# RODUCTION AND CHARACTERIZATION OF CHEMICAL ACTIVITED CARBON FROM ANIMAL SOURCES (I.E BONES) AND PLANT SOURCES (I.E SAW DUST).

## BY

# ISA MUSA YAKAŞAI 98/7010EH

# PARTMENT OF CHEMICAL ENGINEERING EDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGER STATE. NIGERIA

**NOVEMBER 2004** 

# PRODUCTION AND CHARACTERIZATION OF CHEMICAL ACTIVITED CARBON FROM ANIMAL SOURCES (I.E BONES) AND PLANT SOURCES (I.E SAW DUST).

BY

# ISA MUASA YAKASAI 98/7010EH

A RESEARCH PROJECT SUMITTED TO THE DEPARTMENT OF CHEMICAL ENGINEERING SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR, OF ENGINEERING, SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGER STATE, NIGERIA

#### DECLARATION

I, ISA MUSA YAKASAI (98/7010EH), declare that this research project was carried out under the supervision of Dr, F. Aberuagba and presented in partial fulfillment of the requirement of the award of B.ENG. Degree in Chemical Engineering. All sources on information and quota ion are duly acknowledged.

STUDENT SIGNATURE

DATE

#### CERTIFICATION

This is to certify that this project, production of activated carbon from animal source (bones) and plant source (saw dust) had been presented by Isa Musa Yakasai of the department of chemical engineering, school of engineering and engineering technology, federal university of technology Minna.

march

DR, F, ABERUAGBA ROJECT SUPERVISOR

DR, F ABERUAGBA HEAD OF DEPARTMENT

19/11/2ml

DATE

19/11/2001

DATE

EXTERNAL EXAMINAR

DATE

#### DEDICATION

This project report is heartily without reservation of thoughts dedicated to my beloved father, Alh. Yaro Isa, my beloved mother, Hajiya Bintu Yaro, and my beloved brother Alh. Sani Isa Yaro.

V

#### AKNOWLEDEGEMENT

All praises are due into Allah, the creator of heavens, and the earth and all between, the giver and the sustainer of life; the one on whom I have depended on for all these ages and my hope in the years to come. My gratitude goes to the holy prophet for teaching me the path leading to a faithful life.

My heart felt appreciation to my able supervisor DR, F. Aberuagba for his guidance and fatherly assistance during the course this project work. My appreciation also goes to the head of department, staff and students of chemical engineering department, federal university of technology Minna. To my course mates; the storm is over. Thank you so much.

My deepest appreciation goes to my parent Alh. And Hajiya Yaro Isa for nursing and supporting me to this stage of my life, I shall always be there for you. To all my brothers and sisters, you are wonderful;I love you all.

My warmes: apprec ation also goes to my cousin brother, Alhaji Ismaila Isa thank you so much for giving ne a strong footing and for your solid support and for the encouragement given to me, your efforts shall not be in vain.

To the one and only Monsurat Hassan, who also had been there for me big time, you are simply the best, I am indebted to you. Thank you so much only God can reward you. I am speechless.

Finally, I wish to express my sincere appreciation to the following individuals and families for their contribut on to my life in one way or the other, Hajiya Amina Amadu, Garba, Hajara, Saratul, Nohd, Yarinya, Iyabo, Mallama Azimi Baba Sule, may Allah reward you all. Thank you.

# TABLE OF CONTENTS

| TITLE PAGE                                               | I    |
|----------------------------------------------------------|------|
| DECLARATION                                              | 111  |
| CERTIFICATION                                            | IV   |
| DEDICATION                                               | V    |
| AKNOWLEDGEMEN7                                           | VI   |
| ABSTRACT                                                 | VII  |
| TABLE OF CONTENT:                                        | VII  |
| LIST OF TABLES                                           | VIII |
| CHAPTER ONE                                              |      |
| 1.10 NTRODUCTION                                         | 1    |
| 1.20 AIMS AND OBJECTIVES                                 | 1    |
| 1.30 SCOPE OF WORK                                       | 1    |
| CHAPTER TWO                                              |      |
| LITERATURE REVIEW                                        | 2    |
| 2.10 CHEMISTRY OF BONE                                   | 2    |
| 2.20 CARBON                                              | 2    |
| 2.30 ALLOTROPY OF CARBON                                 | 2    |
| 2.40 ACTIVATION                                          | 2    |
| 2.50 ACTIVATED CARBON                                    | 2    |
| 2.51 TYPE OF ACTIVE TED CARBON ACCORDING TO PHASE        | 3    |
| 2.52 PRODUCTION OF ACTIVATED CARBON                      | 3    |
| 2.53 PROPERTIES OF ACTIVATED CARBON                      | 4    |
| 2.54 PHYSICAL PROPERTIES OF TYPICAL ACTIVATED CARBON     | 4    |
| 2.55 USES OF ACTIVA FED CARBON                           | 5    |
| 2.56 ADVANTAGES OF ACTIVATED CARBON OVER OTHER ADSORBENT | 5    |
| 2.60 ADSORPTION                                          | 5    |
| 2.61 TYPES OF ADSOLPTION                                 | 6    |
| CHAPTER THREE                                            |      |
| 3.0 EXPERIMENTALS                                        | 7    |
| 3.1 RAW MATERIALS, EQUIPMENTS AND UTILITIES              | 7    |
| 3.1.1 RAW MATERIALS                                      | 7    |
| 3.12 EQUIPMENTS                                          | 7    |
| 3.13 APPARATUS                                           | 7    |
| 3.20 SOURCES OF MATERIALS AND EQUIPMENTS                 | 7    |
| 3.30 ACTIVATION CALBON: METHOD OF PREPARATION            | 7    |

| 3.40 METHOD OF PRODUCTION OF ACTIVATED CHARCOAL FROM | I ANIMAL |
|------------------------------------------------------|----------|
| BONES AND SAW DUST                                   | 8        |
| 3.50 CHARACTERIZATION OF ACTIVATED CHARCOAL          | 9        |
| 3.60 TESTING FOR THE PERFORMANCE OF THE ACTIVATED    | CARBON   |
| PRODUCED                                             | 12       |
| CHAPTER FOUR                                         |          |
| 4.1 RESULTS                                          | 13-16    |
| 4.20 DISCUSSION OF RESULTS                           | 17       |
| CHAPTER FIVE                                         |          |
| 5.0 CONCLUSIONS AND RECOMMENDATION                   | 18       |
| 5.10 CONCLUSION                                      | 18       |
| 5.20 RECOMMEDATION                                   | 18       |
| REFERENCE                                            | 19       |
| APPENDIX                                             | 20-29    |

### LIST OF TABLES

| Table 1: characterization of charcoal from cow bone at varying temperatures14 |
|-------------------------------------------------------------------------------|
| Table 2: characterization of activated charcoal from cow bone at              |
| varying temperatures                                                          |
| Table 3: characterization of charcoal from chicken bone                       |
| at varying temperatures                                                       |
| Table 4: characterization of activated charcoal from chicken                  |
| bone at varying temperatures15                                                |
| Table 5: characterization of charcoal from sawdust                            |
| at varying temperatures                                                       |
| Table 6: characterization of charcoal from sawdust                            |
| at varying temperatures16                                                     |
| Table 7: ability of the activated produced on methyl color adsorption16       |

#### ABSTRACT

Activated carbons were produced from cow bone, chicken bone and saw dust by chemical activation me hod. The activated carbons produced were carbonized by determining the surface area, pore volume, moisture content and ash content. The performance efficiencies of the activated carbons were tested using methyl orange color adsorption.

