
DESIGN OF A PROPOSED PRAGMATIC

SOFTWARE DEVELOPMENT PROCESS

MODEL

OMORODION, FOFO MARTHA

(2006/24468EE)

A Thesis Submitted to the Department of

Electrical and Computer Engineering, Federal

University of Technology, Minna

NOVE"MBER, 2011.

DEDICATION

This project report is dedicated to Almighty God who lovingly gave us life, protects us daily

and ensured that this project was successfully completed with inspirations from Him.

It is also dedicated to my parents (Oiseoruemi and Oluwafunminike) and siblings (Ijamenero,

Omoniy~ Eki, Idieli, Iyabo and Aimanoshi).

ii

DECLARATION

I, Omorodion, Fofo Martha, declare that this work was done by me and has never been

presented elsewhere for the award of a degree. I also hereby relinquish the copyright to

the Federal University of Technology, Minna.

(Name of Student) (Signature and date)

iii

CERTIFICA nON

I hereby certify that this project, "Design of a Proposed Pragmatic Software Development

Process Model, was carried out by Omorodion, F ofo Martha with matriculation number

2006/24468EE and meet the standard deemed acceptable by the department of Electrical

and Electronics Engineering, School of Engineering and Engineering Technology,

Federal University of Technology, Minna.

(Name of Supervisor) (Signature and Date)

(Head of Department) (Signature and Date)

~b,G:r~
(External Examiner) (Signature and Date)

iv

ACKNOWLEDGEMENT

Firstly, all gratitude goes to God Almighty for His provision, protection, support and His

inspiration while I was conducting this project and writing the report.

My sincere gratitude goes to my parents, Mr. and Mrs. Samuel Omorodion for their

undying love, sacrifice and support for me; my siblings - Ijamenero, Omoniyi, Eki, Idieli, Iyabo

and Aimanoshi - also are deeply appreciated for their unconditional love and support for me.

My sincere gratitude also goes to my Supervisor, Professor Sanjay Misra for his selfless

assistance in seeing to the success of this project. I will not fail to mention Mr. and Mrs. Daniel

Ogundipe, Mr. and Mrs. Afolabi Ogunmola and Prof. and Mrs. Onimisi Abdullahi and family for

their selfless assistance. My bosom friend, Yemi Ojo, who has always been a shoulder to lean on

in the University, Ojeola Olatubosun and my classmates and friends, will also be acknowledged

v

ABSTRACT

The rapid growth in technology and the dynamism it presents in our society today poses a

lot of problems for the Software Engineering Practitioners. The result is a series of

Software Developments Process Methods which can be used to combat or meet up with

the problems it creates for them. This is the dynamism inherent in man - to adapt to

change and improve on ourselves and our existing systems. On this basis lay the need to

develop the model designed in this project to meet up with variations that exist as a result

of technological advancement. The designed model was arrived at by identifying the

weaknesses and strengths of various existing models, the practices that software

developers apply to enable them meet the ever-changing needs of their clients and the

results obtained were comparatively analyzed and possible methods that can be applied to

overcome some of these problems based on practices carried out by a developer were

pieced together. The results show that although efforts were made to overcome some of

the existing problems, new problems that need to be overcome were created.

vi

TABLE OF CONTENTS

Title Pagei

Dedication ii

Declaration. .. iii

Certificationiv

Acknowledgements v

Abstract vi

Table of Contents vii

List of Figures ix

List of Tables x

Chapter One: Introduction 1

1.1 Aim and Objectives , 2

1.1.IAim 2

1.1.2 Objectives 2

1.2 Case Study 3

1.3 Methodology 3

1.4 Scope of the Study 3

1.5 Sources of Materials 4

1.6 Constraints 4

vii

Chapter Two: Theoretical Background , , . .. , 5

2.1 Background of the Study 6

2.1.1 Historical Background of Software Development Process

Modelling , 6

2.2 Sequential Models 8

2.2.1 The Waterfall Model.. '" 8

2.2.2 The V-ModeL 9

2.3 Iterative and Incremental Models 10

2.3 .1 The Iterative Waterfall Model. .. 11

2.3 .2 The Spiral ModeL 12

2.4 The Rapid Application Development (RAD) Model 13

2.5 Other Models in Brief T 15

2.6 Agile Development Methodologies 17

2.6.1 Manifesto for Agile Software Development 19

2.6.2 Other Agile Methodologies in Brief. 20

2.7 Other Development Methods Not Described 22

Chapter Three: Material and Methods 23

3.1 Materials 23

3.2 Implementation 27

3.2.1 Requirements and Specification 27

viii

3.2.2 Planning 28

3.2.3 Design and Development 29

3.2.4 Verification and Validation 29

3.2.5 3.2.5 Operations and Maintenance30

Chapter Four: Results and Discussion.. 32

4.1 Comparative Analyses between the Pragmatic Model and Others ... 32

4.2 Discussion 36

4.2.1 The Waterfall ModeL 36

4.2.2 The RAD Model.. 36

4.2.3 The Spiral ModeL .. 37

4.2.4 The Agile Methodologies 37

4.2.5 The Pragmatic ModeL 37

Chapter Five: Conclusions and Recommendation 39

Conclusions

Recommendations

References

ix

Plate 2.1

Plate 2.2

Plate 2.3

Plate 2.4

Plate 2.5

Plate 2.6

Plate 2.7

Plate 2.8

Plate 2.9

Figure 3.0

LIST OF FIGURES

A Waterfall Model. 9

A V-ModeL 10

Later Version of the V-model

going over a Series of Subsequent V-Cycles 10

A Generic Evolutionary Process ModeL 11

An Iterative Waterfall Development ModeL 12

A Spiral Model. 13

A System Reuse Model.. 14

Scrum Development Methodology 18

Lean Development Methodology 19

The Pragmatic Development Model. 31

x

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

LIST OF TABLES

Comparative Analysis of the Generic Models 26

Differences between the Waterfall Model and the Pragmatic Model.33

Differences between the RAD Model and the Pragmatic ModeL 33

Differences between the Evolutionary Process Model and the Pragmatic

Model. 34

Differences between the Spiral Model and the Pragmatic Model. .. 34

Differences between the Spiral Model and the Pragmatic ModeL .. . 35

xi

CHAPTER ONE

Introduction

Software can be referred to as programmes and applications required for proper

operation of computers and computerised systems [33]~ sometimes they are referred to as

the Real Time Operating Systems of hardware. These systems may be produced for either

individuals (custom made) or for the general public (generic) [14]. Either way, these

programmes are developed based on requirements specifications stated by the clients who

ordered for the software product. As a result of the processes and difficulties involved in

achieving these goals, a lot of studies have been carried out so as to find out the best ways

in which requirements can be met. As such, various development models and techniques

seem to have mutated from the three fundamental models viz~ The Classic Software

Lifecycle Model which is sequential in nature, The Evolutionary Process Model which is

iterative and the Rapid Application Development Model which is incremental in nature

[13].

