DESIGN ÂND CONSTRUCTIO OF AN AUTOMATIC OCCUPANCY AND UTILITY CONTROL SYSTEM

BY
AWOBADE, AYODELE OLAOLU (2003/15333EE)

DEPARTMENT OF ELECTRICAL/COMPUTER ENGINEERING SCHOOL OF ENGINEERING AND ENGINEEFING
TECHNOLOGY
FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

DESIGN AND CONSTRUCTION OF AN
 AUTOMATIC OCCUPANCY AND UTILITY CONTROL SYSTEM

BY
AWOBADE AYODELE OLAOLU (2003/15333EE)

A THESIS SUBMITTED TO THE DEPARTMENT OF EL_ECTRICAL/COMPUTER ENGINEERING SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA.
IN PARTIAL FULFILLMENT OF THE REQIUREMENT FOR AWARD OF BACHELOR OF ENGINEERING (B.ENG) IN ELECTRICAL/COMPUTER ENGINEERING

DECLARATION

I AWOBADE AYODELE OLAOLU declared that this project work was done by me and has never been presented elsewhere for the award of a degree. I also hereby relinquish the copyright to the Federal University of "Teehnology Minna

AWOBADE AYODELE OLAOLU
Name of student

Sign \& date

Dr.Y. ADEDIRAN
Name of (II.O.1)
Name of External txaminer
\qquad
Sign d datc

DEDICATION

This project is dedicated to my parent Most Sur Evang \& Mrs Awobade for there undying love for me.

ACKNOWLEDGEMENT

I appreciate God for his mercy and grace upon my lite. 1 can not quannity God's blessings. ! am also grateful to him for causing wonderful people to bless me both morally and financially. I cannot but adore his majesty for making my tive years in school bunch of testimonies.

I thank my parents Most senior evang \& Mrs Awobade for cncouraging me and also for been there for me.

The support and supervision I relished from my supervisor, Dr. I Tsado could not ke enumerated. Despite his tight schedules, he still had time to scrutinize my thesis.

It's worthy to appreciate the love, encouragement and assistance of Mr and Mrs A,I. Awobade. The family has really contributed in all ramifications to the success of my academic carcer in Minna.

Least I forgot my Big Daddy, Mr A.B.Oguntokun I also want to use this medium to thank him for been a friend to my family.

I wont forget my the following who has one way or the other been there for me, Mas Oshunghohun, Engr Ojo, aunty Bola, papa stevo.

I also want to use this medium to acknowledge and also thank my best friend laino Dada and my brothers and sisters, seun, ore, busayo, codex. Dr thukun and also the rest of my families.

And also I wont forget my friends at school, olaolu, feyi, seun, biola, kurusis, floro,jibike, kunle, funshy dada, Ralph, safam, and also my home boys at home nozman, saheed and also to my good friends seun keshinro, tolulope, morenike, love you all.

TABLE OF CONTENTS

Pages i
Title page ii
Dedication iii
Declaration i
Attestation VI
Acknowledgement vii
Abstract viii
Table of contents ix
List of figures
CHAPTER ONF: GFNERAI, INTRODUCTION 1
1.1 Objectives of the project 1
1.2 Methodology of the project
1.3 Seope of the project and limitations 2
1.4 The significance of the project :
1.5 Source of materials :
1.6 Project layout 4
CHAPTER TWO: LITERATURE REVIEW 5
2.1 Ilistory and development of lighting 5
2.2 First generation day lighting technology :
2.3 Second generation day lighting technology 0
2.4 Third generation day lighting technology 7.
2.5 Theoretical background of the project 8
2.5.1 The transmitter circuit s
2.5.2 The receiver circuit 0
2.5.3 The microcontroller -)
2.5.4 AT89C51 microcontroller 4
2.5.5 The counter display 0
2.5.6 The swithching circuit 10
2.5.7 The power supply 10
CHAPTTR THREE: ANALYSIS AND IIARDWARE: $1!$
3.1 System poverer suppiy 11
3.1.1 Transformaion 12
3.1.2 Rectification 12
31.3 Filteration 12
3.1.4 Regulation 12
3.2 Generation of the 5 volts power supply 13
3.3 System controller 1.5
$3.4 \quad$ 3-Digit 7-Segment display 17
3.5 Relay driver 19
3.6 Preset key inputs 21
3.7 I.DR light sensor 21
3.8 IR generator
3.8.1 IR sensor25
3.8.2 IR detector 26
CHAPTER FOUR: CONSTRUCTION,TESTING AND DISCUSSION
()F RISSUT'T. \therefore
4.I Circuit construction 29
4.2 Casing construction 30
4.3 Testing of project \therefore (i)
4.4 Result of project 30
4.5 Problems encountered $\therefore 1$
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 3.
5.0 Conclusions 32
5.1 Recommendation 32
References $3 ;$
Appendices $3+50$

LIST OF FIGURES

Fig 2.0 Block diagram of AOUCS 9
Fig 3.0 Power supply system $1:$
Fig 3.1 System component functional block diagram 15
Fig 3.2 3-digit 7-segment display 17
Fig 3.3 PNP digit driver transistor 10
Fig 3.4 Relay driver 20
Fig 3.5 Preset input switches 21
Fig 3.6 LDR light sensor $\therefore 2$
Fig 3.7 IR generator 23
Fig 3.8 IR sensor/dectector 20
Fig 3.9 Complete circuit diagram of AOUCS 28

Abstract

This project is all about the design and construction of an Automasio Occupancy and Utility Control System, embarked upon to enhance and control electrical power consumption and also detecting occupancy level in specific environments. The design is based on the principle of using a mierocontmiler w control and also helps in displaying of digits using the seven segments display mode. It entails writing of computer programs(C-Programming) which is written into the microcontroller as program codes. The design methods adopted in thesc project involves six stages; transmititing circuit, the sensor/receiver circuit, the microcontroller, the counter/display, the switching cirenit and the power supply circuit. The project work was found working satisfactory.