Of the three activated carbon produced, it was discovered that, the activated carbon produce from the chick n bone seemed to be most effective than those produced from cow bone and saw dus: because, it produced: the largest value of surface area (i.e.  $2.829 \text{cm}10^{-5}\text{m}^2$ ), the largest value pore volume (i.e.  $0.0081 \text{cm}^3\text{g}1$ ) and also the largest value of ash content (i.e. 96.79%), the percentage methyl orange color removal was also calculated to be the largest value (i.e. 76.23%).

## CHAPTER ONE

### **1.10 INTRODUCTION**

Activated carbon is an amorphous of carbon with large internal surfaces and pores, which are as a result of the choice of raw materials and the method of production.

Almost any carbonaceous raw material can be used for the production of activated carbon. Wood is commonly used for the production of activated carbon for decolorization while bones chars made by calcing bones are used in large quantity for sugar refining.

Bones and woods are some of the few solids that can produce high surface area per unit weight at relatively low cost. The high surface area per weight enhances its adsorption capabilities. Typical composition of activated carbon includes; high percentage carbon. Ash, hydrogen, sulphur and nitrogen (Fasami 1994).

Whatever the star.ing materials, bones, palm kernel shell, wood, corn curbs etc. the basic steps in the production of activated carbon are:

- Carbonization or burning to eliminate the bulk of the volatile matters.
- Grinding to give a desired particle size
- Activating using chemical or oxidizing with heated gas steam, etc all these are done to levelop proper pre-structure for adsorption.

Activated carbon and its use for desulphurisation processes was produced from oil palm shell by Ekbong, Josephat Okara (PGD February); activated carbon and its use for flue gas deaning was also produced from palm kernel shell and coconut shell by Nwanko Uchenna (PGD March 2001). But as far as I am concern little or nothing as been produced from local raw materials (i.e. bones and saw dust) particularly in Nijer state.

#### 1.20 AIMS AND OBJECTIVES

The aim and objectives of this work is to look at the possibility of utilizing waste products from agricultured and animal products into more productive form.

In this work, however, Agricultural and animal waste products such as bones and sawdust were investigated.

#### 1.30 SCOPE OF WORK

The scope of this work is on the production of activated carbon from plant and animal secreces, the determination of the factors that influences the performance of the activated carbon produced such as: the temperature of carbonization, sources of activation, also the activated carbon produced were also characterized, the performance efficiencies of the activated carbon were also tested and finally the use of the activated carbon.

## CHAPTER TWO

### LITERATURE REVIEW

# 2.10 CHEMISTRY OF BONE

Bone is a rigid tissue consisting of cells embedded in an abundant, hard intercellular material. The two princi, al components of this material, collagen and calcium phosphate, distinguish bone from such other hard tissue as chitin, enamel and shell.

The major minerals are calcium and phosphate. When first deposited, mineral is crystallogragphically an orphous but with maturation become typical of the appetite mineral. Carbonate is also present in varying quantity and occurs in two distinct phases; calcium carbonate and carbonate appetite.

#### 2.20 CARBON

A chemical element C with an atomic number of 6 and an atomic weight, of 12.01, carbon is unique in chemistry because it forms a vast number of compounds, larger than the sum total of all other element combined. Carbon is a typical non-metal although an allotrope of carbon graphite conduct electricity. Carbon exists in two allotropic forms graphite and diamond. Carbon also has the ability to form multiple with it and with other non-metals. (Ababio O.Y, 1998).

#### 2.30 ALLOTROPY OF CARBON

If an element can exist without changing it s state in two or more different forms, the element is said to exhibits allotropy or polymorphism. The forms of the elements are known as allotropes of it. They exhibit different physical properties and the same or may have different chemical properties. (Ababio.O.Y, 1998).

#### 2.40 ACTIVATION

It is the process of treating the carbon to open an enormous number of pores in the sizes of 1.2-to 2.0-nanometer diameter range. (Gas-adsorbent carbon). Or up to 100-nanometer range (decole urization carbon). After activation, the carbon has a large surface area for the adsorption phenomona. Carbons that have not been subjected previously to high temperature are easier to activate. Selective oxidation of the base carbon with steam, carbon dioxide, structure. Other methods required the mixing of chemical such as metal chlorides (particularly with the carbonaceous matter, followed by calcining and washing the residue. The econe nic of the latter process require the recovery of the chemical agent. (Sheffer, 1969).

#### 2.50 ACTIVATED CA RBON:

It is powdered gradular or pelleted form of amorphous carbon characterized by very large surface area per unit volume, because of an enormous number of fine pores. Activated carbon is carable of collecting gases, liquids or dissolved substances on the surface of the pores. Activated carbon has a board spectrum of adsorption activity, excellent physical and chemical stability and ease of production from richly available, waste materials

Activated carbon came into prominence through its use as an adsorbent in gas mask in world war I. however, the knowledge that, carbon produced by the decomposition of wood can remove coloring matter from solution dates back to the fifteenth century. The first commercial application of this property, however, was not made until 1974, when charcoal filters were used in a British sugar refinery. About 1812, bone char was discovered by Fguer. The market continues to be dominated by the USA and Japan which together account for arc and 60% of the world consumption. The importance of major gold mining in the activa ed carbon market is growing rapidly following the spread in the use of carbon in pulp and carbon in leading technology. (Chilow, F.W 1972)

# 2.51 TYPES OF ACTIVATED CARBON ACCORDING TO PHASE

There are two types of activated carbon, which are commercially recognized under this heading, they are

- Gas adsorbed carbon that are used for purification purposes in the vapor or gas phase such as solvent recovery, gas separation. These are hard dense granules or pellets
- Liquid-phase carbon, which are used to decolorized or purify liquids, solution of liquefiable materials like waxes. These are light fluffy powders. The main different between hem lies in the pore-size distribution.

#### 2.52 PRODUCTION OF ACTIVATED CARBON

Activated carbon can be produced from any carbonaceous materials. The choice between raw materials depends on the properties needed at the end product, the processing technology available and the cost of the raw material. By far the most commonly used raw materials are coconut shell and coal based materials. Other materials used for liquid phase adsc bent are lignite's, bones, wood. Activated carbon has also been made from sawdust, and rice husk.

These are two basic manufacturing processes for activated carbons. Steam is generally used for coal-ba ed coconut shell; palm kernel shell raw materials etc. chemical activation is used for the production of activated carbon from saw dust, wood shaving, or bones. The choice of processing method depends on the raw material used and on whether a low or high density powdered or granular activated carbon is required. Both processes involved the con rol oxidation of the raw material at high temperatures.

