \, kN$

 $L_i = 12.355 \, kN$

6(iii) Calculation of Minimum Bolting Area

Given that the allowable stress for bolting material is $S := 138 \cdot \frac{N}{mm^2}$

J I

$$A_{\text{bolting}} := \frac{W_{gr}}{S}$$

6(iv) Calculation of Optimum Bolt Size Bolts are 5% of CrMo Steel.

Number of bolts, $N_{\text{bolts}} := \frac{G'}{b_0 \cdot 2.5}$

Diameter of bolts,
$$D_{\text{bolts}} := \left(\frac{A_{\text{bolting}}}{N_{\text{bolts}}} \cdot \frac{4}{\pi}\right)^{\frac{1}{2}}$$

7. Flange Thickness

Thickness of flange,
$$t_f = \left(G' \cdot \sqrt{\frac{P}{K \cdot f}}\right) + C$$

where C is the corrosion allowance

Hydrostatic end force,
$$H_e := \frac{\pi}{4} \cdot G'^2 \cdot P$$

 $H_e = 29.636 \, kN$

$$\mathbf{K}' = \frac{\mathbf{I}}{\left[\mathbf{0.3} + \left[\left(\mathbf{1.5} \cdot \mathbf{L}_{\text{total}} \cdot \mathbf{h}_{\text{G}}\right) \cdot \left(\mathbf{H}' \cdot \mathbf{G}'\right)\right]\right]}$$

where h_G is the radial distance from gasket load reaction to bolt circle given as

$$h_{\rm G} = \frac{(\rm B'-\rm G')}{2}$$

 $B' := d_o + 2 \cdot D_{bolts} + 12 \cdot mm$

Then,

J i

 $N_{bolts} = 12 bolts$

$$D_{\text{bolts}} = 20.327 \,\text{nm}$$

$$A_{\text{bolting}} = 0.004 \text{ m}^2$$

$$h_G := \frac{(B' - G')}{2}$$

 $h_{\rm G} = 0.046 \, {\rm m}$

So, since. $H' := L_p$

$$L_{total} = 41991.42 \,\mathrm{N}$$

K' = 0.019

$$\mathbf{K}' := \frac{\mathbf{I}}{\left[0.3 + \left[\left(1.5 \cdot \frac{\mathbf{L}_{\text{total}}}{\mathbf{kN}} \cdot \frac{\mathbf{h}_{G}}{\mathbf{m}}\right) \cdot \left(\frac{\mathbf{H}'}{\mathbf{kN}} \cdot \frac{\mathbf{G}}{\mathbf{m}}\right)\right]}\right]}$$

The thickness (given the corrosion allowance to be $C := 10 \cdot mm$) is thus calculated as

,

11

11

 J^{-1}

111

$$t_{f} := \left[\left(G' \cdot \sqrt{\frac{P}{K' \cdot f}} \right) + C \right]$$

 $t_{f} = 0.462 \,\mathrm{m}$

CHAPTER SEVEN

7.0 REACTOR/EQUIPMENT OPTIMIZATION

7.1 OPTIMIZATION OF FURNACE

In optimizing, the first step is clearly to define the objective. That is, the criterion to be used to judge the performance of the system. In engineering design, the objective of optimizing any reactor or equipment must be an economical one. This is because for any chemical plant set up, the primary objective is to maximize profits.

a) Another "Advanced Trick" involves optimization of a fired heater. Heat is being supplied to the reboiler of a deethanizer as shown in Figure 7.1. It is required to keep the temperature at the bottom of the tower constant. The heating medium is hot oil which is being heated by a fired heater and circulated by a pair of pumps. Since the tower bottoms is being boiled, and is also very clean, it goes on the shell side. The oil goes through the tube side where the outlet is throttled by a butterfly valve. A position transmitter has been added to the valve. Its output goes to a Position Controller with a set point of about 80% open. The output of the Position Controller is cascaded to the set point of the Temperature Controller of the furnace.

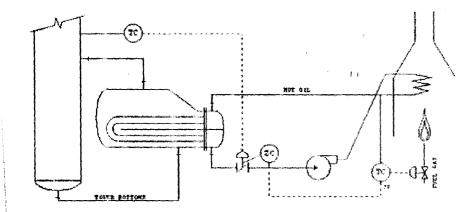


Fig. 7.1: Optimization of furnace (www.driedger.ca/ce3_stx/CE3_STX.html)

CHAPTER EIGHT

8.0 SAFETY AND QUALITY CONTROL

8.1 Safety

Safety is the area of engineering and public health which deals with the protection of workers' health, through control of the work environment to reduce or eliminate hazards. Industrial accidents and unsafe working conditions can result in temporary or permanent injury, illness, or even death. They also take a toll in reduced efficiency and loss of productivity. (Encarta, 2004)

8.1.1 General Safety Rules

Follow relevant instructions

- a) Before attempting to operate the lime plant, all relevant manufacturers' instructions and local regulations should be understood and implemented.
- b) It is irresponsible and dangerous to misuse equipment or ignore instructions, regulations or warnings.
- c) The specified maximum operating conditions must not exceeded. (Odigure, 1998)

Operation

- a) It must be ensured that all staff must be fully aware of the potential hazards when the lime plant is being operated.
- b) Serious injury can result from touching apparently stationary equipment or rotating belt.
- c) No metallic object should be allowed into the lime plant. Otherwise, the gear motor of the affected conveyor must be set in the reverse direction and the entrained materials should be discharged. (Odigure, 1998)

Maintenance

- a) A badly maintained lime plant is a potential hazard. It must be ensured that competent members of staff is responsible for organizing maintenance and repairs on a planned basis.
- b) Faulty equipment must be permitted to be operated. Repairs must be carried out competently and the operation must be checked. (Odigure, 1998)

Using electricity

- a) At least once a month, the electrical cables should be checked to ensure that they are operating normally.
- b) Electricity is the commonest cause of accidents in the factory, it must be respected.
- c) It must be ensured that electricity supply has been disconnected from the equipment before attempting repairs or adjustment.
- d) It must be known that water and electricity are not compatible and can cause serious injury if they come into contact.
- e) The lime plant must always be disconnected from electricity when not in use.(Odigure, 1998)

Avoiding fire or explosion

- a) It must be ensured that the factory is provided with adequate fire extinguishers appropriate to the potential dangers.
- b) It must be known that empty vessels having inflammable liquids can contain vapours and explode if ignited.

