
AN EXPLANATORY CASE STUDY
ON HOW C++ PROGRAMMING
LANGUAGE CAN BE USED TO

IMPLEMENT IP ROUTING.

IBRAHIM UMAR FAROUK

2005/23563EE

ELECTRICAL ENGINEERING DEPARTMENT,SCHOOL
OF ENGINEERING AND ENGINEERING

TECHNOLOGY,FEDERAL UNIVERSITY OF
TECHNOLOGY MINNA,NIGER STATE.

NOVEMBER, 2010

A . EXPlA ATORY CASE T

HOW C++ PROGRAMMING l_A
CA BE USED TO IMPlE E T ~

ROUTI G

IBRAHIM UMAR FAROUK

2005/23563EE

A THESIS SUBMITTED TO DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING, FEDERAL UNIVERSITY

OF TECHNOLOGY, MINNA.

NOVEMBER 2010

ii

DEDICATION

I dedicate this work to my mother Fatima Ibrahim Umar.

iii

DECLARATION

Ibrah im Umar Farouk, declare that this was done by me and has never been

presented elsewhere for the award of a degree to the best of my knowledge. I also relinquish

the copyrights of this project to the Federal University of Technology, Milma.

Ibrahim Umar Farouk Mr.Steven S. Oyewobi

(Name of Student) (Name of Supervisor) ,

~~. 5Il4-/~
(Signature and Date) (Signature and Date)

Engr. A.G Raji ~, ' .I,~
(Name of H.O.D)

me o[External Examiner) rf, 2-(r 0

(Signature and Date)

iv

ACKNOWLEDGMENT

Glory be to AlmightyAllah whom out of His infinite mercy made it possible for this work to

be completed. I wish to acknowledge the efforts of the lecturers Electrical Engineering

Department F.U.T Minna, for their efforts in ensuring adequate capacity building throughout

the years.

Special thanks to my family, friends and colleagues for the wonderful times we had, and for

the moral support they always gave even at difficult times.

v

ABSTRACT

This projcct utilizes a computer programming based approach to provide an efficient

means of routing packets of data in a network which will ease the problem of

congestion being experienced by inter-network users.

This project attempts to follow a step by step approach of how a computer program

(C++ in this case) is developed in such a way as to run a network router to perform

IP routing and also another program to run a traditional computer as a router in any

given network.

vi

TABLE OF CONTENTS

Cover Pagc ______________________ _

Title Puge ________________________ ii

Dcdication ________________________ iii

Declaration _______________________ iv

Acl<nowlcdgcmcnt _____________________ v

Abstract vi ------------------------

Table of Contents _____________________ vii

List of Figurcs ______________________ ix

CHAPTER ONE: GENERAL INTRODUCTION

1.1 INTRODUCTION __________________ -'-

1.2 SIGNIFICANCE OF STUDY
________________ 2

1.3 AIM AND OBJECTIVES-----------------2

1.4 METHODOLOGY 3

1.5 SCOPE AND LIMITATIONS ______________ --'-3

CHAPTER TWO: LITERATURE REVIEW

2.1 EMPIRICAL METHOD OF SOFTWARE ENGINEERING RESEARCH ___ --J4

2.2 COMPUTER PROGRAMMING ________________ 5

2.3 SOFTWARE DEVELOPMENT _______________ 6

2.4 C++ 7

2.5 STEPS NEEDED TO WRITE A PROGRAM _________ ->8<-

2.6 NETWORK ROUTER _________________ --"'-9

vii

2.7 ROUTING TABLE

2.8 ROUTING

CHAPTER THREE: METHODLOGY

3.1 WRITING THE C++ ALGORITHM

3.2 EDITING

3.3 COMPILING

3.4 LINKING

3.5 HEADER FILES

3.6 SOURCE FILES

3.7 RESOURCE FILES

CHAPTER FOUR

4.1 ANALYSES AND COMPARISM OF RESULTS

CHAPTER FIVE

RECOMMENDA TIONS

CONCLUSION

REFRENCES

viii

13

14

19

19

20

20

20

25

47

55

56

57

58

CHAPTER ONE

GENERAL INTRODUCTION

1.1 INTRODUCTION

The ultimate goal of engineering in particular is to build real physical systems to perform given

tasks. There are two methods of approach to this:

I. The analytical method

II. The empirical method

.The Analytical Method

The analytical method consists of four steps:

I. Modelling.

II. Setting up Mathematical equation.

III. Analysis.

IV . The Design.

The first two steps are closely related. I f we use simple mathematics, then the model chosen must

be correspond ingl y simp Ie. I f we use soph isticated mathematics then the model can be more

complex and realistic. Modelling is the most critical step in analytical design. If a physical

system is in correctly modelled, subsequent stucly will be useless.

Process modelling is the art or activity of building a mathematical model of a process by

describing its fundamental physical and or chemical relationships without specifying how they

are to be solved while process simulation is merely one of the activities that you can perform

with that process model. Simulation is often an exercise and as such is often performed by

relatively junior engineers.

The Empirical Method

The empirical method relies heavily on past experience and repeated experiments. This approach

is carried out by trial and error. A Ithough it is carried out by trial and error, it has been lIsed

sllccessfully to design many systems. However, it is inadequate if there is no past experience to

draw from or ifexperimentation is not feasible because of high cost or risk

This project looks into how a programming language (C++) is used to create software

that can route packets of data in a network through the best possible route.

1.2 SIGNIFICANCE OF THE STUDY.

In the modern world, communication via the internet is growing rapidly. Vital information are

sent and received constantly via this medium. Although the internet provides an easy means of

communication, it also has its problems like any other means of communication.

The major problem faced by network by internet users and internet service providers is the

inability to send and receive packets (information) smoothly. IP Routing provides a very

effective and efficient solution to this problem whereby a network router selects the best possible

route lor a packets from its source to its destination which makes the exchange of packets

(i n formation) smooth and fast.

1.3 AIM AND OBJECTIVES.

AIM.

To study into how IP routing in a simple network can be accomplished by programmll1g

a hardware device ..

OBJECTIVES.

I. To identi fy the function of a router.

2. To identify the different types of routing.

3. To investigate the procedures involved in each type of routing.

4. To select the best type of routing for this project.

2

5. To coordinate the procedures of the type of routing selected to form an algorithm for the

proposed program.

1.4 METHODOLOGY.

This project will attempt to write two C++ programs that will run hardware devices to

perform lP routing in a given network.

The first router for which the first program was written accepts an lP address as input

from a computer or another rOllter and looks up a stored table which is computed by the

system administrator to see the least distance to that lP address and then forwards traffic

through the best route to the requested address.

The second program was written to run a computer as a router whereby a given a

computer in any kind of network can be chosen to act as host and route packets of data

within the given network.

1.5 SCOPE AND LIMITATION.

This project will attempt to write two C++ programs that will route packets of data in a

given network. The first program is for a simple network router that implements static

routing whereby a system administrator is responsible for inputting the routes in the

network manually while the second program is for a computer that will perform routing

in a given network by accepting an IP address and sending packets to it.

But it does not cover the dynamic routing whereby routers on a given network communicate with

each other and share information regarding the topology of the network thereby adjusting their

routing tables automatically whenever there is a change in the network topology. The type of

routing used in this project cannot be used for very large networks as the routes are computed

manually.

3

CHAPTER TWO

LITERATURE REVIEW

2.1 EMPIRICAL METHOD IN SOFTWARE ENGINEERING

RESEARCH.

Despite widespread interest in empirical software engineering, there is little guidance on which

research methods are suitable to which research problems, and how to choose amongst them.

Many researchers select inappropriate methods because they do not understand the goals

underlying a method or possess little knowledge about alternatives. As a first step in helping

researchers se lect an appropriate method, this chapter discusses key questions to consider in

selecting a method, from philosophical considerations about the nature of knowledge to practical
. ,

considerations in the application of the method. We characterize key empirical methods

applicable to empirica l software engineering, and explain the strengths and weaknesses of each.

Software engineering is a multi-disciplinary field, crossing many social and technological

boundaries. To understand how software engineers construct and maintain complex, evolving

software systems, we need to investigate not just the tools and processes they use, but also the

social and cognitive processes surrounding them. This requires the study of human activities. We

need to understand how individual software engineers develop software, as well as how teams and

organizations coordinate their efforts.

Because of the importance of human activities In software development, many of the research

methods that are appropriate to software engineering are drawn from disciplines that study human

behaviour, both at the individual level (e.g. psychology) and at the team and organizational levels

(e .g. sociology).These methods all have known flaws, and each can only provide limited, qualified

evidence about the phenomena being studied. However, each method is flawed differently (McGrath,

1995) and viable research strategies use mUltiple methods, chosen in such a way that the weaknesses

of each method are addressed by use of complementary methods (Creswell, 2002). Describing in

detail the wide variety of possible empirical methods and how to apply them is beyond the scope of

4

the chapter. Instead, we identify the five classes of research method that we believe are most

relevant to software engineering:

• Controlled Ex periments (including Quasi-Experiments);

• Case Studies (both exploratory and con firmatory);

• Survey Research ;

• Ethnographies;

• Action Research .

