
DESIGN AND CONSTRUCTION OF A
DIGITAL TEMPERATURE DATA

LOGGER

SISAN BOYO IYINBOH

2004/18755EE

DEPARTMENT OF ELECRICAL AND COMPUTER
ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY,

MINNA.

DECEMBER 2009

DESIGN AND CONSTRUCTION OF A

DIGITAL TEMPERATURE DATA

LOGGER

SISAN BOYO IYINBOH

2004/18755EE

ATHESIS PRESENTED AND SUBMITTED IN PARTIAL
FULFILMENT FOR THE REQUIREMENT OF FIRST DEGREE

IN ELECTRICAL AND COMPUTER ENG.NEER.NG, FEDERAL
UNIVERSITY OF TECHNOLOGY, MINNA.

DECEMBER 2009

DEDICATION

™S project is dedicated ,o God Aimigh,y, my father ^ ^^BoyQ ^
my mother Mrs. Victoria lyinboh, my brotners „, ^ my ^ ^ ^ ^
Benjamin Okpaghoro and a.s„ Mr Msan Tenumah^ my^^^ ^
Tenumah, for the moral, spiritual and financial support given to me.

ATTESTATION / DECLARATION

I Sisan Boyo lyinboh, declare that this work was done by me and has never been

presented elsewhere for the award ofa degree. I also hereby relinquish the copyright to

the Federal University ofTechnology, Minna

Sisan Boyo lyinboh

.^B^......
Eng'r J. G. Kolo

(Supervisor)

KJ

\ Dr Yinusa A. Adediran

(H.O.D)

External Examiner

in

Date

..J.3 .[.£{..[.!&
Date

(•

Date

'n/.pj.M
Date

ACKNOWLEDGEMENT

Igive God all the glory for His wisdom and His grace and supernatural direction

upon me.

Also, I appreciate my entire family, uncles and grandmother for their endless

support towards ensuring that this goal is achieved.

More so, Iappreciate my friend and brother Sheyi Mackson Ejejigbe for availing

me the use ofhis computer throughout the period ofmy work. Also to my beloved friend

Godiya Lafiya Ladama, thank you for your wonderful support may God richly bless you.

Finally, my special thanks goes to my supervisors Eng'r J.G. Kolo and Mallam

Umaru for their tremendous assistance, contributions and suggestions towards ensuring

that this project is successful. To my friends and well-wishers may the grace ofGod be

with you all.

IV

ABSTRACT

The quest of establishing an effective mechanism for temperature measurement and

monitoring, brought about the design of this device (Digital Temperature Data Logger).

Digital temperature data logger is an electronic device that measures and records

temperature data over time in relation to a location. It employs temperature sensor in

converting physical temperature to electrical quantity which is then digitized by an

log-to-digital converter for easy analysis by a microcontroller. The microcontroller

alyses the digitized temperature data and stores it to the memory of the device along

with the time and date ofacquisition stamped to it. Viewing and analysis ofthe collected

data is achieved by interfacing the device with a personal computer via the PC-resident

software developed for the device.

anal

an;

LIST OF FIGURES

Fig. 1.1 Block diagram ofthe digital temperature data logger.

Fig. 3.1 System power supply.

Fig. 3.2 Battery charger system.

Fig. 3.3 Analysis ofthe voltage setting resistances.

Fig. 3.4 Sensorcircuit.

Fig. 3.5 ADC- microcontroller interface.

Fig. 3.6 DS1307/24C32- microcontroller interface.

Fig. 3.7LEDs status indicator.

Fig. 3.8 Pin assignment ofDS1307.

Fig. 3.9 Pin assignment of24C32.

Fig.3.11 Logic level translator.

VI

LIST OF TABLES

Table 3.1 Data record implemented on the 24C32 device.

Table 3.2 Pin descriptionofDS1307.

Table 3.3 Function table of 24C32.

Table 4.1 Digital loggeruser interface.