1.4

Handling poisons or toxic materials

- a) Food must not be allowed to be brought into or consumed in the factory.
- b) Smoking should not be allowed in the factory premises. Notices should be so displayed and enforced. (Odigure, 1998)

Avoiding cuts and burns

- a) Care must be taken when handling sharp edged components. Undue force must not be exerted on glass or fragile items.
- b) Hot surfaces cannot, in most cases, be totally shielded and can produce severe burns even when not "visibly hot". Common sense must be used always!

Eye protection

a) Facilities for eye irritation should always be available

Ear protection

a) Ear protectors 1 be worn when operating the lime plant.

Guard and safety devices

a) Guards and safety devices must be installed on the lime plant to protect the operators. The equipment must not be operated with such devices removed.

L i

- b) Safety gauges, cu -out and other safety devices must be set to protect the equipment. Interference with these devices may create a potential hazard.
- c) It is impossible to guard the operator against all contingencies. Common sense muse be used.

1.1

d) Before starting a machine, it must be ensured that the members of staff are aware of how it (the machine) should be stopped in an emergency. (Odigure, 1998)

First aid

- a) It is essential that first aid equipment is available and that the supervisor knows how to use it.
- b) A notice giving details of a proficient first aider should be prominently displayed. (Odigure, 1998)

8.2 Quality Control

Quality simply means "fitness for use". But, according to the International Standard Organisation (ISO), quality is defined as the totality of the characteristics of an entity that bear on its ability to satisfy stated and intended needs. It is more costly to exceed a specification than to meet it. Therefore, there is the need to get quality goal or target for effective quality control.

Maintaining product quality in accordance with acceptable standard has been a major role for industrial instrumentation since its inception decades ago. With the everincreasing interest in speeding up production, one becomes aware of the fact that rejectable as well as acceptable products can be produced at high rates.

8.2.1 Quality assurance

Quality assurance is defined by ISO as all the planned and systematic activities implemented within the quality system and demonstration is needed to provide adequate confidence on entity will fulfil requirement for quality.

8.2.1.1 Principles of quality assurance

The principles of quality assurance include the following:

i. Management involvements and objective (management) involvement is very essential to ensure quality.

ii. Programming and planning.

iii. Application of quality control principles.

iv. Design and specification control.

v. Purchasing control and vendor appraisal.

vi. Production control.

vii. Marketing and service quality functions.

viii. Proper documentation.

ix. Non-conformance control.

x. Remedial action.

xi. Defect and failure analysis.

8.2.1.2 Quality management

Quality management involves all activities of the overall management functions that determine the quality policy, objective and responsibilities and implement then by means, such as quality planning control assurance and improvement within the quality system. Responsibility of quality lies at all level of all. To successfully implement quality management, the organisation structure, procedure process and resources are requisite.

1.1

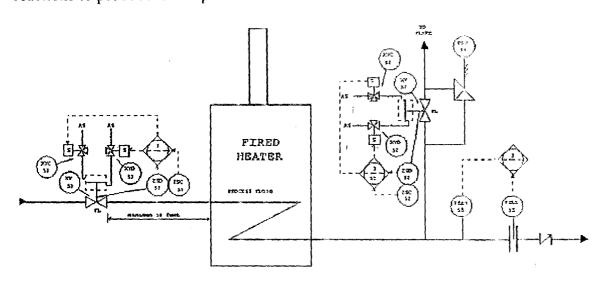
CHAPTER NINE

9.0 PROCESS CONTROL AND INSTRUMENTATION

It is proposed that most of the lime plant equipments in the lime plant be operated using automatic control with the indicating instruments being located in a control room. This is the general practice for a lime plant of this type which is not labour intensive. With the exception of the reactor system, the lime plant operates at atmospheric pressure and therefore the process control and instrumentation will be based upon temperature, flow and level measurements. Measurements of these parameters will be made using thermocouples, orifice plates and float type indicators respectively. (Austin & Jeffrey, 1991)

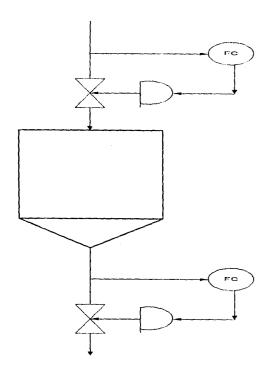
9.1 Types of control instruments

The control instruments are of four major categories


- a) Temperature controllers (TC)
- b) Pressure controller (PC)
- c) Flow controller (FC)
- d) Level controller (LC)

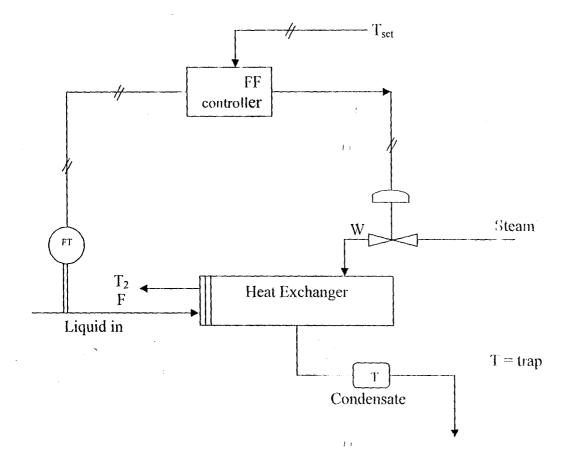
9.2 **Process Control of Equipments**

9.2.1 Process control of furnace


The purpose of a fired heater is very simple: To add heat to a process fluid. Its representation on a process flow diagram is also very simple. But, of course, fired heaters are among the most complex pieces of process control equipment. Each furnace is, after all, at least two pieces of equipment in one. Firstly, it is a special variant of the shell and tube heat exchanger since its purpose is to exchange heat.