2.2 COMPUTER PROGRAMMING

A computer is an electronic device that can input data, process data and output data, accurately

and at great speed. Data are any kind of information that can be codified in some manner and

input into the computer. Normally, we think of data as facts and numbers such as a person's

name and address or the quantity or cost of an item purchased. However, data can also be

graphical images, sound files , movies and more.

A computer is capable of inputting information such as the number of students in a class and

their test scores. Processing data means to do something with it. Often we think of processing as

performing some kind of calculations. If the number of students and their test scores have been

input, then the obvious calculation would be finding the ~verage score of the students. However,

processing data can mean more than just calculations. I f the names of the students have been

entered, processing the data can also mean sorting the students' names into alphabetical order.

Finally, to be useful, the computer needs to be able to output information, the results, to the user

in an accurate and timely manner. The user is anyone that is making use of the results that the

computer is producing.

A computer program is a series of instructions that tell the computer every step to take in the

proper sequence in order to solve a problem for a user. A programmer is one who writes the

computer program. When the computer produces a wrong result, it

can be traced to an improper sequence of instructions or incorrect data being input to the

program. That is, the responsibility or blame lies on either the original programmer who wrote

out the instructions for the computer to follow or the user who has entered incorrect data.

5

2.3 SOFTW ARE DEVELOPOMENT

Software designers create new programs by using special application programs often called

utility programs or development programs. A programmer uses another type of program called

text editor to write the new program in a special notation called a programming language. With

the text editor, the programmer creates a new text file which is an ordered list of instructions that

make up the program source file. The machine dual instructions that make up the source file is

called the source code. At this point a special applications program translates the source code

into machine language or object code- a format that the operating system will recognize as a

proper program to execute.

Three types of applications programs translate from source code to object code; compilers,

interpreters and assemblers. The three operate differently and on different types of programming

languages, but they serve the same purpose of translating from programming language to

machine language (Marshall, 1997).

COMPILER

A compiler translates text files from within a high-level programming languag such as

FORTRAN, C, PASCAL, from the source code to the object code all at once. This differs from

the approach taken by interpreted languages such as BASIC, APL, and LISP in which a program

is translated into object code statement by statement as each instruction is executed. The

advantage of compiled languages over interpreted languages is that, compiled languages are

compiled only once and thus can be executed by the computer much more quickly than

interpreted languages. For this reason compiled languages are most common and are almost

always used in professional and scientific applications.

Programs are often written as smaller pieces with each piece representing some aspect of the

overall program. After each piece has been compiled separately, a program called a linker

combines all of the translated pieces into a single executable program. Programs seldom work

correctly the first time, so a program called debugger is often used to help find problems called

bugs. Debugging programs usually detect an event in the executing program and point the

programmer back to the origin of the event in the program source code (Marshall, 1997).

6

2.4 C++

C++ is a language used to program computers to perform specific tasks. C++, as the name

implies, is essentially based on the C programming language. Therefore, it seems prudent to

begin with a brief history of C. The C programming language was devised in the early 1970s at

Bell Laboratories by Dennis Ritchie. It was designed as a system implementation language for

the Unix operating system. The history of C and UNIX are closely related. For this reason a lot

of UNIX programming is done with C. To some extent, C was originally based on the type less

language BCPL; however it grew well beyond that.

The C++ programming language was invented by Bjarne Stroustroup. Work on what would

become C++ began in 1979. The initial version was called "C with Classes." That name did not

work out well , and was replaced with C++. The first version of C++ was used internally in

AT&T in August 1983 . The first commercial implementation was released in 1985. The C++

language standards are now handled by the American National Standards Institute (ANSI), and

the International Standards Organization (ISO). This is why you often hear pure C++ referred to

as ANSI Standard C++, or ISO Standard C++.

C programming language was developed first, C++ was developed later. C++ is essentially C

taken to the next level. The most obvious difference between the two is that C++ supports object

orientation. However, C++ sports many other improvements over C. For example, C++ handles

strings better than C, and has · a more robust exception handl ing. (Exception handling refers to a

program 's ability to handle unexpected errors) .

C code will compile fine in most C++ compilers, but the reverse is not true. C++ code will not

necessarily compile in a C compiler. Code is essentially the series of programming commands

that a programmer writes. All the commands that make up a program are the source code for that

program . C++ supports all C commands and also has many additions.

7

2.5 THE STEPS NEEDED TO WRITE A COMPUTER PROGRAM

Step 1. Fully understand the problem to be solved. Begin by looking over the output, w~at the

program is supposed to be producing. Then look over the input that the

program will be receiving. Finally, determine what general processing steps are going to be

needed to turn that input into the required output.

Step 2. Design a solution using paper and pencil. Write out on paper the precise steps needed to

solve the problem in the precise sequence. This is often called pseudo code. It is done by using

English and perhaps some C++ like statements.

Step 3. Thoroughly desk check the solution. Desk check means to play computer and

follow precisely the steps written down in the solution. You are looking for errors

at this point.

Step 4. Code the solution into the programming language, C++ in our case.

Step 5. Compile the program.

Step 6. Test the program with one set of data. Try inputting one set of test data only.

Examine the output and verify it is correct.

Step 7. Thoroughly test the program. At this point, one tests the program thoroughly and

completely.

Step 8. Put the program into production . In the real world, this means that the program is given

to the users who now run it to solve their problems. In the case of student programs, they are

handed in to be graded by the instructor who plays the role of the user.

When writing a computer program it is absolutely vital that the problem to be solved is fully

understood. A good percentage of large programming projects run into trouble owing to a

misunderstanding of what is actually required. The specification of the problem is crucial. It is

usual to write a detailed 'spec' of the problem using a 'natural language' (e.g., English).

Unfortunately, it is very easy to write an ambiguous specification, which can be interpreted in a

number of ways by different people. In order to combat this, a number of Formal Methods of

specification have been developed. These methods are often high-level abstract mathematical

languages, which are relatively simple to convert to high-level programs; in some cases this can

be done automatically. Examples of such languages are Z and YOM. simple. Once the problem

has been specified, it needs to be broken into small steps towards the solution, in other words an

8

algorithm should be designed. This is known as pseudo-code. The next two phases go hand-in

hand, they are often known as the code-test-debug cycle and it is often necessary to perform the

cycle a number of times. It is very rare that a program is written correctly on the first attempt. It

is common to make typographical errors which are usually unearthed by the compiler. Once the

typos have been removed, the program will be able to be compiled and an executable image

generated. Again, it is not uncommon for execution to expose more errors or bugs. Execution

may either highlight run-time errors which occur when the program tries to perform illegal

operations (e.g., divided by zero) or may reveal that the program is generating the wrong

answers. The program must be thoroughly tested to demonstrate that it is indeed correct. The

most basic goal should be to supply test data that executes every line of code. There are many

software tools that generate statistical reports of code coverage, such as the UNIX tcov utility or

the more comprehensive LORA Test bed (Marshall, 1997).

2.6 NETWORK ROUTER.

A router is a device that interconnects two or more computer networks, and selectively

interchanges packets of data between them. Each data packet contains address information that a

router can use to determine if the source and destination are on the same network, or if the data

packet must be transferred from one network to another. Where multiple routers are used in large

collection of interconnected networks, the routers exchange information about target system

addresses, so that each router can build up a table showing the preferred paths between any two

systems on the interconnected networks.

A router is a networking device whose software and hardware are customised to the tasks of

routing and forwarding information . A router has two or more network interfaces, which may be

to different types of network (such as copper cables, fibre or wireless) or different network

standards. Each network interface is a small computer specialized to convert electric signals from

one form to another.

In the original I 960s-era of routing, ·general-purpose computers served as routers. Although general

purpose computers can perform routing, modern high-speed routers are highly specialised computers,

generally with extra hardware added to accelerate both common routing functions such as packet

9

forwarding and specialised functions such as IPsec encryption . Other changes also improve

reliability, such as using battery rather than mains power, and using solid-state rather than magnetic

storage. Modern routers have thus come to resemble telephone switches, whose technology they are

currently converging with and may eventually replace. The first modern (dedicated, standalone)

routers were the Fuzzball routers.

Functionality of Router

A router must be connected to at least two networks, or it will have nothing to route. A special variety

of router is the one-armed router used to route packets in a virtual LAN environment. In the case of a

one-armed router the mUltiple attachments to different networks are all over the same physical link. A

router which connects end-users to the Internet is called Edge router; A router which serves to

transmit data between other routers is called Core router. A router creates and/or maintains a table,

called a "routing table" that stores the best routes to certain network destinations and the "routing

metrics" associated with those routes.

Routers connect two or more logical subnets, which do not share a common network address.