In the selective activation process, the carbonaceous raw material is first carbonized at  $500^{\circ}$ C to 6  $00^{\circ}$ C to drive off the volatile materials. However, a coke is produced with poles toos shall to act as a useful adsorbent. To enlarge the pore size and increase the surface area the carbon is activated with either steam or chemical activation method. (Shaffer, 1969).

# 2.53 PROPERTIES OF ACTIVATED CARBON

Activated carbon, in powder, granule, pellet fibre are extruded form, are used for their adsorption properties to purify a liquid or gas, to concentrate a chemical from liquid or gas, or to separate a chemical from a gas stream. Commercial grades of activated carbon are designed as liquid-phase or gas phase adsorbents.

Liquid-phase carbon can be powdered or granular in form, gas phase carbon is generally hard granules or hard relatively dust-free pellet. A large specific surface area characterizes all activated carbons.

Selective oxidation or chemical or steam activation can be used to produce both liquid or gas-phase carbon. In both cases, the raw material is activated in the granular form. Some gas adsorber, carbons are made from hard, dense materials like fruit pips and nutshells. They are crush to sizes and activated directly to give hard dense granules of carbon.

Important chemical properties of activated carbon are its ash content, the ash composition and the Ph of the carbon. The ash content increases in direct proportion to the degree of activation. I can be used to determine the raw material used to produce and activated carbon. Carbon. Can inhibit adsorption. The ph of the carbon affects the material ammonic or catic ic adsorption preference. (Sheffler, 1969).

# TABLE 2.54 A AND E: PHYSICAL PROPERTIES OF TYPICAL ACTIVATED CARBON.

| Property                             | Lignite base | World base | Bituminous |
|--------------------------------------|--------------|------------|------------|
| Diameter (nim)                       | 0.15         | 0.15       | 0.59-2.38  |
| Mesh (tyler)                         | -100         | -100       | 8-30       |
| Carbon tetrachloride activity (r un) | 30           | 40         | 50         |
| Iodine no. (mm)                      | 500          | 700        | 950        |
| Bulk density mm(g/m <sup>1</sup> )   | 0.48         | 0.25       | 0.50       |
| Ash content (mash %)                 | -18          | 7          | 8          |

#### LIQUID-PHASE ACTIVATED CARBON

#### **GAS- PHAS ACTIVATED CARBON**

| 3.36- 2.38<br>-6,+8<br>60 | 3.36-1.18<br>-6, + 14<br>60           |
|---------------------------|---------------------------------------|
|                           | · · · · · · · · · · · · · · · · · · · |
| 60                        | 60                                    |
| 00                        |                                       |
| 1000                      | 1000                                  |
| 0.52                      | .53                                   |
| 2                         | 4                                     |
| -                         | 0.52                                  |

# 2.55 USES OF ACTIVATED CARBON

- Activated charce al, the vapor- adsorbent type was first used in gas mask because of its ability to a lsorb certain poisonous gases, and it is now widely employed in both military and industrial gas masks.
- 2) Activated carboa is used in air conditioning systems to control odors in large restaurant, auditoriums and airport
- 3) Specially impregnated grade are used in cigarette filters.
- 4) Activated charcoal is used on large scale in Germany for the removal of hydrogen su'phice from town's gas.
- 5) Activated charcoal has also been used in Germany for dephenolizing effluent gas-work liquor.
- 6) In the purification of drinking water activated charcoal has in recent years been used. Its use is confined to the find states of purification for the removal of excess chloride emaining after chlorination and of traces of phenol introduced through contamination of the water with factory effluent, this purification is done y means of filtration through beds of active charcoal.
- 7) It is used for the recovery of gasoline from natural gas. It able to adsorb practically any organic solvent at about 35°C and release it when heated to 12°C or higher for solvent recovery.
- 8) Other uses include solution purification such as the clean up of cane, beet, and corn sugar solution and for the removal of testes and odors from vegetable and animal fits and oil, alcohol beverage chemical and pharmaceuticals.

#### 2.56 ADVANTA GES OF ACTIVATED CARBON OVER OTHER ADSORBENTS

Other forme of adsorbents include activated aluminas, molecular sieve and silicate gel. Activated carbon are less polar than other adsorbents but it is incorrect to call them non polar because the sorface oxides render then slightly polar. The polarity generally increases with aging of the carbon in humid air. Compared with other commercial adsorbent, activated carbon has a broad spectrum of adsorptive activity's excellent physical readily available frequently waste materials. Adsorption on activated carbon is selective, favoring non-polar over polar substances. (Clifford And Gensner, 1973)

#### 2.60 ADSORPTION

It is defined as a process in which fluid molecules are concentrated on the surface of an adsorbent by chemical or physical forces or both. It is a solid substance to condense and retain on its surface layer of a gaseous or liquid substances. A well known equation relating quantity adsorbed is as follows

$$\frac{X}{m} = Kp^{\frac{1}{n}}$$

where

x = weight of the adsorbed material

m = weight of the adsorbing material

- c = concentration n equilibrium with adsorbed material or p = pressure
- k and n = constant to be determined experimentally for each temperature.

The adsorption of a gas on a solid takes place in several stages, which include:

- The movement of the gas molecules to the external surface of the solid, and this is the same as the diffusion of the gas molecules through a stationary layer
- The penetration of the molecules into the pores of the solid
- The actual adsorption of the molecular on the site in the pore. (Philip G and K, Watson 1979).

#### 2.61 TYPES OF ADSOLPTION

When any gas brought into contact with any solid under the right condition of temperature and pressure it is attracted to and partially covers the surface of the solid by a process known as adsorption. The solid is called the adsorbent while the adsorbed substance is called the adsorbate. Actually either liquid or solid can act as adsorbent. Also adsorbate can be gas or Equids. The adsorption of gases on solids has being found to fall the convenient classification known as physical and chemical adsorption respectively. Physical adsorption occurs through vander waals forces between adsorbent and the adsorbate molecule but Chemical adsorption differs from physical adsorption in that it depends on chemical boild formation between the adsorbent and adsorbate. Chemical adsorption is therefore highly specific. (Kirk O. 1983).

## CHAPTER THREE

#### 3.0 EXPERIMENTAL 3

# 3.1 RAW MATERIAL SEQUIPMENTS AND UTILITIES

## 3.1.1 RAW MATERIALS:

The major raw materials for the production of these activated carbons are bones from animals and saw dust from plant sources.

#### 3.12 EQUIPMENTS

- Digital analytical balance (brain weigh B 300) from London.
- Laboratory electric furnace (digital) mechanical instrument corporative
- Hungary model- TYP:OH 85TR
- Encrete brass size mesh size 2mm made steel manufactured from Endicott's limited London England.
- Tray driver made in Hampshire England
- Colorimeter corning 253 model
- Funnel
- Filter paper

#### 3.13 APPARATUS

- Beaker
- Conical Jask
- Measuring cylinder
- Crucible
- Mortal and pester made of clay manufacture from pascal engineering company limited England.