CHAPTER ONE

INTRODUCTION

This project "Automatic Occupancy and Utility Control System" is a device that takes over the task of controlling the room lights as well as comuting mumber of persomsisiters in a room. The project aims is to achieve the conservation of electrical power by automatically switching off the power supply when the room is empty of persons and the replacement of mechanical toggle switches with the sensitive auto switches. This is achieved through the design and construction of a simple, reliable, highly sensitive automatic room light using a microcontrolier to achieve simplicity and reliability. The system is self operating, hae ing the ability to reset itself automatically and thus need little or no human intervention.

When a person enters into the room then the counter is automatically incremented by one and the light in the room will be switched ON. When he leaves the room the counter is decremented by one. The light will be switched OFF only if all the persons in the room go out. The microcontroller receives the signals from the sensors, and this signal is operated under the control of software stored in the ROM. The microcontroller cominnously monitors the infrared receiver. When any object passes through the $I \mathbb{R}$ receiver, the $I R$ rays falling on the receiver are obstructed, this obstruction is sensed by the mieroeontroller and the lights turns $O N$ and also its counts with the help of 555 timer present which acts as o counter.

1.1 Objecrives of the Project

The objective of this project work will therehy include;

1. To design and construct a simple lighting control and counting device with the aid of a microcontroller.
2. To ease up digital counting deviees through the aid of infrared beam.
3. To create awareness in electrical and electronic design in digital counting devises.
4. To stimulate students interest in the growing field of digital counter and microcontroller programming.
5. To conserve utility (electricity supply) system.

1.2 Methodolagy of the Project

The methods used in carrying out the project are as follows;
The project uses one power source; the regulated 5 V from the main source (PHCN). This arrangement provides a steady power supply to the circuit. The seven segment dispise used are common-anode and are connected in parallel, multiplied to reduced the \cdot umber of inputs and outputs.

The microcontroller does the above job and It also receives the signals from the sensors, and this signal is operated under the control of software which is stored in ROM. Microcontroller AT89C51 continuously monitor the Infrared Receivers, When any object pass through the IR Receiver's then the IR Rays falling on the receiver's are obstructed, this obstruction is sensed by the microconifoller.

The switches are connected to each seven segment display to switch current to ea h LED in other to display the number of persons coming in and also the number of persons leaving the room with the aid of the counter.

But if in dayligh: the lighting bulb will not glow but immediately its dark the lighting bulb will glow due to the present of a photo resistor present in the design of the projeet.

1.3 Scope of the Project and Limitations

The applica : on of $A O U C S$ cannot be over emphasized in the world of electronics because of its significance in electricity conservation. Such practical application includes the switchins: ON or OFF of electric light or bulb in a room.

The AOUCS is based on sensors, integrated circuits (ICs), and microcontrollers and also on the relay switches. It also has a counter that counts the numbers of persons that gnes out and its shows this from its display using a seven segment display led.

The limitation of the AOUCS is that it can not detect two persons coming inside a building at a particular time; it will sense error of such occurrence, unavailability of some of the principal components especially in this locality and also high percentage of malfunctioning of faulty IC's being sold as new ones.

1.4 The Significance of the Project

The benefits of $/$ OUCS are many, in terms of energy conservation and ensirommentai impate are significant. The system's overall operation and benelits from reduced energy consumption, improved working environments. The production of electricity is the largest single source of air pollution from the burning of fossils fiels. A power plant used we werate electricity burns oil, coal or natural gas that emits gases such as carbon dioxide. sulphur dioxide. These gases, in turn cause acid rain, smog and global warning. Conserving cinergy reduces the amount of fuel thet has to 'ee censumed, thereby reducing the amount of pollution Gencrated.

1.5 SOURCE OF MATERIALS

Materials used Cor this project was sourced from several places, they include various textbooks, previcus final year project, lecture netes and numerous websites on the internet with the internet yielding the most valuable references.

Components and working tools were sourced locally from mina. These include resistors, relay, capacitors, connecting wires, microcontroller and transistors to mention a fen while the working tools include digital millimeter, soldering iron and serewdriver.

1.6 Project Layout

Chapter one; focus on the introduction, gives a brief overview of the topic and states pryjout objectives, scope, problems and methodology adopted.

Chapter two; mainly on literature review bringing to light historical developusents, advancement and limitations of other works, it's also contains the theoretical backeround of project.

Chapter three; contains circuit diagrams, design and amalysis, it specification, circuit requirements and design approach and contains detailed notes on the components used defending their chotee over contemporaries.

Chapter four; system construction and testing.
Chapter five; final chapter summarizes the project's area of application, problem encouncred and limitations of the work as well as suggestion fro further improvement.

CHAPTER TWO

LITERATURE REVIEW

The idea of lighting and occupancy is familiar to everyone but it is a concept which is difficult to describe. The literature review of this projeet would be apparemt if I tailed to critically examine the historical and development of lighting.

2.1 History and Development of Lighting

In recent years researchers have been seeking a new economical solution of light systems. With the current increase in electricity demand, energy conservation has become a heavy consideration. Although it makes up 25% of all electricity consumed nationalls, lighting is often overlooked as a potential source of conserving energy. An automatic light control device uses photoelectric beams to detect a person entering or leaving a room and a microcontroller is used to keep track of the number of oceupants of a room, keeping the lights on until the last person leaves. This system could potentially reduce light usage of a room or occupancy by as much as 55%. [5]

In Nigeria, lighting accounts for approximately 30% of annual electricity consumption, while in UK its 20% of electricity consumption, therefore it is important to ensure that lighting installation are as energy efficient as practicable. The lighting device in use enable automatic swich-off of lighting when buildings are unoceupied and automatic dimming when sufficient daylight is available. The deviee can be set up quickly and easily and without the need to run cables.

