\

DESIGN AND CONSTRUCTION OF A
DIGITAL TEMPERATURE DATA

LOGGER

SISAN BOYO IYINBOH

2004/18755EE

DEPARTMENT OF ELECRICAL AND COMPUTER
ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY,
MINNA.

DECEMBER 2009

DESIGN AND CONSTRUCTION OF A
DIGITAL TEMPERATURE DATA

LOGGER

SISAN BOYO IYINBOH

2004/18755EE

A THESIS PRESENTED AND SUBMITTED IN PARTIAL

FULFILMENT FOR THE REQUIREMENT OF FIRST DEGREE
IN ELECTRICAL AND COMPUTER ENGINEERING, FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA.

DECEMBER 2009

DEDICATION

This project is dedicated to God Almighty, my father Mr. Solomon Boyo lIyinboh,

my mother Mrs. Victoria lyinboh, my brothers and sisters, my uncles Mr. Clement and
Benjamin Okpaghoro and also Mr. Misan Tenumah, my grandmother Mrs. Alice

Tenumah , for the moral, spiritual and financial support given to me.

ii

ATTESTATION / DECLARATION

I Sisan Boyo Iyinboh, declare that this work was done by me and has never been
presented elsewhere for the award of a degree. I also hereby relinquish the copyright to

the Federal University of Technology, Minna

...

Sisan Boyo Iyinboh Date

.................................

Eng’r J. G. Kolo Date

(Supervisor)

) Dr Yinusa A. Adediran Date

(H.0.D)

.......................................

External Examiner - Date

iii

ACKNOWLEDGEMENT

I give God all the glory for His wisdom and His grace and supernatural direction
upon me.

Also, I appreciate my entire family, uncles and grandmother for their endless
support towards ensuring that this goal is achieved.

More so, I appreciate my friend and brother Sheyi Mackson Ejejigbe for availing
me the use of his computer throughout the period of my work. Also to my beloved friend
Godiya Lafiya L adama, thank you for your wonderful support may God richly bless you.

Finally, my special thanks goes to my supervisors Eng’r J.G. Kolo and Mallam
Umaru for their tremendous assistance, contributions and suggestions towards ensuring
that this project is successful. To my friends and well-wishers may the grace of God be

with you all.

v

ABSTRACT

The quest of establishing an effective mechanism for temperature measurement and
monitoring, brought about the design of this device (Digital Temperature Data Logger).
Digital temperature data logger is an electronic device that measures and records
temperature data over time in relation to a location. It employs temperature sensor in
converting physical temperature to electrical quantity which is then digitized by an
analog-to-digital converter for easy analysis by a microcontroller. The microcontroller
analyses the digitized temperature data and stores it to the memory of the device along
with the time and date of acquisition stamped to it. Viewing and analysis of the collected
data is achieved by interfacing the device with a personal computer via the PC-resident

software developed for the device.

LIST OF FIGURES

Fig. 1.1 Block diagram of the digital temperature data logger.
Fig. 3.1 System power supply.

Fig. 3.2 Battery charger system.

Fig. 3.3 Analysis of the voltage setting resistances.

Fig. 3.4 Sensor circuit.

Fig. 3.5 ADC- microcontroller interface.

Fig. 3.6 DS1307/24C32- microcontroller interface.

Fig. 3.7 LEDs status indicator.

Fig. 3.8 Pin assignment of DS1307.

Fig. 3.9 Pin assignment of 24C32.

Fig.3.11 Logic level translator.

vi

LIST OF TABLES

Table 3.1 Data record implemented on the 24C32 device.
Table 3.2 Pin description of DS1307.

Table 3.3 Function table of 24C32.

Table 4.1 Digital logger user interface.

Table 4.2 Temperature display.

vii

TABLE OF CONTENT

CONTENT

COVERPAGE .. e
DEDICATION .
ATTESTATION/DECLARATION ...
ACKNOWLEDGEMENT ..l
ABSTRACT
LISTOF FIGURES ..
LISTOFTABLES .

CHAPTER ONE
1.1 INTRODUCTION
1.2 AIMS AND OBJECTIVES OF THE PROJECT
1.3 METHODOLOGY

...............

...............

...............

1.4 APPLICATION OF TEMPERATURE DATA LOGGER

1.5 SCOPE OF WORK

CHAPTER TWO
2.1 HISTORICAL BACKGROUND

2.1.1 HISTORY OF TEMPERATURE AND ITS MEASUREMENT

2.1.2 DATA LOGGER
2.2 THEORITICAL BACKGROUND
2.2.1 TEMPERATURE SENSORS
2.2.2 ANALOG-TO- DIGITAL CONVERSION
2.2.3 MICROCONTROLLER
2.3 PREVIOUS WORKS AND MODIFICATION

CHAPTER THREE
3.1 AN OVER VIEW OF THE DESIGN
3.2 POWER SUPPLY
3.3 BATTERY CHARGING SYSTEM
3.4 LM35 TEMPERATURE SENSOR

viii

.......................

........................

........................

........................

........................

PAGES

ii
iii

iv

vi

vii

. 6-8

8-9

9-10
10
11
12

13
13-15
15-17
17-18

3.5 ADC0804 ANALOG TO DIGITAL CONVERTER c.ccevvnennn... 18-20

3.6 SYSTEMCONTROL i, 20-24
3.7DS1307 REAL TIME CLOCK CHIP (RTCC) .oioiiiiieieeeean, 24-25
3.8 24C32(EEPROM) e ——————— 25-26
3.9LOGIC LEVEL TRANSLATOR i, 26-27
3.10 PC-RESIDENT TERMINAL SOFTWARE ..., 27-28
3.11 APPARATUS/DEVICES USED IN CONSTRUCTION ~ 28
CHAPTER FOUR
41TEST 29-30
4.2 RESULT AND DISCUSSION OF RESULT civiiiiiiniieen, 30-31
CHAPTER FIVE
S.,CONCLUSION i, 33
5.2 LIMITATIONS e 33
5.3 PROBLEMS ENCOUNTERED s 33
5.4 POSSIBLE IMPROVEMENT ON THE PROJECT coiiiiiiiiiiieinn, 33
REFERENCE e 34
APPENDICES e 35

ix

CHAPTER ONE

1.1 INTODUCTION

Temperature has effect on virtually every aspect of life, it impacts the physical,
chemical, and biological world in numerous ways. The engineering field is not an
exception as the efficiency and function ability of generating plants, machines, metals,
solid state devices and other mechanical, and agricultural processes etc are dependent on
it in one way or the other.

Furthermore, the rating of an electronic or electrical device depends on the
capability of the device to dissipate heat. As miniaturization continues, Engineers are
more concerned about heat dissipation and change in properties of the device and its
material make up with respect to temperature[1]. Hence a TEMPERATURE DATA
LOGGER is required for the purpose of monitoring temperature at specific intervals, to
foster means of activating a temperature control mechanism to keep the various processes
equipments etc that are temperature dependent within their optimal temperature for
maximum efficiency.

Data logging is in its simplest term, the procurement of information in order to
learn more about a process or system. It forms the basis of an understanding of diverse
range of systems. The logging and saving of information provides for increased
knowledge and sometimes improved management of how and why different processes
work. To begin this process, a DATA LOGGER is required[2] .

A data logger is an electronic device that records data over time or in relation to
location either with a built-in instrument or sensor or via external instruments and
sensors. Increasingly, but not entirely, they are based on a digital processdr (or computer).

They generally are small, battery powered, portable, and equipped with a microprocessor,

internal memory for data storage, and sensors. Some data loggers interface with a
personal computer and utilize sofiware to activate the data logger and view and analyze
the collected data, while others have a local interface device (keypad, LCD) and can be

used as a stand-alone device[3] .

One of the primary benefits of using data loggers is the ability to automatically collect

data on a 24-hour basis. Upon activation, data loggers are typically deployed and left

unattended to measure and record information for the duration of the monitoring period.

This allows for a comprehensive, accurate picture of the environmental conditions being

monitored, such as TEMPERATURE and relative humidity[3]. Furthermore, given the

extended recording times of data loggers, they typically feature a time- and date-stamping
i

mechanism to ensure that each recorded data value is associated with a date and time of

acquisition.
1.2 AIMS AND OBJECTIVES

1. To fabricate a device that can archive temperature measurements for future use.

2. To establish an effective mechanism for temperature monitoring, so as to foster
means of activating a temperature control system.

3. To produce a device that will provide for increased knowledge of the temperature
of an environment, equipment and processes for improved management and to
enhance the function ability of the processes.

4. To provide a portable, accurate and cost effective device for temperature data
acquisition.

5. To reduce the frequency of visit to weather stations to record temperature data.

6. To produce a device that will enhance the efficiency of temperature data

collection.
1.3 METHODOLOGY

The temperature data logger consists of a sensor, analog-to-digital converter,
microcontroller, internal memory and system interface.

The temperature data logger works with the sensor to convert the temperature
which is a physical quantity into electronic signals such as voltage or current. These
electronic signals are then converted or digitize into binary data. The binary data is then
easily analyzed by the microcontroller and stored on internal memory of the temperature
data logger. The stored data is then downloaded to a computer through the system
interface. The block diagram of the digital temperature data logger is shown in fig 1.0

below.

POWER
— | suppLY
y y y
ANALOG-TO-
| pDIGITAL < SENSOR
CONVERTER
MICROCON-
BATTERY TROLLER
CHARGER |« <
.| MEMORY
< ~ LOGICLEVEL |— pC
TRANSLATOR [¢—
y
REAL TIME

CLOCK CHIP [

Fig 1.1 Block Diagram Of Digital Temperature Data Logger.

1.4 APPLICATION OF TEMPERATURE DATA LOGGER

The ability to take sensor measurement and store the processed data is a characteristic of
data logger. However, a data logging application rarely requires only data acquisition and
storage. Inevitably, the ability of the user to analyze and present the data to determine
results and decisions based on the logged data is required. Temperature data logger finds
its application in the following:

1. Weather stations.

2. Shipment companies, for monitoring temperature during shipment of produce,
meat, dairy, vaccines foods pharmaceuticals or adhesives etc to ascertain if they
should be accepted or not.