#### UTILITIES

- Mgcl<sub>2</sub> (reagent) percentage purity 95.3 made by M and B England
- Methyl crange
- Distilled water from the laboratory

#### 3.20 SOURCE OF MA' 'ERIALS AND EQUIPMENTS

The basic raw materials, which are: bones from animal source were obtained from abattoir in Minna and the sawdust from plant source was obtained from a sawmill in Minna also. All other equipments and apparatus were obtained from chemical engineering department laboratory.

#### 3.30 ACTIVATED CALBON: METHOD OF PREPARATION

In the manufacture of activated carbon, a carbonaceous raw materials are subjected to a four stage processes.

i. **DEHYDRATION:** the materials were first heated to a temperature of about 170°C in an electric oven to remove water or any moisture; sometimes a dehydrating agent such as zinc chloride or phosphoric acid is used.

7

- ii. CARBONAZATION: This is carried out at varying temperatures in an electric furnace.
- iii. **PULVERIZATION:** the carbonized bones and the saw dust were then crushed into smaller sizes using mortals and pestle or any other method of pulverization
- iv. **ACTIVATION:** in the final stage, the charcoal were treated with an activating agents such as magnesium chloride (MgCl<sub>2</sub>),CaCl<sub>2</sub>. in the course of activation, the decomposition product are burned off, exposing pore openings. The pores there increase in size and a macro porous structure develops.

# 3.40 METHOD OF FRODUCTION OF ACTIVATED CHARCOAL FROM ANIMAL BONES AND SAW DUST.

The animal bones (cc w and chicken), obtained from abattoir within Niger state were collected and washed in distilled water to remove dirt and any adhering substance, then the bones were sundried for one day.

Therefore 100g each of these samples was placed into a dried crucible and placed into an electric oven at  $170^{\circ}$ C for 30minutes to facilitate dehydration. More so 14.00g of each of these samples were placed into 4 different crucible each at varying temperatures (i.e. 500, °C 530 °C, 560 °C, and 600 °C, ) and carbonized in an electric muffler furnace for 45 minutes after which t was put off and the sample were allowed to cool for 1 hour.

The carbonized charcoal from cow and chicken bone were pulverized and impregnated with  $(MgCl_2)$  solution for a period of 24 hours the next day it was drained and place on a tray for air-crying. And therefore ready for use. (Fasanmi F.O 1994).

#### Activation of charcoal from saw dust.

The weight of a beater and 10ml solution of  $(MgCl_2)$  was weighed at different temperatures and the weight of a beaker, 10ml solution of  $(MgCl_2)$ , and that of the sample were weighed and subtracted from the first measurement.

At 600°C: a)  $1^{st}$  be: ker = 10 ml (MgCl<sub>2</sub>), = 9.36g

b) Beaker + 10m (MgCl<sub>2</sub>), + charcoal = 9.70g

Therefore actual weight of activated charcoal after activation is = 9.70g-9.36g= 0.34g

At 560 °C: a)  $1^{st}$  besker + 10 ml (MgCl<sub>2</sub>), = 9.57g

b) Beaker + 10mi (MgCl<sub>2</sub>), + charcoal = 9.97g

Therefore the actual weight of activated charcoal is = 9.97-9.57

0.40g

At 530 °C: a) becker + 10 nl of (MgCl<sub>2</sub>), = 9.30g

b) Beaker + 10 nl of (MgCl<sub>2</sub>), + charcoal = 9.76g

Therefore actual weight of activated charcoal is = 9.77 - 9.30g

=0.47g

At 500°C: a) beaker  $\pm$  10 nl of (MgCl<sub>2</sub>), = 9.22g

b) Beaker + 10r I of  $(MgCl_2)$ , + charcoal = 9.73g Therefore actual weight of activated charcoal is = 9.73- 9.22g

=0.51g

(Shefiler, G.H 1969)

# 3.50 CHARACTERIZATION OF ACTIVATED CHARCOAL

This involves the determination of some parameters contained in the charcoal which include: esh content, moisture content, charcoal yield, fixed carbon, bulk density (apparent density), partic e size, pore volume and surface area, volatile contents etc.

1) Ash Content: this gives the total ash present in the charcoal. In specific end uses, the amount and composition of the ash may influence the desired properties of activated charcoa.

It is calculated as follows:

Total ash = 
$$\frac{D-1}{C-b} \times 100 - - - - - 3(a)$$

Where B = weight of the crucible (g)

C = weight of the crucible + original sample (g)

D = weight of the crucible + ash sample (g)

( ASTM) (1987)

2) Moisture content: this determines the moisture content of the charcoal. The moisture content of charcoal is often required to define and express its properties in relation to the pet weight of the carbon. The calculation is as follows:

Moisture conten = weight of the original sample – the weight of the ash x 100 Weight of the original sample

(American society for testing and materials (ASTM) 1987).

# 3) YIELD OF CHARCOAL

It is obtained from this calculation:

$$Yield = \underline{Q_{-1} \cdot C + M_{...}} \times 100$$

Where,

Q = original m is of activated charcoal.

A.C = ash content.

M.C = Moisture content. [Ekeneme E.J, 1996]

#### 4) VIXED CARBON

This was obta ned from calculation,

F.C = fixed carbon

Y = Yield of charcoal

M.C = Moisture content

A.C = Ash content (Britich standard institution (BSI) 1997)

#### 5) PARTICLE SIZINC.

The smaller the particles size the bigger the porosity. The granules are usually most effective with the size of granular activated carbon in order to provide proper content of gases or liquid in a packed bed of the material. Changes in particle size distribution can affect the pressure drop and the rate of adsorption.

#### 6) PORE VOLUME

15g of activated carbon were soaked in 100ml of distilled water for three hours and the activated carbon was strained. The values obtained are as follows:

Pore volume =  $\underline{W}_{\underline{f}} - \underline{V}_{\underline{o}} x$  density of H<sub>2</sub>O------3 (f) W<sub>o</sub>

Where

 $W_f = final weight of activated charcoal and beaker (W_f)$  $W_o = initial weight of activated charcoal and beaker (W_o)$ 

### 7) VOLATILE CONTENT:

A mass (Q) of the charcoal was activated at 900Oc for 10minutes in a closed crucible inside a mufflet furnace. The content are then removed and cooled in a desiccators. The changes in weight (Y) are noted and the difference is given as the volatile content.

The volatile content (VC) is determined from:

$$V.C = \underline{Q - Y} \quad X \quad 100$$

$$Q$$

Where VC => Volat e content

 $Q \Longrightarrow$  Origina<sup>1</sup> mass of the charcoal

 $Y \implies$  Change in the weight of the charcoal.

#### 8) PORE VOLUME

15g of activated (arbon (i.e. cow bone) was soaked in 100ml of distilled water for two hours and the activated carbon was strained and weighed to be: 17,70g.