Secondly, it is a chemical reactor in which fuel and air undergo extremely exothermic reactions to produce the required heat.

Fig. 9.1: Process control of furnace


9.2.2 Process control of bin

119

1)

1.1

120

11

E I

CHAPTER TEN

10.0 ENVIRONMENTAL ACCEPTABILITY

10.1 Identification of possible pollutants in lime production plant

Except for gaseous pollutants emitted from furnaces, particulate matter (PM) is the only dominant pollutant.

The largest ducted source of particulate is the furnace. The properties of the limestone feed and the ash content of the coal (in coal-fired furnaces) can significantly affect PM emission rates. Of the various furnace types, fluidized beds have the highest levels of uncontrolled PM emissions because of the very small feed rate combined with the high air flow through these furnaces. Fluidized bed furnaces are well controlled for maximum product recovery. The rotary furnace is second worst in uncontrolled PM emissions because of the small feed rate and relatively high air velocities and because of dust entrainment caused by the rotating chamber. The calcimatic (rotary hearth) furnace ranks third in dust production primarily because of the larger feed rate and the fact that, during calcination, the limestone remains stationary relative to the hea**tth**. The vertical furnace has the lowest uncontrolled dust emissions due to the large lump feed, the relatively low air velocities, and the slow movement of material through the furnace. In coal-fired furnaces, the properties of the limestone feed and the ash content of the coal can significantly affect PM emissions.

Some sort of particulate control is generally applied to most furnaces. Rudimentary fallout chambers and cyclone separators are commonly used to control the larger particles. Fabric and gravel bed filters, wet (commonly venturi) scrubbers, and electrostatic precipitators are used for secondary control.

Carbon monoxide (CO), carbon dioxide (CO₂), sulphur dioxide (SO₂), and nitrogen oxides (NO) are all produced in furnaces. Sulphur dioxide emissions are influenced by several factors, including the sulphur content of the fuel, the sulphur content and mineralogical form (pyrite or gypsum) of the stone feed, the quality of lime being produced, and the type of furnace. Due to variations in these factors, plant-specific SO emission factors are likely to vary significantly from the average emission factors presented here. The dominant source of sulphur emissions is the furnace's fuel, and the vast majority of the fuel sulphur is not emitted because of reactions with calcium oxides in the furnace. Sulphur dioxide emissions may be further reduced if the pollution equipment uses a wet process or if it brings CaO and SO into intimate contact.

Hazard Summary of Lime

- Calcium Oxide can affect one when one breathes it in.
- Contact can severely irritate and burn the eyes and skin.
- Breathing Calcium Oxide can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath.
- Long-term exposure can irritate the nose causing a hole in the "bone" dividing the inner nose, and can cause brittle nails and thickening and cracking of the skin.

1.1

• Calcium Oxide is a dot corrosive chemical

10.2 Suggestions on treatment of such pollutants

The measures outlined below are some of the suggestions that can be used to the minimize environmental pollution occurring from the lime production plant.

- The efficiency of the furnace should be properly justified, so that there is minimum loss of lime in the atmosphere.
- The carbon dioxide can be absorbed using monoethanolamine (MEA).
- Sulphur dioxide can also be removed by absorbing it with a solvent like water.
- Nitrogen dioxide can also be treated via catalyzed conversion by reacting it with hydrogen to yield nitrogen and water which are harmless.
- Carbon monoxide (a very poisonous gas) is also treated by reacting it with hydrogen in a process known as catalyzed conversion of impurities.

CHAPTER ELEVEN

11.0 START UP AND SHUT DOWN PROCEDURE

Start up time may be defined as the time span between end of construction and the beginning of normal operations. Start up and shut down procedure must proceed safely and be flexible enough to be carried out in various ways. In other words, the start up and shut down of the lime plant should be such that it can be easily and safely operated. The operating limits of the lime plant should not be exceeded and dangerous mixtures must not be formed as a result of abnormal states of concentration, composition, temperature, phase, pressure, reactants and products.

It should be noted that some items of actions must be completed before even the start up of the lime plant in order to prepare the lime plant for the start up operation. The items of actions are:

- i. All scaffolds and temporary piping and supports should be removed.
- ii. Lines and equipment should be flushed out.
- iii. Pumps, motors/turbines and compressors should be run.
- iv. Hydrostatic or pneumatic lines and equipment should be tested.
- v. Laboratory and sampling schedule should be prepared.
- vi. All instruments should be inspected and tested.

11.1 Start Up Procedures

1. 1. P. 1.

For the lime plant designed, the following are the start up procedures:

- i. The source should be open to be supplied to the furnace for calcinations.
- ii. The furnace should be started up using auxiliary fuel.
- iii. The furnace should be heated up and maintained at the operating temperature.

- iv. The inlet and outlet valves of the furnace should be opened up.
- All the inlet and outlet valves to the furnace should be shut as soon as the feed enters the reactor in order to achieve maximum conversion.

1.1

- vi. The outlet value of the reactor should be opened for the evacuation of the reactor contents.
- vii. The outlet valve of the furnace should be locked before opening the inlet valve before further entering of the feed into the reactor.

11

11.2 Shut Down Procedures

The shut down procedures for the lime plant are as outlined below

- i. The supply of limestone to the furnace should be stopped
- ii. The supply of fuel to the furnace should be cut off.
- iii. All the purge valves should be opened to discharge unconverted reactants.

11

11

1 i

CHAPTER TWELVE

11

12.0 SITE FOR LIME PLANT LOCATION

The location of the lime plant can have a crucial effect on the profitability of the lime production project and the scope for future expansion. Many factors must be considered when selecting a suitable site, and a review of the principal factors will be given in this chapter of this design project for the production of lime. The principal factors to be considered are:

i. Location, with respect to the marketing area.

ii. Raw materials supply.

iii. Transport facilities.

iv. Availability of labour.

v. Availability of utilities.

vi. Availability of suitable land.

vii. Environmental impact and effluent disposal.

viii. Local community considerations.

ix. Climate.

x. Political and strategic considerations. (Sinnot, 1999)

12.1 Factors Considered for Site and Lime plant Location

The factors considered for site and lime plant location are as described thus.