Table 4.2 Temperature display.

vn

TABLE OF CONTENT

CONTENT PAGES

COVERPAGE i

DEDICATION ii

ATTESTATION/DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

LIST OF FIGURES vi

LISTOFTABLES vii

CHAPTER ONE

1.1 INTRODUCTION 1-2

1.2 AIMS AND OBJECTIVES OF THE PROJECT 2-3

1.3 METHODOLOGY 3-4

1.4 APPLICATION OF TEMPERATURE DATA LOGGER 4-5

1.5 SCOPE OF WORK 5

CHAPTER TWO

2.1 HISTORICAL BACKGROUND 6

2.1.1 HISTORY OF TEMPERATURE AND ITS MEASUREMENT 6-8

2.1.2 DATA LOGGER 8-9

2.2 THEORITICAL BACKGROUND 9

2.2.1 TEMPERATURE SENSORS 9-10

2.2.2 ANALOG-TO-DIGITAL CONVERSION 10

2.2.3 MICROCONTROLLER 11

2.3 PREVIOUS WORKS AND MODIFICATION 12

CHAPTER THREE

3.1 AN OVER VIEW OF THE DESIGN 13

3.2 POWER SUPPLY 13-15

3.3 BATTERY CHARGING SYSTEM 15-17

3.4 LM35 TEMPERATURE SENSOR 17-18

vni

3.5 ADC0804 ANALOG TO DIGITAL CONVERTER 18-20

3.6 SYSTEM CONTROL 20-24

3.7 DS1307 REAL TIME CLOCK CHIP (RTCC) 24-25

3.8 24C32(EEPROM) 25-26

3.9 LOGIC LEVEL TRANSLATOR 26-27

3.10 PC-RESIDENT TERMINAL SOFTWARE 27-28

3.11 APPARATUS/DEVICES USED IN CONSTRUCTION 28

CHAPTER FOUR

4.1 TEST 29-30

4.2 RESULT AND DISCUSSION OF RESULT 30-31

CHAPTER FIVE

5.1 CONCLUSION 33

5.2 LIMITATIONS ; 33

5.3 PROBLEMS ENCOUNTERED 33

5.4 POSSIBLE IMPROVEMENT ON THE PROJECT 33

REFERENCE 34

APPENDICES 35

IX

CHAPTER ONE

1.1 INTODUCTION

Temperature has effect on virtually every aspect of life, it impacts the physical,

chemical, and biological world in numerous ways. The engineering field is not an

exception as the efficiency and function ability of generating plants, machines, metals,

solid state devices and other mechanical, and agricultural processes etc are dependent on

it in one way or the other.

Furthermore, the rating of an electronic or electrical device depends on the

capability of the device to dissipate heat. As miniaturization continues, Engineers are

more concerned about heat dissipation and change in properties of the device and its

material make up with respect to temperature[l]. Hence a TEMPERATURE DATA

LOGGER is required for the purpose of monitoring temperature at specific intervals, to

foster means of activating a temperature control mechanism to keep the various processes

equipments etc that are temperature dependent within their optimal temperature for

maximum efficiency.

Data logging is in its simplest term, the procurement of information in order to

learn more about a process or system. It forms the basis of an understanding of diverse

range of systems. The logging and saving of information provides for increased

knowledge and sometimes improved management of how and why different processes

work. To begin this process, a DATA LOGGER is required[2] .

A data logger is an electronic device that records data over time or in relation to

location either with a built-in instrument or sensor or via external instruments and

sensors. Increasingly, but not entirely, they are based on a digital processor (or computer).

They generally are small, battery powered, portable, and equipped with a microprocessor,

internal memory for data storage, and sensors. Some data loggers interface with a

personal computer and utilize software to activate the data logger and view and analyze

the collected data, while others have a local interface device (keypad, LCD) and can be

used as a stand-alone device[3].

One of the primary benefits of using data loggers is the ability to automatically collect

data on a 24-hour basis. Upon activation, data loggers are typically deployed and left

unattended to measure and record information for the duration of the monitoring period.

This allows for a comprehensive, accurate picture of the environmental conditions being

monitored, such as TEMPERATURE and relative humidity[3]. Furthermore, given the

extended recording times of data loggers, they typically feature a time- and date-stamping
i

mechanism to ensure that each recorded data value is associated with a date and time of

acquisition.

1.2 AIMS AND OBJECTIVES

1. To fabricate a device that can archive temperature measurements for future use.

2. To establish an effective mechanism for temperature monitoring, so as to foster

means of activating a temperature control system.

3. To produce a device that will provide for increased knowledge of the temperature

of an environment, equipment and processes for improved management and to

enhance the function ability of the processes.

4. To provide a portable, accurate and cost effective device for temperature data

acquisition.

5. To reduce the frequency of visit to weather stations to record temperature data.

6. To produce a device that will enhance the efficiency of temperature data

collection.

1.3METHODOLOGY

The temperature data logger consists of a sensor, analog-to-digital converter,

microcontroller, internal memory and system interface.

The temperature data logger works with the sensor to convert the temperature

which is a physical quantity into electronic signals such as voltage or current. These

electronic signals are then converted or digitize into binary data. The binary data is then

easily analyzed by the microcontroller and stored on internal memory of the temperature

data logger. The stored data is then downloaded to a computer through the system

interface. The block diagram of the digital temperature data logger is shown in fig 1.0

below.