The subnets in the router do not necessarily map one-to-one to the physical interfaces of the

router. The term "layer 3 switching" is used often interchangeably with the term "routing". The

term switching is generally used to refer to data forwarding between two network devices that

share a common network address. This is also called layer 2 switching or LAN switching.

Conceptually, a router operates in two operational planes (or sub-systems) :

-:Control plane: where a router builds a table (called routing table) as how a packet should be

forwarded through which interface, by using either statically configured statements (called static

routes) or by exchanging information with other routers in the network through a dynamical

routing protocol;

-Forwarding plane: where the router actually forwards traffic (called packets in IP) from ingress

(incoming) interfaces to an egress (outgoing) interface that is appropriate for the destination

address that the packet carries with it, by following rules derived from the routing table that has

been built in the control plane.

10

A router has two key jobs:

• The router ensures that information doesn't go where it's not needed. This is crucial for

keeping large volumes of data from clogging the network.

• The router makes sure that information does make it to the intended destination.

In performing these two jobs, a router joins the two networks, passing information from one to

the other and, in some cases, performing translations of various protocols between the two

networks. It also protects the networks from one another, preventing the traffic on one from

unnecessarily spilling over to the other. This process is known as routing.

Routing is a function associated with the Network layer (layer 3) 111 the Open Systems

Interconnection (OS!) model. Routers use network layer protocol headers, such as IP header

where the source and destination addresses are included, and routing tables to determine the best

path to forward the packets. For communication between routers and to decide ·the best route

between an y two

11

FIG. 1. Linksys Wirelcss-G Broadband Router

A router may create or maintain a table of the available routes and their conditions and use this

information along with distance and cost algorithms to determine the best route for a given

packet. Typically, a packet may travel through a number of network points with routers before

arriving at its destination.

12

2.7 ROUTING TABLE.

A routing table is present on all IP nodes. The routing table stores information about IP networks

and how they can be reached (either directly or indirectly). Because all IP nodes perform some

form of IP routing, routing tables are not exclusive to IP routers. Any node loading the TCPIIP

protocol has a routing table. There are a series of default entries according to the configuration of

the node and additional entries can be entered either manually through TCPIIP utilities or

dynamically through interaction with routers.

When an IP packet is to be fOlwarded, the routing table is used to determine:

I. The forwarding or next-hop IP address:

For a direct delivery, the forwarding IP address is the destination IP address in the IP

packet. For an indirect delivery, the forwarding IP address is the IP address ofa router.

2. The interface to be used for the forwarding:

The interface identifies the physical or logical interface such as a network adapter that is

used to forward the packet to either its destination or the next router.

1 P Routing Table Entry Types

An entry in the IP routing table contains the following information in the order presented:

Network ID. The network ID or destination corresponding to the route. The network !D can be

class-based, subnet, or supernet network !D, or an IP address for a host route.

Network Mask. The mask that is used to match a destination IP address to the network !D.

Next Hop. The IP address of the next hop.

Interface. An indication of which network interface is used to forward the IP packet.

13

Metric. A number used to indicate the cost of the route so the best route among possible mUltip le

routes to the same destination can be selected. A common use of the metric is to indicate the

number of hops (routers crossed) to the network ID.

Routing table entries can be used to store the following types of routes:

Directly Attached Network IDs. Routes for network IDs that are directly attached. For directly

attached networks, the Next Hop field can be blank or contain the IP address of the interface on

that network.

Remote Network IDs. Routes for network IDs that are not directly attached but are available

across other routers. For remote networks, the Next Hop field is the IP address of a local router

in between the forwarding node and the remote network.

Host Routes. A route to a specific IP address . I-Iost routes allow routing to occur on a per-IP

address basis. For host routes, the network ID is the I P address of the specified host and the

network mask is 255.255.255.255.

Default Route. The default route is designed to be used when a more specific network 10 or host

route is not found. The default route network ID is 0.0.0.0 with the network mask of 0.0.0.0.

2.8 ROUTING.

Routing is the process of selecting paths in a network along which to send network traffic.

Routing is performed for many kinds of networks, including the telephone network, electronic

data networks (such as the internet), and transportation networks. This project is concerned

primarily with routing in electronic data networks using packet switching technology.

In packet switching networks, routing directs packet forwarding, the transit of logically

addressed packets from their source toward their ultimate destination through intermediate

nodes; typically hardware devices called routers, bridges, gateways, firewaIls, or switches.

General purpose computers can also forward packets and perform routing, though they are not

specialised hardware and may suffer from limited performance. The routing process usually

14

directs forwarding on the basis of routing tables which maintain a record of the routes to various

network destinations. Thus, c<;mstructing routing tables, which are held in the routers' memory, is

very important for efficient routing. Most routing algorithms use only one network path at a

time, but multipath routing techniques enable the use of multiple alternative paths.

Routing, in a more narrow sense of the term, is often contrasted with bridging in its assumption

that network addresses are structured and that similar addresses imply proximity within the

network. Because structured addresses allow a single routing table entry to represent the route to

a group of devices, structured addressing (routing, in the narrow sense) outperforms unstructured

addressing (bridging) in large networks, and has become the dominant form of addressing on the

internet, though bridging is still widely used within localised environments.

;J1)lIn: iJ ~H:6; 1

f-'C

f)~lir<'llt)r, hJ:;;t
1" :';

A Simple Example Of Routing.

T~ ... D~linall0jl usl Irl'Ct1c.x l aOdrl":'ss)
R !:~ IIf!r 1 (PhYl>K:ul i lri "r.~!;)

r er.. ... et
. __________ " .. "-__ ----0-- ~

To. Desl.i'rli~.1 i cr) MSI W lf.l tocol &1dr-essJ
f.kIlJII~r :' {PI r ,;:I 11 .,d:lr~::;!.;)

--,--~.~-~.----~----------

15

Routing can be classified as static routing and or dynamic routing;

-Static routing: is a data communication concept describing one way of configuring path

selection or routers in computer networks. It is the type of routing characterised by the absence

or communication between routers regarding the current topology of the network. This is

achieved by manually adding routes to the routing table.

In these systems, routes through a data network are described by fixed paths (statically). These

routes are usually entered into the router by the system administrator. An entire network can be

configured using static routes, but this type of configuration is not fault tolerant. When there is a

change in the network or a failure occurs between two statically defined nodes, traffic will not be

rerouted. This means that anything that wishes to take an affected path will either have to wait

for the failure to be repaired or the static route to be updated by the administrator before

restarting its journey. Most requests will time out before these repairs can be made. There are

however times when static routes make sense and can even improve the performance of a

network. The opposite of static routing is dynamic routing, sometimes also referred to as

adaptive routing.

-Dynamic routing: Dynamic Routing performs the same function as static routing except it is

more robust. Static routing allows routing tables in specific routers to be set up in a static manner

so network routes for packets are set. If a router on the route goes down the destination may

become unreachable. Dynamic routing allows routing tables in routers to change as the possible

routes change. There are several protocols used to support dynamic routing. Routing Information

Protocol (RIP): It helps routers dynamically adapt to changes of network connections by

communicating information about which networks each router can reach and how far away those

networks are. Open Shortest Path First (OSPF): It fixes many of the issues with RIP and allows

routes to be selected dynamically based on the current state of the network, not just a static

picture of how routers are connected. It also includes numerous advanced features, including

support for a hierarchical topology (or a tree network) and automatic load sharing amongst

routes.

16

-Advantages Of Static Routing Over Dynamic Routing.

I. Static routing has some enormous advantages over dynamic routing. Chief among these

advantages is predictabi I ity. Because the network administrator computes the routing

table in advance, the path a packet takes between two destinations is always known

precisely, and can be controlled exactly. With dynamic routing, the path taken depends

on which devices and links are functioning, and how the routers have interpreted the

updates from other routers .

2. Additionally, because no dynamic routing protocol is needed, static routing doesn't

impose any overhead on the routers or the network I inks.

3. Finally, static routing is easy to configure on a small network. The network administrator

simply tells each router how to reach every network segment to which it is not directly

attached.

-Disadvantages Of Static Routing.

I. The price of its simplicity is a lack of scalability. For five network segments on three

routers, computing an appropriate route from every to every destination is not difficult.

However, for much larger networks like for 200 network segments interconnected by

more than a dozen routers, pre-computing routing tables quickly becomes a burden and is

error prone.

2. When a network segment moves or is added, you would have to update the configuration

for every router on the network. I f you miss one, segments attached to that router will be

unable ~o reach the moved or added segment and this may end up affecting many routers.

3. Finally, because static routing is by definition static, it cannot use redundant network

links to adapt to a failure in the network.

-Advantages Of Dynamic Routing Over Static Routing.

I. The chief advantages of dynamic routing over static routing are scalability and

adaptability. A dynamically routed network can grow more quickly and larger, and is

able to adapt to changes in the network topology brought about by this growth or by the

failure of one or more network components.