3. Food processing and Storage industries, to monitor the temperature of
temperature-sensitive commodities to ensure that they are being stored or

processed at their optimal temperature for freshness or efficacy.

b

Pharmaceutical and Life Science Industries.

5. Medical Laboratories, to monitor temperature when carrying out analysis and test.

&

Poultry Farms.
7. Hospitals, to monitor temperature of incubators where premature babies are kept.

8. Performance testing of temperature resistant paints.

©

Performance testing of air conditioning equipments.
10. Recording of temperature for instrumentation and machinery.
11. Manufacturing of oven, for testing ovens to ensure proper temperature gradient

throughout the chambers.
1.5 SCOPE OF WORK

The processes employed in the actualization of this project from the conception stage to
the conclusive stage are thus highlighted:

Chapter one discusses what the project is all about, including the aims and
objectives, narrates the methodology applied in achieving the project as well as the
applications of the project. |

Chapter two discusses the historical background, theoretical background,
modification done on the project with respect to previous works etc.

Chapter three contains details of the design and implementation of the project with
each module carefully drawn and explained.

Chapter four contains the tests, results and discussion of the results etc.

Chapter five gives the summary (i.e. conclusions) of the entire project work etc.

CHAPTER TWO

LITERATURE REVIEW

2.1 HISTORICAL BACKGROUND

2.1.1 HISTORY OF TEMPERATURE AND ITS MEASUREMENT

Intuitively, people have known about temperature for a long time: fire is hot and
snow is cold. Greater knowledge was gained as man attempted to work with metals
through the bronze and iron ages. Some of the technological processes required a degree
of control over temperature, but to control temperature you need to be able to measure
what you are controlling [4] .

Until about 260 years ago temperature measurement was very subjective. For hot
metals the colour of the glow was a good indicator. For intermediate temperatures, the
impact on various materials could be determined. In other words a number of fixed points
could be defined, but there was no scale or any way to measure the temperature between
these points. It is, however possible that there is a gap in the recorded history of
technology in this regard as it is difficult to believe that the Egyptians, Assyrians, Greeks,
Romans or Chinese did not measure temperatures in some way. Galileo invented the first
documented thefmometer in about 1592. This type of thermometer is sensitive, but is
affected by changes in atmospheric pressure [4].

By the early 18th century, as many as 35 different temperature scales had been
devised. In 1714, Daniel Gabriel Fahrenheit invented both the mercury and the alcohol
thermometer. Although the mercury thermometer is not as sensitive as the air
thermometer. Mercury freezes at -39° Celsius, so it cannot be used to measure
temperature below this point. Alcohol, on the other hand, freezes at -113° Celsius,

allowing much lower temperatures to be measured. At the time, thermometers were

calibrated between the freezing point of salted water and the human body temperature.
Also, Anders Celsius chose to use one hundred degrees as the freezing point and zero
degrees as the boiling point of water. Sensibly the scale was later reversed and the
Centigrade scale was born [4] .

The early 1800's were very productive in the area of temperature measurement
and understanding. William Thomson (later Lord Kelvin) postulated the existence of an
absolute zero. In 1821 T J Seebeck discovered that a current could be produced by
unequally heating two junctions of two dissimilar metals, the thermocouple effect. Also,
Sir Humphrey Davy discovered that all metals have a positive temperature coefficient of
resistance and that platinum could be used as an excellent temperature detector (RTD).
These two discoveries marked the beginning of serious electrical sensors[4] .

Gradually the scientific community learnt how to measure temperature with
greater precision. For example it was realized by Thomas Stevenson that air temperature
measurement needed to occur in a space shielded from the sun's radiation and rain. For
this purpose he developed what is now known as the Stevenson Screen [4].

The late 19th century saw the introduction of bimetallic temperature sensor. These
thermometers contain no liquid but operate on the principle of unequal expansion
between two metals. Although not as accurate as liquid in glass thermometers, Bimetallic
Thermometer are more hardy, easy to read and have a wider span, making them ideal for
many industrial applications[4] .

The 20th century has seen the discovery of semiconductor devices, such as: the
thermistor, the integrated circuit sensor, a range of non-contact sensors and also fibre-
optic temperature sensors. Also, Lord Kelvin was finally rewarded for his early work in
temperature measurement. The increments of the Kelvin scale were changed from degrees

to Kelvin. Now we no longer say "one-hundred degrees Kelvin;" we instead say "one-

7

hundred Kelvin". The "Centigrade" scale was changed to the "Celsius" scale, in honour of
Anders Celsius. The 20th century also saw the refinement of the temperature scale.
Temperatures can now be measured to within about 0.001°C over a wide range, although
it is not a simple task. The most recent change occurred with the updating of the
International Temperature Scale in 1990 to the International Temperature Scale of 1990

(ITS-90). This document also covers the recent history of temperature standards [4].
2.1.2 DATA LOGGER

The terms data logging and data acquisition are often used interchangeably.
However, in a historical context they are quite different. A data logger is a data
acquisition system, but a data acquisition system is not necessarily a data logger. Data
loggers typically have slower sample rates. A maximum sample rate of 1 Hz may be
considered to be very fast for a data logger, yet very slow for a typical'data acquisition
system. Also, Data loggers are implicitly stand-alone devices, while typical data
acquisition system must remain tethered to a computer to acquire data [3].

Data acquisition and logging system is a practice that has been in existence for a
long time even right from the prehistoric era. This reflected in the invention of merchets,
the oldest known astronomical tool by the Egyptians around 600BC. A pair of merchets
was used to establish a north-south line (or meridian) by aligning them the pole stand.
They could then be used to mark off night time hours by determining when certain other
stars crossed the meridian[5].

Over the years there has been an evolution in data logging and the type of loggers
that are used. In the past, the equipment was bulky and mechanical, using huge paper
chart recorders. Now, sophisticated computers and microprocessors retrieve the

information in far more detail than could have been processed previously.

Loggers are used in everyday life unknowingly by you the public. The next time
that you are in a supermarket and hand over your credit card or store card, a data logging
device may track your spending movements by the store. It can assess which items you
have bought, how many times a month you buy them and even, how many times you use
the store. In today's society nearly all information from the weather to our shopping habits

ends up in a data logger. The information is archived and saved for use ata later date[2] .

2.2 THEORETICAL BACKGROUND

2.2.1 TEMPERATURE SENSORS

A sensor is a device that measures a physical quantity and converts it into a signal
which can be read by an observer or by an instrument. For example, A thermocouple
converts temperature to an output voltage which can be read by a voltmeter. For accuracy,
all sensors need to be calibrated against known standards[6]. Sensors are used in everyday
objects such as touch-sensitive elevator buttons and lamps which dim or brighten by
touching the base. There are also innumerable applications for sensors of which most
people are never aware. Applications include cars, machines, acrospace, medicine,
manufacturing and robotics etc.

A sensor's sensitivity indicates how much the sensor's output changes when the
measured quantity changes. Sensors that measure very small changes must have very high
sensitivities. Sensors need to be designed to have a small effect on what is measured,
making the sensor smaller often improves this and may introduce othér advantages.
Technological progress allows more and more sensors to be manufactured on a

microscopic scale as micro sensors using MEMS technology. In most cases, a micro

sensor reaches a significantly higher speed and sensitivity compared with macroscopic
approaches[6] .

Temperature sensor or transducer is a device that senses temperature variation in
an environment to give useful electrical signal[7]. Its properties changes with change in
temperature. Some temperature sensors in use today are thermocouples, thermistors,
resistance temperature detector (RTD) and sensor integrated circuits.

Descriptively, a thermocouple consists of two different conductors coupled
together at their ends. As it senses temperature, the thermoelectric voltage developed
between the two junctions is proportional to the temperature. But a thermistor is a device
whose resistance value changes with its temperature [8]. It offers greater accuracy and
stability than thermocouple [9], but its non-uniform resistance temperature characteristics
can be disadvantageous in some application where it is required to obtain a more linear
variation [10].

However, the integrated circuit temperature sensor (LM35) a precision semi-
conductor giving an output of 10mV per degree centigrade. Unlike devices with outputs
proportional to the absolute temperature (in degree Kevin), there is no longer offset
voltage which in most application will have to be removed. It does not require any

external calibration.

2.2.2 ANALOG-TO-DIGITAL CONVERSIQN

Analog-to-digital conversion is the complementary process of converting a
continuous range of analog signals into digital codes. Such conversion process are
necessary to interface real-world systems, which typically monitor continuously varying
analog signals, with digital systems that process, store, interpret and manipulate the

analog values[11].

10

2.2.3 MICROCONTROLLER

A microcontroller (also microcontroller unit, MCU or uC) is a small computer on
a single integrated circuit consisting of a relatively simple CPU combined with suppoﬁ
functions such as a crystal oscillator, timers, serial and analog 1/0 etc. Program memory
in the form of NOR flash or OTP ROM is also often included on chip, as well as a,
typically small, read/write memory [12].

Considering the AT89S51 microcontroller, this is a low power, high performance
CMOS-8bit microcomputer with 4Kbytes of flash programmable and erasable read only
memory(PEROM). The device is manufactured by Atmel’s high density non-volatile
memory technology and is compatible with the industry standard MCS-51TM instruction
set. The on-chip flash allows the programmed memory to be reprogrammed in system or
by a convectional non-volatile memory programmer, by combining a versatile 8-bit
central processing unit (CPU) with flash on a monolithic chip. The 89S51 is a powerful
microcomputer which provides a high flexible and cost effective solution to many
embedded control [13].

The 89S51 posses the following standard features: 4Kbytes of flash, 128bytes of
RAM, 32 I/O lines, three 16-bit timers, five vector two-level interrupt architecture, a full
duplex serial port on-chip oscillator and circuitry. Also, it is designed with static logic for
operation down to zero frequency and supports two software selectable power saving
mode. The idle mode stops the CPU while allowing the RAM, timer, serial port and
interrupt system to continue functioning. The power down mode saves the RAM contents
but freezes the oscillator, disabling all other chip function until the next hardware reset

[13].