POWER

SUPPLY

BATTERY

CHARGER

MICROCON

TROLLER

REAL TIME

CLOCK CHIP

ANALOG-TO-

DIGITAL

CONVERTER

MEMORY

LOGIC LEVEL

TRANSLATOR

SENSOR

•> PC

Fig 1.1 Block Diagram OfDigital Temperature Data Logger.

1.4 APPLICATION OF TEMPERATURE DATA LOGGER

The ability to take sensor measurement and store the processed data is a characteristic of

data logger. However, a data logging application rarely requires only data acquisition and

storage. Inevitably, the ability of the user to analyze and present the data to determine

results and decisions based on the logged data is required. Temperature data logger finds

its application in the following:

1. Weatherstations.

2. Shipment companies, for monitoring temperature during shipment of produce,

meat, dairy, vaccines foods pharmaceuticals or adhesives etc to ascertain if they

should be accepted or not.

3. Food processing and Storage industries, to monitor the temperature of

temperature-sensitive commodities to ensure that they are being stored or

processed at their optimal temperature for freshness or efficacy.

4. Pharmaceutical and Life Science Industries.

5. Medical Laboratories, to monitor temperature when carrying out analysis and test.

6. Poultry Farms.

7. Hospitals, to monitor temperature of incubators where premature babies are kept.

8. Performance testing oftemperature resistant paints.

9. Performance testing ofairconditioning equipments.

10. Recording oftemperature for instrumentation and machinery.

11. Manufacturing ofoven, for testing ovens to ensure proper temperature gradient

throughout the chambers.

1.5 SCOPE OF WORK

The processes employed in the actualization of this project from the conception stage to

the conclusive stage are thus highlighted:

Chapter one discusses what the project is all about, including the aims and

objectives, narrates the methodology applied in achieving the project as well as the

applications of the project.

Chapter two discusses the historical background, theoretical background,

modification done onthe project with respect to previous works etc.

Chapter three contains details ofthe design and implementation ofthe project with

each module carefully drawn andexplained.

Chapter four contains the tests, results and discussion of the results etc.

Chapter five gives the summary (i.e. conclusions) ofthe entire project work etc.

CHAPTER TWO

LITERATURE REVIEW

2.1 HISTORICAL BACKGROUND

2.1.1 HISTORY OF TEMPERATURE AND ITS MEASUREMENT

Intuitively, people have known about temperature for a long time: fire is hot and

snow is cold. Greater knowledge was gained as man attempted to work with metals

through the bronze and iron ages. Some of the technological processes required adegree

of control over temperature, but to control temperature you need to be able to measure

what you arecontrolling [4].

Until about 260 years ago temperature measurement was very subjective. For hot

metals the colour of the glow was a good indicator. For intermediate temperatures, the

impact on various materials could be determined. In other words anumber of fixed points

could be defined, but there was no scale or any way to measure the temperature between

these points. It is, however possible that there is a gap in the recorded history of

technology in this regard as it is difficult to believe that the Egyptians, Assyrians, Greeks,

Romans or Chinese did not measure temperatures in some way. Galileo invented the first

documented thermometer in about 1592. This type ofthermometer is sensitive, but is

affected by changes in atmospheric pressure [4].

By the early 18th century, as many as 35 different temperature scales had been

devised. In 1714, Daniel Gabriel Fahrenheit invented both the mercury and the alcohol

thermometer. Although the mercury thermometer is not as sensitive as the air

thermometer. Mercury freezes at -39° Celsius, so it cannot be used to measure

temperature below this point. Alcohol, on the other hand, freezes at -113° Celsius,

allowing much lower temperatures to be measured. At the time, thermometers were

calibrated between the freezing point of salted water and the human body temperature.

Also, Anders Celsius chose to use one hundred degrees as the freezing point and zero

degrees as the boiling point of water. Sensibly the scale was later reversed and the

Centigrade scale was born [4].

The early 1800's were very productive in the area of temperature measurement

and understanding. William Thomson (later Lord Kelvin) postulated the existence ofan

absolute zero. In 1821 TJ Seebeck discovered that a current could be produced by

unequally heating two junctions of two dissimilar metals, the thermocouple effect. Also,

Sir Humphrey Davy discovered that all metals have a positive temperature coefficient of

resistance and that platinum could be used as an excellent temperature detector (RTD).

These two discoveries marked the beginning of serious electrical sensors[4].