17

2. With a dynamic routing protocol, routers learn about the network topology by

communicating with other routers. Each router announces its presence, and the routes it

has available, to the other routers on the network. Therefore, if you add a new router, or

add an additional segment to an existing router, the other routers will hear about the

addition and adjust their routing tables accordingly. This reduces the chances that errors

will occur.

3. The ability to learn about changes to the network's configuration has implications beyond

adding new segments or moving old ones. It also means that the network can adjust to

failures. I f a network has redundant paths, then a partial network failure appears to the

routers as if some segments got moved (they are now reached via alternate paths), and

some segments have been removed from the network (they are now unreachable).

-Disadvantages Of Dynamic Routing.

I. Chief among the disadvantages is an increase in complexity.

2. In order to communicate information about the topology of the network, routers must

periodically send messages to each other using a dynamic routing protocol. These

messages must be sent across network segments just like any other packets. But unlike

other packets in the network, these packets do not contain any information to or from a

user. Instead, they contain information that is only useful to the routers. Thus, from the

users' point of view, these packets are pure overhead. On a low-speed link, these

messages can consume much of the available bandwidth, especially if the network is

large or unstable.

3. Finally, some or all of the machines in a network may be unable to speak any dynamic

routing protocol, or they may not speak a common protocol. If that is the case, static

routing may be your only option.

18

CHAPTER THREE

METHODOLOGY

3.1 WRITING THE C++ PROGRAM ALGORITHM IMPLEMENTING IP

ROUTING OF A NETWORK ROUTER.

The process of program development includes a number of subtasks. To be ab le to develop a

program yo u must have an editor, a compiler and a linker. In modern program development

platforms, these subtasks are integrated and the entire process is very transparent and

informative. Such platforms are known as Integrated Development Environments (IDEs). Most

of the modern C++ packages (the software that you will use to develop C++ programs)

provide an I DE. Some of the commercially available packages include Turbo C+-+', Borland

C++, C++ Builder and Visual C++.In this project we will be considering the visual C++

package.

The tasks of editing, compiling and linking are basically the tasks needed to successfully

develop a C++ program that can be used as a software to run a hardware device.

3.2 Editing.

The first step In preparing your program is to use some kind of editor to type your

program. Not every editor is suitable for this purpose. The edit program of DOS and the

otepad editor of Windows are two suitable editors. Integrated Development Environments

(IDE) that are part of C++ packages provide built-in editors known as text editors. At the

end of the editing sess ion you must store the content of the a editor into a file.

19

3.3 Compiling.

The second step is to compile the source file. For this purpose, a special program known as

a compiler is used. As part of the compiler, a program named the pre-processor is invoked.

This takes place before the actual compilation of your program code. The pre-processor

attends to your source code statements that start with the '#' sign. These statements are

referred to as compiler directives. The pre-processor takes action as directed by these

statements and will modify your original program file. At the end of pre-processing, all lines

starting with the '#' sign will have been processed and eliminated.

3.4 Linking

The program that bridges all the gaps and completes assembly of the program is known as

the linker. It will search all the object files and the libraries to find the missing sets of

instructions. Sometimes the 'linker must be told to search certain libraries and object files. The

linker automatically searches the libraries and object files that come with the C++ software.

The linker will insert the missing sets of instructions into appropriate places to form a file

that has a good execution path. This process is known as linking. At the end of the linking

process, we have a file the PC can execute, known as an executable file.

The two programs written for this project(i.e program implementing IP routing) are divided

into three basic groups which are; The header files, The source tiles and The resource files.

3.5 THE HEADER FILES.

The header files (having the extension .h) are text files that contain C++ programmmg

statements, most of which do not form executable program statements. Not all statements in

your program are executable. However, the statements in header files play a major role in the

preparation of your program. The majority of the statements in a header file assist the

compiler to carry out a thorough check of the program statements you write in your

program . Once the header files are written and tested, we do not change them. If the

compiler Issues error or mismatch messages, then we must change our program not the

header fi Ie.

The header fil es also known as pre-processor directives start with a '#' and take up the

whole line. The pre-processors are supplied by the compiler vendors. The directive causes

20

direct text Substitution. The pre-processor fetches the whole file whose name IS specified as

the directive

Argument and replaces the directive by the contents of the file taken. This is used to

combine several source files into one source file that is then compiled as a whole. The use

of this directive is to include function headers that describe functions used by the source

code.

The header files for the first program written which implement IP routing of a simple

network router that takes an IP address as input and checks a stored table of IP addresses to

find the best route to send packets to the given I P address in are;

• The Address Resolution Protocol (ARP) header files:

#if !defined(AFX_A RP _H_S94ESCE4_00IA_ 4D91_SD2S_E612579AAF1S_ INCLUDED-.J

#define AFX ARP H S94E8CE4 OOIA 4D91 SD2S E612579AAF1S INCLUDED - - - - - - -

#if MSC VER > 1000 - -

#pragma once

#endif II MSC VER > 1000

#include <snmp.h>

#pragma comment(lib,"snmpapi.lib")

• The ARP Table header files:

#if

!defined(AFX_ARPTABLE_H_ DECSDE47 _07 A5 _ 4AS7 _AAC 1_7329EBOBEODD_INCL

UDED-.J

#define

AFX ARPTABLE H DECSDE47 07A5 4A87 AACI 7329EBOBEODD INCLUDED - - - - -

#if MSC VER > 1000 - -

#pragma once

#endif II MSC VER > 1000

21

#ifndef AFXWIN H

#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h"

• The IP header files:

#if

!defined(AFX IPMACDLG H F7DD2CFA IEF7 4BCC 9184 F02BOAEE510F INCL

UDED)

#define

AFX IPMACDLG H F7DD2CFA IEF7 4BCC 9184 F02BOAEE510F INCLUDED

#if MSC VER > 1000

#pragma once

#endif II MSC VER> 1000

II IPMACOlg.h : header file

• The Resource header files:

#define IDM ABOUTBOX OxOO 1 0

#define IDO ABOUTBOX 100

#deline IDS ABOUTBOX 101

#define IDD ARPTABLE DIALOG 102 - -

#define IDR MAINFRAME 128

#define IDO IP MAC 129

#define IDC ARPTABLELIST 1000

#detine IDC REFRESH 100 I

#define IDC ADD 1002

#detine IDC ENTRIES 1003

#define IDC ADAPTERS 1004

22

#define IDC REMOVE 1005

#define IDC EDIT 1006

#defille IDC IPADDRESS 1007

#define IDC MACO 1008

#define IDC MAC I 1009

#define IDC MAC2 1010

#define IDC MAC3 1011

#define IDC MAC4 1012

#define IDC MAC5 1013

#define IDC TYPESTATIC 1014

II Next default values for new objects

II

#ifdef APSTUDIO INVOKED

#ifndef APSTUDIO READONL Y SYMBOLS

#define APS NEXT RESOURCE VALUE 130 - - - -

#define APS NEXT COMMAND VALUE 32771 - - - -

#define APS NEXT CONTROL VALUE 1015 - - - -

#defi ne APS NEXT SYMED VALUE 101

#endif

#elld if

- - - -

• The stdAfx header files:

#if

!defilled(AFX_STDAFX_H_CAFAOD97 _1960_ 4AB3 _AE88_ C2FB4DA02075_INCLUD

ED-.J

#defi ne

AFX STDAFX H CAFAOD97 1960 4AB3 AE88 C2FB4DA02075 INCLUDED - - - -

#if MSC VER > 1000

#pragllla once

23

#endi fll MSC VER > 1000

#define VC EXTRA LEAN II Exclude rarely-used stuff from Windows headers

#include <afxwin.h>

#include <afxext.h>

II MFC core and standard components

II MFC extensions

#include <afxdisp.h>

#include <afxdtctl.h>

II MFC Automation classes

II MFC support for Internet Explorer 4 Common Controls

#ifndef AFX NO AFXCMN SUPPORT - - - -

#include <afxcmn.h> II MFC support for Windows Common Controls

#endif II AFX NO AFXCMN SUPPORT - - -

The header files for the second program written which sends packets

to an IP address of the users choice through the best possible route

are:

• The source header files

#include <windows.h>

#include <wininet.h>

#include <stdio.h>

#pragma comment(lib, "Ws2_32.lib")

#pragma comment(lib, "wininet.lib")

#define AUTHOR "bigbang"

• The resource header fi les

24

3.6 THE SOURCE FILES.

The source liles (having the extension .cpp) represent the solving of the programmmg

application which in this case is the IP routing of a network router and consists of

all the necessary files to implement it. These files were compiled and debugged

separately because the project was implemented in stages with each source file

representing a different stage.

The source files are the most important files of the program and hence creating these

liles was the most demanding task of this project. This task was started by

establishing a detailed plan of the program. The development of the program was then

carried out in a number of manageable steps (the different stages being referred to in

the preceding paragraph). At each step the part of the program code to that point

were compiled and debugged.

The different stages and their corresponding program codes for the first

written program are as follows;

• The address resolution protocol source file.