Software engmeenng IS an engmeenng discipline that is concerned with all

aspects of software production. Software engineers should adopt a systematic and

organised approach to their work and use appropriate tools and techniques depending on

the problem to be solved, the development constraints and the resources available [14].

[27] stated in web post that if you could settle the problem of change and really could get

an accurate and stable set of requirements you're probably still doomed. In today's

economy the fundamental business forces are changing the value of software features too

rapidly. What might be a good set of requirements now, is not a good set in six months

time. Even if the customers can fix their requirements, the business world isn't going to

stop for them. And many changes in the business world are completely unpredictable: and

if you cannot get stable requirements you cannot get a predictable plan.

Consequently, a research conducted on various development models and

techniques revealed that there is an average of about 40 models already available and yet

a consensus has not been reached to agree on one perfect model. Although it could be

quite impossible to arrive at a one perfect model, but from the research conducted,

software developers seem to have come to terms with the Agile Software Development

Methods which is a web of several development techniques applying similar methods to

software development such as developing a team, lack of bureaucracy and debugging as

the code is being developed so as to minimise time wasted in software checks [20].

This project was carried out for the purpose of designing a development model

that will put into consideration most of the benefits and limitations of all the models that

were found and make their weak points its strong points while also taking advantage of

the benefits they present.

1.2Aim and Objectives

1.2.1 Aim

The aim of this work is to design a practical oriented software development

process model putting into consideration the pitfalls of other models and taking steps to

avoid them and taking advantage of their benefits.

1.1.2 Objectives

The objectives of this project are:

1. To design a software development process model based on practical

activities carried out by developers

2

2. To cany out a comparative analysis between the benefits of the model and

those of past models

3. To design and evaluate a functional model that can and possibly will be

implemented for the benefit of all humanity.

1.2 Case Study

The generic software development process models, several other models that

evolved from them and the Agile methods which are the modern methods employed.

1.3 Methodology

This project was carried out by conducting a research on existing software

development process models, studying the processes involved, conducting a comparative

analysis based on the generic models (sequential, iterative and incremental) and then

obtaining a list of the benefits and limitations of each model; the suggestions made by a

developer about some of the methods he practices in the process of developing software

for his clients which are obviously practicable [9].

1.4 Scope of the Study

It would have been well appreciated if the process model proposed in this study

were put to practical use so as to see the practicability of the model in the environment

but based on the fact that it was concocted from ideas suggested by a developer as stated

earlier; the obvious implication is that it is practicable. As such, the scope of this project

does not go beyond conducting a research on the various software process development

models that have been designed in the past, proposed and used by several developers. As

3

many models, techniques and methodologies as possible were collected, their practices,

weaknesses and strengths were observed, analyzed and put into consideration.

The complaints, praises and suggestions of several developers were also

considered and used during the process of the design of the Pragmatic Development

Model. At the end of the day, the strengths of the model are clearly compared in tables

against the weaknesses of some of the popular and most utilized models in the field.

1.5 Sources of Materials

Most of the materials consulted to conduct the research were obtained from the

internet and a few from text books in the Department's Library and some others from my

supervisor. I also consulted some lecturers and fellow students to see what their

suggestions will be and if they can be put to use to boost the study.

1.6 Constraints

The major factor that militated against the success of this project was difficulty in

access to the internet. Using a modem turned out to be almost next to nothing because of poor

signals provided by the GSM (Global System for Mobile Communications) networks within

the premises. The wireless system provided by the Institution also turned out to be almost of

no help as their signals don't extend to the hostel facility provided and the part of the

environment where signals can be found are far from the hostels and signals are quite poor

and navigation slow during the day. Thus, it is better to browse at midnight (not just at night,

emphasis is on midnight) because of the reduced amount of users but it's quite dangerous for

a helpless female student to walk down the road at such an· outrageous hour. Another

constraint is the inability to put the model to practice because of time and lack of developers

in the environment to put it to use.

4

CHAPTER TWO

Theoretical Background

Software Engineering can easily be assumed to deal with only software products

such as web design, writing programmes and the like, but on taking a closer look, one

finds that it not only deals with software products but it deals mainly with the problems

encountered in the process of developing these software. This misconception among

students about the field attracts a lot of them into registering the course only to attend

classes and meet the stark opposite of what they expect.

A lot of definitions of Software Engineering have been developed by several

authors but a definition proposed by Fritz Bauer [31] states that "Software engineering is

the establishment and use of sound engineering principles in order to obtain economical

software that is reliable and works efficiently on real machines". [14] in his book,

Software Engineering, defined it as an engineering discipline that is concerned with all

aspects of software production. The IEEE [15], on developing a comprehensive definition

states that Software Engineering (1) is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software; that is,

the application of engineering to software. (2) The study of approaches as in (1). Software

engineering as an engineering approach for software development can alternatively be

viewed as a systematic collection of past experience arranged in the form of

methodologies and guidelines. A small program can be written not including the use of

software engineering principles; on the other hand, if one wants to develop a huge

software product, then software engineering principles are crucial to achieve an excellent

quality software cost effectively [8].

5

2.1 Background of the Study

2.1.1 Historical Background of Software Development Process ModeUing

Discussing software development process modelling requires that one introduce

the idea of software processes. A software process can simply be referred to as the path

taken to develop functional software. [33], on defining software process as a road map

stated that "When you build a product or system, it's important to go through a series of

predictable steps-a road map that helps you create a timely, high-quality result [8].

This set of activities includes Specification, Design, Validation and Evolution and

they gave rise to the software process modelling which is an abstract representation of a

process and it presents a description ofa process from some particular perspective [14]. A

software life cycle model is either a descriptive or prescriptive characterization of how

software is or should be developed. A descriptive model describes the history of how a

particular software system was developed. Descriptive models may be used as the basis

for understanding and improving software development processes or for building

empirically grounded prescriptive models [2]. [48], further stated that a prescriptive

model prescribes how a new software system should be developed. Prescriptive models

are used as guidelines or frameworks to organize and structure how software development

activities should be performed, and in what order.

Given a software project, a software process model tells us about the activities that

need to be taken up for completing the project. The concept of software process

modelling is thus a central idea in Software Engineering, which is a discipline, involved

in the study and dissemination of sound software development and management practices

[22]. Owing to these necessities and practices and the desire to meet up with dynamism in

demand and human nature, several development models have been arrived at and [36]

6

asserted that software development process dates back to as far as the 1950s and that the

software industry has evolved through 4 eras; 50's -60's, mid 60's -late 70's, mid 70's

mid 80's, and mid 80's-present. Each period has its personal distinctive characteristics,

but with time, software has increased in dimension and complexity. He further stated that

all the eras share common problems which include hardware advances outpacing the

capability to build software for this hardware; the ability to build in pace with the

demands; increasing dependency on software's struggle to build reliable and high quality

software, poor design and insufficient resources.