Gradually the scientific community learnt how to measure temperature with

greater precision. For example it was realized by Thomas Stevenson that air temperature

measurement needed to occur in a space shielded from the sun's radiation and rain. For

this purpose he developed what is now known as the Stevenson Screen [4].

The late 19th century saw the introduction ofbimetallic temperature sensor. These

thermometers contain no liquid but operate on the principle of unequal expansion

between two metals. Although not as accurate as liquid in glass thermometers, Bimetallic

Thermometer are more hardy, easy to read and have a wider span, making them ideal for

many industrial applications[4].

The 20th century has seen the discovery of semiconductor devices, such as: the

thermistor, the integrated circuit sensor, a range of non-contact sensors and also fibre-

optic temperature sensors. Also, Lord Kelvin was finally rewarded for his early work in

temperature measurement. The increments ofthe Kelvin scale were changed from degrees

to Kelvin. Now we no longer say "one-hundred degrees Kelvin;" we instead say "one-

7

hundred Kelvin". The "Centigrade" scale was changed to the "Celsius" scale, in honour of

Anders Celsius. The 20th century also saw the refinement of the temperature scale.

Temperatures can now be measured to within about 0.001°C over awide range, although

it is not a simple task. The most recent change occurred with the updating of the

International Temperature Scale in 1990 to the International Temperature Scale of 1990

(ITS-90). This document also covers the recent history of temperature standards [4].

2.1.2 DATA LOGGER

The terms data logging and data acquisition are often used interchangeably.

However, in a historical context they are quite different. A data logger is a data

acquisition system, but a data acquisition system is not necessarily a data logger. Data

loggers typically have slower sample rates. Amaximum sample rate of 1Hz may be

considered to be very fast for a data logger, yet very slow for a typical data acquisition

system. Also, Data loggers are implicitly stand-alone devices, while typical data

acquisition system must remain tethered to acomputer to acquire data [3].

Data acquisition and logging system is a practice that has been in existence for a

long time even right from the prehistoric era. This reflected in the invention ofmerchets,

the oldest known astronomical tool by the Egyptians around 600BC. A pair ofmerchets

was used to establish a north-south line (or meridian) by aligning them the pole stand.

They could then be used to mark off night time hours by determining when certain other

stars crossed the meridian[5].

Over the years there has been an evolution in data logging and the type ofloggers

that are used. In the past, the equipment was bulky and mechanical, using huge paper

chart recorders. Now, sophisticated computers and microprocessors retrieve the

information in far more detail than could have been processed previously.

Loggers are used in everyday life unknowingly by you the public. The next time

that you are in asupermarket and hand over your credit card or store card, adata logging

device may track your spending movements by the store. It can assess which items you

have bought, how many times amonth you buy them and even, how many times you use

the store. In today's society nearly all information from the weather to our shopping habits

ends up in adata logger. The information is archived and saved for use at alater date[2].

2.2 THEORETICAL BACKGROUND

2.2.1 TEMPERATURE SENSORS

Asensor is a device that measures aphysical quantity and converts it into a signal

which can be read by an observer or by an instrument. For example, Athermocouple

converts temperature to an output voltage which can be read by avoltmeter. For accuracy,

all sensors need to be calibrated against known standards[6]. Sensors are used in everyday

objects such as touch-sensitive elevator buttons and lamps which dim or brighten by

touching the base. There are also innumerable applications for sensors of which most

people are never aware. Applications include cars, machines, aerospace, medicine,

manufacturing and robotics etc.

A sensor's sensitivity indicates how much the sensor's output changes when the

measured quantity changes. Sensors that measure very small changes must have very high

sensitivities. Sensors need to be designed to have a small effect on what is measured,

making the sensor smaller often improves this and may introduce other advantages.

Technological progress allows more and more sensors to be manufactured on a

microscopic scale as micro sensors using MEMS technology. In most cases, a micro

sensor reaches a significantly higher speed and sensitivity compared with macroscopic
approaches[6].

Temperature sensor or transducer is a device that senses temperature variation in

an environment to give useful electrical signal[7]. Its properties changes with change in

temperature. Some temperature sensors in use today are thermocouples, thermistors,

resistance temperature detector (RTD) and sensor integrated circuits.

Descriptively, a thermocouple consists of two different conductors coupled

together at their ends. As it senses temperature, the thermoelectric voltage developed

between the two junctions is proportional to the temperature. But a thermistor is a device

whose resistance value changes with its temperature [8]. It offers greater accuracy and

stability than thermocouple [9], but its non-uniform resistance temperature characteristics

can be disadvantageous in some application where it is required to obtain a more linear

variation [10].