CARP::CARPO

{

II Load dynamic library : inetl11ib I.dll

hMIBLibrary = LoadLibrary(TEXT("inetmib I.dll"»;

II If library loaded, get addresses of (SnmpExtensionlnit, pfnSnmpExtensionQuery)

functions

if (hMIBLibrary)

{

pfnSnmpExtensionlnit (PFNSNMPEXTENSIONINIT)

GetProcAddress(hMIBLibrary, "SnmpExtensionlnit");

pfnSnmpExtensionQuery (PFNSNMPEXTENSIONQUERY)

GetProcAddress(hMIBLibrary, "SnmpExtensionQuery");

25

II If success get addresses and initialize SNMP, blnitialized = true

if (pfnSnmpExtensionlnit && pfnSnmpExtensionQuery)

{

HANDLE hPol1 ForTrapEvent;

AsnObjectldenti fier aoiSuPPoliedView;

blnitialized =

&hPoll ForTrapEvent, &aoiSupportedYiew);

else

II fffail to get addresses, blnitialized = false

blnitialized = FALSE;

A fxMessageBoxL T(" Load library fai I "»;

}

CARP::- CARPO

}

II I f I ibrary loaded, free it

if (hMIBLibrary)

FreeLibrary(hM IBLibrary);

11---

pfnSnmpExtensionfnit(O,

II Function: GetEntries : Read ARP table for specific NIC interface.

II

II Parameters:

II

II

pTable

TableLength

Pointer to array of arpTable struct

Length of the array

26

II Adapterlndex NIC Adapter index number

II

II Returns:

II Number of read ARP entries

11---

int CARP::GetEntries(arpTable* pTable, int TableLength, int Adapterlndex)

{

II Be sure initialize SNMP true

if (!blnitialized)

return 0;

Snmp YarBindList

SnmpYarBind

UINT

SYBList[3];

SYBYars[3];

OID[3][I 0];

Asnlnteger32 aiErrorStatus[3], aiErrorindex[3];

AsnObjectidentifier AsnOIDO = {sizeof(OID[O])/sizeof(UINT), OID[O]};

AsnObjectldenti fi er AsnOID I = {sizeof(OID[I])/sizeof(UINT), OID[I]};

AsnObjectldentifier AsnOlD2 = {sizeof(OID[2])/sizeof(UINT), OID[2]};

unsigned long

unsigned long ·

int

plPAddress;

pMACAddress;

iEntries;

11---

II Fill array of 3 OIDs

II

II OID[O] : "1.3.6.1 .2 .1.4.22.1.1 ", ipNetToMedialfindex

II The interface on which this entry's equivalence IS

effective

II

II OID[I] : "1.3.6.1.2.1.4.22.1.2", ipNetToMediaPhysAddress

27

II

II

II

II

4:Static

II

OID[2] :

The media-dependent 'physical' address

"1.3.6.1 .2.1.4.22.1.4", ipNetToMediaType

Entry type: 1 :Other, 2:Invalid(Remove), 3:Dynamic,

for (int count=O; count<3; count++)

OID[count HO] = I;

OID[count][l] = 3;

OID[countH2] = 6;

OID[count H3] = I;

OID[countH4] = 2;

OID[count][5] = I;

OID[count][6] = 4;

o ID[count][7] = 22;

OID[count][8] = I;

switch(count)

case 0:

case I:

case 2:

II Adapter interface

OID[count][9] = I;

break;

II MAC address

OID[count][9] = 2;

break;

28

}

/1 Entry Type

01D[count][9] = 4;

break;

ZeroMemory(pTable, sizeof(arpTable)*TableLength);

= I ; SVBList[O].len

SVBList[O].list = &SVBVars[O];

Snmp Uti 10idCpy(&S VB Vars[O] .name, &AsnO I ~O);

= I; SVBList[1].Ien

SVBList[1].Iist = &SVBVars[I];

SnmpUtiIOidCpy(&SVBVars[1].name, &AsnOID I);

= I; SVBList[2].len

SVBList[2].list = &SVBVars[2];

SnmpUtiIOidCpy(&SVBVars[2].name, &AsnOI02);

iEntries = 0;

do

aiErrorStatus[O] = 0;

ai Errorl ndex [0] = 0;

ai ErrorStatus[1] = 0;

aiErrorlndex[I] = 0;

aiErrorStatus[2] = 0;

aiErrorindex[2] = 0;

II Query information of 3 OIDs

29

if (pfnSnmpExtensionQuery(SNMP _PDU _ GETNEXT, &SYBList[O],

&ai ErrorStatus[O], &ai Errorlndex[O)))

if (pfnSnmpExtensionQuery(SNMP _PDU _ GETNEXT, &SYBList[l],

&ai ErrorStatus[I], &ai Errorl ndex[I]))

if (pfnSnmpExtensionQuery(SNMP _PDU _ GETNEXT,

&SYBList[2], &aiErrorStatus[2], &aiErrorlndex[2]))

if (aiErrorStatus[O]

SNMP ERRORSTATUS NOERROR && - -

aiErrorStatus[l]

SNMP ERRORSTATUS NOERROR && - -

aiErrorStatus[2]

SNMP _ ERRORSTA TUS _NOERROR) II Check for error

11--

II From MSDN Help:

http://msdn2.m icrosoft.com/en-usll ibrary/aa3 78021.aspx

II

II If the extension agent cannot resolve the

variable bindings on a Get Next request,

II it must change the name field of the

SnmpYarBind structure to the value of the object

II identifier immediately following that of the

currently supported MIB subtree view.

II For example, if the extension agent supports

view ".1.3.6.1.4.1.77.1 ", a Get Next

II request on ".1.3.6.1.4.1.77.1.5.1" would result

in a modified name field of ".1.3.6.1.4.1.77.2".

II This signals the SNMP service to continue the

attempt to resolve the variable bindings

II with other extension agents

30

&AsnOIDO, AsnOIDO.idLength))

&AsnOID I, AsnOID l.idLength))

&AsnOID2, AsnOID2.idLength))

>val ue.asn Val ue.nu m ber)

long)SVBList[I].Iist->name.ids;

*(unsigned char *)(pIPAddress + 44);

*(unsigned char *)(pIPAddress + 48);

*(unsigned char *)(pIPAddress + 52);

*(ullsigned char *)(pIPAddress + 56);

Address

31

11--

if(SnmpUtiIOidNCmp(&SVBVars[O].name,

break;

if(SnmpUtiIOidNCmp(&SVBVars[I].name,

break;

if(SnmpUtiIOidNCmp(&SVBVars[2].name,

break;

II Verify selected Adapter interface

if (Adapterlndex SVBList[O].Iist-

{

II plPAddress get pointer ro IP Address

plPAddress (unsigned

pTable[i Entries] .IPAddress[O) =

pTable[iEntries].IPAddress[I)

pTable[iEntries).IPAddress[2)

pTable[i Entries].I PAddress[3] =

II pIPAddress get pointer ro MAC

IOllg)S VBList[I].1 ist->value.asn Value.string.stream;

= *(unsigned char *)(pMACAddress + 0);

= *(unsigned char *)(pMACAddress + 1);

= *(unsigned char *)(pMACAddress + 2);

= *(unsigned char *)(pMACAddress + 3);

= *(unsigned char *)(pMACAddress + 4);

= *(unsigned char *)(pMACAddress + 5);

long)SVB List[2].1 ist->value.asn Value.number;

pTable[iEntries] .Type<=4)

next array position

}

else

pMACAddress = (unsigned

if (pMACAddress)

{

pTab le[iEntries] .MACAddress[O]

pTable[iEntries].MACAddress[l]

pTable[iEntries].MACAddress[2]

pTable[iEntries].MACAddress[3]

pTable[iEntries].MA CAddress[4]

pTable[iEntries].MACAddress[S]

}

I I Entry Type

pTable[iEntries].Type = (unsigned

II Type must be one of (1,2,3,4)

if (pTable[iEntries]. Type>= 1 &&

iEntries++; II Move to

break; II If error exit do-while

32

while(iEntries<Tablelength);

II Frees the memory allocated for the specified object identifiers

SnmpUti IOidFree(&S VB Vars[2].name);

SnmpUtiIOidFree(&SVBVars[I].name);

SnmpUti IOid Free(&S VB Vars[O] .name);

return i Entries; II Return number of Entries

11---

II Function: EditEntry: Add/Modify/Remove ARP entry for specific N1C interface.

II

II Parameters:

IPAddress

MACAddress

Type

Array of 4 BYTES, 4 octs of IP Address

Array of4 BYTES, 6 octs of MAC Address

Entry type (2:Remove, 3:Dynamic, 4:Static)

II

II

II

II

II

Adapterlndex NIC Adapter index number

II Returns:

II TRUE ifset successfully, FALSE otherwise.