2.2 First Gencration Day Lighting Technology

Lighting as been in existence ever since the first day God created heaven and earth he said "I et there be light and there was light". But as changes started oceurring to mann, man knew it high time, for them to have light when there is darkness, so tirewood was the tirst lighting system man used in lighting there environment when its dark. Man tried various
modes of lighting but the day Faraday discovered electricity it solved man's problem at least 30% of the problem was solved, thereafter several scientist tried to apply elcitricity to lighting, which was successfully achieved through Rubinstein who invented the lighting bulb in 1890, from there various scientist has discovered lighting system which lead man to the second generation of lighting.

2.3 Second Generation Day Lighting Technology

The wireless lighting management solution that is been design today is the second generation of lighting, which include lighting sensor and control technology, The second generation which depends on a wired network is now in use all over the world after scientist first recognized the large potential for saving energy by taking advantage of day lighting.

Some various team's of researchers at Berkeley lab began developing an integrated building equipment system (IBECS) to allow facilities managers to automatically control devices such as lighting in commercial buildings, using a computer workstation and a wired network.

The team developed a set of prototypes, including a digital interface for dinmable lighting fixtures, a light sensor, switches, and a user interface for controlling the network from a personal computer. Their research demonstrated that automated network control of lighting system could be cost effective in new construction and major renovation project where it is relatively easy and inexpensive to run the necessary wiring.

The light is controlled wirelessly by the motes, which receive instruction trem a single board computer that connects the entire network of motes to a PC rumuing lightings control software. The research team has also developed a wireless environment sensor that measures the lighting level in a room. [5]

Energy may be saved by ensuring that lights are used when or to the exteni, when they are needed. The University of Michigan has implemented automatic lighting dovices in offices, corridors, restrooms and classrooms.

2.4 Third Generation Day of Lighting Technology

The Third generation day lighting control system emails the design of :an "dutmatio Occupancy and Utitity Cortrol System", This device is a lighting and control system that light with the aid of infrared, microcontrollers, and photodiodes that measure the lighting level in a room, tells whether the room is occupied or empty i.e. Iransmit this information through the microcontroller. Light sensor control switches on/off automatically. Helptul for the elderly, disabied or children. It has the following features;

1) Turns on at dusk and off at dawn automatically
2) Emits briz ht and warm light
3) Modern design
4) Economical and long life LED technology which generates almost no heat
5) For use in rooms where background light is needed.

Since the device maybe left dormant for a long time and will be required to operate with fast response, there must be a reasonable guarantee that it will vperate without human intervention; hence reliability is of utmost important. The system must be able to trigger immediately a person enters the room and power up the light bulbs; thus the systems response must be fast and accurate.

In Nigeria today, the need for electrical power conservation can no longer be ignowed, considering the state of power generation, transmission and distribution in the country, It is obviens that biss system has come of age and needs to be part of every home on ontice in present day Niger'a. However, importing such devices may be too expensive and out of reach
of most Nigerians, but local manufacture of the device using readily available components would to a large extent resolve this problem of cost.

2.5 Theoretical Background of the Project

The theory of this project incorporates various theories and principle of elowmis These are drawn from topics such as optoelectronics, power electronics, integrated cinctit electronics and electromechanical devices.

The "Automatic Occupancy and Utility Control System" can be divided or broken into different circaits segments nameiy;

1) The Transnitter circuit
2) The Sensor/Receiver circuit
3) The Microcontroller
4) The Counter/display
5) The Switering circuit
6) The Power supply unit

Fig 2.0 block diagram

2.5.1 The Transmitter Circuit

This is the portion of the system where the infrared beam originates. The tramsmuter is a light emitting diodes that emits light in the infrared region. It sends a cor-inueus team of signal with a beam angle of 40 degrees over a distance to the infrared sensor and maintains:a constant link with the receivers. If this link is broken, the receiver which is always active LOW becomes active HIGH. The infrared diode operates at a frequency range of 32 KHzto 40 KIIz . The infrared diode is combined with a 555 timer operated in a monostable mede 10 produce a single rectangula: pulse, whose amplitude, pulse width and wave shape depends upon the values of circuit components. [7]

2.5.2 The Receiver Circuit

The receiver segment consists of infrared sensors which deteet inframed signals especially in a waveform. The infrared sensors are on active L.OW which means the microcontroller is presented with logic 0 when an infrared signal is detected. When no signal is received, the iogic becomes I which is active HIGII. Onee the link is intact or broken, the sensor sends a sigal to the microcontroller for interpretation. [7]

2.5.3 The Microcontroller

The mierocontroller serves as he "Brain" of the entire system. It processes the signal from the sensors and determines the action to be taken. The microcontroller is responsible for deciding if there is any person still left in the room or not. The ROM stores the setware which the microcontroller uses to control the trigger or switch. Reset is :sed to put the microcontroller into a known state. Normally when a microcontroller is resel exceution starts from address 0 of the program memory, this is where the first executable user program resides. The reset action also initializes various SFR registers inside the mierocontroller. |S|

2.5.4 AT 89C51 Microcontroller

The 89 C 51 microcontroller used in this project is a member of 8051 mierocontroller. which was introcuced in the early 1980s by Intel. Despite its relatively old age, the 8951 is one of the most popular microcontrollers. It has three (3) general types of memory: (i) Codes memory (ii) Special Function Register (SFR) and (iii) External memory,

The 89 C 51 contains Flash Programmable and Erasable Memory (PEROM), where the codes (programs) memory can be reprogrammed. They are compatible with the 8051 family and offer reduced power consumption and high functionality.[8]