However, the integrated circuit temperature sensor (LM35) a precision semi

conductor giving an output of lOmV per degree centigrade. Unlike devices with outputs

proportional to the absolute temperature (in degree Kevin), there is no longer offset

voltage which in most application will have to be removed. It does not require any

external calibration.

2.2.2 ANALOG-TO-DIGITAL CONVERSION

Analog-to-digital conversion is the complementary process of converting a

continuous range of analog signals into digital codes. Such conversion process are

necessary to interface real-world systems, which typically monitor continuously varying

analog signals, with digital systems that process, store, interpret and manipulate the

analog values[ll].

10

2.2.3 MICROCONTROLLER

Amicrocontroller (also microcontroller unit, MCU or uC) is asmall computer on

asingle integrated circuit consisting of arelatively simple CPU combined with support

functions such as acrystal oscillator, timers, serial and analog I/O etc. Program memory

in the form of NOR flash or OTP ROM is also often included on chip, as well as a,

typically small, read/write memory [12].

Considering the AT89S51 microcontroller, this is a low power, high performance

CMOS-8bit microcomputer with 4Kbytes of flash programmable and erasable read only

memory(PEROM). The device is manufactured by Atmel's high density non-volatile

memory technology and is compatible with the industry standard MCS-51TM instruction

set. The on-chip flash allows the programmed memory to be reprogrammed in system or

by a convectional non-volatile memory programmer, by combining a versatile 8-bit

central processing unit (CPU) with flash on a monolithic chip. The 89S51 is a powerful

microcomputer which provides a high flexible and cost effective solution to many

embedded control [13].

The 89S51 posses the following standard features: 4Kbytes offlash, 128bytes of

RAM, 32 I/O lines, three 16-bit timers, five vector two-level interrupt architecture, a full

duplex serial port on-chip oscillator and circuitry. Also, it is designed with static logic for

operation down to zero frequency and supports two software selectable power saving

mode. The idle mode stops the CPU while allowing the RAM, timer, serial port and

interrupt system to continue functioning. The power down mode saves the RAM contents

but freezes the oscillator, disabling all other chip function until the next hardware reset

[13].

11

2.3 PREVIOUS WORKS AND MODIFICATION

In previous designs related to this topic, specifically by Otitolaiye David A
(design and construction of temperature logging and control device) in year 2007 and
Sule Ezekiel Andrew (design and construction of amicrocontroller-based temperature
data acquisition and logging system) in year 2008, both of this department. In their
designs, the logged data are logged and stored directly inside the memory ofacomputer,
which is to say the devices does not have internal memory of its own. Also, there was no
provision for battery charger for charging the backup battery.

However, this design (design and construction of a digital temperature data

logger), the device has its own internal memory for storage of the logged data, which can

later be interfaced with the computer and then saved to the computer's memory. Also, the
design made provision for battery charger for the sake ofcharging the backup battery.

12

CHAPTER THREE

DESIGN AND CONSTRUCTION OF TEMPERATURE DATA

LOGGER

3.1 AN OVERVIEW OF THE DESIGN

The digital temperature data logger was designed around the following
subsystems:

1. PowerSupply

2. An LM35 Temperature Sensor

3. Analog-to Digital Converter

4. 8- bit Microconteoller

5. DS1307 Real Time Clock Chip

6. 4KB EEPROM(24C32)

7. Logic Level Translator

8. PC- Resident Terminal Software

3.2 POWER SUPPLY

A dual-source power supply was used:

1. A mains-derived supply.

2. A battery source.

The mains-derived supply was obtained from a 15V2A step down transformer and a

bridge rectifier. The power to the battery charging subsystem was directly derived from
this source.

The 15VAC voltage was converted into a DC voltage of amplitude given by the
relation:

VDc=VRmsV2-1.4 (3 1;)

13

The system power supply is shown in fig 3.1 below:
Dl

—w-
240V

50Hz

15V2A

zk D1 zk 7805 +5V

NOTE

D1=IN4001

Cl=25V2200nF

C2=16V1000nF

Fig 3.1 System power supply

3.3 BATTERY CHARGING SYSTEM

The battery charger was designed around a3-terminal adjustable voltage regulator

-LM317. To match the charging characteristics of the lead- acid battery, a constant-

current, constant- voltage charging scheme was implemented.

In this chaging algorithm, the battery is charged at afixed current until the terminal

voltage attains apreset maximum after which charging is discontinued, and the battery

held at a float voltage. The chaging current was set by a resistance calculated from the

expression:

R=V/I=L25/I (3.6)
1.25 = Internal reference voltage on theLM317.

I = output current = charging current.