11---

BOOl CARP::EditEntry(unsigned char IPAddress[4], unsigned char MACAddress[6],

unsigned long Type, int Adapterlndex)

if (!blnitialized)

return 0;

Snmp VarBilldlist

SnmpVarBind

SVBlist;

SVB Vars[4];

33

UINT

Asnlnteger32

"BOOL

010[4][10];

aiErrorStatus, aiErrorlndex;

bReturn = FALSE;

11---

II Fill array of 4 OlOs

II

II

II

effective

II

II

II

II

II

II

010[0] :

010[1]:

010[2] :

'physica l' address

II

II

II

4:Static

010[3] :

"1.3.6. 1.2.1.4.22.1.1 ", ipNetToMedialflndex

The interface on which this entry's equivalence IS

"1.3.6.1.2.1.4.22.1.2", ipNetToMediaPhysAddress

The media-dependent 'physical' address

"1.3.6.1.2.1.4.22.1.3", ipNetToMediaNetAddress '

The IpAddress corresponding to the media-dependent

"1 .3.6. 1.2. 1.4.22. 1.4", ipNetToMediaType

Entry type: I :Other, 2:Invalid(Remove), 3:Dynamic,

11---

for (int count=O; cOLlnt<4; count++)

o IO[count][0] = I;

OIO[count][I] = 3;

OID[count][2] = 6;

o IO[count][3] = 1;

01O[count][4] = 2;

01O[count][S] = I;

OID[count][6] = 4;

34

01O[count][7]

01O[count][8]

o IO[count][9]

switch(Gaunt)

case 0:

II

II

= 22;

= I;

= 1 + count;

010[0] : "1.3 .6.1 .2.1.4.22.1.1 ", ipNetToMedialflndex

The interface on which this entry's

equivalence is effective

case I:

SVB Vars[count] . value.asnType

SVBVars[count]. value.asn Value.number

break;

II 010[1]: " 1.3 .6.1.2.1.4.22.1.2",

= AdapterIndex;

ipNetToMediaPhysAddress

II The media-dependent 'physical' address

SVBVars[count] .value.asnType

ASN _ OCTETSTRING ;

Address length

case 2:

S VB Vars [coun t] . val ue.asn Val ue.string.stream

SVB Vars[count]. value.asn Value.string.length

= MACAddress;

= 6; II MAC

SVB Vars[count] . value.asn Value.string.dynamic= FALSE;

break;

II

II

010[2] : "1.3.6.1.2.1.4.22.1.3", ipNetToMediaNetAddress

The IpAddress corresponding to the

media-dependent 'physical' address

35

ASN_IPADDRESS;

Address length

case 3:

S VB Vars[count]. value.asnType

S VB Vars[count]. value.asn Value.string.stream

S VB Vars[count]. value.asn Value.string.length

=

= IPAddress;

= 4; II

S VB Vars[count]. value.asn Value.string.dynamic= FALSE;

break;

010[3] : "1.3.6.1.2.1.4.22.1.4", ipNetToMediaType

IP

II

II Entry type: 2:Remove, 3:Dynamic,

4:Static

S VB Vars[count]. value.asnType

SVB Vars[count]. value.asn Value.number

break;

=

= Type;

AsnObjectldentifter AsnOIO = {sizeof(OIO[count])/sizeof(UINT),

OIO[count]};

Snmp Uti 10idCpy(&S VB Vars[count] .name, &AsnO IO);

SVBList.len = 4;

SVBListlist = SVBVars;

aiErrorStatus = 0;

ai Errorl ndex = 0;

II Set informati'on of entry (4 OlOs)

if (pfnSnmpExtensionQuery(SNMP _PDU_SET, &SVBList, &aiErrorStatus,

&aiErrorlndex»

36

if (aiErrorStatus == SNMP _ERRORSTATUS_NOERROR)

bReturn = TRUE; II Ifsuccess set bReturn = true

II Frees the memory allocated for the specified object identifiers

Snmp Uti IOid Free(&S VB Vars[3] .name);

SnmpUtiIOidFree(&SVBVars[2].name);

SnmpUtiIOidFree(&SVBVars[I].name);

SnmpUti IOid Free(&S V B Vars[O] .name);

return bReturn; II TRUE if set successfully, FALSE otherwise.

• The ARP table source files.

#ifdef AFXDLL

Enable3dControlsO; II Call this when using MFC in a shared DLL

#else

#endif

Enable3dControlsStaticO; II Call this when linking to MFC statically

CARPTableDlg dig;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModaIO;

if (nResponse == lOOK)

}

else if(nResponse == IOCANCEL)

II Since the dialog has been closed, return FALSE so that we exit the

II application, rather than start the application's message pump.

37

return FA LSE;

• The MAC address source files.

CIPMACDlg::CIPMACDlg(CWnd* pParent I*=NULL*/)

: CDialog(CIPMACOlg::IDD, pParent)

II{ {AFX_DATA_INIT(CIPMACDlg)

m Statbic = FALSE;

II} }AFX_DATA_INIT

III EnableStatbic = TRUE;

111 MACAddress[O] = _ T("");

I11_MACAddress[I] = _ T("");

I11_MACAddress[2] = _Te"');

Ill_MACAddress[3] = _T("");

I11_MACAddress[4] = _ T("");

I11_MACAddress[5] = _Te"');

int count;

for(count=O; count<4; count++)

1ll_IPAddr[count] = 0;

ior(count=O; cOllnt<6; count++)

I11_MACAddr[collnt]= 0;

void CIPMACOlg::DoDataExchange(CDataExchange* pOX)

CDialog::DoDataExchange(pDX);

II{ {AFX_OATA_MAP(CIPMACOlg)

38

DDX_Control(pDX, IDC-,PADDRESS, 1TI_IPAddress);

DDX_Check(pDX, IDC_TYPESTATIC, ITI_Statbic);

II} }AFX_DATA_MAP

DDX_ Text(pDX, IDC_MACO, ITI_MACAddress[O]);

DDV _MaxChars(pDX, ITI_MACAddress[O], 2);

DDX_ Text(pDX, IDC_MAC I, ITI_MACAddress[l]);

DDV _MaxChars(pDX, ITI_MACAddress[I], 2);

DDX_Text(pDX, IDC_MAC2, ITI_MACAddress[2]);

DDV _MaxChars(pDX, ITI_MACAddress[2], 2);

DDX_Text(pDX, IDC_MAC3, Ill_MACAddress[3]);

DDV _MaxChars(pDX, ITI_MACAddress[3], 2);

DDX_Text(pDX, IDC_MAC4, 1ll_MACAdd ress[4]);

DDV _MaxChars(pDX, ITI_MACAddress[4] , 2);

.DDX_ Text(pDX, IDC_MAC5, ITI_MACAddress[5]);

DDV _MaxChClrs(pDX, ITI_MACAdc\ress[5], 2);

BEGIN_MESSAGE_MAP(CIPMACDlg, CDialog)

II{ {AFX_MSG_MAP(CIPMACDlg)

II} }AFX_MSG_MAP

END_MESSAGE_MAPO

I I I I I I I I I I I I I I I I I I II I I I I I I I I I II I I I II I I I I II I I I I II II I I I II II I II III I I II I II I II I I II

II CIPMACDlg message handlers

BOOL CIPMACDlg::OnlnitDlalogO

CDialog::OnlnitDialogO;

II TODO: Add extra initialization here

1TI_IPAddress.SetAddress(ITI_ IPAddr[O], 111_IPAddr[I], 111_ IPAddr[2], ITI_IPAddr[3]);

39

for(int count=O; count<6; count++)

m_MACAddress[count]. FormatLT("%02X"), m_MACAddr[count]);

GetDlgltem(IDC _ TYPESTA TIC)->Enable Window(m _ EnableStatbic);

UpdateData(FALSE);

return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

int CIPMACDlg::GetIPAddress(BYTE& nFieldO, BYTE& nFieldl, BYTE& nField2,

BYTE& IlField3)

nFieldO

nField I

nField2

nField3

return 0;

= m_IPAddr[O];

= m_IPAddr[I];

= m_IPAddr[2] ;

= m_IPAddr[3];

int CIPMACDlg::GetMACAddress(BYTE& nFieldO, BYTE& nField I, BYTE& nField2,

BYTE& nField3, BYTE& nField4, BYTE& nField5)

{

nFieldO

nField I

nField2

nField3

nField4

nField5

= m_MACAddr[O];

= m_MACAddr[I];

= m_MACAddr[2];

= In_MACAddr[3];

= m_MACAddr[4];

= m_MACAddr[5];

40

return 0;

BOOl CIPMACDlg::lsTypeStaticO

{

return m _ Statbic;

void CIPMACDlg::OnOKO

II TODO: Add extra validation here

UpdateDataO;

}

if(Validate())

CDialog::OnOKO;

BOOl CIPMACDlg::ValidateO

{

II Validate IP Add ress

if (m IPAddress.lsBlank())