The values obtained are as follows

Initial weight of activate: charcoal and beaker  $(W_0) = 105.60g$ Final weight of activated charcoal and beaker  $(W_f) = 108.3g$ 

Pore volume =  $\underline{W_{f} - W_{o}}$ : density of H<sub>2</sub>O  $W_{o}$ 

= 108.3 0-105.60 x 1 105.60 x 1

$$= 0.026 \text{ cm}^3\text{g}^{-1}$$

15g of activated carbon (i.e. chicken bone) was soaked in 100ml of distilled water for two hours and the activated carbon was strained and weighed to be: 23,50g.

The values obtained are as follows Initial weight of activated charcoal and beaker  $(W_o) = 105.60g$ Final weight of activated charcoal and beaker  $(W_f) = 114.10g$ 

Pore volume =  $W_{f} - W_{o} x$  density of  $H_{2}O$ 

$$= \frac{114.0-105.60}{1!05.60} \times 1$$

 $= (1.08 \text{ cm}^3 \text{g}^{-1})$ 

15g of activated carbon produced from saw dust was dissolved in 100ml of distilled water for two hours and the activated carbon was recovered with the aid of a beaker, funnel and a filter paper and the weight of the residue was weighed to be : 16.10g.

The values obtained are as follows

Initial weight of activated charcoal and beaker  $(W_o) = 105.60g$ Final weight of activated charcoal and beaker  $(W_f) = 106.70g$ 

Pore volume =  $W_{f} - W_{o}$  x density of H<sub>2</sub>O W<sub>0</sub>

 $= 106. \ '0-105.60 \qquad x \qquad 1$ 

 $= 0.010 \text{ cm}^3 \text{g}^{-1}$ 

3.60 TESTING FOR THE PERFORMANCE OF THE ACTIVATED CARBON PRODUCED

The following test was carried out on the activated carbon produced:

#### METHYL ORANGE COLOUR ADSORPTION

0.1g methyl orange was prepared by dissolving 1.0g of the dye in water, 50ml was taking from the sample and clluted to 1 litre.

For methyl orange color adsorption 1.0g activated carbon of each sample was vigorously stirred in 40 ml of the dilute solution for ten minutes. The solution was filtered and the colour units of the filterate as well as the original solution after it has also filtered were compared on a photoelectric colorimeter.

# **CHAPTER FOUR**

#### 4.1 Results

- 1. Weight of the crucible = 22.10g
- 2. Weight of the original sample = 14.00g

A. WEIGHT OF COW BONE AT DIFFERENT TEMP. AFTER CARBONNIZATION [: e. CHARCOAL]

AT  $600^{\circ}C = 8.80g$ AT  $560^{\circ}C = 8.93g$ AT  $530^{\circ}C = 9.52g$ AT  $500^{\circ}C = 9.57g$ 

B. WEIGHT OF COW BONE AT DIFFERENT TEMP. AFTER CARBONNIZATION

AT  $600^{\circ}C = 6.10^{\circ}g$ AT  $560^{\circ}C = 6.39^{\circ}g$ AT  $530^{\circ}C = 6.53^{\circ}g$ AT  $500^{\circ}C = 6.99^{\circ}g$ 

C. WEIGHT OF CHAI, COAL FROM SAWDUST AT DIFFERENT TEMP. AT  $600^{\circ}C = 0.50g$ AT  $560^{\circ}C = 0.54g$ AT  $530^{\circ}C = 0.56g$ AT  $500^{\circ}C = 0.58g$ 

A. WEIGHT OF CHARCOAL FROM COW BONE AT DIFFERENT TEMPERATURES FOR 900 °C. IN 20 MIN. FOR VOLATILE CONTENTS

AT  $600^{\circ}C = 15.09g$ AT  $560^{\circ}C = 15.20g$ AT  $530^{\circ}C = 15.36g$ AT  $500^{\circ}C = 15.40g$ 

B. WEIGHT OF CHARCOAL FROM CHICKEN AT DIFFERENT TEMPERATURES FOR 900 °C. IN 20 MIN. FOR VOLATILE CONTENTS

AT  $600^{\circ}C = 15.25$  g AT  $560^{\circ}C = 15.30$  g AT  $530^{\circ}C = 15.45$  g AT  $500^{\circ}C = 15.54\epsilon$ 

# C. WEIGHT OF CHARCOAL FROM SAW DUST AT DIFFERENT TEMPERATURES FOR 900 °C. IN 20 MIN. FOR VOLATILE CONTENTS

AT  $600^{\circ}C = 0.48g$ AT  $560^{\circ}C = 0.45g$ AT  $530^{\circ}C = 0.40g$ AT  $500^{\circ}C = 0.36g$ 

# A. WEIGHT OF AC IVATED CHARCOAL FROM CHICKEN BONE

AT  $600^{\circ}C = 10.85g$ AT  $560^{\circ}C = 12.10g$ AT  $530^{\circ}C = 13.00g$ AT  $500^{\circ}C = 12.55g$ 

## B. WEIGHT OF ACTIVATED CHARCOAL FROM COW BONE

AT  $600^{\circ}C = 8.40g$ AT  $560^{\circ}C = 9.22g$ AT  $530^{\circ}C = 9.95g$ AT  $500^{\circ}C = 10.57g$ 

#### C. WEIGHT OF AC 'IVATED CHARCOAL FROM SAW DUST.

AT  $600^{\circ}C = 0.34g$ AT  $560^{\circ}C = 0.40g$ AT  $530^{\circ}C = 0.47g$ AT  $500^{\circ}C = 0.51g$ 

# TABLE 1. CHARACTERIZATION OF CHARCOAL FROM COW BONE ATVARYING TEMPERATÜRES

| Temp<br>( <sup>o</sup> C) | Mass<br>(g) | Moi fure<br>content<br>(%) | Ash<br>content<br>(%) | Charcoal<br>yield<br>(%) | Volatile<br>content<br>(%) | Fixed<br>carbon<br>(%) |  |
|---------------------------|-------------|----------------------------|-----------------------|--------------------------|----------------------------|------------------------|--|
| 500                       | 14.00       | 31.64                      | 68.34                 | 97.38                    | 0.00                       | 0.00                   |  |
| 530                       | 14.00       | 32.00                      | 68.00                 | 97.43                    | 0.00                       | 0.00                   |  |
| 560                       | 14.00       | 36.2                       | 63.79                 | 98.03                    | 0.00                       | 0.00                   |  |
| 600                       | 14.00       | 27.1                       | 62.16                 | 98.60                    | 0.00                       | 0.00                   |  |

# TABLE 2 CHARACTERIZATION OF ACTIVATED CHARCOAL FROM COWBONE AT VARYING TE: 1PERATURES:

| Temp ( <sup>o</sup> C) | Mass (g) | Ash content (%) | Moisture content |
|------------------------|----------|-----------------|------------------|
|                        |          |                 | (%)              |
| 500                    | 15.00    | 75.50           | 24.50            |
| 530                    | 15.00    | 71.07           | 28.93 -          |
| 560                    | 15.00    | 65.86           | 34.14            |
| 600                    | 15.00    | 60.00           | 40.00            |