2.5.5 The Counter /Display

This segment of the system is under the direct control of the microcontrollei, and is used to display the number of persons in the room. We can display a multi-digit number by connecting additional displays. The 8 LEDs inside each display can be arranged with a common cathocie or common anode. With a common cathode display, the common cathode must be connected to the 0 V rail and the LEDs are turned on with logic 1. Common anode displays must have the common anode to the +5 V rail. The segments are turned on with logit 0. For the purpose of this project common cathode display is used. Displaying digits is carried out in multiplex mode which means that the mierocontroller alternately prints ones digit and tens dgit. The simplest way to drive a display is via a display driver, but alternatively displays can be driven by a microcontroller and if more than one display is required the method to drive it is called multiplexing. The main difference between the two methods is the number of drive lines.[6] [2] [1]

2.5.6 The Switching Circuit

The switching circuit is made up of a PNP transistors switch which is used to energize the relay. The transistor has two different states, the ON and OFF, 11

2.5.7 The Power Supply

Power supply is a basic requirement of every electronics system: power must ke available for the electronics system to perform its specified duties. Power suppls can be in form of Alternat ing Currents (AC) power supply or a Direct Current (DC) power suppla, the power supply unit for the system was built using a $240 \mathrm{~V} / 12 \mathrm{~V}$ Step down transioner, full wave bridge rectifier, a 100uf Capacitor for smoothening of the signal output from the bridge rectifier and a 12 V 7805 voltage regulator that makes sure the 12 V voltage required tor triggering the relay is produced. For the alternating current power supply to become a direct current power supply, it must undergo some processes which are transtormation, rectitication, filtering and regulation.

CHAPTER THREE

ANALYSIS AND HARDWARE DESIGN

The analysis of the AOUCS provides both theoretical and mathematical equations involved in the design. The hardware design (eircuit's oonstruction) is achieved based on the results obtained from this chapter. Figure 3.8 shows the complete cincuit diagram of the Automatic Occupancy and Utility Control System. The values and types of all electrical components have been indicated neatly. For the sake of simplicity and accuracy, the çircuit was divided into different units as shown below in fig. 1.0 and represented by the flow chare of figure 3.0. This chart elaborates how the calculation involved would be done.

The 'Attomatic Occupancy and Utility Control System' comprises of the foltowing subsystems;
(i) SVofts Regulated system power supply
(ii) 3-čigits 7 Segment display
(III) 8-bit System controller
(vv) I.DR I, ight sensor
(v) Ik Generator
(vi) IR Receiver

3.1 System Power Supply

Power supply is a basic requirement of every electronics system; power must be available for the electronics system to perform its specified duties. Power supply can be in form of Alternating Currents (AC) power supply or a Direct Current (A) perer appis. The
power supply unit for the system was built using a $240 \mathrm{~V} / 12 \mathrm{~V}$ Step down transformer. full wave bridge rectifier, a 100 ff Capacitor for smeothening of the signal output firom the bridge rectifier and a 12 V 7805 voltage regulator that makes sure the 12 V voltage nquired for triggering the relay is produced. For the alternating current power supply to beranc a dires current power supply, it must undergo some processes which are transformation, rectification. filtering and regulation.

3.1.1 Transformation

This is the process of stepping the AC mains supply into stabler valaces through the use of a step down transformer.

3.1.2 Rectification

Rectification is the process where the AC voltage at the output of a transformer is converted inte i)C The process is accomplished by using reetifier diodes which permit the flow of current in one direction only.

3.1.3 Filtration

This process involves the removal of AC ripples, from the rectified voltage. It imwhes the use of a capacitor to filter off the ripples which are always embedded on the DC output.

3.1.4 Regulation

The process of filtering is not sufficient to completely eliminate AC ripples from the DC output of the rectifier due to the fact that the capacitors used has the ability to charge and discharge with time. Consequently voltage regulators are employed to stabilize the output voltage before it is made available to the load.

3.2 Generation Of The 5volts Power Supply

$A+5 V$ regulated system DC voltage (operational) is required for unit operation; this system supply was derived from a $12 \mathrm{~V}-0.5 \mathrm{~A}$ stepdown transformer which is therefore connected to a fullwave bridge rectifier as shown below.

FIG $3.0+5$ POWER SUPPLY SYSTEM

The $12 \mathrm{~V} \wedge C$ voltage was connected to a pulsating DC of frequency of $100 \mathrm{H} \angle$ and amplitude given by the expression
$V_{\text {de (peak) }}=\left[V_{\text {ans }} \sqrt{2}-1.4\right]$ volts
$V_{r m a}=$ RMS $\wedge C$ input voltage into rectifier
$\sqrt{2}=$ RMS - to + Peak conversion factor
$1.4=$ Forward voltage drop in two adjacent diodes of the rectifier.

For a $240 \mathrm{~V} \wedge \mathrm{C}$ line condition
$V_{\text {de peak }}=12 \sqrt{2}-1.4=15.56 \mathrm{volts}$

This voltage was smoothened by a capacitance of value,
$\mathrm{C}=\frac{I t}{V}, \quad \mathrm{I}=$ Maximum load current

$$
\mathrm{t}=1 / 2 \mathrm{f}=1 / 2 \times 50 \mathrm{~Hz}
$$

$\mathrm{V}=$ Maximum AC ripple Voltage

It was deduced from the approximate summation of the current drawn by the diflerent subsystem as totalized below:
$I_{\text {RELLAY }}=\mathrm{V}_{\text {coil }} / \mathrm{R}_{\text {coil }}=\frac{6}{100}=60 \mathrm{~mA}$

AT89C51-15mA (12 MHz)

3-Digit display -2.10mA peak

IR Sensor + I.DR Sensor $=20 \mathrm{ma}$
$\sum \mathrm{I}=305 \mathrm{MA}$

The maximum AC ripple voltage was calculated using the data supplied in the 7805 regulator spread shee ${ }^{+}$

For a 5 volts regulated output, the input voltage is 7 volts (2 volts overhead is needed to maintain the output regulated)

On a 15.5 V peak input voltage, the minimum input voltage is 7 V . corresponding to a peak AC ripple voltage of $15.5-7=8.5 \mathrm{~V}$

Therefore,

$$
C=0.305 \times \mathrm{i} / 2^{*} 50 / 8.5=360 \mu \mathrm{f}^{\circ}
$$

The above caiculated value is the minimum value needed to maintain a regulated 5 volts output. It was increased by a factor of 9 for improved system performance.