The chager subsystem was desigmed to handle aseries connection oftwo 6V, 4.5AH cell.

The rule of thumb concerning battery charging postulates that the maximum

charging current should less than or equal to Q/5A, and the minimum be Q/20A.

For a 4.5AH battery, this translates into:

W =4.5/5 =0.9A (3/7)

15

Imin = 4.5/20 = 0.225A
.(3.8)

The battery was rapid charged at the maximum specified current of 1.2A to reduce the
charging period. The battery terminal voltage was fixed at 13.8V by azener diode. The
cicuit diagram of the battery charger is shown in fig 3.2 below:

R2
Dl

N

To 7805

f-

->• LM317 - n
From The

rectifier

u

N— n

1 z
1 ^~

NOTE

D1=IN4001

D2=5.6V

Rl=220n

R2=1Q

ki r D2

|
"i U I J "I

50KQ
-

Fig 3.2 Battery Charger System

The charger also incoporated a shutdown feature to power down the LM317

regulator when the maximum terminal voltage is attained. The shutdown function was

realized using aC9014 transistor as shown in fig 3.1.

The regulator shutdown occur when the 13.8V terminal voltage is attained, the

50KO was adjusted to provide the required output DC voltage across the charger
terminals with the battery disconected.

The terminal voltage was set by the relative resistances on either side ofthe 50KQ

resistance as shown by the following equations:

At Vbattcmax), the transistor has base voltage of about 0.7V between the bases -

emitter junction. The base voltage is determined by the resistances on either sides of the

50KQ potentiometer as shown infig 3.3 below:

16

rf

Vi

ft.

5oKtl

Fig 3.3 Analysis ofThe Voltage setting resistances.
o^CV^Reyou +R^

(3.9)
0-7 = (V,*RB)/ 50000

(3.1.1)
ViRB = 35000

V, =vohage a, the upper tennina! of4. potentiometer -W,- v2. .. .< 3. ,3)
~ Vbatt(max)- 5.6V

(3.1.4)
Merging the equations (1) and (2),

[Vbatt(max) - 5.6V]Rjj =VBE *50000
(3.1.5)

Vbatt(max) - 5.6V =50000VBE/ RB
(3-1.6)

Vbatt(max) =[(50000VBE /Rfi) +5.6]V
Thus, the ^mum bmay temiMl vo|(age .^ jnfluenced ^J^^
Vbe(- 0.7V), and RB =50000 - R.

(3.1.8)

3.4 LM35 TEMPERATURE SENSOR

Since the temper to be measured is a„o„-e,ec,rica, auantity, . transducer was
recused to convert it into an eiectiica, „. For better acuracv and memAj an
".egtated circuit ^perature sensor <LM35)was used. The LM35 has an operationa,

17

/

range of 0°C - 100°C, with an output voltage related to the
expression:

VOut = [T°C*0.01]V

ambient temperature by the

.(3.1.9)

The output voltage changes by lOmV for adegree change in temperature, fig 3.4 shows
the sensor circuit. The LM35 has the following specifications as shown in the appendix 1

+5V

LM35

Rs cp up
OUTPUT

NOTE

C5=lnF
C6=100>iF
R8=150Q

Fig 3.4 Sensor Circuit

The sensor was interfaced directly with an 8-bit Analog -to Digital Converter (
ADC) that translated the analog output to adigital value that can processed by the
microcontroller.

3.5 ADC0804 ANALOG - TO -DIGITAL CONVERTER

For convertion of the analog temperature reading to its digital equivalent, an analog - to -
digital converter was required. An 8- bit device was used, the ADC0804 was used.lt
operates on asupply voltage range of 4.5V to 6.5V and in this case, avoltage of 5V was

chosen, since about the same voltage of 5V is required by the microcontroller

18

ADC0804, LM35 etc.The ,„p view a„d pin descriptio„ of fte ADCOm ^ ^ ^
appendix 2respective*. The device was run offaclock source given by the expression:

fclock=l/l.lRC
(3.2.1)

R=10KQ
(3.2.2)

C=150Pf
(3.2.3)

fciock =[1/(1.1*104*1.5*102*10-12]Hz (3 24)

It was interfaced with the microcontroller over PI as shown in fig 3.5. The device was
setup for a 1- bit change at the output for a lOmV input change by making Vref =
1.28VThe span voltage was thus 2.56V.