11

2.3 PREVIOUS WORKS AND MODIFICATION

In previous designs related to this topic, specifically by Otitolaiye David A
(design and construction of temperature logging and control device) in year 2007 and
Sule Ezekiel Andrew (design and construction of a microcontroller-based temperature
data acquisition and logging system) in year 2008, both of this department. In their
designs, the logged data are logged and stored directly inside the memory of a computer,
which is to say the devices does not have internal memory of its own. Also, there was no
provision for battery charger for charging the backup battery.

However, this design (design and construction of a digital temperature data
logger), the device has its own internal memory for storage of the logged data, which can
later be interfaced with the computer and then saved to the computer’s memory. Also, the

design made provision for battery charger for the sake of charging the backup battery.

12

CHAPTER THREE
DESIGN AND CONSTRUCTION OF TEMPERATURE DATA
LOGGER

3.1 AN OVERVIEW OF THE DESIGN

The digital temperature data logger was designed around the following

subsystems:

1. Power Supply

2. An LM35 Temperature Sensor

3. Analog- to Digital Converter

4. 8- bit Microconteoller

5. DS1307 Real Time Clock Chip

6. 4KB EEPROM(24C32)

7. Logic Level Translator

8. PC- Resident Terminal Software
3.2 POWER SUPPLY

A dual-source power supply was used:

1. A mains-derived supply.

2. A battery source.

The mains-derived supply was obtained from a 15V2A step down transformer and a
bridge rectifier. The power to the battery charging subsystem was directly derived from
this source.

The 15VAC voltage was converted into a DC voltage of amplitude given by the
relation:

Vo= VRmsV2 <14l (3.1)

The system power supply is shown in ﬁg 3.1 below:

7805 SV

NOTE

- Ig j:% T I

15V2A

 — DI=IN4001
— CI=25V2200uF

C2=16V1000yF

Fig 3.1 System power supply
3.3 BATTERY CHARGING SYSTEM

The battery charger was designed around a 3-terminal adjustable voltage regulator
—-LM317. To match the charging characteristics of the lead- acid battery, a constant-
current, constant- voltage charging scheme was implemented.

In this chaging algorithm, the battery is charged at afixed current ﬁntil the terminal
voltage attains a preset maximum after which charging is discontinued, and the battery
held at a float voltage. The chaging current was set by a resistance calculated from the
expression:

R=VII=125/T oo (3.6)

1.25 = Internal reference voltage on the LM317.

I = output current = charging cuﬁent.

The chager subsystem was desigmed to handle a series connection of two 6V, 4.5AH cell.

The rule of thumb concerning battery charging postulates that the maximum
charging current should less than or equal to Q/5A, and the minimum be Q/20A.

For a 4.5AH battery, this translates into:

Inax =4.5/5=0.9A ..ooomiiiiiii e (3.7)

Imin = 4.5/20 = 0.225A

.......................................

The battery was rapid charged at the maximum specified current of 1.2A to reduce the

charging period. The battery terminal voltage was fixed at 13.8V by a zener diode. The

cicuit diagram of the battery charger is shown in fig 3.2 below:

To 7805

44—

DI
» — M317 %
From The
rectifier RI If
R1

D2

S0KQ

D1

jl>,_

|

N

m

o

Fig 3.2 Battery Charger System

NOTE

D1=IN4001
D2=5.6V
R1=220Q
R2=1Q

The charger also incoporated a shutdown feature to power down the LM317

regulator when the maximum terminal voltage is attained. The shutdown function was

realized using a C9014 transistor as shown in fig 3.1.

The regulator shutdown occur when the 13.8V terminal voltage is attained, the

50KQ was adjusted to provide the required output DC voltage across the charger

terminals with the battery disconected.

The terminal voltage was set by the relative resistances on either side of the SOKQ

resistance as shown by the following equations:

At Vianmax), the transistor has base voltage of about 0.7V between the bases —

emitter junction. The base voltage is determined by the resistances on either sides of the

S0KQ potentiometer as shown in fig 3.3 below:

16

Vi
Ra
' R
‘-\() /i Sokan.
Vs

Rg

——

Fig 3.3 Analysis of The Voltage setting resistances.

0.7=(V1 *RB)/ (RA+RB) ... (39)
O7=(Vi*Re)/S0000 (3.1.1)
VIRo=35000 oo (3.1.2)

Vi = voltage at the upper terminal of the potentiometer = Vbattmay— V2 ... (3. 1.3)
Ve =56V (3.1.49)

Merging the equations (1) and (2),

Voutomy = S.6V IRa=Voe *50000.... . (3.1.5)
Vit = 5.6V = 50000Vie/ Ry ... (3.1.6)
Voot = [(S0000Vag Rp) +S.61V ... (3.1.7)

3.4 LM35 TEMPERATURE SENSOR

Since the temperature to be measured is a non-electrical quantity, a transducer was
required to convert it into an electrical quantity. For better acuracy and sensitivity, an

integrated circuit temperature sensor (LM35) was used. The LM35 has an operational

17

range of 0°C — 100°C, with an output voltage related to the ambient temperature by the

expression:
Vou=[T°C*0.01]V

The output voltage changes by 10mV for a degree change in temperature, fig 3.4 shows

the sensor circuit. The LM35 has the following specifications as shown in the appendix 1

+5V

LM35 OUTPUT
NOTE

R Re
8 _(__ C6 C5=1 ’JF
Cs=100uF
R;=150Q
T°

Fig 3.4 Sensor Circuit

The sensor was interfaced directly with an 8 - bit Analog - to Digital Converter (
ADC) that translated the analog output to a digital value that can processed by the

microcontroller.
3.5 ADC0804 ANALOG - TO -DIGITAL CON VERTER

For convertion of the analog temperature reading to its digital equivalent, an analog — to —
digital converter was required. An 8 — bit device was used, the ADC0804 was used.lt
operates on a supply voltage range of 4.5V to 6.5V and in this case, a voltage of 5V was

chosen, since about the same voltage of 5V is required by the microcontreoller,

18

ADC0804, LM35 etc.The top view and pin description of the ADC0804 are shown in

appendix 2 respectively. The device was run off a clock source given by the expression:

fotooe =1/ 1IRC oo (3.2.1)
RET0KQ oo (3.2.2)
C=ISOPE oo (3.2.3)
fotock = [1(LI*10%1.5*10%*10)1z ... (3.2.4)

It was interfaced with the microcontroller over P1 as shown in fig 3.5. 'The device was

setup for a 1- bit change at the output for a 10mV input change by making V

ref =

1.28VThe span voltage was thus 2.56V.

To GNG
S5V of 7805 +5V
L 20 le Ce 40
4 19 —I
A A
D 18 » P17 T
S C 17 » Pl6 8
ensor 6 0 16 P15 9
output > 8 15 » Pl4 S
0 14 » P13 5
4 13 ™ P12 1
7 12 | PIt
8 11 P10
10
2 3 P3.2
i 1 |e P3.3
9
Rs
NOTE
Rs ___] ,\ C=150pf
Rs=50KQ
I R¢=100KQ
— R,=10KQ
FIG 3.4 ADC - MICROCONTROLLER INTERFACE

19

Conversion was initiated by strobing WR (3) low, with CS (1) asserted, then high
conversion is perfected in about 100us after which the data can be read. The converted

data is processed and stored in the 24C32 EEPROM device attached to the I°C bus on
P2.0 and P21.

3.6 SYSTEM CONTROLLER

An 8 — bit microcontroller was embedded in the system realization. A low power
device AT89S51 microcontroller was used, its pin configuration and description are
shown in appendix 3.

The device was configured for a serial port connection at 9600bps for data upload
and download. A crystal frequency of 11.05912MHz was used. The microcontroller was
interfaced with the ADC over port1(P1), the logic level translator over P3.0 and P3.1, the
real time clock chip (RTTC) and 24C32 memory over P2.0 / P21, port 3(P3) pins 4,56
were attached to three LED indicators (GREEN, ORANGE AND RED).The system
software was modulated for ease of maintainability and debugging.

At power-up, the software initializes system’s variables and the serial port. During
this phase, a check of the DS1307 Real Time Clock Chip is made. A signature message is
- read from six RAM locations on the Real Time Clock Chip IC, the signature byte matches
“ DS1307 *, it is assured that the timer has not been powered down since last read,
otherwise the system performs an initialization of the Real Time Clock Chip by resetting
the Time / Date information to 01 / 01 /09 00:00. The RTTC was also configured for 1Hz
generation of pinl by resetting the oscillator control to bits in register address 07h.

The 1Hz output was converted to the P3.3 (INT1) input which generates a 1Hz

periodic interrupt . These interrupts are converted in software to get the sampling

20

intervals. The software also handles temperature reading storage for every conversion.
Four samples are taken each hour, i.e. a sample is taken everyl5 minutes. The digitized
reading is stored alongside the Time /Date information as a sequential record in the
24C32 device as shown in table 3.5 below:

Table 3.1 Data Record Implemented on The 24C32 Device.

Day Address+0
Month Addres+1
Year Address+2
—— 1 Data record
Hour Address+3
Minute Address+4

ADC Result Address+5

Since each sampling occupies 6 bytes, and the 24C32 device has addressable
locations only up to 4096, then maximum number of samples possible before a memory
full condition is:

4096 / 6 = 682 mod 4
A 7-day data storage mechanism was implemented in which, assuming the memory is
empty (erased), at 4 samples per hour, 96 samples are taken per day. The 96 samples are
stored as uniquely identifiable records in 96*6 = 576 memory locations. The number of
days before the memory is exhausted is thus:

4096 /576 =7R 64
Two bytes were used for storing the R-byte pointer used to indicate the next memory

location to be written into. The samples are stored this way until the memory is

21

exhausted. A memory full condition is indicated by the RED LED flashing at 1Hz. When
data is read from the device, the memory is re-initialized.