The 5 volt DC output was stabilized by a $16 \mathrm{~V} 2200 \mu \mathrm{I}^{\circ}$
Capacitance, and filtered of HF noise by an $0.1 \mu \mathrm{f}$ capacitance as indicated in fig 3,0

3.3 System Controller

An 8-bit AT89C51 microcontroller was used for the system control. It was interfaced with other system components as shown below.

Fig 3.1 system component functional block diagram

The controller was programmed to execute the following system operation
(I) Refresh the 3-digit display depending on the accumulated value of the residual count.
(II) Detect the presence/ absence of ambient light over an input pin (PI.0)
(III) Control a connected lamp load via a relay.
(IV) Detect the exit and entrance motion from the IR sensors interfaced to the controller over P3.2, P3.3.
(V) Respond to user controlled input switches interfaced to P2.4, P2.5 and P2.6.

The controller was programmed to interrupt on the hating edge, Two intertupt special registers (ISRS) were written to handle the two cases which are entrance and exit. Three registers designated to hundred, tens and units were eccordingly decremented or memented on the ISR depending on whether it is an exit event or entrance event.

The controller was also programmed to respond to user preset of the display occupane, level by way of three keys interfaced to P2.4-P2.6.

The keys used in occupancy level are used where the counting are not zero based.

The controller was interfaced with the 3 -digit display over P2.0, with P2.1-P2..: providing digit position control via three PNP driver transistors. The controller was also programmed to automatically turn on/off a connected lamp load depending on the current occupancy level.

If occupancy is zero and ambient lighting is not detected, the lamp is turned off via a o-volts relay.

If occupancy level is greater than zero and ambient light is detected, the lamp is turned oft. otherwise it is turred ON.

3.43 Digit 7-Segment Display

A display was used to provide a running count of the occupancy level. A multiplexed display was used to reduce the number of I/O pins needed to address the segments. The display was controlled via three PNP digit driver as illustrated below

Fig 3.23 digit seven segment display
$\phi 1-\phi 3$ was 2 SA 1015 GR PNP transistors. They were used to individually select the digit to be addressed. They were controlled over P2.I, P2.2 and P2.3 from sottware.

A multiplexed display works on the basis of time slice allocation of the common data path $(\mathrm{P}()$). The time slicing was done in soflware via $\phi 1-\phi 2$.

To address a multiplexed display, the digit drivers are first turned OFF; the data to be display on the display segment is written on the common data path. The digit driver for the display digit position is turned ON. The driver is turned ON for an interval depending on the system requirement. The digit driver is turned OFF and the other digit driver controlled as explained above.

For an n-digit multiplexed display, the current through each segment is equal to lied $\backslash \mathrm{N}$.
$I_{L E D}=$ Condition LED forward event $(5 \mathrm{~mA} \sim 20 \mathrm{~mA})$ for standard RED I.EDS.
n no of digits in the display, for a 3-digit display and a ILED of 10 mA , the current through each segments this give

$$
3 \times 10 \mathrm{~m} \Lambda=30 \mathrm{~m} \wedge
$$

The total curremt through each digit with the 7 Segments ON is thus
$30 \mathrm{~mA} \times 7-210 \mathrm{~mA}$

The above value of digit current is therefore the collector current of each PNP digit driver transistor.

Fig 3.3 PNP digit driver transistor

The transistor used have an high frequency about 200 Hz

Since $I^{c} I_{13 \times \beta}$
$I_{n}=I_{C} / \beta=0.2 / 2(0)=1 \mathrm{~m} \Lambda$
$\mathrm{R}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}} / \mathrm{I}_{\mathrm{B}}$
$=5-0.7 /(0.001=4.3 \mathrm{~K} \Omega$
The value was halved to $2.2 \mathrm{k} \Omega$

3.5 Relay Driver

A relay is a switch worked by an electromagnet it is useful if a small current in one circuit is needed to control another circuit containing a deviee such as lamp or electric motor which requires large current, or if several different switch contacts are to be operated simultancously.

When the controlling current flows through the coil, the soft iron core is magnetized and attracts the L-shaped soft iron armature. This rocks on its pivot and opens, closes or changes over, the electrical contacts in the circuit being controlled and it closes the contacts. The current needed to operate a relay is called the pull-in current and the dropout cursent is the current in the coil when the relay just stops working.

A PNP transistor was used to turn ON/OFP the relay controlling the lamp load.

Fig 3.4 relay driver

The relay has a coil resistance of 100 ohms , at a coil voltage of 6 v
$I_{\text {RELAY }}=\frac{V r}{R r}=\frac{6}{100}=60 \mathrm{~mA}$

Ic of the PNI ransistor- -60 mA
$I_{B}=\frac{0.06}{200}=0.0003 \mathrm{~A}$
$R_{n}=\frac{V c c-V B E}{I B}$
$=\frac{5-0.7}{0.0003}=14 \mathrm{Kohms}$
The valae was reduced to 2.2 kohms to gamantee switching under all prossible circumstance.