12.1.1 Location, with respect to the marketing area

For a material produced in bulk quantities such as the lime where the cost of the product per tonne is relatively low and the cost of transport is a significant fraction of the sales price, the lime plant should be located close to the primary market. This

consideration will be less important for low volume production, high-priced products; such as pharmaceuticals. (Sinnot, 1999)

12.1.2 Raw materials

The availability and price of suitable raw materials will often determine the site location. Lime plants producing bulk chemical as the lime plant are best located close to the source of the major raw materials (which is limestone); where this is also close to the marketing area. (Sinnot, 1999)

12.1.3 Transport

The transport of materials and products to and from the lime plant will be an overriding consideration for site selection.

11

If practicable, a site should be selected that is close to at least tow major forms of transport: road, rail, waterway (canal or river), or a sea port. Road transport is being increasingly used, and is suitable for local distribution from a central warehouse. Rail transport will be cheaper for the long-distance transport of bulk chemicals.

Air transport is convenient and efficient for the movement of personnel and essential equipment and supplies, and the proximity of the site to a major airport should be considered. (Sinnot, 1999)

12.1.4 Availability of labour

Labour will be needed for construction of the lime plant and its operation. Skilled construction workers will usually be brought in from outside the site area, but there should be an adequate pool of unskilled labour available locally; and labour suitable

for training to operate the lime plant. Skilled tradesmen will be needed for lime plant maintenance. Local trade union customs and restrictive practices will have to be considered when assessing the availability and suitability of the local labour for recruitment and training. (Sinnot, 1999)

12.1.5 Utilities

Chemical processes invariably require large quantities of water for cooling and general process use, and the lime plant must be located near a source of water of suitable quality. Process water may be drawn from a river, from wells, or purchased from a local authority.

At some sites, the cooling water required can be taken from a river or lake, or from the sea; at other locations cooling towers will be needed. Electrical power will be needed at all sites.

Electrochemical processes that require large quantities of power need to be located close to a cheap source of power. A competitively priced fuel must be available on site for steam and power generation. (Sinnot, 1999)

12.1 Selection of Site

The suburb of Sokoto, Sokoto State. Nigeria, has been chosen for as the site for lime plant. The selection has been based on some requirements, which the site was able to meet among the factors for the site selection discussed above. The justifications for the selected site are as follows:

12.2 Justification of the Selected Site

The suburb of Sokoto, Sokoto State, Nigeria, has been chosen as the site for this lime plant due to the fact that the site was justified to worth it. The justifications are as follows:

12.3.1 Availability of raw materials

The major raw material in the production of lime is the limestone because hot air for the furnace is available everywhere. Looking at it very well, the major source of this major raw material, limestone is the Sokoto area of the country. So, siting the lime plant in the suburb of Sokoto in Sokoto State is siting the plant close the source of the raw material.

12.3.2 Nearness to marketing area

Since lime is used in the production of other products, siting its plant close to the place of primary marketing area, that is, Sokoto Portland Cement Company, will be very ideal.

12.3.3 Transport

The good and many means of transportation present in the area will ensure effective transportation of the raw materials, products and even the skilled experts at low cost. Another advantage is that Sokoto has good road network.

12.3.4 Availability of labour

For the fact that Sokoto is located in limestone region, youths, both skilled and unskilled, are now trooping into the area to seek their source of living via the cement

company present in the area. That is to say, all kinds of labour force are available there.

11

12.3.5 Climate

The absence of adverse climatic conditions such as too low temperature or too high wind loads or earthquakes has made Sokoto a good site for the lime plant.

12.3.6 Political and strategic considerations

In an attempt to woo investors to Sokoto State, the Sokoto State government has given capital grants and other inducements to direct new investment to Sokoto State. Thus, availability of such grants is an overriding consideration in selecting Sokoto as the favourable site for the lime plant.

12.3.7 Utilities

Since the process of lime production requires large quantities of services such as hot air for the dryers and furnace, cooling water for the coolers and other services, it is important that the lime plant should be sited in a place where there is abundance of water; Sokoto is one of such areas.

12.4 Lime plant Layout

The economic construction and operation of a process unit will depend on how well the lime plant equipment specified on the process flow sheet and laid out. The principal factors to be considered are:

- a. Economic consideration: construction and operation cost.
- b. The process requirement
- c. Convenience of operation

d. Convenience of maintenance

e. Safety

f. Future expansion

g. Modular construction

12.4.1 Costs

The cost of construction can be minimized by adopting a layout that gives shortest run of connecting pipes between equipment, and adopting the least amount of structural steel work. However, this will not necessarily be the best arrangement for operation and maintenance.

L,

12.4.2 Process requirement

All the required equipments have to be placed properly within process. Even the installation of the auxiliaries should be done in such a way that it will occupy the least space.

11

12.4.3 Operation

Equipment that needs to have frequent operation should be located convenient to the control room. Valves, sample points, and instruments should be located at convenient position and height. Sufficient working space and headroom must be provided to allow easy access to equipment.

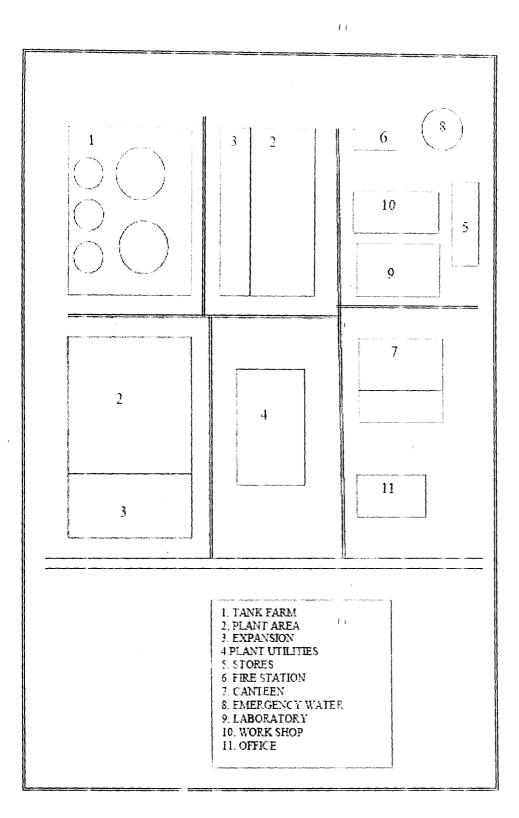
12.4.4 Maintenance

Heat exchangers need to be sited so that the tube bundles can be easily withdrawn for cleaning and tube rep cement. Vessels that require frequent replacement of catalyst or packing should be located on the outside of buildings. Equipment that requires

dismantling for maintenance, such as compressors and large pumps, should be placed under cover.