There are two types of models: those that go through each of the activities

sequentially only once and those that go through each of the phases many times. Those

that execute the stages in a life cycle iteratively produce different artifacts (such as

prototypes as well as documents) at the end of each iterate. The major benefit is that even

if the whole project is cancelled there are pieces left that could be used in further projects

or developments [49]. Various models have therefore evolved over the years and software

engineers have concluded that process models can be classified under three generic

models [14] which are the Waterfall Model [49] - which is sequential in nature and has

separate and distinct phases of specification and development; Evolutionary (iterative)

Process Model - which is iterative and its specification, development and validation

phases are interleaved; and the Rapid Application Development Model - which exhibits

incremental characteristics and systems are assembled from existing components. All

other models developed thereafter exhibit the characteristics of one or a combination of

two or the three models; thus it's either it falls under a model explicitly or overlap

between two or three of them simultaneously [14].

[13], also noted in their technical report, Component-based Development Process

and Component Lifecycle, that "different models have been proposed and exploited in

7

software engineering, and different models have exhibited their (in)abilities to efficiently

govern all activities required for a successful development and use of products. Well

known examples of sequential models are waterfall model, or V -model, and of

evolutionary models, iterative and incremental development and the spiral model.

The software process models history begins with the introduction of a model

called "Build and Fix Model". The model has only two steps:

1. Write the Code

2. Fix problems in the code.

Thus, the main theme of the model was to write some code first and then think about

different phases of development [4] [12].

A model is an excellent example that deserves to be imitated while a methodology

is a convention that a group agrees to and a method is a systematic procedure, similar to

technique [1]. As such, we should try to separate the two schools of thought as the three

terminologies are used often.

2.2 Sequential Models

2.2.1 The Waterfall Model

This is one of the earliest and the most common approach employed in the process

of developing software. It exhibits sequential characteristics and discourages iteration; it

was developed in the 1970 [49] on noticing that the process of developing software was

an activity that was different from the development of hardware products which required

well defined requirements that do not change till after the product has been released into

the market [48]. Plate 2.1 shows a view of the waterfall chart showing the various stages

involved.

8

Plate 1.1 A Waterfall Model {49} {ll}

This model, sometimes called the Classic Software Lifecycle Model has its stages

broken down into as many stages as twelve in some reports [38] but briefly, the stages

shown in Plate 2.2.1 apply [44] [48] [34] [14]. The Waterfall Model offers the advantage

of simplicity and ease of use, simplified manageability, useful for small projects; while

the greatest disadvantage of the waterfall model is that until the final stage of the

development cycle is complete, a working model of the software does not lie in the hands

of the client. Thus, he is hardly in a position to mention if what has been designed is

exactly what he had asked for [46].

2.2.2 The V-Model

Plate 2.2 illustrates the V-model and it is quite similar to the Waterfall Model. In

describing the V-model [12] stated that it is assumed to be the extension of Waterfall

Model but exhibits its difference from the waterfall such that it doesn't move in a linear

way instead its process steps bend upwards after the coding phase to form V-shape

showing that each phase has an associated testing phase. Like the activities of the

waterfall model, each activity has to be completed before moving on to the next activity.

[49].

9

PIote 2.2 A V-Model (40)

[40], a software development expert, on describing the V-models indicated that

"another idea evolved which was the traceability down the left side of the V. This means

that the requirements have to be traced into the design of the system, thus verifying that

they are implemented completely and correctly. The earlier versions of V-models used

the first option. For later versions a series of subsequent V-cycles was defined, as shown

in Plate 2.3 below" .

PIote 2.3 Later Version of the V-model going over a Series of Subsequent V-Cycles (40)

2.3 Iterative and Incremental Models

These are the evolutionary models and are characterised in such a way that more

complete versions of software are developed. When discussing iterative and incremental

10

development, the terms iteration and increment are often used freely and interchangeably.

They are not, however, synonyms. Iteration refers to the cyclic nature of a process in

which activities are repeated in a structured manner. And increment refers to the

quantifiable outcome of each iterate [21].

Iterations can offer a development process two key things: iterative refinement,

where the process improves on what already exists and is being done, and incremental

development, where the process results in progress against project objectives.

Additionally, the term increment has the obvious implication that there should be more of

something at the end of each iterate than there was at the start. Without a clear notion of

an increment, iterations are likely to just go in circles [21]. The generic form of the

evolutionary model is shown in Plate 2.4 below.

Maintain

Plate 2.4 A Generic Evolutionary Process Model lUI

2.3.1 The Iterative WaterfaU Model

The numerous problems associated with the waterfall model called for some

necessary variations in the model and as such this model was designed to accommodate

11

dynamism and changes in the development process. The iterative enhancement life cycle

model counters some of the limitations of the waterfall model and tries to combine the

benefits of both prototyping and the waterfall model. The basic idea is that the software

should be developed in increments, where each increment adds some functional capability

to the system until the full system is implemented. At each step extensions and design

modifications can be made. An advantage of this approach is that it can result in better

testing, since testing each increment is likely to be easier than testing the entire system

like in the waterfall model. [32]. Plate 2.5 illustrates the Iterative Waterfall Model.

Plate 2.5 An Iterative Water/aU Development Model [42]

2.3.2 The Spiral Model

This is an evolutionary software process model that was proposed by [3] in 1987.

It is divided into about six task regions and it couples the iterative methods with some

methods in the linear sequential model. It provides the potential for rapid development of

incremental versions of the software. Using the spiral model, software is developed in a

series of incremental releases. During early iterations, the incremental release might be a

paper model or prototype. During later iterations, increasingly more complete versions of

12

the engineered system are produced [33]. Plate 2.6 is a view of a Spiral Model showing

its different framework activities.

Det;erm ln.
objectives.
elt'erftlltlves .
constra'nts

ComInitrneot
RevIew

Partition

Plate 2.6A Spiral Model [3)

E_I __ tt: __

IdeM_fy" ,.. ... o.v. naka

2.4 The Rapid Application Development (RAD) Model

The last generic model to be described is the RAD model. It is a model that

combines the benefits of iterative and incremental models in the process of developing

software. It is useful for development when the requirements are not well understood so

that prototypes are developed to help the clients have a physical view of what they want.

It is a merger of various structured techniques, especially the data driven Information

Engineering with prototyping techniques to accelerate software systems development

[10]. Sometimes the RAD model is referred to as Component Based Software

Engineering (CBSE) [14] used to assemble systems out of existing, independently

developed components. Component Based Software Engineering entails more than mere

reuse of components, though. It also aims to increase the flexibility of systems through

13

improved modularization. It achieved its name from the "80/20" rule, which states that in

development projects, 80010 of the work is finished before 20% of the completion time.