3.6 Preset Key Inputs

This are normally open mechanical switches which are connected to P2.4. P2.s and P2.6 as shown below

Fig 3.5 preset input switehes
Key presses were detected by a closure to ground the three keys, which are used to adjust the oceupancy level as desired . A key was dedicated to cach RAM variable designated to hundreds, ens and units. In software the RAM variable were cognized as BCD up-counters incremented from 0 to 9 and then reset back to 0

3.7 LDR Light Sensor

To ensure detection of the presence and absence of ambient light, an i.DR tight sensor was used. A η LDR exhibits a negative coefficient light dependent resistance, LDR IS onl a resistance, it was wired in a potential divider network as shown below
e

fig 3.6 LDR light sensor
The output voltage, Vx , of the divider does not posses the characteristics of a digital logic level. Therefore a waveform regenerator was used to provide a clear logic level compatible digital output.

An NS555 deviec was configured as a Schmitt trigger with an upper and lower switehing thresholds.

As configured above, the output, pin 3 of the device switches low when $\mathrm{Vx} \geq \frac{2}{3} \mathrm{Vec}$, that is at $\geq 3.3 \mathrm{~V}$. Pin 3 remains low until $\mathrm{V} x \leq \frac{1}{3} \mathrm{Vcc}$ that is 1.66 V at which point pin 3 rises high.
V_{x} is high due to the very large value of the LDR resistance; The 555 output is then low. This detected in sofitare as a low light level or total light absence. In the light. V x is low, the 5 is timer switches high. This is detected as a high ambient light level.

3.8 IR Generator

To enable entrance ard exit motion detection two pairs of IR Generator and keceiver were needed.

The IR generators were required to produce a 30 KILz IR signal that is beamed across the monitored space in the direction of the IR sensors.

The IR Generators were based on the 555 device configured as an astable oscillators

Fig 3.7 IR generator
A 5 volis supply voltage to the oscillator was derived from a 9V battery sounce. The supply voltage was regulated to eliminate the supply voltage frequency dependent characteristics of oscillators. A 7805 , 5 volts regulator was used to regulate the 9 volts down to +5 V .

A 555 device configured as' a 50% duty cycle astable oscillator was used to generate an output frequency centered around $38 \mathrm{~K} / \mathrm{lz}$. The output frepuency was derived by an Rr (1 combination g and given by the expression)

$\mathrm{F}_{\mathrm{os}}=1 / 2\left\lceil\mathrm{R}_{\mathrm{T}} \mathrm{C}_{7}\right.$

R_{T} was a 50kohms adjustable resistance while C_{T} has a 0.009 uf capacitance.
R_{T} was adjusted to generate the required output frequency while the frequency was monitored on a frequency meter.

The 33 KHz high frequency drives signals was fed into the base emitter circuits of̂two $\mathbf{C 9} 01 \mathrm{H}$ transistor as shown in fig 3.7

In each transistor collector was a load comprising an LED (IR) and a series current limiting resistance. The value of the resistance were reduced from the expression

$$
\mathrm{R}_{s}=\frac{V_{s}-V / e d}{d l e d}
$$

$\mathrm{V}_{\mathrm{o}}-15 \mathrm{v}, \mathrm{V}_{1.11}-9 \mathrm{~V}$;
$I_{1 . E I)} \leq 0.5 \wedge$ (max)

On Iten current of $10 \mathrm{~m} \wedge$ was chosen for range

$$
R_{s}=\frac{5-1}{0.01}=400 \mathrm{v}
$$

The value was reduced to 330Ω
The base current values of the transistors were calculated accordingly
Since $I_{C}=1, n=10 \mathrm{~mA}$
$H f e=200$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{B}} & =\frac{I c}{I I f e}=\frac{0.01}{0.02}=50 \mathrm{~mA} \\
\mathrm{R}_{\mathrm{B}} & =\frac{V a t(555)-V B E}{I B} \\
& =\frac{2.5-0.7}{0.00005}=36 \mathrm{~K} \Omega
\end{aligned}
$$

The value was reduced to $\mathrm{IK} \Omega$ to allow for overdrive.

3.8.1 IR Sensors

^ pair of commercially produced TSOP1738 IR sensor was used to deteet beam discontinuity between the IR generator and the detector units.

The TSOP 1738 were interfaced with 555 monostables configured with for a 1 -second pulse width.

The monostables were incorporated to prevent spurious noise on the supply woils to the sensor from supply coils to the sensor from falsely interrupting the mierocontroller.

3.8.2 IR Detector

Fig 3.8 IR Sensor/detector
The value in parenthesis refers to the components in the second modular box. The TSOP's maintain their output wish when they receive an mmodulated high frequeney beam. When a beam discontinuity is detected, their outputs switeh low, triggering the monestable and pulsing their outputs high, forcing a high to low transition on the interrupt inputs B 3.2 and P3.3.

Interrupts were uisu to prevent the system missing exit and entrance events.
The three cascaded RAM registers (II,T,U) were run as a 3-digits up/down BCD counter incremented or deciemented depending on whether the event that triggered an interrupts either an entrance or exit motion. The output pulse width of the 555 timer was computed from the expression $\mathrm{T}-\mathrm{RTCT}$

RT is the resistance between Vce and pin 7/6, CT is the capacitance between pin $7 / 6$ and ground.

Since the controller requires a falling edge transition, its interrupt pins not gate derived from non transition were interposed between the 555 timer outputs and the interrupt inpurs. With the TSOP's constantly radiated by the 38 KIIz IR signal, pin 2 on the monostabie is high. However when beam discontinuity occurs, the TSOPS switch low, putiing the volrage on pin 2 of the 555 below. $\frac{1}{3} \mathrm{~V} \mathrm{cc}(\leq 1.66 \mathrm{~V})$,triggering the 555 timer and producing a 1 second output pulse width which generates an interrupt condition in the system control software.

Fige 3.9 Complete circuit diagram of an Automatic Occupancy and Utility Contral System

CHAPTER FOUR

CONSTRUCTION, TESTING AND DISCUSSION OF RESULTS.