# TABLE 3. CHARACTER ZATION OF CHARCOAL FROM CHICKEN BONEAT VARYING TEMPERA FURES

| Temp<br>( <sup>O</sup> C) | Mass (g) | Moist ire<br>conter t<br>(%) | Ash<br>content<br>(%) | Charcoal<br>yield<br>(%) | Fixed<br>carbon<br>(%) | Volatile<br>content<br>(%) |
|---------------------------|----------|------------------------------|-----------------------|--------------------------|------------------------|----------------------------|
| 500                       | 14.00    | 50.07                        | 49.93                 | 100.01                   | 0.01                   | 0.00                       |
| 530                       | 14.00    | 53.36                        | 46.64                 | 100.50                   | 0.50                   | 0.00                       |
| 560                       | 14.00    | 54.36                        | 45.64                 | 100.60                   | 0.60                   | 0.00                       |
| 600                       | 14.00    | 56 43                        | 43.57                 | 100.90                   | 0.89                   | 0.00                       |

# TABLE 4 CHARACTERIZATION OF THE ACTIVATED CHARCOAL FROM CHICKEN BONE AT VARYING TEMPERATURES:

| Тетр ( <sup>0</sup> С) | Maiss ( ;) | Ash content (%) | Moisture content |
|------------------------|------------|-----------------|------------------|
|                        | 1          |                 | (%)              |
| 500                    | 15.00      | 96.79           | 03.21            |
| 530                    | 15.00      | 92.86           | 07.14            |
| 560                    | 15.00      | 86.43           | 13.57            |
| 500                    | 15.00      | 77.50           | 22.50            |

# TABLE 5. CHARACTERIZATION OF CHARCOAL FROM SAW DUST AT VARYING TEMPERATURES

| Temp<br>( <sup>o</sup> C) | Mass (g) | Moisture<br>content<br>(%) | Ash<br>content<br>(%) | Charcoal<br>yield<br>(%) | Fixed<br>carbon<br>(%) | Volatile<br>content<br>(%) |
|---------------------------|----------|----------------------------|-----------------------|--------------------------|------------------------|----------------------------|
| 500                       | 14.00    | 95.85                      | 4.14                  | 106.55                   | 6.14                   | 37.93                      |
| 530                       | 14.00    | 96.03 .                    | 4.00                  | 106.57                   | 6.16                   | 28.57                      |
| 560                       | 14.00    | 96.11                      | 3.86                  | 106.59                   | 6.18                   | 16.67                      |
| 600                       | 14.00    | 96.43                      | 3.57                  | 106.63                   | 6.54                   | 4.00                       |

# TABLE 6 CHARACTEF IZATION OF THE ACTIVATED CHARCOAL FROM SAW DUST AT VARYING TEMPERATURES:

| Temp ( <sup>O</sup> C) | Mass (g) | Ash content (%) | Moisture content |  |
|------------------------|----------|-----------------|------------------|--|
|                        |          |                 | (%)              |  |
| 500                    | 15.0.)   | 03.64           | 96.36            |  |
| .530                   | 15.0)    | 03.36           | 96.64            |  |
| 560                    | 15.0)    | 02.86           | 97.14            |  |
| 600                    | 15.0)    | 02.43           | 97.57            |  |

## PERFORMANCE OF THE ACTIVATED CARBONS PRODUCED ON METHYL COLOR ADSORPTION. FABLE 7

| Samples                            | Methyl orange color unit original (ABS) final (ABS) |       |  |
|------------------------------------|-----------------------------------------------------|-------|--|
| Activated carbon from cow bone     | 0.610                                               | 0.420 |  |
| Activated carbon from chicken bone | 0.610                                               | 0.145 |  |
| Activated carbon from saw dust     | 0.610                                               | 0.450 |  |

## 4.20 DISCUSSION OF RESULTS

This topic is focused on the production of activated carbon from plant and animal sources. In which the level of adsorption depends strictly on how well the charcoals were activated, the particle size, moisture content, fixed carbon etc.

In table 1. For the charcoal from cow bone at 500°C, the moisture content was found to be 31.64%, ash content was 68.34% charcoal yield was 97.38% volatile content was 0.00% and fixed carbon was also 0.00%. Also in table 3, the charcoal from chicken bone at 500°C, the moisture content was found to be 50.07%, ash content was 49.93%, charcoal yield was 100.01%, fixed carbon was 0.01% and volatile content was 0.00%. While in table 5, the charcoal from saw dust at 500 °C the moisture content was found to be 95.86%, ash content 4.14%, charcoal yield was 106.55% fixed carbon was 6.14% and volatile content was 37.93%.

In table 2. For the activated carbon from cow bone, at 500 °C the ash content was found to be 75.50% and the moisture content was 24.50%. In table 4, the activated carbon from chicken bone at 500 °C the ash content was found to be 96.79% and the moisture content was 03.21%. While in table 6, for the activated carbon from saw dust, at 500 °C, the ash content was found to be 03.64% and the moisture content was 96.36%.

Further more, the surface area for activated charcoal from cow bone, chicken bone and saw dust were found to be  $1.2572 \times 10^{-5} \text{m}^2$ ,  $2.829 \times 10^{-5} \text{m}^2$ , and  $1.767 \times 10^{-6} \text{m}^2$ , respectively. While, their pore volume were also found to be  $0.026 \text{cm}^3 \text{g}^{-1}$ ,  $0.081 \text{cm}^3 \text{g}^{-1}$  and  $0.010 \text{cm}^3 \text{g}^{-1}$  respectively.

The percentage methyl orange colour removal by 1.0g of each of the activated carbons produced from co v bone, chicken bone and saw dust were calculated to be 31.15%, 76.23% and 26.23% respectively.

Therefore, from the result obtained above, it was discovered that, the activated carbon produced from the chicken bone was found to be most effective than those produced from cow bone and saw dust.

#### **CHAPTER FIVE**

# 5.0 CONCLUSIONS ANI RECOMMEDATION

#### 5.10 CONCLUSION:

The activated carb: n produced from the chicken bone seemed to be of many advantages, some of which include: its high surface area, pore, volume and also most effective for colour removal. It could also provide an avenue of large animal waste recycle and a means of ob aining cheap and abundant activated charcoal for use in gas mask, odour removal especially from hospitals. Household smells etc because of its high adsorption capacities (Fasan.mi F.O 1994).

#### 5.20 RECOMMENDATION

Sheffler, (G.H 1999) had shown that, the performance of activated carbons produced can be improved, if the following facts are looked into in further studies on this topic.

i. The optimum carbonization and activation time should be determined.

- ii. A size reduction lesser than 2.0mm particle size should be tried to determine the optimum part cle size for the activated carbon.
- iii. The material samples should be cleaned as much as possible to ensure that, the final product contain as less as possible impurities.
- iv. Steam activation should be used in order to determine to optimum temperature of activation.