+5V

R7

ToGNG

of 7805 +5V

20

A

D

C

0

8

0

4

19 WH
40

Sensor

output

10

2

18

17 I
16

15

14

13

12

11

FIG 3.4 ADC - MICROCONTROLLER INTERFACE

19

A

P17 T

P16 8

P15 9

P14 S

P13 5

P12 1

Pll

P10

P3.2

P3.3

NOTE

C4=150pf
R5=50KQ

R6=100KX2
R7=10KQ

/

/

Conversion was initiated by strobing WR (3) low, with CS (1) asserted, then high
conversion is perfected in about lOOus after which the data can be read. The converted
data is processed and stored in the 24C32 EEPROM device attached to the I2C bus on
P2.0andP21.

3.6 SYSTEM CONTROLLER

An 8- bit microcontroller was embedded in the system realization. Alow power
device AT89S51 microcontroller was used, its pin configuration and description are
shown in appendix 3.

The device was configured for aserial port connection at 9600bps for data upload
and download. Acrystal frequency of 11.05912MHz was used. The microcontroller was
interfaced with the ADC over portl(Pl), the logic level translator over P3.0 and P3.1, the
real time clock chip (RTTC)and 24C32 memory over P2.0 /P21, port 3(P3) pins 4, 5, 6
were attached to three LED indicators (GREEN, ORANGE AND RED).The system
software was modulated for ease ofmaintainability and debugging.

At power-up, the software initializes system's variables and the serial port. During
this phase, acheck ofthe DS1307 Real Time Clock Chip is made. Asignature message is
read from six RAM locations on the Real Time Clock Chip IC, the signature byte matches
"DS1307 », it is assured that the timer has not been powered down since last read,
otherwise the system performs an initialization of the Real Time Clock Chip by resetting
the Time /Date information to 01 /01 /09 00:00. The RTTC was also configured for 1Hz
generation ofpinl by resetting the oscillator control to bits in register address 07h.

The 1Hz output was converted to the P3.3 (INT1) input which generates a 1Hz

periodic interrupt . These interrupts are converted in software to get the sampling

20

intervals. The software also handles temperature reading storage for every conversion.
Four samples are taken each hour, i.e. asample is taken every15 minutes. The digitized
reading is stored alongside the Time /Date information as a sequential record in the
24C32 device asshown in table 3.5 below:

Table 3.1 Data Record Implemented on The 24C32 Device.

Address+0Day

Month

Year

Hour

Minute

ADC Result

Addres+1

Address+2

Address+3

Address+4

Address+5

1 Data record

Since each sampling occupies 6 bytes, and the 24C32 device has addressable

locations only up to 4096, then maximum number of samples possible before amemory
full condition is:

4096 / 6 = 682 mod 4

A7-day data storage mechanism was implemented in which, assuming the memory is
empty (erased), at 4samples per hour, 96 samples are taken per day. The 96 samples are

stored as uniquely identifiable records in 96*6 =576 memory locations. The number of
days before the memory is exhausted is thus:

4096 / 576 = 7 R 64

Two bytes were used for storing the R-byte pointer used to indicate the next memory
location to be written into. The samples are stored this way until the memory is

21

exhausted. Amemory full condition is indicated by the RED LED flashing at 1Hz. When
data is read from the device, the memory is re-initialized.

To store data into the EEPROM and access the calendar chip, a software I2C
simulation was implemented as the generic 8051 devices have two hardware I2C bus. The
EEPROM and RTTC were both placed on the I2C bus made on P2.0 and P2.1 as shown in
Fig 3.6:

32KHz
•

T

A

T

8

9

S P2.1

P3.3 5

1 P20

- 3V, LITHIUM
BATTERY

D

S

1

3

0

7

7

6

5

2

4

C

3

2

Fig 3.6DS1307 / 24C32 - microcontroller interface.

Communication with the two devices was implemented serially over the bit-

banged interface. P2.0 was designated SDA and P2.1 SCL. Bit-level manipulation was

effected in converting the byte- wide data from the microcontroller to serial data needed

in the implementation of Philips I2C bus specifications, and vice versa. The system
software was also coded to effect data transfer to and from any connected PC over its

22

+5V

/

/

/

serial port. The processes executable via the visual basic

include

1. Time / Date Set.

2. MemoryClear.

3. Memory Dump.

The high level communication interface was effected via acommand-response
handshaking protocol. Command sent from the terminal machine are executed, and the
result of the command sent back to the High Level Language. Messages are then posted
on the Graphic User Interface (GUI), notifying the user ofthe state ofthe LOGGER.

For easier debugging, three LEDs were provided on the unit. Green LED - system
normal and operational, Orange LED - RTCC error / memory error and Red LED -

memory full. Fig 3.7 shows the status indicator circuit.

routines resident on the PC

NOTE

D4=green LED
D5=orange LED
D6=red LED

R1=220Q

Fig 3.7 LED Status Indicators.