4.1 Circuit Construction

Construction techniques involves a proper understanding of the design stages acquiring adequate hardware components and minimizing the amount of components used. However, the most important aspect of construction is how to interface the sifferent components to work effectively together. This brings about compatibility.

Compatibility is always a problem in electronic system design, but the ultimate aim of the construction is to ensure that the components work eventually so as to realize the objective of the project. The construction of the project started with a good understanding of how a microcontroller wooks and also programming it based on how other handware components that would be connected to it . The programmed for the microcontroller was simulated to ensure that it was error free before the components were put together on a hread board to ensure effectiveness.

The construction of the project work was done in two different stages mamely:

1. The soldering of the circuit to the board
2. The coupling of the entire project to the casing

The power supply unit was done with great care; it was derived from a bench power supply which supplied voltage to the various stages of the circuit.

The counter and receiver stages were constructed and tested on the bread board aceording to the block representation, before soldering of circuit commenced on the Vero board. The various stages and circuit were soldered in tanden to meet the desired workability of the project.

4.2 Casing Construction

The second phase of the project construction is the casing of the project work. The project was coupled to a plastic casing, the casing material was designed with special perforation and vents to ensure insulation and give ecstatic value.

4.3 Testing

Testing involves troubleshooting the hardware system to deteet, isolate and conter internal or exiernal fault such as malfunction in internal circuitry. It is expedient that the hardware system is properly tested because the sotware camon work where there is a malfunction in the hardware. Testing of the design was carried out using various equipment which are:

1. Bench Power Supply: This was used to supply voltage to the various stages of the circuit during the breadboard test before the power supply in the projeef was soldered. .
2. Oscilloscepe: The oscil!escope was used to observe the ripples in the power supply waveform and also to observe the pulse generated at the monostable multivibrator circuit.
3. Digital Multimeter: the digital multimeter basically mensures voltage, tesistance, continuity, current, frequency, and temperature. The process of implementation on the boand required the measurement of parameters like the voltage, continuity, current and resistance values of the components. The multimeter was also used to check the voltage level of the ray of light that was transmitted using the infrared in this project.

4.4 Result

The result obtained from testing the design showed that the design was able to recognize the presence of a person obstructing the infrared heam either entry or exit of the room bearing in mind that the room is empty of persons. A simalation was carried out usiag a prototype model a ad the result obtained are;
(1) The light bulb turned ON when an object representing a person entered the room and the seven segment display indicates a count to show the presence of a person
(2) Repeating the process, the light remained ON and the indieator kept inerementing as more people entered the room.
(3) Reversing the process, the light bulb remained ON and the counter kept decrementing until no one was left in the room and the light bulb turned OFF,

On powering, the light bulb flashes ON and OF . This is due to the mierocontroller resetting.

4.5 Problems Encountered

Like every other research and practical engineering work, diverse kinds of problems are often encountered. The problems encountered in this project and how they were solved and maneuvered are listed below;
(1) How to design a path that tells the microcontroller whether a person is coming in or coming out of the room
(2) Programing the microcontroller to monitor sensors as well as counting visit.
(3) Presence of exiernal influence of lig!t to the LDR which was affecting the current, this was solved by shielding the LDR with a black tape.

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.0 Conclusions

The design and construction of the Automatic Qceupmey and Utility Confonl Sistem was accomplished using electronic components that are readily available locally. This project was constructed bearing in mind the need to provide a cost effective way of conserving electrical energy or power through the turning ON or OFF of the light bulb when appropriate. The performance of project after testing showed that the system met these design specifications. The microcontroller made the realization and implementation of the project less stressful and relatively easy. The device is responsible for determining if the rooi. was occupied and if the bulb should remain ON or be turned OFF.

5.1 Recommendations

Like most other systems in the world, this project had some limitations and therefore leaves room for improvement. The observed limitations and their respective recommendations are:
(1) The projece assumes that the room is initially empty of person and will not operate as designd if for some reason this assumption is not met.
(2) The system might not sense extremely fast movement through the door. Using sensons with greater sensitivity could resolve this problem.
(3) A simple power switch could be incorporated into the system to serve as manual override when the light is not required in the room during a particular period of time
(4) Display could be made of liquid display crystal (LCD) in order to reduce power consumption

REFERENCES

[1] V.K MEHTA.
PRINCIPLES OF ELECTRONICS (117-205, transistors and general references)
Published by S. CHAND \& COMPANY LTD (2003).
[2] ROBERT L BOYLESTAD
LOUIS NASHELSKY

ELEC'TRONICS DEVICES and CIRCUIT THEORY (eight editions)
Published by PRINCE-HALL (2002).
[3] RJ MADDCCK \& DM CALCUTT
ELECTRONICS a course for engineers. (Pages 341-349, IC timers, 249-26.3 counters)
[4] GEORGE I.OVEDAY
ESSENTIAL ELECTRONICS (pages 241-244 transistors, general references).
Published by PITMAN (1984).
15| ARTICI!!) N LIGIIT
Http/basiceletronics.com/light
[6] ARTICELO ON COUNTERS AND MICROCONTROLLLER
Http//www wikipedia.org/search
17| BERNARD GROB
GROB BASIE ELECTRONICS ($7^{\text {th }}$ edition, McGraw-Hill International Lidifions).
[8] MR ERONU (lectures note on microcontrollers)