To store data into the EEPROM and access the calendar chip, a software I1°C
simulation was implemented as the genéric 8051 devices have two hardware I°C bus. The

EEPROM and RTTC were both placed on the I°C bus made on P2.0 and P2.1 as shown in

+5V

Fig 3.6:
A
T
8
9
S P21
P33 5
1 P20
]
- 1 D s
2 S 7 1 2 8
32KHz - 5 |) [2 4 7
. 4 3 5 13 C 6
—L] 0 14 3 s
——— 3V, LITHIUM
T BATTERY

P

Fig 3.6 DS1307 / 24C32 - microcontroller interface.

Communication with the two devices was implemented serially over the bit-
banged interface. P2.0 was designated'SDA and P2.1 SCL. Bit-level manipulation was
effected in converting the byte- wide data from the microcontroller to serial data needed
in the implementation of Philips I’C bus specifications, and vice versa. The system

software was also coded to effect data transfer to and from any connected PC over its

22

serial port. The processes executable via the visual basic routines resident on the PC
include

I. Time / Date Set.

2. Memory Clear.

3. Memory Dump.

The high level communication interface was effected via a command-response
handshaking protocol. Command sent from the terminal machine are executed, and the
result of the command sent back to the High Level Language. Messages are then posted
on the Graphic User Interface (GUI), notifying the user of the state of the LOGGER.

For easier debugging, three LEDs were provided on the unit. Green LED — system
normal and operational, Orange LED — RTCC error / memory error and Red LED —

memory full. Fig 3.7 shows the status indicator circuit.

A +5V

T

8 P34 R, R, R,

9 P35

S P36

5 » D, I'g Ds ' Ds

l NOTE
D4=green LED
D5=orange LED
D6=red LED

R1=220Q

Fig 3.7 LED Status Indicators.

The LEDs were driven from the +5V supply via current limiting resistances. The
values which were evaluated using:

Rs= (Vs - VLED) / ILED .. (3.2.5)

vLeD = LED Forward Voltage = 1.7V ... 3.2.7)
. Itep= LED Forward current,

Typically, a minimum and maximum LED current of SmA and 20mA are quoted,
provided a maximum and minimum current — limiting resistances of

Roax =(5-1.7)/0.05=33 /0.05 = 6600

Roin=(5-1.7)/0.02=33 10.02=165Q. ... (3.2.9)
A 220Q resistance was selected to yield a current slightly above 10mA. The Orange and
Red LEDs were activated mutually exclusively, i.e. only one is turned on during an error

condition.
3.7 DS1307 REAL TIME CLOCK CHIP (RTCC)

The DS1307 Serial Real-Time Clock is a low-power; full binary- coded decimal
(BCD) clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred
serially via a 2-wire, bi-directional bus. The clock/calendar provides seconds, minutes,
hours, day, date, month, and year information. The end of the month date is automatically
adjusted for months with fewer than 31 days, including corrections for leap year. The

Table 3.1 DS1307 function table
clock operates in either the 24-hour or 12-hour Name Function

format with AM/PM indicator. The DS1307 has Xn X 32.768KHz Crystal connection

a built-in power sense circuit that detects power Vorr 43V Battery Tnput

failures and automatically switches to the

GND Ground
battery supply[14].The pin assignment and

VCC Primary Power Supply
funciion table is shown i fig 3.8 and table 3.2
¥ 11 b s vee SDA Serial Data
—_ S
— SQW/OUT
* 2 ; 7 SCL Serial Clock
Vear _| 3 0 ¢ [ScL
7 RS TS I :
SQw/ouT Square wave/ Output Driver
GND] 4 5 I~ spa Q quare w P

Fig 3.8 Pin Assignment of DS1307
24

The device was configured for operation at address 11010000. Every 15 minutes, the
RTCC. Registers were read to extract the Time / Date information required for storage
along with the ADC samples. The device has 56 RAM location, six of which were used
for holding the signature bytes required by software to know whether the device been
reset (battery power / main supply removed), or has been periodically initialized and
functioning properly. |

For a non-initialized device, the software default to the following settings:

Seconds: 00h

Minute : 00h
Hour : 00h
Date :01h
Month :01h
Year : 09h

RAM location 8 — 13: “DS 1307,

Once configured, the device generates a periodic 1Hz output on Pin7 while uploading the
internal RTCC. registers as well. |
3.824C32 (EEPROM).

The Microchip Technology Inc. 24C32 1s a 4K*8 (32K-bit) Serial Electrically
Erasable PROM. This device has been developed for advanced, low power applications
such as personal communications or data acquisition. The 24C3?2 features an input cache
for fast write loads with a capacity of eight 8-byte pages, or 64bytes. It also features a 4K-
bit block of ultra-high endurance memory for data that changes frequently. The 24C32 is
capable of both random and sequential reads up to 32K boundary. Functional address

lines allow up to eight 24C32 devices on the same bus, for up to 256K-bits address space.

25

Advanced CMOS technology makes this device ideal low-power non-volatile code and

applications. The 24C32 is available in the standard 8-pin plastic DIP and’ 8-pin Surface

mount SOIC package[15].The pin assignment and function table of the 24C32 shown in
fig 3.9 and Table 3.3

Table 3.3 function table of 24C32

Function

User Configurable Chip Select
Ground :

A0 VCC
a] =gt

1 2
-1 2 4 7 ;
A2 -, C 6 scL Serial Address/ Data /0
vss —| 4 g 5 I~ spa

Serial Clock -

+4.5V To 5.5V Power Supply

No Connection

Fig 3.9 Pin Assignment of 24C32

data applications A 24C32 device was provided for bulk storage, the device has 4096
addressable byte — wide memory locations. The device was configured at address 00h on
the I°C bus by taking Pins1, 2 and 3 to ground. 682 different records sets can be stored on
the part before the memory buffer indicator is activated.

3.9 LOGIC LEVEL TRANSLATOR

To effect communication over the serial port on the controller and the terminal host
system, a logic level translator was required to convert the 0 — 5V signaling voltages to
the +3V—+12V bipolarity signaling voltages required on the motherboard. The logic

level translator was effected using discrete components as shown below in fig 3.10

26

G,
+5V E}P jl ,
R4

P31 m T,

|
P3.0 R, Serial
T Dy —
> R4 3’] Port
D,

—~ N O o g

NOTE
C2=1000pF
C3=10pF
D3=IN4148
Fig 3.11 LOGIC LEVEL TRANSLATOR ?;‘352(315

T2=C9014

The circuit was adopted from an Atmel application note.

3.10 PC-RESIDENT TERMINAL SOFTWARE.

For a useful utilization of the logged data, a high level language visual basic
application was provided on the host system. The application enabled the following
processes executed over the serial interface.

1. RTCC. Initialization (time set).

2. Memory initialization.

3. Data dumping from logger onboard memory.
4. Data storage to file.

5. Data display on screen.

27

ZHNC650 11 L . —
+0 +a +q _ . ‘ —
_ [
Ty Y ™] D _

[] os0s
_ i
61 81 -
9Ed - 17d ¢
s'ed 0zd Y
b'ed 0 I e _
Ted o ¢ z 1
: 01d 81 o1 : _ O
0z I I1d A 8 =2
S Tid 91 0 L 12
S €1d |og ST 8
0€d 6 vid Vi 0 L
8 SId €1 o) ty 13
L 91d ra\ a 9 SENT
I'ed v L1d (e I v !
2 61 oz v
b or _J‘ _ F I_

+|"_

=
A
r.ll_l o1 _F mmmr E_A FEMW
_ A9'S Ia
f_u.l . _H__u . 3w BM.W 2
+~ K- K— ID_’ LIEWT 1 MW L

The visual basic interface was configured with a 16KB buffer to hold the data
inflow from the logger. Various visual messages were posted on screen reflecting the rate
of the serial link. The dumped data can be saved to a file for later analysis, or displayed
on a customized page on the system for visual analysis.

3.11 APPARATUS/ DEVICES USED IN CON, STRUCTION
Some of the apparatus used in the construction of the device are:

1. Vero-Board

2. Soldering Iron

3. Soldering Lead

4. Lead Sucker

5. ‘Multi-meter

6. Wire/ Jumpers

7. A Plastic Material.

28

CHAPTER FOUR

TEST, RESULTS AND DISCUSSION OF RESULT

4.1 TEST

In carrying out the test of the digital temperature logger, the following materials
were applied:

1. A personal computer on which the PC-resident terminal software of this

device (a high level visual basic application / program) was provided.

2. Visual Basic Software (Visual Basic 6.0)

3. Serial-to-serial cable (with which the interfacing of the device to the

computer was done).

At the outset, the device‘was connected to both battery and PHCN power
supply, but the PHCN source of power was applied and then the device was
positioned inside the room to log temperature of the room. Two hours later, the
PHCN power supply was turned off and the device was run automatically by the
back-up battery as source of it’s power supply. This was done so as to test the
automated power change designed for the device in the event of power outage.
About an hour later, the device was then taken and interfaced with the computer
SO as to access the logged data.

To access the logged data, the device was connected to a personal computer
via a serial-to-serial cable. But then the device was not recognized by the
computer not until the PC-resident terminal software (the temperature data logger
user interface) for the device was provided on the computer along with an

installation of Visual Basic 6.0 (in which the PC-resident terminal software was

29

, the device wag then re-j

with the computer. This time the device Was recognized and wag accessed via the
PC-resident software.

4.2 Result And Discussion Of Result
On opening, the user interface welcome screen displays on the conhputer screen as
illustrated in the table 4.1 below.

Table 4.1 Digital Temperature User Interface,

TIME

-STAMPED DIGITAL TEMPERATURE

LOGGING SYSTEM

| TIMEDATE | | CLEAR NVM | UPLOAD DATA
H H i H ;

I B |

The buttons in table 4.1 are explained thus:

The time and date button allows the user to set the time , after setting, the user
then clicks the « set time/date” button to activate it. This is done again only when the

CMOS battery is removed or replaced.