The remaining 20% of the work takes up the remaining 80010 of the time. For example,

suppose you're on a development project that takes five months. In the first month, 80010

of the work will be done to move the project forward. You'll then spend the remaining

four months getting the other 20% of the work done [45]. Plate 2.7 illustrates the RAD

model as a system reusability model.

reqtiiremerns.. system B

1

d';;tail~ .. oesigri I ~(-------~~ --7- I<E-<---~)['_KO~]~ .. _------.l

I ... t.estirig . / (1'

Plate 2. 7 A System Reuse Model [37J

2.5 Other Models in Brief

• The Rapid Prototyping Model (RPM) [47] - It falls under the evolutionary

process. This model is useful when users are not sure about their requirements; a

prototype model is then developed to verify the specification. It has the advantage

of meeting user requirements and it useful when requirements change rapidly. It

14

has the disadvantages of being too iterative, not being cost effective and is a vague

idea.

• V-Model XT Process Framework- The VM XT, (XT - eXtreme Tailoring) is an

improvement on the V-Model (97). It is a recent model announced as the standard

for public-sector projects in Germany and its framework has a flexible

customizing ability focused on meeting the requirements specifications [38]. It

cannot be used for all software application and is family oriented rather than

individual.

• The WinWin Spiral Model (WSM) - It deals mainly with how to handle

negotiations between customer and developer so that at the end of the day, the

customer wins by getting a product that satisfies most of his needs while the

developer wins by being able to work out achievable budgets and time limits [5].

It is cost effective, customer's needs and time limits are met; but the two parties

may not reach and agreement and it involves compromise.

• The Concurrent Process Model (CPM) - It involves series of activities that take

place existing simultaneously but still remaining in different developmental stages

[33] . It is applicable to most software development and it shows the current state

of a project accurately. It also faces the problem of being too iterative and events

in an activity triggers transitions in other activities.

• The Formal Systems Development Model (FSDM) - Its development process is

based on formal mathematical transformation of system models to executable

programs. Though it is similar to the waterfall model, but it has clearly defined

phase boundaries; sometimes it is called the Formal Methods Model (FMM) [33].

15

• Component-Based Development Model (CBDM) - This model appears to be

similar to the CBSE but they differ in the sense that while CBSE lays more

emphasis on reuse of components, CBDM focuses on development of systems

using components [13].

The following are development methodologies named as methodologies, techniques,

processes or approaches.

• Family-Oriented Software Development Process (FSDP) - This process focuses

on clarifying the properties of family related systems and not the individual

systems. It is useful mainly for aero-engine software. It follows the traditional

lifecycle process [18].

• Incremental Delivery (IDR) [14] - It falls under the evolutionary process. Also

called the Incremental Development and Release. It combines the advantages of

the iterative and waterfall approach.

• Joint Application Development - This is a technique that involves the use of a

group of software developers, testers, and possible end-users to interact to

generate requirements and prototypes of the software being produced [48].

• Object-Oriented Design (OOD) - This approach to software development was

proposed in late 1960s. It requires that object-oriented techniques be used during

the analysis, and implementation of the system. It requires the analyst to

determine the systems' objects, their behaviour with time, response to events and

relationships with other objects and how the system manipulates the objects.

• The Fourth Generation Techniques (4GT) [33] -It is a modem day technique

that involves the use of automated code generation. This technique deals with the

16

ability to use specialized language forms to identify software that explains the

problems that need to be solved in ways that customers will understand.

2.6 Agile Development Methodologies

The term Agile stands for 'moving quickly'. These methodologies are quite recent

and a lot of methodologies are involved in this group. They were developed as a result of

the bureaucracy involved in the earlier models. They are called "Agile" as a result of the

flexibility involved when using them to develop a process model. These software

development methodologies are based on iterative and incremental models of software

development. The requirements and the solutions are a product of collaboration between

self organizing and cross functional teams. It is a lightweight software development

model, which was developed in the 1990s [27].

[24] asserted that in February 2001, several software engineering consultants

joined forces and began to classify a number of similar change-sensitive methodologies as

agile (a term with a decade of use in flexible manufacturing practices [25] which began to

be used for software development in the late 1990's [26]). The term promoted the

professed ability for rapid and flexible response to change of the methodologies. The

consultants formed the Agile Alliance and wrote The Manifesto for Agile Software

Development and the Principles behind the Agile Manifesto [20, 28]. The methodologies

originally embraced by the Agile Alliance were Adaptive Software Development (ASD)

[16], Crystal [1], Dynamic Systems Development Method (DSDM) [17], Extreme

Programming (XP) [19], Feature Driven Development (FDD) [30, 39] and Scrum [23].

Most of the ideas were not new; indeed many people believed that much

successful software had been built that way for a long time. There was, however, a view

that these ideas had been stifled and not been treated seriously enough, particularly by

17

people interested in software process [27]. Plates 2.8 and 2.9 show the pictorial views of

the Serum and Lean Development Methodologies.

Plate 2.8 &rllm Development Methodology (421

18

Plate 2.9 Lean Development Methodology {42J

2.6.1 Manifesto for Agile Software Development [20J

We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The pioneers of the Agile manifesto and principles include Kent Bent, Mike Beedle, Arie

Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning,

Jim Highsmith, Andrew Hunt, Ron Jeffiies, Jon Kern, Brian Marick, Robert C. Martin,

Steve Mellor, Ken Scwaber, Jeff Sutherland and Dave Thomas.

19

2.6.2 Other Agile Methodologies in Brief

• Adaptive Project Framework (APF) [35] - this method allows for constant

adjustment of the project so as to ensure the delivery of maximum business value

by adjusting scope at each iterate.

• The Rational Unified Process Model (RUP) - sometimes it is referred to as the

unified process. It emphasizes on the development and maintenance of existing

models. It also centres on the use of the Unified Modelling Language (UML).

• Scrum [40]-This method involves an agile approach to software development. It

is a framework and not a full process or methodology. Thus it does not provide a

complete detail of descriptions of how the project is done. It has a team called the

Scrum team which makes much of the decisions used during the project. Team

work is emphasized. It uses short iteration and frequent reviews.

• Extreme Programming (XP) [19] - It is actually a deliberate and disciplined

approach to Agile software development. One of the first approaches to gain

main-stream success, Extreme was found to be most successful at smaller

companies especially in the dot-com boom. It involves team work [6].

• Lean Software Development (LSD) [29]-The National Institute of standards and

Technology Manufacturing Extensions Partnership's Lean Network, describes

lean as "A systematic approach to identifying and eliminating waste through

continuous improvement, flowing the product at the pull of the customer in

pursuit of perfection." It is not a project management technology but a set of

principles applicable to any method for improving project planning and execution.