AfxMessageBoxLT("Please, Enter IP Address"));

return FALSE;

else

m _I PAddress.GetAddress(m _IPAddr[O],

m_IPAddr[3]);

II Validate MAC Address

41

bool bValidMAC=true;

for(int COUl1t=O; count<6; count-H)

int len;

111 MACAddress[cOLlnt].TriI11LeflO;

nl_ MACAddress[count].TriI11RightO;

111_ MA CAddress[count]. MakeUpperO;

len = Ill_MACAddress[count) .GetLengthO;

if (len==O Illen>2)

{

bVaiidMAC = false;

break;

TCHAR ch;

111 MACAddr[count] = 0;

for(int i=O; i<len; i++)

{

ch = Ill_MACAddress[count).GetAt(i) - '0';

if (ch>9)

ch -= 7;

if (ch<OxOO II ch>OxOF)

{

bVaiidMAC = false;

break;

I11_MACAddr[countJ = I11_MACAddr[countJ*OxIO + ch;

42

if(bValidMAC == false)

AfxMessage8oxLT("lnvalid MAC Address"));

return FALSE;

}

return TRUE;

-The source file for the second program is:

int initWinSockO

WORD wVersionRequested;

WSADATA wsaData;

illt err;

wVersionRequested = MAKEWORD(I, I);

err = WSAStartup(wVersionRequested, &wsaData);

if(err != 0)

return -I;

return 0;

void GetlPO

HINTERNET hInet, hUrl;

43

DWORD dwCode, dwLen;

if (NULL (hlnet InternetOpen(TEXT("InetURL:I1.0"),

INTERNET_OPEN_TYPE __ PRECONFIG, NULL, NULL, 0»)

printf("U nsuccessful I nternetOpen\r\n ");

else

{

printf("");

if (NULL ,= (hUrl InternetOpenUrI(hlnet,

"http://iptohost.ip.funpic.de/ipcheck.php", NULL, 0, INTERNET _FLAG_RELOAD, 0»)

{

dwCode = 0;

dwLen = sizeof(dwCode);

HttpQuerylnfo(hUrl, HTTP_QUERY_STATUS_CODE, &dwCode,

&dwLen, 0);

if «dwCode == '002') II (dwCode == '203'»

if (InternetReadFile(hUrl, elP, 256, &dwLen»

e1P[12] = '\0';

}

}

lnternetCloseHand le(h Uri);

else

printf (" Apparently no valid uri !\r\n");

I nternetCloseHand le(h I net);

44

illt mainO

system("color 9F");

pri n t fr' +---------------------+ \n ") ;

printf~" + IPtoHOST by %s +\n", AUTHOR);

prin t f~"+---------------------+\n \n ");

GetlPO;

struct hostent *host;

strllct in_addr addr;

if (init Win Sock())

printf("Error! Can't initialize winsock\n") ;

return I;

addr.s_addr = inet_addr(c1P);

if(addr.s_addr == INADDR_NON E)

host = gethostbynal11e(cl P) ;

else

{

host = gethostbyaddr((const char *)&addr, sizeof(struct in_addr), AF _INET);

if(host == NULL)

45

print!f'Cannot resolve address %s. Error code: %d\n", Get/P, WSAGetLastError());

retu rn I;

printf("IP: %s", cIP);

printff'\nHost Name: %s", host->h_name);

WritePrivateProfileString("IP Info", "IP", cIP, "c:\\IPtoHOST.ini");

WritePrivateProfileString("IP Info", "HOST", host->h_name, "c:\\lPtoHOST.ini");

host name = (char *)malloc(sizeot{char)*(strlen(host->h name)+ 1)); - -
strcpy(hosUlame, host ->h _name);

strcpy(strchr(host_name, '-'), strchr(host_name, '.'));

printf("\nShortl-lost Name: %s", host_name);

WSACleanupO;

WritePrivateProfi leString("1 P Info", "SHORT I-lOST", host_name,

"c:\\1 PtoHOST. in i ");

MessageBox(NULL, "IP Info has been printed In C:\\IPtoHOST.ini", "IP Check",

MB OK);

return 0;

}

46

3.7 THE RESOURCE FILES.

These arc a set of program ,Iiles; the .ICO file which stores an Icon for the application

and the .rc ti Ie that records the resources for the application.

-The resource file (.rc) for the first program written:

1 TEXTINCLUDE DISCARDABLE

BEGIN

"resource.h\O"

END

2 TEXTINCLUDE DISCARDABLE

BEGIN

"#illclude ""afxres.h""\r\n"

"\0"

END

3 TEXTINCLUDE DISCARDABLE

BEGIN

"#detine AFX NO SPLITTER RESOURCES\r\n" - - -

"#define AFX NO OLE RESOURCES\r\n" - - - -

"#detille AFX NO TRACKER RESOURCES\r\n" - - - -

"#define AFX NO PROPERTY RESOURCES\r\n" - - - -

"\r\n"

"#if !defined(AFX_RESOURCE_DLL) II defined(AFX_TARG_ENU)\r\n"

"#ifdef WIN32\r\n"

"LANGUAGE 9, I\r\n"

"#pragma code_page(1 252)\r\n"

"#endif II WIN32\r\n"

"#include ""res\\ARPTable.rc2'''' /1 non-Microsoft Visual C++ edited resources\r\n"

"#include ""afxres.rc"" II Standard components\r\n"

"#e nd i f\r\n"

47

"\0"

END

#endif // APSTUDIO INVOK ED

/ / / // / / / I / / / I / I / I I I // / I I I I / / / // I / // / / I / I I // I I I 1/ / I I / / I / / I I I I II I I 1// / I 1/ I / I I / I

//

// Icon

//

// Icon with lowest 10 value placed first to ensure application icon

1/ remains consistent on all systems.

lOR MAINFRAME ICON DISCARDABLE "res\\ARPTable.ico"

11//1//111111111////1111/1111111//111/1111111/111111//11/1111/1111/1111111//1

/1

// Dialog

//

IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 235, 55

STYLE DS_MODALFRAM E I WS_POPUP I WS_CAPTION I WS_SYSMENU

CAPTION "About ARPTable"

FONT 8, "MS Sans Serif'

BEGIN

ICON IDR_MA INFRAME,IDC_STA TIC, 11 , 17,20,20

L TEXT "ARPTable Version 1.0",IDC _ STA TIC,40, I 0, 119,8,

SS NOPREFIX

L TEXT "Copyright (C) Eng. Usama EI-Mokadem\t 1992-2008",

IDC_STATIC,40,25 ,188,8

LTEXT .. \t\t\tEmail: musama@hotmail.com ... IDC_STATIC.40.40.188.8

48

DEFPUSHBUTTON "OK",IDOK, 178,7,50, 14, WS_ GROUP

END

IDD_ARPTABLE_DIALOG DIALOGEX 0, 0, 358, 210

STYLE DS_MODALFRAME I WS_POPUP

WS SYSMENU

EXSTYLE WS_EX_APPWINDOW

CAPTION "ARPTable"

FONT 8, "MS Sans Serif"

BEGIN

LTEXT "Adapters:",IDC_STATIC,7,7,45,8

WS VISIBLE WS CAPTION

COMBOBOX IDC_ADAPTERS,55,7,296,37,CBS_DROPDOWNLIST I CBS_SORT I
WS VSCROLL I WS TABSTOP - -

DEFPUSHBUTTON "&Refresh",IDC_REFRESH ,30 I ,34,50, 14

PUSHBUTTON ·"&Add ... ",IDC_ADD,301 ,66,50, 14

PUSHBUTTON "&Edit...",IDC_EDIT,30 1,83,50, 14

PUSHBUTTON "Re&move ... ",IDC_REMOVE,301,100,50,14

LTEXT

LTEXT

"ARP Table:",IDC_STATIC,7,23,45,8

"",IDC_ENT RI ES,55,23,238,8

CONTROL "List I ",IDC_ARPTABLELlST,"SysListView32",LVS_REPORT I

LVS_SINGLESEL I LVS_SHOWSELALWAYS I LVS_NOSORTHEADER I
WS_BORDER I WS_TABSTOP,7,34,286,158

PUSHBUTTON "&Close",IDCANCEL,301, 178,50,14

LTEXT

END

"By Eng. Usama EI-Mokadem: \tmusama@hotmail.com",

IDC_STATIC,7,194,286,9

IDD_IP _MAC DIALOG DlSCARDABLE 0,0, 172,79

STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU

CAPTION "Enter IP and MAC Addresses"

FONT 8, "MS Sans Serif'