30

4.2 below.

Table 4.2 Temperature display.

21/11/09

21/11/09

21/11/09

21/11/09

21/11/09

21/11/09

21/11/09

21/11/09

21/11/09

temperature data to memory, while the “next” and “previous” buttons allows the user to

access next and previous data. The “close” button is used to close the page.

31

Furthermore, the uploaded temperature data can be stored to a file in the computer

memory by clicking on the “save file” button. But the data will be displayed in

hexadecimal values. A fter which the memory can then be cleared or erased by clicking on

the “clear nvm” button for the logger to log in new sets of data.

32

10.

11.

12.

13.

14.

15.

REFERENCES

Jerry C. Whitaker, The electronics handbook, Technical Press, Inc., Beaverton,
Oregon.

What is-data-logging, 2009, @ http://www.wisegeek.com.

Data logger, 2009,@ http://en.Wikipedia.org.

Temperature history, 2009 @ http://www.capgo.com.

Temperature, 2009, @ http://physics .nist.gov.com

Sensor, 2009, @ http//en.wikipedia.org.

Paul Horowitz and Winfield Hill, The art of electronics, Cambridge University
Press, pp988.

Thomas E. Newman, Electricity and electronics 1995, pp88ff.

Giorgio Rizzoni, Principle and application of electrical Engineering, revised 4%
edition, New York Mc Graw Hills pp713-715.

Km Leatherman, Automatic controls for heating and air conditioning,
principles and application, vol.15, Pergamon Press, pp9,15,23-25.

Jerry C. Whitaker, The electronic handbook, Technical Press, Inc., Beaverton,
Oregon., pp723 .

Embedded systems dictionary by Jack Ganssle and Mike Barr, p173.

89851 microcontroller, 2009,@ http//en.wikipedia.org.

DS1307, 2009 @ http//www .datasheetcatalog.com.

24C32, 2009, @ http//www.datasheetcatalog.com.

34

APPENDIX 1

Applications

The LM35 can be applied easily in the same way as other
integrated-circuit temperature sensors. It can be glued or
cemented to a surface and its temperature will be within
about 0.01°C of the surface temperature.

This presumes that tha ambient air temperature is almost
the same as the surface temperature; if the air temperature
were much higher or lower than the surface temperature,
the actual temperature of the LM35 die would be at an inter-
mediate temperature between the surface temperature and
the air temperature. This is expecially true for the TO.92
plastic package, where the copper leads are the principal
thermal path to carry heat into the device, so its tempera-
ture might be closer to the air ternperature than to the sur-
face temperature.

To minimize this problem, be sure that the wiring o the
LM3S5, as it leaves the device, is held at the same tompera-
ture as the surtace of Interest, The easiest way to do this is
to cover up these wires with a bead of epoxy which will
nisure that the leads and wires are all at the same tempera-
lure as the surface, and that the LM35 die's temperature will
not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal
surface or pipe without damage. Of course, in that case the
V- terminal of the circuit will be grounded to that metali,
Alternatively, the LM35 can be mounted inside a sealed-end
metal tube, and can then be dipped into a bath or screwed
into a threaded hole in a tank. As with any IC, the L M35 and
accompanying wiring and circuits must be kept insulated
and dry, to avoid leakage and corrosion. This is ospeclally
true if the circuit may operate at cold temperatures where
condensation can occur. Printed-circuit coatings and var-
nishes such as Humiseal and epoxy paints or dips are often
used to insure that molisture cannot corrode the LM35 or its
connections.

These devices are sometimes soldered to a smali light-
weight heat fin, to decrease the thermal time constant and
speed up the response in slowly-moving air. On the other
hand, a small thermal mass may be added to the sensor, to
give the steadiest reading despite smail deviations in the air
temperature.

Temperature Rise of LM35 Oue To Self-heating (Thermat Resistance)

TO-46, TO-48, TO-92, TO-92, SO-8 S0-8 T0-202 TO-202 ***
no haat sink smail heat fin* no haat sink small hest fin°* no heat sink small heat in°* no heat sink small heat fin
SHill air 400°C/W 100°Crw 180°C/w 140°C/W 220°C/W 110°Crw 85°C/W 60°C/W
Moving air 100°C/W 40°C/W 90°C/w 70°C/wW 105°C/W 80°C/wW 25°C/W 40°C/W
Sttt oit 100°C/W 40°C/w 90°Crw 70°CIW
Stirred oi 50°C/W 30°C/wW 45Crw 40°C/wW
(Clamped to motal,
infinite heat sink) (24°C/w) (55°C/w) (23°Crw)
* Wakefield type 201, or 1° disc of 0.020" sheet brass, solered 10 case, or similar.
** T0-92 and 50-8 packages ghied and leads sokdered 1017 squere of 4" primed Grcuit board with 2 oz. foi o similar,
Typical Applications {Continued)
r | S T ——
a1 HEAYY CAPACITIVE LOAD. WIRING, ETC. i our
* { (33 £ —
T, TO A HIGHIMPEDANCE LOAD o1 Favmes | r\
ornons AT~ B ”
- i
TL/H/B518-19 : 14
FIQURE 3. LM35 with Decoupllng from Capacitive Load L. T

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited abiity
to drive heavy capacitive loads. The LM35 by itself is able to
drive 50 pf without special precautions. If heavier loads are
anticipated, it is easy to isolate or decouple the load with a
resisior; see Figure 3. Or You can impsove the tolerance of
capacitance with a series R-C damper from output to
ground; see Figure 4.

When the LM35 is applied with a 20041 load resistor gs
shown in Figure 5, 6 or8 itis relatively immune to wiring

TL/H/5516-20
FIGURE 4. LM35 with R-C Damper

capacitance because the capacitance forms a bypass from
ground to input, not on the output. However, as with any
linear circuit connected to wires in a hostile environment, its
performance can be affected adversely by intense electro-
magnetic sources such as relays, radio transmitters, motors
with arcing brushes, SCR transients, etc, as its wiring can
actasa receiving antenna and its internal junctions can act
8s rectifiers. For best results in such cases, a bypass capac-
itor from V) to ground and a series R-C damper such as
7561 in series with 0.2 or 1 wF from output to ground are
often useful. These are shown in Figures 13, 14, and 16,

APPENDIX 2

|

SlelleAuo) q/v ejqpedwos 4rf ug-

&National Semiconductor

ADC0801/ADC08021ADC0803/A000804/ADC0805
8-Bit uP Compatible A/D Converters

General Description

The ADCOBOY, ADC0B02, ADCOS03, ADCOBO4 and B Differential analog voltage inputs

ADGOGOSareCMOSB-bitsmcessNaapproxh\aﬁonAlD ILogicinputsawoutpmsmeetbothMOSandmvon-

converters that use a differential potentiometric ladder— age level specifications

smilar to the 256R products. These converters are de- 8 Works with 25v (LM336) voitage reference

signed to allow operation with the NSCB00 and INSB080A ® On-chip clock generator

derivetivecontrolbusmeRI-STATE‘de- .wammmwmm,esv
supply

B No zero adjust required
facing logic is needed. ® 0.3 standard wicth 20-pin DIP "
D‘"m‘;‘e' analog voltage inputs "”;"ei"""‘“"g tha com- 6 pin molded chip camier or small outiine package
mon-mode rejection and offsetting analog zero input]
voltagevalue.lnaddﬂon,mvonagerdemiwean -Ommntznyormsvmz.svmorana-
be adjusted to allow encoding any smalier analog voltage og span adiustod voltage referance

span to the full 8 bits of resolution.

pe Key Specifications

Features . Te oror +Y, LSB, +% 1LSB and + BLZ:

® Compatible with 8080 uP derivatives—no intorfacing @ otal emror YalSB, £ and £1
logic needed - access time - 135 ns ® Conversion time 100 ps

B Easy interface to ali microprocessors, or operates
“stand alone”

Typical Applications

| 4
> : axal® "4 'J, TRANSONCER
axmp nesr
>m—; e,
ANY Ble 2 had gt 18 | < “'a-"
; : P - ':‘ ': ety SEE JECTWON 241
3 - 1]
e e B
” : 'u#ll.—oa!‘m -
T ey
TL/H/5671-1
8080 intertace EnorSpoeiMm(lncluanull-Sede,
ZemErmr,mHon-le‘rlty)
s *9 Part Fulk- VRER/2=2.500 Vpc | Vagr/2=No Connection
] S Number (No Adjustments) (No Adjustments)
e Adjusted
E -~ ADC0801 | 11,188
e L. ADC0802 114 LS8
ADC0803 | +141S8
BATA
ADC0804 1158
ADC0805 +1L88
TUW/EETI 2t
TRI-STATE® is a regi of Netional S Corp.
Z-80% is & rogietered tracdomerk of Ziog Corp.

©1MWWM TLM/587T1 RRD-B30M115/Printad in U, 8. A.