• Crystal Methodologies (CM) [1] - It employs an evolutionary process and

involves the use of team work; it is also an agile process that consists of about five

20

different methods viz; crystal clear, crystal orange, crystal red, crystal yellow and

crystal maroon. The method is created with different requirements or problems

posed by the customer. It is useful for customized products.

• The Dynamic Systems Development Method (DSDM) [17] - It is an agile

software technique that is base on the RAD techniques. Here time is fixed and

functionality variable as opposed to traditional development methodologies where

functionality is fixed, and time and resources variable. It is useful when the time

required for delivery is short, thus it uses incremental prototyping in a controlled

environment with each increment delivering enough functionality to move to the

next increment.

• Feature Driven Development (FDD) [30] - It is very iterative and collaborative

and it is an agile development method. It is composed of five processes viz;

develop an Overall Model, Build a Features List, Plan by Feature, Design by

Feature, Build by Feature. FDD has eight practices: domain object modelling;

developing by feature; individual class ownership; feature teams; inspections;

regular builds; configuration management; reporting/visibility of results.

• Adaptive Software Development (ASD) [16] - It is an agile method which

involves teamwork and involves the use of J AD approach for requirements

gathering. It is mission driven, component-based, iterative, risk driven and change

tolerant. It evolved from RAD.

• Test Driven Development (TDD) - It is an agile method. It produces tests that

specify and validate what the code does before the final the production code is

designed [19].

21

2.7 Other Development Methods Not Described

There are numerous other models that cannot be discussed as a result of space and

time; they include Structured programming [36] developed in 1969, Structured Systems

Analysis and Design Methodology (SSADM) [36] in 1980, Object-oriented programming

(OOP) [36] developed since the early 1960s, and it was the dominant programming

methodology during the mid-1990s. The Team Software Process developed by Watts

Humphrey at the Software Engineering Institute (SE1), The Personal Software Process

was also developed by [46] in an attempt to apply the underlying principles of the

Software Engineering Institute's (SEI) Capability Maturity Model [46] to the software

development practices of a developer. Integrated Methodology (QAIassist-IM) since 2007

[46], Systems Development Life Cycle (SDLC) [43], Clean Your Room (CYR) [7] comes

as a response to the Cleanroom Software Engineering process, its focus is upon

implementing cool, new features and not on tests, documentation, or bug-fixes. Cliff,

developed as a response to the Waterfall model, leaps suddenly from the starting point

(known as the Hairbrained Idea) to the end (known as the Product, but informally Cliff

teams refer to it as the Corpse) [7]. Testosterone-Driven Development, [7] like Test

driven Development, focuses on testing first. But extremely aggressive, requiring that

entire test suites be produced; Conference Driven Development (CDD), [7] Fragile

Programming [7], an important element of the Delicate software pattern related to Agile

programming; Conference Drive Development (CDD) [14], Prince2 [45] and Cleanroom

Software Engineering [7] .

22

Chapter Three

Materials and Methods

3.1 Materials

This model was designed based on some suggestions made by a software

developer on techniques he applies during the development of a system for his clients

where he indicated that he uses Agile methods while meeting their needs for

predictability; the following are methods he claims he practices [9]:

~ Make sure it is a project which can use Agile methodology

~ Propose a fixed bum-rate

~ Propose a team that is right-sized to the skills and scale of the project

~ Propose a fixed sprint size (2 or 3 weeks is typical) for scrum and 6-8weeks

releases composed of 3-4 2 week iterations

~ Propose a contract where the client can change anything they want for the next

sprint or iteration and where they can accept/reject each story as it completes. In

exchange the client can be sure there is a single voice (not a committee) who is

available to (or embedded with) the team

~ Propose that the client can cancel at the end of any sprint/release with no penalty

and will be left with shippable software that has been accepted

He claims that he has uses this approach in some of his engagements as well

stating that it is a good compromise between time-and-materials and fixed-price models.

The client can quickly receive value and see the cost vs. value model emerge quickly

from the results of each sprint/release.

23

From initiative, I have also tried to apply common sense and knowledge to its

development. As is generally known, the human nervous system, as a whole, is

sometimes considered as a computer system. Necessary features for development are

made available at birth even when they are not really useful to the individual at that time

and may never be useful to it at maturity. But considering the perfection and intelligence

involved in the development of the nervous system, it can be seen that at the end of the

day, from hindsight, nothing seems to be lacking for the individual provided he develops

himself positively and the human software was designed in such a way that whatever

paths an individual chooses to take, he can be totally different from (and similar to) the

next individual. The problem of a clash of wills never comes to play or the possibility that

the software cannot be adjusted to go in any direction. After all software is supposed to be

soft; so not just are requirements changeable, they ought to be changeable. It takes a lot of

energy to get customers of software to fix requirements. It's even worse if they've ever

dabbled in software development themselves, because then they "know" that software is

easy to change [27].

That is to say, if I choose to build cars today, am free to do so. Nothing binds me

to being a farmer or something else I have been pre-programmed to do. In short, the

system is very flexible~ and funny enough, it is so flexible that it has the ability to change

at any time even at old age without getting corrupted. Thus, this model was designed to

exhibit such flexibility and dynamism that can be observed in humans. From the

specification stage, it creates room for variation, improvement and increments. It has the

ability to encourage development of the software in whatever direction - based on

specifications made - that users want it to. It also involves team work both within the

system and without. Though, it is not as perfect as the human nervous system, but it is a

24

model that seems to want to put as much as is possible into consideration just as the

nervous system does.

A point to note though is that one model or methodology cannot cut across

different technologies. Some are useful for large systems, others for small systems and

still others for systems for long term use. The different technologies, cultures, and project

priorities call for different ways of working [1].

Developers must be able to make all technical decisions. XP gets to the heart of

this where in its planning process it states that only developers may make estimates on

how much time it will take to do some work. But the technical people cannot do the

whole process themselves. They need guidance on the business needs. This leads to

another important aspect of adaptive processes: they need very close contact with

business expertise. This goes beyond most projects involvement of the business role.

Agile teams cannot exist with occasional communication. They need continuous access to

business expertise [27] .

3.1.1 Comparative Analyses of the Generic Models

A comparative analysis of the three generic models is shown in Table 3.l.l. Only

these three models have been analyzed because as stated earlier, all the other models and

methodologies are variations of these three.

25

Table 3.1 Comparative Analysis of the Generic Models

WaterfaU Model

It lacks flexibility

It is useful when long life complex

systems are being built

Delivery is relatively fast

Very low risks

Higher chances that user needs will
not be met.

Badly structured systems

It is simple and stable

It is static

It is not cost effective because

value for money is not achieved

Evolutionary Process RAD
Model

It is very flexible It is relatively flexible

Useful mainly when small Useful mainly for

systems are being
commercial systems

developed

Delivery is slow It is characterized by
fast delivery

High risks Low risks

Needs are definitely met May not meet needs
else the product will not because of requirement
be released compromise and time

limit.