12.4.5 Safety

Blast walls may be needed to isolate potentially hazardous equipment, and confine the effects of an explosion. At least two escape routes for operator must be provided from each level in the process building.


11

12.4.6 Lime plant expansion

Equipment should be located so that it can be conveniently tied in with any future expansion of the process. Space should be left on pipe alleys for future needs, service pipes over-sized to allow for future requirements.

12.4.7 Modular construction

In recent years, there has been a move to assemble sections of the lime plant at the manufacturer site. These modules will include the equipment, structural steel, piping and instrumentation. The modules then transported to the lime plant site, by road or sea.

Fig. 12.1: Layout of lime plant

· .

1.1

 $\pm i$

CHAPTER THIRTEEN

J3.0 ECONOMIC ANALYSIS

Chemical plants are built to make a profit, and an estimate of the investment required and the cost of production are needed before the profitability of a project can be assessed.

11

For any industrial plant to be put into operation, huge sum of money must have been invested in it to purchase and install the necessary machinery and equipment. Land and service facilities must be obtained and the plant must be erected complete with the piping, controls, and service. In addition to all these cost, it is necessary to have money available for the payment of expenses involved in plant operation.

The capital requires to have the necessary manufacturing and plant facilities is called the fixed capital investment. That which is necessary for operation of the plant is termed the working capital. The sum of the fixed investment and the working capital is the total capital investment.

11

13.1 METHOD OF COSTING

The method of costing used in this project is Marshall and Smith Method.

13.2 EQUIPMENT COST ANALYSIS

The cost analysis of equipments in the plant is carried out using the cost equation of each process

11

134

11

equipment as proposed by Marshall and Smith.

3.2.1 COST OF BIN

The cost of bin is given as

$$PC_{bin} = \frac{M_S}{280} \cdot \left(101.9 \cdot D^{1.066} H^{0.802} \cdot F_c\right)$$

where D = diameter

H = height

 $F_c = F_m \cdot F_p$

and M_S = "Marshall and Smith index and has a numerial value of"

 $M_S := 1100$

For the bin

 $D_{bin} = 1.65 \,\mathrm{m}$

 $H_{bin} = 4.06 \,\mathrm{m}$

Choosing carbon steel for the bin,

$$F_m := 1$$

 $F_{p} := 1$

$$F_c := F_m \cdot F_p$$

 $F_{c} = 1.00$

11

11

11

So, from

$$PC_{bin} \coloneqq \frac{M_S}{280} \cdot \left[101.9 \cdot \left(\frac{D_{bin}}{m}\right)^{1.066} \left(\frac{H_{bin}}{m}\right)^{0.802} \cdot F_{c} \right]$$

13.2.2 COST OF DRYER

The cost of dryer is given as

$$PC_{dryer} = \frac{M_S}{280} \cdot \left(101.3 \cdot \dot{A}^{0.65} \cdot F_{c}\right)$$

where D = diameter

H = height

$$F_c = F_m \cdot F_p$$

and $M_S = "Marshall and Smith index and has a numerial value of"$

For the dryer

 $A_{dryer} = 53.31 \text{ m}^2$

 $D_{dryer} = 8.24 \text{ m}$

Choosing carbon steel for the dryer,

$$F_{m} := 1$$

 $F_p := 1$

 $PC_{bin} = 308929.92$ Naira

M_S := 1100

$$F_c := F_m \cdot F_p$$

So, from

$$PC_{dryer} := \frac{M_S}{280} \cdot \left[101.3 \cdot \left(\frac{A_{dryer}}{m^2}\right)^{0.65} \cdot F_c \right]$$

PC_{dryer} = 775503.89 Naira

 $F_{c} = 1.00$

13.2.3 COST OF CRUSHER

The cost of crusher is given as

$$PC_{crusher} = \frac{M_S}{280} \cdot \left(101.9 \cdot D^{1.066} H^{0.802} \cdot F_c\right)$$

where D = diameter

H = height

$$F_c = F_m \cdot F_p$$

and $M_S =$ "Marshall and Smith index and has a numerial value of" $M_S := 1100$

For the crusher,

$$D_{crusher} = d_{crusher}$$
 $d_{crusher} = 1.67 \, m$

 $H_{crushe_i} := h_{crusher}$

$$h_{crusher} = 3.12 \,\mathrm{m}$$

$$F_{\rm m} := 1$$

$$F_{\rm p} := 1$$

 $\mathbf{F}_{c} \coloneqq \mathbf{F}_{m} \cdot \mathbf{F}_{p} \qquad \qquad \mathbf{F}_{c} = 1.00$

So, from

$$PC_{crusher} := \frac{M_S}{280} \cdot \left[101.9 \cdot \left(\frac{D_{crust}}{m} \right)^{1.066} \left(\frac{H_{crusher}}{m} \right)^{0.802} \cdot F_c \right]$$

PC_{crusher} = 253599.84 Naira

13.2.4 COST OF SCREENER

The cost of screener is given as

$$PC_{screener} = \frac{M_S}{280} \cdot \left(101.3 \cdot A^{0.65} \cdot F_c\right)$$

where D = diameter

$$\mathbf{F_c} = \mathbf{F_m} \cdot \mathbf{F_p}$$

and $M_S =$ "Marshall and Smith index and has a numerial value of"

11

11

11

For the bin

$$A_{screener} = 20.37 \text{ m}^2$$

 $F_m := 1$
 $F_p := 1$

$$F_c := F_m \cdot F_n$$

So, from

$$PC_{screener} := \frac{M_S}{280} \cdot \left[101.3 \cdot \left(\frac{A_{screener}}{m^2}\right)^{0.65} \cdot F_c \right]$$

13.2.5 COST OF FURNACE

The cost of furnace is given as

$$PC_{furnace} = \frac{M_S}{280} \cdot \left(5520 \cdot Q^{0.05} \cdot F_c\right)$$

where Q = "heat duty"

$$F_c = F_m \cdot F_p$$

and M_S = "Marshall and Smith index and has a numerial value of"

 $M_S := 1100$

.