8
§0800Qv/¥0800av/£080DQY/ €0800av/10802av

APPENDIX
AIMNEL

n Configurations

PDIP
P1.0E’ 1 40 ljvoc
P12 39 [1P0.0 (ADO)
P123 38[1P0.1 (AD1)
P1.3[]4 37 0 P02 {AD2)
P140s 36 [1P0.3 (AD3)
(MOSHP15]6 35[1P0.4 (AD4)
(MISO) P1.6 q 7 34 [1P0.5 (ADS)
8cKyP17d8 33 [7P0.6 (AD6)
RST9 32[1P0.7 (AD7)
(RXD) P3.0 10 31 O EAvPP
(TXD)P3.1 O 11 30 [J ALE/PROG
(INTO) P3.2] 12 291 PSEN
(INT1) P3.3 13 2811P2.7 (A1S)
(To)P3.4 14 27 [1P26 (A14)
TnHPas1s 2611P2.5 (A13)
WR)P36]16 2511P24 (A12)
(RD)P3.7] 17 24[1P23 (A11)
XTAL2] 18 23[1P22(A10)
XTAL1 {19 22[1P2.1 (A9)
GND] 20 2117P20 (A8)
TQFP
Q- N m
223¢
IOUN—9 Qo-oo
iiaag®lesep
~O OO0 nrnn inEnlel
IP93888589%
{MOS) P15 1 33 [1P0.4 (AD4)
(MISO)P16]2 32[1P0.5 (ADS)
(scKy P73 31[1P0.6 (AD6)
RST 4 301P0.7 (AD?)
(RXD) P3.0] 5 291 EAvVPP
NC (6 28[1INC
TxpyPa1y 27 [ALE/PROG
(iNTO)P3.2 8 26 [1PSEN
(INT1)P339 2511P2.7 (A15)
(T0)P3.4 ({10 241P26 (At4)
TyPasdn 23[1P25 (A13)
NeyYeer®eonN
U000 00O uog
55332255333
Enbhwogggnu
EE** ggscs
=< TrLegLg

PLCC
Q- NOM
€22¢
rfNTe Do-nm
Laaaan2legee
OO Oonnnn O0nm
D WEON - 0N -
(msnm.scﬁ o¥vES SJQEPOA(AD-%)
(MSO)P16]8 38 [1P0.5 (ADS)
(scKyP17]9 37 [1P0O.6 (ADG)
RST [10 36 (1PO.7 (AD7)
(RXD) P3.0 [} 11 351 EAVPP
NC [} 12 anne
(TXD) P31 13 33 [ALEPROG
(INTO) P32 14 32[1PSEN
WT)P33 s 31[1P27 (A15)
ToP34ar1e 30[71P26 (A14)
MHRSOT, o o ® v 0o~ LIP25(A13)
T TNNNNNNN oN N
U000 000 Ow Irir—
@rNCOQO N
R AT
1 FEEY
PDIP
Ny
RST1 421 P1.7 (SCK)
(RXD) P3.0]2 411P1.6 (MISO)
(TXD)P3.1(]3 40 1 P1.5 (MOSI)
{INTO)P3.2]4 3901P14
(INTH)P3.3s 38PP1.3
(T0) P3.4(]6 kidul 2P
(TyP3s0]7 36[3P1.1
(WR)P36]8 35[1P1.0
(RD)P3.7]9 34[1vDD
XTAL2 10 330 PWRVDD
XTALI[] 11 321 P0.0 (ADO)
GND [12 31[1P0.1 (AD1)
PWRGND] 13 301 P02 (AD2)
(AB)P2.0] 14 29[1P0.3 (AD3)
(A9)P2.13 15 2811 P0.4 (AD4)
(A10) P22 16 27 {1P0.5 (ADS)
(A1) P23 17 26 3 PO.6 (ADB)
(A12)P2.4 (] 18 251 P07 (AD7)
(A13) P25] 19 24 1 EAVPP
(A14) P2.6 [} 20 23 D ALE/PROG
(A15)P2.7 21 221 PSEN

AT89S51 \m

3

m“

l

in Description

sC Supply voltage (all packages except 42-PDIP).

ND Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the
embedded program memory).

D Supply voltage for the 42-PDIP which connects only the logic core and the embedded program
memory.

NRVDD Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application

board MUST connect both VDD and PWRVDD fto the board supply voltage.

NRGND Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are
weakly connected through the common silicon substrate, but not through any metal link. The
application board MUST connect both GND and PWRGND to the board ground.

rt 0 Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight
TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance
inputs.
Port 0 can also be configured to be the multiplexed low-order address/data bus during
accesses to external program and data memory. In this mode, PO has internal pull-ups.

Port 0 also receives the code bytes during Flash programming and outputs the code bytes
during program verification. External pull-ups are required during program verification.

t1 Port 1 is an 8-bit bi-directional I/O port with internal puil-ups. The Port 1 output buffers can
sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the
internal pulfl-ups and can be used as inputs. As inputs, Port 1 pins that are externally being
pulled low will source current (1) because of the internal pull-ups.

Port 1 also receives the low-order address bytes during Fiash programming and verification.

Port Pin Altemnate Functions
P15 MOSI (used for In-System Programming)
P16 MISO (used for In-System Programming)
P17 SCK (used for In-System Programming)
2 Port 2 is an 8-bit bi-directional 110 port with internal pull-ups. The Port 2 output buffers can

sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulied high by the
internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being
pulled low will source current (Iy) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and
during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this
application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOVX @ R), Port 2 emits the contents of the P2 Spe-
cial Function Register.

Port 2 also receives the high-order address bits and Some control signals during Flash pro-
gramming and verification.

AT89S51 EEE——— L —

gi

\ AT89S51
ort 3

) Port 3 is an 8-bit bi-directional /0 port with internal pull-ups. The Port 3 output buffers can
sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulied high by the
internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being
pulled low will source current (I,) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.
Port 3 also serves the functions of various special features of the AT89S51, as shown in the

following table.
Port Pin Alternate Functions
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P32 INTO (extemal interrupt 0)
P33 INTT (extemnal interrupt 1)
P34 TO (timer 0 external input)
P3.5 T1 (timer 1 external input)
P36 WR (external data memory write strobe)
P37 RD (external data memory read strobe)
T Reset input. A high on this pin for two machine cycles while the oscillator is running resets
the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The

DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default
state of bit DISRTO, the RESET HIGH out feature is enabled.

E/PROG Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during
accesses to external memory. This pin is also the program pulse input (PROG) during Flash
programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may
be used for external timing or clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set,
ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled
high. Setting the ALE-disable bit has no effect if the microcontrofler is in external execution
mode.

=N Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S51 is execuling code from external program memory, PSEN is activated
twice each machine cyde, except that two PSEN activations are skipped during each access
to external data memory.

VPP External Access Enable. EA must be strapped to GND in order to enable the device fo fetch
code from external program memory locations starting at 0000H up to FFFFH. Note, however,
that if lock bit 1 is programmed, EA will be internally latched on reset.

EA should be strapped to V. for internal program executions.
This pin also receives the 12-volt programming enable voltage (Vpp) during Flash

programming.
-1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
2 Output from the inverting oscillator amplifier
ICRO-12/03 —

3

APPENDIX 4

INCLUDE 89c¢51.mc

;********************************
* ek k Kk

adc_port EQU pl

adc_select BIT p3.2

adc_Write BIT p3.3

;********************************
* ok ok ok ok

sda BIT p2.0

scl BIT p2.1

read_flag EQU 00000001b
write_flag EQU 00000000b
nvm_address EQU 10100000b
rtcc_address EQU 11010000B
seconds_Address EQU 00h
sig byte_address EQU 8
sig_byte offset EQU 8

;********************************

* ok k ok Kk

adc_Value DATA 8
seconds DATA 9
minutes DATA 10
hours DATA 11
day_week DATA 12
day DATA 13
month DATA 14
year DATA 15
control DATA 16

;********************************

kok ok kK

data_2_write DATA 23
data_Read DATA 24
slave_Address DATA 25
address_lo DATA 26
address_hi DATA 27
count DATA 28

;********************************

* % &

countl DATA 29

count2 DATA 30

count3 DATA 31

templ DATA 33

temp2 DATA 34

ERROR DATA 35
nvm_interval DATA 36
interval temp DATA 37
countl reload DATA 38
count2 reload DATA 30
count3 reload DATA 40
Ré_TEMP DATA 41
R7_TEMP DATA 42
new_count DATA 43

;********************************
%k ok ok ok

stack EQU 90

;********************************
* ok Kok ok

secb BIT 127 ; check
for the correct positions here!!!
rtcc BIT sec5-1

mem_full BIT sec5-2

timeout BIT sec5-3

error_led BIT sec5-4

new_mem BIT sec5-5
;********************************

* ok ok Kk ok

pointer Address EQU 4094
interval Address EQU 4092
NVM_SELECT EQU 4093

;********************************
* ok kok ok

buffer DATA 50 ; 60 before
host_time_Date lenght equ 7

;********************************
%k ok ok ok ok

led_Green bit p3.4
led orange bit p3.5
led_red bit p3.6

;********************************

;********************************

;******************************

org 0000h

LIMP start up
;*********:*******************
org 0003h

RETI
;*****************************
org 000bh

LJIJMP tf0 isr
;*******:*********************
org 0013h

RETI
;*****************************
org 001bh

RETI
;*****************************
org 0023n

LJIMP serial isr

;*****************************

org 0030h

start_uP: CLR ea
MOV sp, #stack
call sys_init

,-******************************* JC

dok ek k error_store Temp
main: call get_temp call
call store temp load pointer ; CLEARED
SETB EA JC
SJMP main error_store temp
,-******************************** - Call Write temp
%k %k %
get Temp: JNB sec5,$ JcC
CLR sec5 error_Store temp
CPL led orange call
CLR EA store pointer
CLR adc_write Jc
SETB adc_write error_store_ temp
MOV R2,#100 RET
DJINZ R2,$
MOV adc_value, error_store_temp: call get Error
adc _port RET
RET ,-********************************
;*******************************’* Kkkkkk ok ok khkkkkokh kK Kk ok
Fokok ok ok ox & write temp: JB mem full,
host_Error: MOV error, #8 exit_Write temp
CALL GET_eRROR
RET MOV
'-******************************** data_z_write' day
dokok ok ok ok ke ke ko ok ok ok ok ok ko ke ok ok ok ok k& Ca‘ll write nvm
Jc -
sys_init: call long_delay error_write temp
CLR adc_select call
SETB sda inc_Address
SETB scl MOV
CLR mem full data_2_write, month
call clear Error call write nvm
MOV tmod, #22h Jc
MOV scon, #50h error_write temp
MOV tcon, #0 call
MOV thoO, #16 inc_Address
MOV t10,4#16 MOV
MOV thl, #0£fDh data_2 write, year
MOV tl11,#0£fDh ' call write nvm
MOV countl, #240 JC
MOV count2, #16 error_write temp
Mov call
interval temp, #150 ; inc_Address
set up for 15-min sampling MoV
interval. change this!!! data 2 Write, hours -
MOV new_count, #6 call write nvm
SETB tro0 Jc
SETB trl error_write temp
SETB ti call
SETB ren inc_address
CIR ri MOV
call init_ timer data_2_write,minutes
MOV ie, #10010010b call write nvm
RET Jc
error_write temp
’-******************************** call
Feook ook ok ok ok ek ok ok ok ok ok ok ok k& A inc Address
store temp: call MOV
load_Eime_date ; CLEARED data_2 write, adc_Value

call write nvm
Jc

error_write temp
RET

exit_write temp: MOV error, #10
i return 10 if memory full
SETB C
RET

error_write_temp: MOV error, #0
RET

;********************************

e dok ok ok ok ok ok ok ok ko ok

MOV RO, #seconds
MoV

address_lo, #seconds_address

MOV count, #8
call read rtcc

load_time date:

load_time loop:

Jc
error_load date time

MOV @RO,
data_read

inc r0

inc address_lo
djnz count,
load_time_loop

CIR C
RET
error_load Date time: MOV
error, #1
RET

;********************************
ko ok kok ok ko ok ok k ok ok ok ok

load pointer: MOV
address_hi, #high (pointer_ address)
MOV address_lo,
#low(pointer_address)
call read nvm
Jc
ERROR_LOAD POINTER
B MOV R7_TEMP,
data_read
call
inc_Address
call read nvm
Jc
ERROR_LOAD_POINTER
MOV ré6_TEMP,

data_Read

MOV address hi,
r7_TEMP

MOV address_1lo,
r6_TEMP

CALL
GET_ADDRESS

CIR C

RET

ERROR_LOAD POINTER: MOV
ERROR, #2
RET

,-********************************

Kok deokok ok ok ok ok ok ok ok ok ok ok ok ok ok &k

store_pointer: MOV R7_TEMP,
address hi
MOV ré6_TEMP,

address_lo

MOV
address_hi,#high(pointer_address)
MOV
address_lo,#low(pointer_address)
MoV

data_2 Write,r7 TEMP
call write nvm

Jc
ERROR_STORE_POINTER

call
inc_address

MOV

data_2_Write, r6 TEMP
call write nvm
Jc
ERROR_STORE_ POINTER
CLR C
RET

ERROR_STORE_POINTER: MOV
ERROR, #3
RET

,-********************************
dokokkokok ok ok ok ok ok ko ook ok ok kK k

inc_address: MOV A,
address_1lo

add a, #1

mov address lo,

clr a

addc a,
address_hi

mov address_hi,
a

ret
I-********************************

Jokok ko ok ko k ok ok ok Kk ke ok ok ok ok ok ke ok ok

tf0_isr: DJINZ countl,
exit isr
MOV countl, #240
DJNZ count2,
exit_isr

MOV count2, #16

cpl led Green

DJINZ
interval_temp, exit isr

MOV

interval_Temp, #150 ;
sample every 15 minutes

DJINZ
new_count,exit_isr

MOV
new_count, #6

SETB sec5
exit isr: RETI

;********************************
ko ko ko ok ok ke ok ok ok ok ok ok

write nvm: MoV

slave_address, #nvm_address
CIR rtcc
call write
ret

;********************************
Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

read nvm: MoV

slave_address, #nvm_address
CLR rtccC
call read
RET

;********************************
Kk ok ok ok ok ke ko ok ok ok ok ok Kk ke ok ok ke k ok ok

WRITE RTCC: MOV

SLAVE aDDRESS, #RTCC_aDDRESS
SETB RTCC
CALL WRITE
RET

;********************************

hok ok ke ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok kK

READ_RTCC: MOV

SLAVE_ADdRESS,#RTCC_aDDRESS
SETB RTCC
CALL READ
RET

;********************************

koo kok ok ok ok ok ok ok ok ok ok ok ok ok ok

write: CALL i2c_Start
MOV A&,

SLAVE Address
ORL A,

fwrite flag
CALL write byte
JC write Abort

JB rtce,
SKIP wRITE1l
h MOV A,
ADDRESS HI
CALL WRITE_BYTE
Jc WRITE_aBORT
SKIP_wRITE1l: MOV A,
address_LO

CALL write byte
JC write Abort
MOV A,

data_2 Write

CALL write byte
JC write Abort

CLR C
CALL i2c_Stop
call
write time out
RET
write abort: CALL
i2c_Stop
CALL
write_ time out
ret

;********************************

read: CALL i2c_Start
MOV B,

SLAVE Address
ORL A,

#write flag
CALL write byte
JC read AborT

JB rtce,
SKIP_READ1

MOV B,
ADDRESS HI

CALL WRITE BYTE

JC READ_ABORT
SKIP_READ1: MOV A,
address LO

CALL write byte
JC read abort
CALL i2c_Start
MOV B,

SLAVE Address
ORL A,

#read flag
CALL write byte
JC read Abort
CALL read_byte
MOV data_Read,

CALL NO_aCK
CIR C

CALL I2C_STOP
RET

read Abort: CALL i2c_Stop

RET

;********************************

FThkdkkhdkkkkhkhkkkkkk ok kkok ok k& &

SETB SDA
SETB SCL
CALL dly_ 7us
CLR SDa
LCALL dly 5us
CLR SCL

i2¢_start:

CALL dly_7us
CLR C
RET

;********************************

CLR SDAa
CALL dly Sus
SETB SCL
CALL dly 7us
SETB SDA
RET

;********************************

i2c_stop:

* ok ok ok ok ko ok ok ok ok ok ok

SETB SDA
NOP

NOP

SETB SCL
NOP

NOP

NOP

CLR SCL
RET

;********************************

no_Ack:

%k ok ok k
write byte: MOV R7, #8
write loop: RLC A
MOV SDA, C
NOP
NOP
SETB SCL
CALL dly 7us
CLR SCL
CALL dly 7us
DJINZ R7,
write loop
SETB SDA
NOP
NOP
NOP
SETB SCL
NOP
NOP
MOV C, SsDha
CLR SCL
RET

;********************************

Hokok kok kok ok e ok ko ok ok ok ok ok ok ok kK

read byte: MOV R7,#8
a SETB SDA

read_loop: NOP
SETB SCL
CALL dly 7us
SETB SDA
NOP
NOP
MOV C, SDA

RLC A

NOP

NOP

CLR SCL

CALL dly 5us

DJINZ R7, read loop
MOV data_Read, A
RET

;********************************
Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

write_ time out: CALL
small delay
RET

;********************************
ook ok ok ke ke ok ok ke ke ke ko k ok Kk ok ok ok

DLY 7US: NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

;********************************
Kdkkkkkkdkokok ok ok dkok ok ok k k& &

DLY_5US: NOP
NOP
NOP
RET

;********************************
ok koo ok ok kok ok ok ok ok ok ok ok ok

get address: call
inc_address ; if address = 0000h,
use the stored nvm address
pointer in 4093

MOV A,
address_1lo ‘

ORL A,
address_hi

JNZ skipl

CLR mem_full
SETB new_mem
RET

;********************************

* ok ok ke
skipl: CLR mem full
CLR new_mem
MOV A,
address_hi
CJNE
A, #high (INTERVAL_ADDRESS), chkl
MOV A,
address lo
CJINE
A, #low (INTERVAL ADDRESS), chk2
backl: MOV

address_hi, #0

MOV
address_lo, #0

SETB mem_full

CLR new_mem

back2: RET

chkl: JNC backl
RET

chk2: JINC back?2
RET

;********************************

* ok kK ok ok ko ok ke ok ok ok

send Data: CLR ti
;i cleared

MOV sbuf, A
JNB TI,S$
CLR TI
call

small delay
RET

;********************************

ko ok ok ko ok ok ok ok ok ok ok ok ok ok

SMALL DELAY: MOV TEMP1, #20

; cleared

SMALL_LOOP: MOV temp2, #0
RELOAD A: NOP

NOP

NOP

DJINZ
TEMPZ,RELOAD_a ; ChANGED
THIS HERE

DJIJNZ templ,
small loop

RET

;********************************
dokok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

connect_host:
; cleared

CALL read port

JB
timeout,exit CONNECT

CJNE A, #"s",
exit CONNECT

CALL READ_PORT

JB
timeout,exit CONNECT

CJINE A, #"0",
exit CONNECT

CALL read port

JB timeout,
exit CONNECT

;********************************

ok ok ko ok ok k ok ok ok ok ok ok ko ok

CJINE A, #"1",
chkla ; cleared
CALL
set_time DATE
SETB error_led
RET

;********************************
ok kok ok ok ok ko ok ko k ok ok ok ok Kk

cHKla: CJINE A, #"2",
CHK2a ; cleared ’
CALL dump_ Data
SETB error led
RET

;********************************

Fok ok ok sk ok ok ok ke kK ok ok Kk ok ok ok

chk2a: CJINE A, #"3",
chk3a ; cleared
call init_nvm

setb error led
ret
chk3a:

exit connect: RET
;********************************

* ke ok ke ko ke ok ok kok Kk ok ok ok ok ok

serial isr: CLR ti
i cleared

JNB ri,
exit_serial2

call
connect_ host

MOV
DPTR, #START UP

PUSH dpl

PUSH dph
exit Serial2: RETI

;********************************
sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok &
init nvm: Call
init pointer
Jac
EXIT_INIT NVM
CLR mem full
MOV
DPTR, #INIT NVM_CMD
CALL WRITE_ CMD
CLR A
CALL SEND DATA
RET

exit_init nvm: MoV

DPTR, #INIT_NVM_CMD2
CALL WRITE CMD
MOV A, ERROR
CALL SEND dATA
CALL GET_eRROR

RET
INIT_NVM_CMD: DB "$03",0
INIT_NVM_CMD2: DB "$E3",0

;********************************
Kok ok ok ok ok ok ok ok ok kok ok ok ok ok ok

init pointer: MOV
address_hi, #high (pointer address)