Poorly structured systems Relatively well

structured systems

Fairly clear but needs
confirmation

Its is dynamic

It is not cost effective

26

Fairly clear, stable and
large

It is fairly dynamic

It is relative cost
effective

3.2 Methods

Plate 3.2 shows an illustration of the Pragmatic Process model and the following

sections give a description of each stage shown in the model. Take note that following the

arrows, one can move from anyone stage to which ever one he needs to go to depending

on the problems that arise.

3.2.1 Requirements and Specification

Specifications are gathered and negotiations are made on what they hope to

achieve. The team (a group of experts useful for the development of the software) meets

with the clients or end users to discuss whatever features cannot be considered and also

they can make suggestions too on certain features the clients did not consider. Executing

an adaptive process is not easy. In particular it requires a very effective team of

developers. The team needs to be effective both in the quality of the individuals and in the

way they blend together. There's also an interesting synergy: not just does adaptivity

require a strong team, most good developers prefer an adaptive process [27]. [11] in his

book also stated that the quality of the people on a project, and their organization and

management, are more important factors in success than are the tools they use or the

technical approaches they take

They should also be informed that at any time they can come up with new

specifications that will help to improve the features of the software. The clients should

also fix a time frame for which the software should be ready to be delivered to the end

users. To the clients' and team's convenience, they can fix meeting days and times within

a week, preferably twice a week. They should meet the first time to collect requirements

and the second time to not only collect more requirements but also show the clients the

designs and if possible developments they have been able to come up with. This way in

27

making more requirements, their suggestions will be more in depth with understanding

than the first time. All decisions made should be documented for reference purposes. A

fiuitful way to think about software development is to consider it as a cooperative game

of communication and invention [1].

One primary goal of this model is to give room for flexibility not only to the

development process but also to the developers themselves. In applying the methods

suggested by this model, if somewhere along the line the developers discover that a path

they are taking will probably lead to a dead end, they can come up with ideas of their own

and modify the model to their own benefit and to avoid wastage. This is so that it can be

useful for large systems as well as moderate and small systems. Don't hesitate to

document all the necessary processes no matter how many they are or how small and

irrelevant they may seem to be; documentation is very vital in any process as all the ideas

cannot be stuffed in the brain and remembered [14]. This is an area where the Waterfall

Model has an edge over the Agile Methods. Don't worry about them littering the place;

put them in soft copies and you can easily delete the ones that are not needed.

3.2.2 Planning

The team, after collecting requirements and speciftcations, should hold a meeting

and decide on which methodology they want to use for the development process and they

should pay attention to the size of the system they are about to develop (small or large

systems). Time should not be wasted here; the meeting can last for at most an hour, but

they should make sure that the opinion of every individual is considered before arriving at

a final conclusion. If they meet problems somewhere along the line then they should

come back to this stage and reconsider their position once again.

28

3.2.3 Design and development

As much as possible, the development of the software should commence as soon

as a set of requirements and specifications have been made. Since they will be allowed to

change specifications at any time, little or no time should be wasted on waiting for them

to arrive at a consensus on what they might not ask for at the end of the day. This idea is

coined from the Concurrent Process Model where rather than confining software

engineering activities to a sequence of events; it defines a network of activities. Each

activity on the network exists simultaneously with other activities. Events generated

within a given activity or at some other place in the activity network trigger transitions

among the states of an activity [33]. Research has shown that shorter iterations have

lower complexity and risk, better feedback, and higher productivity and success rates

[24]. At this stage, the source code should be developed inculcating features that will give

room for development, changes, total removal from the system or increments. After this

point, whatever changes they come up with will only be fixed in as additional features to

the already designed features for such development. A maximum of four iterations can be

used, if possible, less. After each design, the client should be consulted for possible

changes, improvements, rejections and so on. Often the most valuable features aren't at

all obvious until customers have had a chance to play with the software. Agile methods

seek to take advantage of this, encouraging business people to learn about their needs as

the system gets built, and to build the system in such a way that changes can be

incorporated quickly [27].

3.2.4 Verification and Validation

This stage can be divided into three sub-stages viz; unit testing, integration and

testing and review. After each development, tests should be carried out on each unit

29

developed to ensure that flaws, errors and omissions are corrected. This process is quite a

difficult one as errors cannot easily be noticed especially by the programmer. Suggestions

are either two programmers develop their programmes independently and exchange their

work to check for errors or interns, being eager to learn, excited about their new job and

probably, being youths, are agile and can easily notice any errors, should be allowed to go

through their work as they go along so that such errors can be corrected.

As soon as an adequate number of units that can be integrated have been built,

they should be integrated and tested to verify that they can function together; making sure

also that the emergent properties suit the needs of the clients. After three iterations, the

clients should be informed that there is the need for a final validation of the software so

that it can finally be released into the market as there is still room for one more iterate.

Informing them about moving on to the verification and validation stage will help to

ensure that no more changes are made after the fourth iteration. At this stage final tests

should be carried out with the clients present agreeing that all needs have been met and

are satisfied, else, if there is need for more variations or additions then they should be

carried out and then reviewed again. From practice data indicates that many times clients

stop development at around 85-90010 of the original budget because the product is good

enough to be shipped thereby saving costs for the company [9].

3.2.5 Operations and Maintenance

This stage is also divided into three parts - deployment, feedback and evolution.

At this stage, a complete functional and acceptable system should be delivered to the

client for shipping. The complaints of customers and possible suggestions on

improvements they may have should be considered and implemented for another release.

30

Figure 3.0 The Pragmatic Development Motkl

CHAPTER FOUR

Results and Discussion

4.1 Comparative Analyses between the Pragmatic Model and Others

This section analyzes the model with respect to the way it improves on some of

the shortcomings of some of the mostly used models. Only the three Generic Models are

used for comparison since all other models described earlier in Chapter Two are offshoots

from them, but the Agile Methodology being a more recent, far removed methodology

from the others and the Spiral Model because of its uniqueness in terms of risk

assessment will be added. The weaknesses of the models mentioned were gotten from

reports, textbooks, and web posts and sometimes by observation.

Tables 4.0,4.1 , 4.2,4.3, 4.4 shows the uniqueness of the model over the waterfall,

RAD, Evolutionary Process and the Spiral Models respectively; the care and effort put

into the development of the Agile Methodologies makes it a bit difficult to come up with

its shortcomings and as such only a few will be mentioned with respect to the Agile

Methodologies.