#### REFERENCE

- Ababio O.Y. 1998, New School chemistry, senior secondary science series" new edition pg 97 – 98.
- 2. America society for testing and materials (ASTM) 1987" Gaseous fuels coal and coke" section 15 vol.1
- Chilow, F.W color its principles and application published by fountain press, London, 1972. pg 85 – 90.
- Clifford, A, H. and G. H Gensner, the encyclopedia of chemistry, 3<sup>rd</sup> edition, published by van Nostrinal Rehinhold company New York, 1973. pg 182 -183.
- Fasanmi, F.O preparations and application of activated carbons from palm kernel shell, cow bones and concorbs in water treatment, journal of the Nigeria society of engineering vol. 29 No 2, 1994 pg 24 – 30.
- Kirk Othmer, encyclopedia of chemical technology 2<sup>nd</sup> edition. Vol 1 published by John Wiley and sons Inc use, 1996 pg 441.
- Ogedengbe O. Orlage, A. T and Tella, A. carbonization and activation of palm kernel shells for house hold water fuller, water international vol. 10 1984 pg 134 – 138.
- Odigure J.O 1998 "safety, loss and pollution prevention in chemical process industries. Jodigs and associations. Minna Niger state. Nigeria pg 89 102.
- Production of chemical activated carbon from oil palm shell and its use for the gas cleaning by Nwanko Uchenna (PGD March 2001)
- Philip, a and k. Watson, Handbook of separation technology for chemical engineer, 1<sup>st</sup> Edition, McGraw Hill book company, New York, 1979, pg 715 – 716.
- 11. Sheffer, G.H carbon activated encyclopedia of industrial chemical analysisJohn Willey and sons inc. New York 1969 page 107 112
- Tedder. J.M and A. Nechated, Basic organic chemistry 1<sup>st</sup> edition, John Wiley and sons inc. London 1975. page 270-300
- 13. Walker, P.L chemistry and physics of carbon vol.2 published by Edward Arnold London 1966, pg 60 77.

#### APPENDIX

Characterization of charcoal from cow bone of varying temperatures

At 600°C: Weight of the crucible = 22.10g

Weight of the original = 14.00g

Weight after cart onization = 8.80g

1 Ash content 
$$= \frac{30.90 - 22.10}{36.10 - 22.10} \times 100 = 62.14\%$$

2. moisture content 
$$=\frac{14.00-8.80}{14.00} = x100 = 37.14\%$$

3. Yield of the charcoal  $\frac{14.00 - 0.62386 + 0.3714}{14.00} \times 100 = 98.16\%$ 

4 fixed carbo 
$$x = \frac{0.9816 - 0.3714 - 0.6286}{0.9816} x = -1.87\%$$

5. Volatile content = 
$$\frac{8.80 - 15.09}{8.80} \times 100 = -71.40\%$$

At 560<sup>o</sup>C: Weight after carb nization = 8.93g

$$1.Ash, content = \frac{31}{36.10 - 22}, \frac{0}{0} \times 100 = 63.79\%$$

2. Moisture, content =  $\frac{14.00}{14.00} \times \frac{8.93}{10} \times 100 = 36.21\%$ 

3. Yield of the charcoal  $= \frac{14\ 00 - 0.6379 + 0.3621}{14.00} x 100 = 98.03\%$ 

#### 20

4. Fixed carbor-

 $=\frac{0.9803 - 0.3621 - 0.6379}{0.9803}x100 = -1.55\%$ 

4.Volatile, content = 
$$\frac{8.93 - 15.20}{8.93}$$
 x100 = -70.21%

At 530°C: Weight after carbonization = 9.52g

1. Ash content =  $\frac{31.62-2210}{36.10-22.10}$  x 100 = 68%

2. Moisture content =  $\frac{14.00-9.52}{14.00}$  x 100 = 32.%

3. Yield of the charcoal  $\frac{14.00-0.68+0.32}{14.00}$  x 100 = 97.43%

4. Fixed carbon = 0.974:  $-0.32-0.68 \times 100 = -2.64\%$ 0.9743

5. Volatile content =  $\frac{9.5}{9.52}$  x 100 = -61.35%

At 500°C: Weight after c urbonization = 9.57g

1. Ash content =  $\frac{31.67-2210}{36.10-22.10}$  x 100 = 68.34%

2. Moisture content =  $\frac{14.90-9.57}{14.00}$  x 100 = 31.64%

3. Yield of the charcoal =  $\underline{14.00-0.6834+0.3164} \times 100 = 97.38\%$ 14.00

4. Fixed carbon =  $0.9738 \cdot 0.3164 \cdot 0.6834 \times 100 = -2.67\%$ 

5. Volatile content = 9.57.15.40 x 100 = -60.92% 9.5"

21

~2.2

Characterization of charco. I from chicken bone at varying temperatures Weight of the crucible = 22.10gWeight of the original same le = 14.00gAt 600°C: Weight after car )onization = 6.10g100 = 43.57% 1. Ash content = 28.20-22 10 x 36.10-22.10 = 56.43% 2. Moisture content =  $14.0^{\circ}-6.10$  x 100 14.00 3. Yield of the cha $coal = 11.00-0.4357+0.5643 \times 100 = 100.9\%$ 14.00 4. Fixed carbon =  $1.009-0.5643-0.4357 \times 100 = 0.891\%$ 1.)09 5. Volatile content = 6.10-15.25100 = -1.50% х 6.10 At 560°C: Weight after cart onization = 6.39g1. Ash content = 28.49-22.10 x 100 = 45.64% 35.10-22.10 2. Moisture content = 14.00-6.39 x 100 = 54.36% 1:.00 3. Yield of the charcoal =  $1.00-0.4564+0.5636 \times 100 = 100.6\%$ 14.00 4. Fixed carbon =  $1.006 \cdot 0.5 \cdot 36 \cdot 0.4564 \times 100 = 0.60\%$ 1.006 5. Volatile content = 6.39-12.30100 х = -139.44%6.30 At 530°C: Weight after carbonization = 6.53g

.

= 46.64% 1. Ash content = 28.53-22.10 x 100 36,10-22.10 = 53.36% 2. Moisture content = 14.00-6.53 x 100 14.00 3. Yield of the charcoal =  $14.00-0.4664+0.5336 \times 100 = 100.5\%$ 14.00 4. Fixed carbon =  $1.005-0.5336-0.4664 \times 100 = 0.50\%$ .005 5. Volatile content =  $6.53 \cdot 15.45$  x 100 = 136.60% 6 53 At 500°C: Weight after carbonization = 6.99g 1. Ash content = 29.09-22.10 x = 49.93% 100 36.10-22.10 = 50.07% 2. Moisture content =  $14.00-6.99 \times 100$ 14.00 3. Yield of the charcoa =  $14.00-0.4993+0.5007 \times 100 = 100.01\%$ 14.00 · . 4. Fixed carbon =  $1.001-0.5007-0.4993 \times 100 = 0.01\%$ 1.001 5. Volatile content = 6.99-15.54 x 100 = -122.32% 6.99 Characterization of charcoal from saw dust at varying temperatures Weight of the crucible sample = 22.10gWeight of the original sample = 14.00gAt 600°C: Weight after carbonization = 0.50g