For the furnace

 $Q_{\text{furmae}} := 3.812 \times 10^5 \cdot \frac{\text{kJ}}{\text{hr}}$

 $D_{furnace} = 1.60 \text{ m}$

137

 $M_S := 1100$

.

 $F_{c} = 1.00$

$PC_{screener} = 414906.63$ Naira

Choosing carbon steel for the furnace,

$$F_m := 1$$

 $F_p := 1$

$$\mathbf{F}_{\mathbf{c}} \coloneqq \mathbf{F}_{\mathbf{m}} \cdot \mathbf{F}_{\mathbf{p}} \qquad \qquad \mathbf{F}_{\mathbf{c}} \simeq 1.00$$

11

1.1

11

So, from

$$PC_{furnace} := \frac{M_S}{280} \cdot \left[101.3 \cdot \left(\frac{Q_{furnace}}{\frac{kJ}{hr}} \right)^{0.65} \cdot F_c \right]$$

13.2.6 COST OF COOLER

The cost of cooler is given as

$$PC_{cooler} = \frac{M_S}{280} \cdot \left(101.3 \cdot A^{0.65} \cdot F_c\right)$$

where D = diameter

$$H = height$$

$$F_c = F_m \cdot F_p$$

and $M_S =$ "Marshall and Smith index and has a numerial value of" $M_S = 1100$

For the cooler

$$A_{cooler} = 71.03 \,\mathrm{m}^2$$

Choosing carbon steel for the cooler,

$$F_m := 1$$

$$F_{p} := 1$$

$$F_c \coloneqq F_m \cdot F_p \qquad \qquad F_c = 1.00$$

So, from

$$PC_{cooler} \coloneqq \frac{M_S}{280} \cdot \left[101.3 \cdot \left(\frac{A_{cooler}}{m^2}\right)^{0.65} \cdot F_c \right]$$

PC_{cooler} = 934499.54 Naira

,

11

ī

 $PC_{furnace} = 248262322.38$ Naira

13.3 Total Purchase Cost of Equipments

The total purchased cost of equipments is, calculated as the sum of individual cost of purhase of

equipments as,

 $PC_T := PC_{bin} + PC_{dryer} + PC_{crusher} + PC_{screener} + PC_{furnace} + PC_{cooler}$

 $PC_T = 250949762.20$ Naira

Assuming that the initial fixed capital investment for the plant is the total purchased cost of equipments, the initial fixed capital investment is then equal to

1.1

 $FCI := PC_T$

FCI = 250949762.20 Naira

13.4 Estimation of Total Capital Investment

I. Direct Costs

A. Equipment + installation + instrumentation + piping + electrical + insulation + painting

1. Purchased equipment cost (PEC), 15-40% of fixed capital investment

Assuming PEC = 37% · FCI

PEC = 92851412.01 Naira

2. Installation, including insulation and painting, 25-55% of purchased

equipment cost

Assume Insta := 50% · PEC Insta = 46425706.01 Naira

3. Instrumentation and controls, instailed, 6-30% of purchased equipment cost

Assuming

Instr := $25\% \cdot PEC$

Instr = 23212853.00 Naira

4. Piping installed, 10-80% of purchased equipment cost

Assuming

Pip := 70% · PEC Pip = 64995988.41 Naira

5. Electrical, installed, 10-40% of purchased equipment cost

Assuming

Elect := $35\% \cdot PEC$

Elect == 32497994.20 Naira

So, the cost of equipment, installation, instrumentation, piping, electrical, insulation and

11

\$ 1

painting is given as

CA := PEC + Insta + Instr + Pip + Elect

CA = 259983953.64 Naira

B. Buildings, process and auxiliary, 10-70% of purchased equipment cost

Assuming

Build := $65\% \cdot PEC$

Build = 60353417.81 Naira

C. Service facilities and yard improvements, 40-100% of purchased

equipment cost Assuming

Servi := 70% · PEC

Servi = 64995988.41 Naira

D. Land, 1-2% of fixed capital investment or 4-8% of purchased equipment cost)

Assuming

Lan := 5% · PEC

Lan = 4642570.60 Naira

Thus, the direct cost is equal to

```
Direct_Cost := CA + Build + Servi + Lan
```

Direct_Cost = 389975930.46 Naira

II. Indirect costs: expenses which are not directly involved with material and labour of actual installation of complete facility (15-30% of fixed capital investment)

A. Engineering and supervision, 5-30% of direct cost

Assuming

Engin := 27% · Direct_Cost Engin = 105293501.22 Naira

B. Construction expense and contractor's fee, 6-30% of direct cost

Assuming

Const := $55\% \cdot Direct_Cost$

Const = 214486761.75 Naira

Conti = 50696870.96 Naira

C. Contingency, 5-15% of direct cost

Assuming

Conti := 13% · Direct_Cost

Thus, indirect cost is equal to

Indirect_Cost := Engin + Const + Conti

III. Fixed Capital Investment:

Fixed capital investment to be Direct cost + Indirect cost

11

Fixed_CI := Direct_Cost + Indirect_Cost

Fixed_Cl = 760453064.39 Naira

Indirect Cost 370477133.93 Naira

IV. Working Capital, 11-20% of fixed capital investment

```
Assuming Working_C := 11% · Fixed_Cl
```

Working_C = 83649837.08 Naira

V. Total Capital Investment (TCI):

Total capital investment to be Fixed capital investment + Working capital

Assuming Total_CI := Fixed_CI + Working_C

Total_CI = 844102901.47 Naira

Estimation of Total Product Cost:

I. Manufacturing Cost to be Direct production + Fixed charges + Plant overhead cost

A. Fixed Charges, 10-20% of total product cost)

- *i. Depreciation*, This depends on life period, salvage value and method of calculation
- about 13% of FCI for machinery and equiupment and 2-3% of building value for buildings

Assuming

Depre := $13\% \cdot \text{Fixed}_CI + 3\% \cdot \text{Build}$

Depre = 100669500.90 Naira

ii. Local Taxes, 1-4% of fixed capital investment

Assuming

```
Tax := 3\% \cdot Fixed_CI
```

Tax = 22813591.93 Naira

iii. Insurance, 0.4-1% of fixed capital investment)

Assuming

Insur := 0.75% · Fixed_Cl

Insur = 5703397.98 Naira

iv. Rent, 8-12% of value of fixed capital investment

Assuming

Ren := $12\% \cdot Fixed_Cl$

Ren = 91254367.73 Naira

Thus, fixed charges is given as

Fixed := Depre + Tax + Insur + Ren

Assuming

 $Fixed_C = 15\% \cdot TPC$

making total product cost, TPC, the subject of the formula,

$$TPC = \frac{FC}{15\%}$$
$$TPC := \frac{Fixed}{15\%}$$

TPC = 1469605723.64 Naira

11

11

- **B.** Direct Production Cost:
 - i. Raw materials, 10-50% of total product cost)

Assuming

Raw_mat := 49% · TPC

Raw_mat = 720106804.58 Naira

ii. Operating Labour (OL), 10-20% of total product cost

Assuming

OperL := $16\% \cdot TPC$

OperL = 235136915.78 Naira

iii. Direct Supervisory and Clerical Labour (DS & CL), 10-25% of OL

Assuming

DireS := $20\% \cdot \text{OperL}$

DireS = 47027383.16 Naira

iv. Utilities, 10-20% of total product cost

Assuming

Util := $18\% \cdot TPC$

Util = 264529030.26 Naira

v. Maintenance and repairs (M & R), 2-10% of fixed capital investment

Assuming

Maint := $5\% \cdot Fixed_CI$

Maint = 38022653.22 Naira

vi. Operating Supplies, 10-20% of M & R or 0.5-1% of FCI

Assuming

OperS := $15\% \cdot Maint$

OperS = 5703397.98 Naira

vii. Laboratory Charges, 10-20% of OL

Assuming

```
Lab := 18% · OperL
```

Lab = 42324644.84 Naira

142

 F^{\dagger}

viii. Patent and Royalties, 0-6% of total product cost

Assuming

Paten := $6\% \cdot TPC$

Paten = 88176343.42 Naira

Thus, direct production cost is

DPC := Raw_mat + OperL + DireS + Util + Maint + OperS + Lab + Paten

DPC = 1441027173.24 Naira

C. Plant Overhead Costs, 50-70% of operating labour, supervision, and maintenance or 5-15% of total product cost); includes for the following: general plant upkeep and overhead, payroll overhead, packaging, medical services, safety and protection, restaurants, salvage, laboratories, and storage facilities.

11

11

Considering the plant overhead cost to be 55% of OL, DS & CL and M & R

Therefore,

Plant := $55\% \cdot (OperL + DireS + Maint)$

Plant = 176102823.69 Naira

Manufacture cost = Direct production cost + Fixed charges + Plant overhead cost

Manuf := DPC + Fixed + Plant

Manuf = 1837570855.47 Naira

II. General Expenses = Administrative costs + distribution and selling costs + research

and development costs

A. Administrative cests, 2-6% of total product cost

Assuming

Admin := 4.5% · TPC

Admin = 66132257.56 Naira

B. Distribution and Selving Costs, 2-20% of total product cost; includes costs for

sales offices, salesmen, s tipping, and advertising.

Assuming

Distr := $17\% \cdot TPC$

Distr = 249832973.02 Naira

C. Research and Development Costs, about 3% of total product cost

Assuming

Resea := $3\% \cdot TPC$

Resea = 44088171.71 Naira

143

Thus, general expenses,

Gener := Admin + Distr + Resca Gener = 360053402.29 Naira

IV. Total Production Cost = Manufacture Cost + General Expenses

TProdC := Manuf + Gener

TProdC = 2197624257 76 Naira

V. Gross Earnings/Income:

The selling price of lime is equal to

Selling_price :=
$$32.5 \cdot \frac{\text{Naira}}{\text{kg}}$$

Quantity_produced := $10160.47 \cdot \frac{\text{kg}}{\text{hr}}$

Quantity_produced = $89064777.75 \frac{\text{kg}}{\text{yr}}$

Assuming that the attainment is Attainment := 331 · day

Total income = Selling price x quantity of product manufactured

Total_income := Selling_price · Quantity_produced · Attainment

Total_income = 2623230144.60 Naira

Gross income = Total income - Total Product Cost

That is, Gross_income := Total_income - TProdC

Gross income = 425605886.84 Naira

Assuming the tax rate to be πax rate := 15% π

Net profit = Gross income - Taxes

Taxes := Tax_rate · Gross_income

Net_profit := Gross_incom - Taxes

Rate of Return:

 $Rate_of_return = \frac{Net_profit}{Total_Cl} = 00\%$

Therefore,

 $ROR := \frac{Net_profit}{Total_CI} \cdot 10(\%)$

Taxes = 63840833.03 Naira

Net_profit = 361765003.81 Naira

144

ROR = 42.86%

1.1

Pay-Back Period:

The pay-back period is calculated as the reciprocal of the rate of return.

Therefore,

$$PBP := \frac{1}{ROR} \cdot yr$$

$$PBP = 2.33 yr$$

11

which is approximately equal to

PBP = 2 yr

Cash Flow

Cash flow is the difference between the amount earned and the amount expended.