APPENDIX

```
INCIUDE 89c51.mc
load_dx BITT p2.0
digit 1 Dx MIT p2:
digit_2_Dx 131 P 2.2
digit_3_Dx BIT p2.3
display_port EQU p0
hundreds DATA \(10 h\)
tens DATA 11 h
units DATA 12 h
data 0 DATA 13 .
data I DATへ 14h
data_2DATA 15 h
dx port EQU p2
update buffer lay BIT 05h
stack EQU 60
hundreds key BIT p2.4
tens key BI'? p2.5
units key BIT p2.6
light in BIT pl.O
```

org 0000 h
AJMP start_up

```
OH2000.3/4
a.IMP!o plus
arg 0013h
a\MP go minus
start up: ClR ca
    MOV sp,#stack
    ACAI.I. sys init
    ClR load dx
mambop: ACALL update system
    ACAl.l. sean key
    ACALL, write display
    ACAI.I chk oceupuncy
    S.JMP mainloop
```

```
**
sca; kcy:
scan hundreds: JB hundreds_key, scan_tens
```

```
                                    AC`ALL, adjust hundreds
    scan tens: Jl3 tens key, sean_units
                            ACALL adjust tens
scon units: }113\mathrm{ units key, exit scan_key
    ACALL adjust_units
exit SECan key: RET
**S
adjust hundreds: MOV R0, #hundreds
                    ACNLL adjust now
                            S.IMP go on___show
aliust tens: MOOV RO,#tens
    ACALL adjust_now
    SJMP go_on_show
adjust units: MOV R0.#units
    ACALL adjust_now
go on show: SL:Ti3 update_buffer_flag
    MOV R4,#100
go_(oop: ACALL write_display
    AC'AL.L. write display
    djuz: +%,go_loop
```

adjust new: . . MOV A.(a)RO
INC A
CJNE A,\#10, go_check
bach olust: MOV (ar)R (\#)
MOV A. H (
RET
go. chock: \(\quad \begin{array}{ll}JNC back_adjust
\& M O V(@ R 0, A\end{array}\)
ship adjust: RET

Nate Table: DB
$11000001 \mathrm{lb}, 11111001 \mathrm{~b}, 10100100 \mathrm{~b}, 10110000 \mathrm{~b}, 10011001 \mathrm{~b}, 10010010 \mathrm{~b}, 10000010 \mathrm{~b}, 11111000$
W. 1000000006.100100000 b

sys init:

ACAL.i. reset_delay
MOV po, HOMh

MOV pl. \#0flh
MOV P2. 1 HOfll
MOV P3. $1 / 10 \mathrm{ml}$
MOV toon, $\# 00000101 \mathrm{~b}$; set up int0 ant inti to interrupt on
falling edge
MOV HUNDREDS,H0
MOV TENS, \#0
MOV UNITS,\#0
CLR A
MOV DPTR,\#xlate_Table
MOVC $1 .(m n+d p t r$
MOV data $0, \mathrm{~A}$
MOV data $1, \Lambda$
MOV data_2, A
CI.R update buffer...llag

MOV ic. $\# 1000010 \mathrm{lb}$; enable only into and int 1 here
RET
go plas: PiSUace
push psw
INC units
MOV A, units
CINE A. 110 , go_l
back 1: MOV units.\#\#

```
                    INC tens
                    Nov A. tens
                    C.INE: A. #10,go, 2
bach :: MOV tens,H()
                            INC`hmodreds
                    M(OV A. hundreds
                    CJNE A,#10, go_3
                    back i: MOV hundreds,#()
                    common: SETB update buffer_flag
                    pop psw
                    P(O゙, ルぐ
                    RE%
                    @い 1: JNC back_1
                    SIMP common
                    go 2: INC back 2
                    SJMP common
                    go \therefore: JNC back_3
                        NJMP Common
```

dee value: PUSHace
push psw
MOV A. hundreds

ORL A. tens
ORL Λ, units
17. no Dee
doc units: MOV λ, units
JZ. dec_tens
DEC units
SIMP commont
dec tens: MOV units. 19
MOV A. tens
IZ dee hundireds
DEC tens
SMAP common2
dec hum Ireds:MOV tens.\#9
DEC hundreds
Commoni: SETB update_buffer_flag
no_dec: POP psw
POPace
RETI
write display: ACAII, update bufler
write 2 :
SETB digit 1 dx
SETIB digit 2 dx
SETB digit 3 dx

MOV displäy port,data_0
CLR digit_I_dx
ACALL delay 2 Show
SETB digit 1 dx
MOV display_port, data_1
CI.R digit 2 dx

ACAI.I delay 2 Show
SE'T'B digit 2 dx
MOV display_port,data_2
CI.R digit 3 dx

ACALL delay 2_Show
SIFTB digit 3 dx
RET
update system:
update brice: JNB update_buffer_ Ilag, exit_update
Cl. R update buffer mag

MOV A.hundreds
MOV DP'TR, \#xatate Table

```
    MOVC A,@a+dptr
    MOV data_0, A
    MOV A, tens
    MOVC ^,@a+dptr
    MOV data_1, A
    MOV A, units
    MOVC A,@a+dptr
    MOV data_2, A
    exit_update: RET
        ;******************************************************************
        delay_2_show: MOV R5,1/2
        reload ro
        MOV R6,H250
    DJNZ R6,$
    DJNZ R5, reload_r6
    RET
```

```
*********************************************************************
chk_occupancy: MOV ^, hundreds
chk_occupancy: MOV ^, hundreds
    ORL ^, tens
    ORL ^, tens
    ORL ^, units
    ORL ^, units
    JNZ turn_on
    JNZ turn_on
    SETB load dx
    SETB load dx
exit chk: RE'T
```

exit chk: RE'T

```
```

turn_on: JB light_in, go_skip
CLR load_dx
RET
go_Skip: SETB load_Dx
ret

```
reset Delay: MOV R0,\#0
\begin{tabular}{ll} 
reset_loop: & MOV R1, \#0 \\
loop_here: & NOP
\end{tabular}

NOP
NOP
NOP
NOP
D.JN/ R I, loop here

DJNZ R0, reset_loop
RET```