49

BEGIN

LTEXT "IP Address: ",IDC_STATIC,7,7,39,8

CONTROL "IPAddress2",IDC_IPADDRESS,"SysIPAddress32",WS_TABSTOP,

69,7,96,13

LTEXT "MAC Address: ",IDC_STATIC,7,25,48,8

EDITTEXT IDC_MACO,69,25, 16,14,ES_CENTER I ES_UPPERCASE

EDITTEXT IDC_MACI,85,25,16,14,ES_CENTER I ES_UPPERCASE

EDITTEXT IDC_MAC2, 1 ° 1 ,25, 16, 14,ES_CENTER I ES_UPPERCASE

EDITTEXT IDC_MAC3, 117,25, 16,14,ES_CENTER I ES_UPPERCASE

EDITTEXT IDC_MAC4,133,25,16,14,ES_CENTER I ES_UPPERCASE

EDITTEXT IDC_MAC5, 149,25,16,14,ES_CENTER I ES_UPPERCASE

CONTROL "&Static",IDC_ TYPESTATIC,"Button",BS_AUTOCHECKBOX I

WS_TABSTOP,69,43,34, I °
DEFPUSHBUTTON "OK",IDOK,69,58,44,14

PUSHBUTTON "Cancel",IDCANCEL, 121 ,58,44, 14

END

#ifndef MAC

I I I II I I I I I II I IIII II II I II II II I III I III II II I III I III I II I I I II I II I III II II I III III I I I

II

II Version

II

VS VERSION INFO VERSIONINFO - -
FlLEVERSION 1,0,0,0

PRODUCTVERSION 1,0,0,0

FILEFLAGSMASK Ox3fL

qq'#ifdef_DEBUG

FI LEFLAGS Ox I L

#e lse

50

FILEFLAGS OxOL

#endif

FILEOS Ox4L

FILETYPE Ox 1 L

FILESUBTYPE OxOL

BEGIN

BLOCK "StringFilelnfo"

BEGIN

BLOCK "040904BO"

BEGIN

VALUE "CompanyName", "Eng. Usama EI-Mokadem\O"

VALUE "Comments", "By Eng. Usama EI-Mokadem: musama@hotmail.com\O"

VALUE .. Emai l musama@hotmail.com\O ..

VALUE "FileDescription", "ARP Table\O"

VALUE "FileVersion", "1.0.0.0\0"

VALUE "InternaIName", "ARPTable.exe\O"

VALUE "LegaJCopyright", "Copyright © 1992-2008, Eng. Usama EI-Mokadem\O"

VALUE "LegaITrademarks", "Eng. Usama EI-Mokadem: musama@hotmail.com -

0020 10 1289308\0"

VALUE "Mobile", "0020 (10) 1289308\0"

VALUE "Original Fi lename", "ARPTable.exe\O"

VALUE "ProductName", "ARPTable\O"

VALUE "Product Version", "1.0.0.0\0"

VALUE "Web", ''http://musama.tripod.com\O''

END

END

BLOCK "VarFilelnfo"

BEGIN

VA LU E "Translation", Ox409, 1200

END

END

51

#endif // ! MAC

///

/ /

// DESIGNINFO

//

#ifdef APSTUDIO INVOKED

GUIDELINES DESIGNINFO DISCARDABLE

BEGIN

IDD_ABOUTBOX, DIALOG

BEGIN

LEFTMARGIN , 7

RIGHTMARGIN,228

TOPMARGIN,7

BOTTOMMARGIN,48

END

IDD_ARPTABLE_DIALOG, DIALOG

BEGIN

LEFTMARGIN,7

RIGHTMARGIN,351

TOPMARGIN,7

BOTTOMMARGIN,203

END

IDD_IP _MAC, DIALOG

BEGIN

LEFTMARGIN,7

52

RIGHTMARGIN, 165

TOPMARGIN,7

BOTTOM MARGIN, 72

END

END

Hendif II APSTUDIO INVOKED

II I II I I I I I II I I III II II I II II II I III I II I II I I I III I I II I I I II I II II I I III II II I II I I I I I I I

II

II String Table

II

STRINGTABLE DISCARDABLE

BEGIN

IDS ABOUTBOX

END

"&About ARPTable ... "

#endif II English (U.S.) resources

IIII IIIII I II I I III II II III II II I II II II II I II I III II II II II II II I II I III II III III II I I I I

#ifndef APSTUDIO INVOKED

I I I I I II I I I I I I I I II II I I II I I II I I I I I I I I I I I II I I I I I I I I I I I II I I I I I I I III I I II I I I I I I I I I I

II

II Generated from the TEXTINCLUDE 3 resource.

II

#defi lle AFX NO SPLITTER RESOURCES - - -
#defi lle AFX NO OLE RESOURCES - - - -

#define AFX NO TRACKER RESOURCES - - - -

53

#if !defincd(AFX_RESOURCE_DLL) II defined(AFX_ TARG_ENU)

#ifdef WIN32

LANGUAGE 9, 1

#pragma code _page(1252)

#endif II WIN32

#include "res\ARPTable.rc2" II non-Microsoft Visual C++ edited resources

#include "aLues.rc"

#endif

II Standard components

I I I I I I I II I II I I I I I I III II II II I I II II II I I I I I I I I I I I II I I I I II III II I II I I III I III IIII I I

#endif II not APSTUDIO INVOKED

-The second program has on ly an icon resource file.

54

CHAPTER FOUR.

ANALYSES AND COMPARISM OF RESULTS

Observing the two programs written, at first glance one might think that developing such

programs IS a very complex process but once you develop a program using the visual C++

package you will be able to see how easy developing such programs that serves as software

that run on hardware devices can be. The cumbersome nature of the programs and why they

may appear complex is due to the library support the Visual C++ package provides.

Comparing the two programs written in this project to accomplish network routing, you can

observe that there is a big and clear difference between them.

Considering the header fi les of the two programs, the first program written has five header

files corresponding to the five source files that contain the codes written to implement the IP

routing of packets by a simple network router while the second program has a single header

file corresponding to the source file that contains the codes of that particular program.

As said in the above paragraph, the first program has five source files and this is due to the

fact that if a program is a bit complex, then writing it In a number of stages with each

source file representing a different stage is the best way to go about such a problem. The

second program has a single source file that provide the codes for the program.

55

CHAPTER FIVE

RECOMMENDATIONS AND CONCLUSIONS

5.1 RECOMMENDATIONS

Arter careful observations, due consultations, and technical assessment of this project work the

following recommendations were made.

I. The project can be written with a more modern and user friendly language which will

help in understanding the program better.

2. The project can be made to include dynamic form of routing not only the static form.

This will make routing to large number of routes easier.

3. Modern routing protocols such as Routing Information Protocol (RIP) that 111 creases

routing efficiency can be implemented .

4. Recently developed software such as Visual Studio 2008 can be used for the

simu lation process which will be more informative and self explanatory.

5. The routing algorithm can be made to use multipath roting techniques in order to give

mUltiple alternative paths for routing packets.

6. In addition to routing, the program can be made to accomplish bridging so as to cater

for localised environments where bridging is widely used.

7. This project can be made a Masters' degree project and ~e expanded in such a way

that processes like simulation can be added to solve various setbactks being

experienced when routing packets of data.

56

5.2 CONCLUSION.

By carefully observing the routing function of a network router demonstrated by this project,

one can see how the routing process makes sending and receiving packets of data easy and

fast when a router is used.

By comparing the two programs written it can be concluded that developing software that

runs on a computer to perform a given task can be much easier than developing the software

for a device that performs a single function as seen in this project where the program that

runs a computer as a router is less complex that the program that runs a network ' router to

perform the function of routing.

;\Iso writing the program in stages as was done with the first program allows for easy

reconfiguration of the program to may be solve a given problem or improve efficiency.

By carefully analysing this project you can see the beauty of IP routing is that no matter

how many more routes we might decide to put into this example, the process would never

change! The packet is just sent from hop to hop until it reaches the destination address.

57

REFERENCES
I. Vic, Broquard. (2003) . C++ for computer science and engineering.

Broquard eBooks, East Peoria, U.S.A, pp. 35-624.

2. Victor, Shtern. (2000). Core C++ A sojtware engineering approach.

Prentice Hall PTR, U.S.A, pp. 110- 169.

3. Katupitiya, J. And Kim, Bently. (2006). inteljacing with C++.

Springer Berlin, Netherlands, pp. 75-99.

4. Jeffery, Beasly. (2009). Networking.

Edwards Brothers, Michigan , U.S.A. pp.224-244.

5. Ivor, Horton. (2008). Beginning visual C+ +.

Wiley publishing, Indiana, Canada, pp. 97-112.

6. "C++ programmingjill1damentals [CD] .

Chuck, Eastorn, Charles river media 2003.

7. Bjarne, Stroustrup. (2000). The C++ programming language.

Addison- Wesley, Boston, U.S.A, pp. 691-723.

8. WIIIW. wikepedia. com

9. lI'ww.c/.cam.ac.uk/ip-rouling

10. wIVw.techrepublic.col/1

II. 11'11'w./i'eelancer.com/routing-algorirhll1

58

12. WWII' . 3rud com/networks

13. wWII'.compufersimulatiollencyc/opedia.colII

14. \1'11'11'. 1JI1ISCIma. tripod. com

15 . Mannir.comljarouk.zip

59