MOV
address_lo,#low(pointer_address)
MoV
DATA_2_WRITE, # OFFH
call write_nvm
Jc
eérror_init pointer
CALL
INC_aDDRESS
CALL WRITE NVM
JC
error_init pointer
RET

eérror init pointer: MOV
error, #6
RET

;********************************

set_time date: MoV

R3, #host_time Date lenght
call read host
JNC SKIP_SET
JMP HOST eRROR

SKIP_SET: MOV RO, #BUFFEr
MOV R1, #SECONDs
MOV COUNT, 47
CALL BIN_2_HEX
MOV RO, #seconds
MOV
address_hi, #0
MOV
ADDRESS_LO,#SECONDS_aDDRESS
MOV COUNT, #7
CALL WRITE_TIME
Jc
SET_TIME_DATE FAIL

TIME_UPDATE_PASS: MOV DPTR, $CMD1
CALL WRITE_CMD
CLR A
CALL SEND dATA
RET

;********************************

set_time_Date fail: MoV

DPTR, #CMD2
CALL WRITE CMD
MOV A, ERROR
CALL SEND_dATA
CALL GET_eRROR
RET

CMD1: DB "$01",0

CMD2: DB "S$E1",0

;********************************
Kdkokokdkokdok ok ok k ok ok ok ok ok ok

WRITE CMD: CLR A

MOVC A, @A+DPTR

Jz
EXIT_WRITE_CMD

CALL SEND DATA

INC DPTR

SJMP WRITE CMD
EXIT WRITE CMD: RET h

;********************************

START TIMER2: MoV
COUNT1_RELOAD, $100

MOV
COUNT2 RELOAD, $100

MOV
COUNT3 RELOAD, #4

CALL
START_TIMER

RET

;********************************

BIN_2 HEX: MOV A, @RO
MOV B, #10
DIV AB
SWAP A
ORL A,B
MOV @RI,A
INC RO
INC R1
DJNZ COUNT,

BIN_2 HEX
RET

;********************************

read host: MOV RO, #BUFFER
GET_100P: CALL READ_PORT
jb timeout,
fuck this
MOV @RO, A
INC RO
DJINZ
R3,get loop
clr ¢
ret
fuck this: setb c
ret

;********************************

read port: CLR timeout
; uSe hardware timeout

generator here!!!!

CALL
START_TIMER2
PORT_LOOP: JBC RI, GO_READ
JNB TIMEOUT,
PORT_LOOP

SETB TIMEOUT

RET

,-*******************************
Kok ok ok ok ok ok ok ok ok ok ko ke ok

go_READ: call stop timer
MOV A, sbuf
ret

;********************************
* ok kok ok ok ok ok ke ok ok ok ok ok

start_timer: CLR tf0
SETB tr0
RET

,-********************************

long_delay2: CALL
LONG_dELAY
CALL LONG DELAY
RET

’-********************************
Fhkkkhkhkhkkkhk

long delay: MoV
R7,#100 ; replace this
later
RE R7: MOV R6, #0
RE_R6: NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP
NOP
NOP
NOP
NOP
NOP
nop
DJNZ R6,
RE R6
N DJINZ
R7,RE R7
- RET

;********************************
hokokokok ok ok ok ok kok ok ok &
stop_timer: CLR tro0

CLR tf0

RET

-********************************
’

Kk ke ko dkok ok ok ok ok ok ok ok ok

convert 2 Ascii: CJINE A,
#9, chk 10
go 1: ADD A,
#30h

JMP
exit 1
chk 10: JC go_1

ADD A,
#37h
exit 1: RET
,-********************************

dly 2ms: MOV R7, #0
RELOAD 2MS: NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

DJNZ R7,
RELOAD 2Ms

RET

,-********************************
kk ok ok ok ok ko ok ok ok

dly_100us: Mov
R7,#50
DJNZ R7,$
REt

,-********************************

DEC_DPTR: MOV A, DPL
CLR C
SUBB A, #1
MOV DPL,A
MOV A, DPH
SUBB A, #0
MOV DPH, A
RET
FREF Kk kkkd ok ok k ok k ok ko k ok ok ok ok Kok ok ok ko
Hok ok ok kok ok ok ok ok Kk ok

MOV RO, #buffer
MOV
address_lo,#seconds_Address

MOV count, #20

init timer:

init loop: call read rtcc
Jc
ERROR_INIT TIMER
MOV @RO,
data_Read
INC RO
INC address 1o
DJINZ count,
init loop
acall
COMPARE_SIG BYTE
JC GO_INIT
RET

ERROR_INIT TIMER: CALL
TIMER_INIT ERROR
JMP §

,-*******************************
Khdkokkkkokk ok ok ok ok ok ok ok

go_init: MOV seconds, #0
MOV minutes, #0
MOV hours, #0
MOV day Week, #3
MOV day, #01h
MOV month, #01h
MOV year, #09h
MOV control, #0
MOV

address_lo,#seconds_Address
MOV RO, #seconds
MOV count, #8
acall

write time
jc exit init2
acall

write_sig byte
jc exit init2

CLR C

RET
exit init2: acall
ERROR_INIT TIMER

RET

;********************************

write time: MOV
data_2 write, @RO
call write_rtcc

jc
exit_Write time
INC address lo
INC RO
DJINZ
count,write_ time
RET

exit_Write_time: MOV ERROR, #07H
RET

,-********************************

K dek Kok ok de koK ok ko ok

write_sig byte: MOV

DPTR, #sig_byte msg
MOV

address_lo, #sig_byte Address
acall write sig
RET

,-********************************

deok ook ek kok ok ok ok ok ok ok ok ok

write Sig: CIR A
MOVC
A, Ga+dptr
Jz

exit_write Sig
MOV
data_2_write, A

call
write_ rtcc

jec
exit_write sig

INC
address_lo

INC DPTR

JMP

write Sig
exit Write Sig: RET
;********************************

sig_byte msg: DB
"DS1307",0
;********************************
Kokokkokok ok ok ok ok ok ok
compare sig byte: MOV
RO,#buffer+sig_byte_offset
MOV A, @RO
XRL A, #"D"
JNZ EXIT
INC RO
MOV A, @RO
XRL A, #"s"
JNZ EXIT
INC RO
MOV A, QRO
XRL A, #"1"
JNZ EXIT
INC RO
MOV A4, @RO
XRL A, #"3"
JNZ EXIT
INC RO
MOV A, @RO
XRL A, #"QO"
JNZ EXIT
INC RO
MOV A, @RO
XRL A, #"7"
JNZ EXIT
CLR C
RET

EXIT: SETB C
RET

,-********************************

dump NVM: call
load_pointer

JC error dumpl

JB new mem,
error dump?

JB mem full,

skip dumpl

MOV DPH,
ADDRESS HI

MOV
DPL,ADDRESS_LO

SJIMP dumpl

,-*******************************

skip dumpl: MOV DPTR, #4092
DUMP1 ; MoV
ADDRESS 1.0, #0

MOV

ADDRESS_HI, #0
DUMP1_LOOP: CALL READ NVM
JC ERROR_DUMP1
MOV A,
DATA READ

MOV B, #16

DIV AB

CALL
CONVERT 2 ASCII

CALL SEND dATA

MOV A, B

CALL
CONVERT 2 aSCII

CALL SEND dATA

CALL
INC_ADDRESS

CALL DEC_DPTR

MOV A, DPH

ORL A, DPL

JNZ DUMP1_LOOP

CIR C

RET

,-********************************
Kok okok ok ok ok ok ok ok ok ok ok ok

ERROR_DUMP1 : SETB C
MOV ERROR, #4
RET
error_dump2: SETB C
MOV error, #9
RET

,-********************************
dok ook ok ok ok ok ok ok ok ok ok ok ok

DUMP_DATA:
DPTR, #CMD_sTATUS2

MOV

CALL WRITE_ CMD

CALL DUMP_NVM

Jc
ERROR_DUMP_DATA

RET

;********************************
kok ok okok kok ok ok ok ok ok ok

ERROR_DUMP_DATA: MOV A,error
CALL SEND DATA
CALL GET eRROR
RET

CMD_STATUS: DB "SE2",0

10

CMD_sTATUS2: DB "$02",0

;********************************

dok ok ok ok ok ok ok ok ok ok ok ok K

clear error: SETB led red
SETB led orange

RET

,-*******************'*************

get_Error: call
clear_error

MOV A, ERROR

MOV
DPTR,#ERROR_TABLE

CLR C

RLC A

JMP @A+dPTR

,-********************************

ERROR_TABLE: AJMP
TEMP_wRITE_ERROR

AJMP
TIME DATE_LOAD eRROR

AJMP
POINTER_LOAD ERROR

AJMP
POINTER_STORE_ERROR .

AJMP
DATA_dUMP_ERROR

AJMP
NVM_INIT ERROR

AJMP

POINTER_INIT_ERROR

AJMP
TIME_wRITE_ ERROR

ajmp
host_Error2

ajmp
new_mem error ;

ajmp

mem_full error
;********************************

F ok ok ok ok ok ok ok ok ko ok ok e
’-********************************

dok ok ok ko ok ok ok ok ok ok Kk

TEMP_wRITE_ERROR:
pointer_load Error:
data_dump Error:
nvm_init error:
pointer_init_error:

pointer_ Store Error: clr
led Red
- CLR
led green
B SETB
led orange
RET

’-********************************

*ok ok ok ko ok ok ok ok ke ok ok ok

,-******************************* ;********************************
ok ko ke k ke ok ok ke ok ok ok ke ke Fok ok ok ok ok ok ok ok ok ok ok ke
TIME_DATE_LOAD ERROR: new_mem error:
TIME_WRITE_ERROR: host_error2:
TIMER_INIT ERROR: CLR mem full error: CLR
led_orange led Red

SETB CLR
led_red led orange

CLR CLR
led green led green

ret RET

,-********************************
hokok ok ok ok ok ok ok ok ok ok ok ok

11