Cash_Flow := Total_income - TProdC Cash_Flow = 425605886.84 Naira

11

11

Net Present Worth of the Project

The net present worth (NPW) of cash flow in year n is given as

$$NPW = \sum_{i=1}^{n} \frac{Cash_Flow}{(1+r)^n}$$

r := ROR

n := 1

Therefore,

NPW :=
$$\sum_{i=1}^{n} \frac{\text{Cash_Flow}}{(1+r)^n}$$

NPW = 297922485.86 Naira

Discounted Cash Flow Rate or Return

The discounted cash flow is the interest rate that will make the condition given as

$$DCF = \sum_{i=1}^{n} \frac{Cash_Flow}{(1+r)^n} = 0$$

Using trial-and-error calculations as suggested by Sinnot R. K.

$$r := 45 \cdot \% \qquad n := 65 \qquad DCFRR := r$$
$$DCF := \sum_{i=1}^{n} \frac{Cash_Flow}{(1+r)^n}$$
$$DCF = 0$$

Therefore, the Discounted Cash Flow Rate of Return (DCFRR) is equal to DCFRR = 45.00%.

11

Return on Investment

This is calculated as given thus.

Return on investment (ROI) is given by the expression,

 $ROI = \frac{Total_profit_less_depreciation}{Total_investment}$

That is,

 $ROI := \frac{Total_income - Depre}{Total_income} \cdot 100\%$ ROI = 96.16%

Project Income and Expenses Statement for 2005-2008

This plant was designed to produce 10 tonnes per hr ($Basis := 10 \cdot \frac{tonne}{hr}$) of line. Making the plant attainment to be Attainment = 331.00 day, the plant is thus required to produce

Basis \cdot Attainment = 79440.00 tonne

It is expected that the performance of the plant should increase every year. For instance, assuming that the plant operates at 70% capacity in the first year, 80% capacity in the second year, 90% capacity in the third year and, finally, 100% capacity in the fourth year. The project

income and expenses statement for these four years are as shown below.

The second secon	YEARS			
DESCRIPTION	2005	2006	2007	2008
Tonnes/hr	10.00	11.43	12.86	14.29
Capacity (%)	70	80	90	100
REVENUE	Amount in Naira			
Net sales	2.621 09	2997977257	3372724414	3747471571
EXPENDITURE	anta Consta an an a consta			тана насти — т
Raw material	720106800	822979200	925851600	1028724000
Factory labour	23513692)	268727908.6	302318897.1	335909885.7
Depreciation	100669500	115050857.1	129432214.3	143813571.4
Overhead	176102820	201260365.7	226417911.4	251575457.1
TOTAL	1232016040	1408018331	1584020623	1760022914
PROFIT	and alayay karang ar ang ar			
Before tax	425605890	486406731.4	547207572.9	608008414.3
Tax	63 8 40883	72961009.14	82081135.29	91201261.43
Net profit	361765007	413445722.3	465126437.6	516807152.9

Table 13.1: Projected income and expenses statement for the year 2005 to 2008

Conclusion on the Economic Viability of the Project

The total production cost of the plant which is TProdC = 2197624257.76 Naira and a net profit of Net_profit = 361765003.81 Naira have revealed that the project is economically viable with a pay back period of approximately PBP = 2.33 yr.

Лr

1 1

÷.

CHAPTER FOURTEEN

14.0 RECOMMENDATIONS TO THE INDUSTRIALIST

Having carried out the design of lime plant, the following recommendations are made to the industrialists to be noted during the construction, start-up and operating phases of the work:

- Adequate data and technological parameters should be at the possession of the lime plant operations at all time to forestall any unwanted accident.
- ii. Routine turn around lime plant maintenance should be of paramount importance in the design. An articulate and organised maintenance team should safeguard quick lime plant shut down and ensure equipment salvage value. This will also take care of schedule, slippage, cost over-run and possible re-work.
- iii. Personnel should undergo routine training about new work ethic and equipments to improve their knowledge of the lime plant operation and increase overall lime plant productivity.
- iv. Procurement of raw materials and equipments should be based on strict regulation of specification and maximum quality.
- v. Lime plant should not be operated above the design specification to avoid abnormal conditions and explosions.
- vi. The implementation of this design work must be adequately supervised by the experts.
- vii. The lime plant should be sited close to the source of raw materials.
- viii. Alternative sources of energy should be available at all times to avoid lime plant failure and possible sources of failure.
- ix. The water and air around the lime plant should be monitored regularly to ensure compliance with the Environmental Protection Agency Standards.

REFERENCES

- Himmelblau, D. M. (1996); Basic Principles and Calculations in Chemical Engineering, Prentice-Hall of India Private Limited, New Jersey, U.S.A. 6th Edition.
- 2) Microsoft Encarta (2004); Encyclopedia Encarta, Microsoft Corporation, Redmind WA, USA
- Odigure, J. O. (1998); Safety, Loss and Pollution Prevention in Chemical Process Industries, Jodigs and Associates. Nigeria.
- 4) Perry, R. F. and Green, D. W. (1998); Perry's Chemical Engineer's Handbook,
 7th Edition, McGraw-Hill Book Company, New York, USA.
- Rajiv Mukherjee (1998); Effectively Design Shell-and-Tube Heat Exchangers, Chemical Engineering Progress, India.
- 6) Sinnot, R. K. (1999); Coulson and Richardson's Chemical Engineering, Vol. 6,3rd Edition, Butterworth, Heinemann, Oxford, UK.
- 7) www.leo.lehigh.edu/courses/90/student/Sarah_Grillo/Linderman/lime.htm
- 8) <u>www.corrosion-doctors.org/Concrete/Cement.htm</u>
- 9) www.bookrags.com/sciences/chemistry/lime-woc.html
- 10)www.pearcedale.com/c&b/lime.html
- 11)www.wzu.uni-augsburg.de/English/Projects/History_of_Limestone.html
- 12)www.science.uwaterloo.ca/earth/waton/s9910.html
- 13)www.driedger.ca/ce3 stx/CE3 STX.html

14)www.driedger.ca/ce5_fh/CE5_FH.html

149

3.1