100 = 3.57%1. Ash content = 22.60-22.0 x 36.10-22.10 2. Moisture content = 14.06 0.50 x 100 = 96.43% 14.00 3. Yield of the charcoal =  $14.00-0.0357 + 0.9643 \times 100 = 106.63\%$ 14.00 . 4. Fixed carbon =  $1.07 - 0.96 + 3 - 0.0357 \times 100 = 6.54\%$ 1.07 5. Volatile content = 0.50-0.48 x 100 =4.00%0.50 At 560°C: Weight after carbonization = 0.54g1. Ash content = 22.64-22.10 x 100 = 3.86%36.10-22.10 2. Moisture content = 14.00-2.54 x 100 = 96.14% 14.00 3. Yield of the charcoal = 14.00+0.9614 - 0.0386 x 100 = 106.59% 14.00 4. Fixed carbon =  $1.0659 \cdot 0.9 \cdot 14 \cdot 0.0386 \times 100 = 6.18\%$ 1.0659 Ł. 5. Volatile content = 0.54 - 0.45 x = 16.67% 100 0.54 At 530°C: Weight after carbo lization = 0.56g1. Ash content = 22.66-22.10 x 100 = 4.00%36.10-22.1) 2. Moisture content =  $14.00-0.56 \times 100 = 96.00\%$ 24

(

3. Yield of the cha. coal =  $1 \frac{1.00+0.9600-0.04}{14.00} \times 100 = 106.57\%$ 

4. Fixed carbon =  $3.0657-0.96-0.04 \times 100 = 6.16\%$ 1. )657

5. Volatile content = 0.56-0.40 x 100 = 28.57%

Characterization of activate l charcoal from cow at varying temperatures.

At 600°C: Weight after carl onization = 8.40g

1. Ash content = 30.40-22 10 x 100 = 60% 36.10-22.10

2. Moisture content =  $\frac{14.00 - 8.40}{100}$  x 100 = 40%

At 560°C: Weight after activation = 9.22g

1. Ash content = 31.32-22. 0 x 100 = 65.86%36.10-22.10

2. Moisture content =  $14.00 \ 9.22 \ x \ 100 = 34.14\%$ 

At  $600^{\circ}$ C: Weight after activation = 8.40g

1. Ash content = 30.40-22.10 x 100 = 60% 36.10-22.10

2. Moisture content =  $\frac{14.00}{14.00} \cdot \frac{8.40}{00} \times 100 = 40\%$ 

At 560°C: Weight after activition = 9.22g

1. Ash content = 31.32-22.12 x 100 = 65.86%

#### 36.10-22.10

2. Moisture content =  $\frac{12.00-9.22}{14.00}$  x 100 = 34.14

At 530°C: Weight after  $\epsilon$  ctivation = 9.95g = 71.07%1. Ash content =  $32.05 \cdot 2.10$  x 100 36.10.22.10 2. Moisture content =  $14 00-9.95 \times 100$ = 28.93% 14.00 At 500°C: Weight after activation = 10.57g 1. Ash content = 32.67 - 2.10 x 100 = 75.50% 36.10.22.10 2. Moisture content =  $14 00-10.57 \times 100 = 24.50\%$ 14.00 Characterization of activated charcoal from chicken bone at varying temperatures At  $600^{\circ}$ C. Weight after a :tivation = 10.85g 1. Ash content = 32.95-2.10 x 100 = 77.50% 36.10-22.10 2. Moisture content =  $14 \ )0-10.85 \ x \ 100$ = 22.50%14.00 At 560°C: Weight after activation = 12.10g1. Ash content = 32.42-2.10 x 100 = 86.43% 36.10-12.10 2. Moisture content = 14.00-12.10 x 100 = 14.29% 4.00 At 530°C: Weight after ac ivation = 13.00g1. Ash content = 35.10-27.10 x 100 = 92.86% 36.10-22.10

2. Moisture content =  $\frac{14}{14.00} \frac{00-13.00}{14.00} \times 100 = 7.14\%$ 

At 500°C: Weight after activation = 
$$13.55g$$

1. Ash content =  $\frac{35.66-22.10}{36.10.22.10}$  x 100 = 96.79%

2. Moisture content =  $\frac{14}{14,00} \frac{00-13.55}{14,00} \times 100 = 3.21\%$ 

Characterization of activated charcoal from saw dust at varying temperatures

At 600°C: Weight after activation = 0.34g

1. Ash content =  $22 \underline{44} \underline{2.10}$  x 100 = 2.43% 36.10 22.10

2. Moisture convent =  $\underline{14,00-0.34}$  x 100 =97.57% 14.00

At 560°C: Weight after activation = 0.40g

1. Ash content = 22.50-2.10 x 100 = 2.86%36.10-22.10

2. Moisture content =  $14 \frac{00-0.40}{14.00} \times 100 = 97.14\%$ 

At 530°C: Weight after a stivation = 0.47g

1. Ash content = 22.57.2.10 x 100 = 3.36%36.10-22.10

2. Moisture content =  $\underline{14,00-0.47}$  x 100 = 96.64% 14.00

At 500°C: Weight after a tivation = 0.51g

1. Ash content = 22.61-22.10 x 100 = 3.64% 36.10-22.10 2. Moisture content =  $14 \ 00-0.51 \ x \ 100 = 96.36\%$ 

#### TO CALCULATE SURFACE AREA OF THE SAMPLES

The diameter of the activated charcoal from cow bone was 2.00mm sieve size (i.e 0.002m)

To get the radius is = 0.002 = 0.001 m

Therefore the surface are  $1 = 4\Pi r^2 = 4 \times 3.143 \times (0.001 \text{ m})^2$ 

 $= 1.2572 \times 10^{-5} \text{m}^2$ 

2. The surface area for the activated charcoal from the chicken bone.

The diameter = .00mm = 0.003m

The radius =  $\frac{0.003}{2} = 0.0015 \text{m}$ 

Therefore the surface area =  $4\Pi r^2 = 4 \times 3.143 \times (0.0015m)^2$ 

$$= 2.829 \text{ x } 10^{-5} \text{m}^2$$

3. The surface area for activated carbon from the saw dust the diameter of the activated carbon = 750mm =  $(750 \times 10^{-6})$ 

The radius = 
$$\frac{750 \times 10^{-6}}{2}$$
  
0.0003 75m.

Therefore the surface area =  $4\Pi r^2 = 4 \ge 3.143 \ge (0.000375m)^2$ = 1.767  $\ge 10^{-6}m^2$ 

28

#### EALCULATION FOR PERCENTAGE COLOUR REMOVAL

% Color removal =  $\underline{ABso-A_0sf}$  x 100 ABso

Where ABso - Original solu ion adsorbance

Absf- Final solution adsorbance

1. For activated carbon from cow bone:

$$= 0.610 + .420 \times 100$$
  
0.610

= 31.1506

2. For activated carbon from chicken bone:

 $= 0.610 - 0.1425 \times 100$ 0.610

= 76.23%

3. For the activated carbon from saw dust:

 $= \underline{0.610.0.450}_{0.610} \text{ x} \quad 100$ 

== 26 23%