32

Table 4.1: Differences between the Waterfall Model and the Pragmatic Model

Waterfall Model The Pragmatic Model

Very bureaucratic Very flexible

It was built as a flawed and non-working model It is practical based

The client has no idea of what is being built and The client is worked with closely and

cannot make variations until the project is can make changes as the work

completed progresses

When a stage is completed, it discourages Clients are encouraged to make changes

backtracking in spite of errors that may be present whenever they come up with them

Table 4.2: Differences between the HAD Model and the Pragmatic Model

HAD Model The Pragmatic Model

Due to time constraints the product may Aimed at producing high quality, shippable

not be at top quality product

It burns out good technicians at an They are free to make modifications on the

alarming rate. model to suit their needs

33

Table 4.3: Differences between the Evolutionary Process Model and tbe Pragmatic Model

Evolutionary Model The Pragmatic Model

High risk Risks are controll ed and monitored (fixed

bum rate)

r documentation and is This method is used as an excuse for hacking It involves prope

to avoid documenting the requirements even no excuse for cn me

if they are well understood [10]

Users/acquirers do not understand the nature The nature ofth e software may not be

of the approach and can be disappointed understood at fir st but all these would be

when results are unsatisfactory eliminated befor e final delivery

Table 4.4: Differences between tbe Spiral Model and tbe Pragmatic Mode I

Spiral Model The Prag matic Model

The risk assessment is rigidly anchored in the process Risks are a voided by trying to ensure

and in some cases the risk assessment may not be that needs are met to minimize

necessary in this detail [40]. backtrackin g

ustomers that an Agile Assuring customers that the evolutionary approach Assuring c

is controllable is difficult. approach i s to be used is not difficuh

34

Table 4.5: Differences between the Agile Model and the Pragmatic Model

Agile Model The Pragmatic Model

The ability to cope with corrections or Appropriate measures are taken while

deficiencies introduced into the product is designing the code for possible

difficult [24] modifications and improvements

There is the possibility that the project will go A lot of emphasis is laid on

off track because of lack of emphasis laid on documentation to ease feedback

documentation and designing processes

35

4.2 Discussion

4.2.1 The Waterfall Model

Figure 2.1 shows the pictorial representation of the waterfall model reflecting its

linear features. The waterfall model is the about the oldest model used by software

engineers to develop software packages. It was presented as a non-practicable model with

many flaws but because of the advantages it presented, it soon became widely used in the

field. [32]. As indicated in Table 4.1, the new model overrides the Waterfall Model on the

grounds that it is based on practice; not to mention that it also reduces bureaucracy to the

barest minimum.

4.2.2 The RAD Model

In table 4.2 are highlighted the features that the Pragmatic Model has over the

RAD Model. It showed that although the RAD Model method creates a situation where

the products are delivered rapidly, it also posed the problem of not being able to meet the

needs of consumers in the long run. These shortcomings have been noted and avoided in

the new model.

4.2.3 The Spiral Model

As shown in Table 4.4 the problem of risk assessment was taken advantage of

during the design of the new model because it created the realization that the whole

process is very risky and a lot of care has to be taken so as not to incur losses in the long

run. The spiral model was a big improvement as it stressed on evolutionary incremental

development, risk management, prototyping and project overview and planning [22].

Generally speaking, the Spiral Model is not much esteemed and not much used, although

36

it has many advantages and could have even more if the risk assessment phases would be

tailored down to the necessary amount [40].

4.2.4 The Agile Methodologies

Agile methodologies came into being when developers felt the need for change

from the older bureaucratic methods which don't necessarily provide the customers with

what they really want. In Agile methods, all software development processes are

considered to be empirical rather than defined (also known as prescriptive) [24] and it

involves adaptivity and feedback throughout the process of developing a system.

Features of the methodologies practiced include simplicity, adaptivity,

incremental and Maximize stakeholder value [6]. Agile methodologies are also people

oriented rather than process oriented; meaning that a process cannot replace the skill of a

development team. It is also adaptive rather than predictive indicating that the

methodology responds well to change and doesn't try to assume what the process should

be like thereby resisting change.

The ideas coined by the Agile Methods really served as a booster for the reasoning

behind the Pragmatic Model. They introduced the idea of flexibility and less bureaucracy

and the need for the process to be adaptive, not predictive which renders the work rigid

and liable to failure. Although it has it shortcomings as indicated in Table 4.5, which were

taken advantage of in this project, it has also played a vital role in the development

processes practiced in the field .

4.2.5 The Pragmatic Model

A major shortcoming present in this project is the fact that the model could not be

tested before its presentation because of lack of developers in the environment. For a

cogent conclusion to be arrived at and an improvement on the beauty of the project, there

37

is the need for the model to be put to test so that real life results can be obtained. For

instance, the assumptions made about the edge it has over the older models are theoretical

and for a fact, it is mentioned regularly that assumptions made theoretically are not

necessarily practicable in real life situations not to mention that these practices are not

necessarily carried out within the environment here in Nigeria.

38

5.1 Conclusions

CHAPTER FIVE

Conclusions and Recommendation

This Project showed a brief discussion of a few software development process

models, highlighted some of their weaknesses and strengths and went further to design a

model based on practical events. The edge the new model has over the existing ones were

also highlighted in tables and a brief discussion was carried out eventually.

The results show that some of the shortcomings of most of the models discussed

were put into consideration and improved upon where necessary and changes were made

when possible. This model may not necessarily bring about the solution to the problems

in the field and the wish of any designer is that someone else out there will learn from his

mistakes and improve on them someday. Obviously, the model still possibly has a few

weaknesses that passed unnoticed during the process of its design.

The aim of the paper so far was achieved as indicated in the report and there is

hope that it will be useful to not just the Software Engineering Society but to all of

humanity.

5.2 Recommendation

As a recommendation, if it is possible, a student should put the model to practical

use to see how practicable the Pragmatic Model is in real life situations so that he can

suggest some possible modifications that can be carried out on it to further improve the

model.

39

References

l. A. Cockburn, Agile Software Development. Reading, Massachusetts: Addison Wesley
Longman, 2001, pp. 164-173.

2. B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the Software Design Process for Large
Systems", CommunicationsACM, 1988,31,11,1268-1287.

3. B. W. Boehm, "A SpiIal Model of Software Development and Enhancement" Computer,
20(9), 1987, pp. 61-72.

4. B. W. Boehm, "Model of Software Development and Enhancement", IEEE Computer, May
1988.

5. B. W. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R Madachy, "Using the WinWin
SpiIalModel":A Case Study, Computer, 31(7),1998, pp .33-44.

6. C. Bodea, "Agile Software Project Management Methodologies. The Agile Approach". A
Technical Paper. Economic Informatics Department, Academy of Economic Studies,
Bucharest, 2005, pp. 27-3l.

7. C. Haase, "Crystal Methodology". 200S, (Retrieved on the 14th of December, 2011).
http://weblogs.java.netJblogichetlarchive/200S/0l/crvstal methodo.hunl

S. D. Chase, and B. Denneen, "Dynamic Adaptive Framework". Embracing the Power of
Change through L.EA.N Cycle Planning, 2001, pp. 1-17.

9. D. Stein, In: T. Hamilton-Whitaker, "The Difference between Waterfall, Iterative Waterfall,
Serum and Lean Software Development (In Pictures!) " (Retrieved from the Web on the 11th
Of December, 2010), 2009, http://agileI01.netl2009/09/0S/the-difference-between-waterfall
iterative-waterlall-scrum-and-lean-in-piclures/

10. "Development Models". Retrieved from the Web on the 2dh of March, 201l.
http://myprojects.kostigof[netlmethodology/development models/development models.hun

11. F. P. Brooks, "The Mythical Man-Month", Anniversary Edition: Addison-Wesley Publishing
Company, Harlow England, 1995.

12. H. Gull, F. Azam, W. B. Haider and S. Z. Iqbal, "A New Divide & Conquer Software Process
Model", World Academy of Science, Engineering and Technology 60, 2009, pp. 255-260.

13. I. Crnkovic, S. Larsson, M. Chaudron, "Component-based Development Process and
Component Lifecycle". A Technical Paper.

14. I. Sommerville, "Software Engineering". Eighth Edition. Addison Wesly. Harlow England,
2007, pp 63-S5.

15. IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990, IEEE,
1993.

16. 1. Highsmith, "Adaptive Software Development". New York, NY: Dorset House, 1999.
17. 1. Stapleton. "DSDM, The Method in Practice", Second ed: Addison Wesley Longman, 2003.
IS. K Allenby, et al. A Family-Oriented Software Development Process for Engine Controllers.

A Technical Paper. Rolls-Royce University Technology Centre in Systems and Software
Engineering, York, UK, 2001, pp. I-XV.

19. K Beck, "Test Driven Development - by Example". Boston: Addison Wesley, 2003.
20. K Beck et al. "The Agile Manifesto," http://www.agileAlliance.org. 200l.
2l. K Henney, "Iterative & Incremental Development Explained". 2007, A web page retrieved

from the web on the 11th of April, 2011. www.searchsoftwareQuality.com
22. K Johri, "The Agile Concurrent Software Process". Retrieved from the Web on the r of

February, 2011. hnp://www.softprayog.inlpapers/software process.shtml&usg
23. K Schwaber, and M. Beedle, "Agile Software Development with SCRUM". Upper Saddle

River, NJ: Prentice-Hall, 2002.
24. L. Williams, "A Survey of Agile Development Methodologies". 2007, pp 209-227.
25. Lehigh University, "Agile Competition is Spreading to the World". bttp://www.ie.lehigb.edu/ ,

1991.
26. M Aoyama, "Agile Software Process and its Experience," International Conference on

Software Engineering, Kyoto, Japan, 1998, pp. 3-12.
27. M. Fowler, "The New Methodology". 2005, An Article Posted to the Web. (Retrieved on the

11 th of December, 2010). http://martinfowler.com/articles/newMethodoiogy.html.
2S. M Fowler, & J. Highsmith, "The Agile Manifesto," in Software Development, August 2001,

pp.28-32.

40

29. M. Poppendieck, and T. Poppendieck, "Lean Software Development: An Agile Toolkit".
Addison-Wesley Professional, 2003.

30. P. Coad, E. LeFebvre, and 1. DeLuca, "Java Modelling in Color with UML" Prentice Hall,
1999.

31. P. Naur, and B. Randall (eds.), "Software Engineering", A Report on a Conference Sponsored
by the NATO &ience Committee, NATO, 1969.

32. "Prototyping Software Lifecycle Model". Retrieved from the Web on the 1lf' of April, 2011.
http://www.freetutes.com.

33. R S. Pressman, "Software Engineering", A Practitioner's Approach", 5t1r Edition. New York:
McGraw-Hili, 2001, pp. 20-47.

34. R S. Pressman, "Software Engineering", A Practitioner's Approach. Sixth Edition, New York:
McGraw Hill, 2005.

35. R Wysocki, "Introduction to the Adaptive Project Framework". A White Paper, 2010.
36. "Software Development Methodology". A White Paper,

http://www.cs.umd.edulclasslspring2003/cmsc838plprocesslsofiware development methodol
Qgy (retrieved on the 22nd of August, 2010).

37. "Software Reusability". A Web Page Posted to the Web on the 4'h of January, 2010. (Retrieved
on the 11t1r of April, 2011).
http://centurion2.comlSEHomeworklSofiwareReusability/SofiwareReusability.hbnJ

38. S. Bim, D. Winkler, R HObo, and H. Wetzel, "Software Process Improvement in Europe:
Potential of the New V-Modell XT and Research Issues Practice Section". Published online in
Wiley Inter&ience (www.interscience.wiley.com) DOl: 10.1 002/spip. 2006, pp. 266, 229-238.

39. S. R Palmer, and J. M Felsing, "A Practical Guide to Feature-Driven Development". Upper
Saddle River, NJ: Prentice Hall Pm, 2002.

40. Software Experts. "Software Process Models". An Article Retrievedfrom the Web on the 5t1r of
February, 2011. http://www.the-sofiware-experts.de/edta-sw-process.htm

41. T. Gilb, "Estimation or Control?" - Thesenpapier, abgerufenim JUDi 2007,
http://www.dasma.org/

42. T. Hamilton-Whitaker, "The Difference between Waterfall, Itemtive Waterfall, Serum and
Lean Software Development (In Pictures!)". 2009, (Retrieved from the web on the 11t1r of
December, 2010). http://agile 1 0 l.net/2009/09/0S/the-difference-between-waterfall-iterative
waterfall-scrum-and-Iean-in-picturesl

43. "Ten-Step Project Management Process".
http://www.mariosalexandrou.comlmetbodologieslsystems-development-life-cycle.asp
(retrievedfrom the Web in December, 2010).

44. "The Waterfall Model Advantages and Disadvantages". A web page retrieved on the 5t1r of
March. 2011. http://www.buzzle.comleditorialsll-5-2005-6376S.asp

45. W. Moore, "About RAD". An Article Retrievedfrom the Web on the 14th of April, 2011, 1997,
http://wmoore.caJdemo/opinioniradhtm.

46. W. S. Humphrey, "Using a Defined and Measured Personal Software Process". Published In
IEEE Software, 1996, pp. 77-88.

47. W. S. Jawadekar, "Software Engineering. Principles and Pmctices". Tata Mcgraw-Hill
Publishing Company Limited, 2004, pp. 19-33.

48. W. Scacchi, "Process Models in Software Engineering". John Wiley and Sons, Inc, New York,
2001, 1-24.

49. W. W. Royce, "Managing the Development of Large Software Systems", Proc. 9th. Intern.
Con! Software Engineering, IEEE Computer Society, 1987,328-338. Originally published in
Proc. WESCON, 1970.

41