The LEDs were driven from the +5V supply via current limiting resistances. The
values which were evaluated using:

Rs= (Vs - VLed) / Iled (3.2 5)

Vs =Supply Voltage =5V (3 26)

23

/
/

vled - LED Forward Voltage =1.7V

Iled = LED Forward current.

Tvpicaily, aminimum and mmimm LED ^ rf 5mA ^ ^ ^ ^
provded amaximum and minimum current - limiting resistances of

«™ -(S-1.7)/0.05-3.3/0.05 =6600 (3
R™>(5-I.7)/0.02>3.3/0.02-165f! &2

A22„n resist was seiected to yieid acurrent shghtiy above ,0mA. fc 0range and
Red LEDs were activated mutuaiiy exc,usive,y, i.e. oniv one is turned on during an error
condition.

3.7 DS1307 REAL TIME CLOCK CHIP (RTCC)
Tbc DS.307 Seriai Rea,-Time C,ock is a,ow-p„wer; fui, binary- coded decimai

(BCD) clock/caiendar pius 56 bytes of NV SRAM. Address and data are transferred
seriaiiv via a2-wire. bi-direc,io„a, bus. The cicck/caiendar provides seconds, minutes
hours, day, date, month, and year information. The end ofthe month date is automaticaiiy
adjusted for months with fewer than 31 days, including corrections for ,eap year. The
clock operates in either the 24-hour or 12-hour Hj I^WL^DSJ^ftmcfionjable

format with AM/PM indicator. The DS1307 has

abuilt-in power sense circuit that detects power L-
I vBAT

failures and automatically switches to the
| GND

battery supply[14].The pin assignment and

Wion table is shown in fig 3.8 and table 32
'' ° 8h VCC | SDA

X2

Vbat

GND ~

1 7 ~ SQW/OUT
3

— SCL

SDA

. (3.2.7)

3 0 6
7

4 5 SQW/OUT Square wave/Output Driver

Fig 3.8 Pin Assignment ofDS1307

24

/

/

The device was configured for operation a, address i,0,0000. Every ,5 minutes the
RTCC. Registers were read to extract the Time /Date information reunited for s,„rage

reset (battery power /main supply removed,, or has been periodic^ i„i,ia,i2ed and
functioning properly.

For ano„-i„i,ia„zed device, the software default to the Mowing settings:
Seconds: OOh

Minute : 00h

Hour : 00h

Date : 01h

Month : 01h

Year : 09h

RAM location 8-13: "DS1307".

Once configured, the device generates aperiodic ,„z output on Pi„7 while „p,„adi„g me
internal RTCC. registers as well.

3.8 24C32 (EEPROM).

H» Microchip Technology ,„c. 24C32 ,s a4K-8 (32K-bi«)Serial Electrically
Erasable PROM. This device has been developed for advanced, low power applications
such as personal communications or date acquisition. The 24C32 features an input cache
for fas. write loads with acapacity ofeight 8-byte pages, or 64bytes. „also features a4K-
bi. block of ultra-high endurance memory for data tha, changes frequently. The 24C32 is
capable of both random and sequential reads up to 32K boundary. Functional address
lines a,l„w up to eight 24C32 devices on the same bus, for up to 256K-bi,s address space.

25

/

-anced CMOS technology makes this device idea, low-power „„,v„W,e code and

«« SO,C package,,5).^ pin assignment and faction ,ab,e of the 24C32 shown i„
fig 3.9and Table 3.3

Table 3.3 function table of24C32

AO

- NC

- SCL

Al

A2 ,

1

"2

3

2

4

C

8

7

6

VSS 4 3

2

5
- SDA

Fig 3.9 Pin Assignment of24C32

AO,A1,A2

VSS

SDA

SCL

VCC

NC

User Configurable Chip Select

Ground

Serial Address/ Data I/O

Serial Clock

+4.5V To 5.5V Power Supply"

No Connection

data applications A24C32 device was provided for bulk storage, the device has 4096
address* byte -wide memory .ocations. The device was configured a, address OOh on
•he* bus by taking Pi„s,, 2and 3to ground. 682 different records sets can be stored on
the part before the memory buffer indicator is activated.
3.9 LOGIC LEVEL TRANSLATOR

To effect communication over the sena, port on the co„tro„er and the termina, host
system, alogic level n-anslator was required ,„ convert the 0-5V signaling voltages to
the ±3V-^12V bipolarity signaling voltages required „„ fc motherboard ^ |ogjc
level translator was effected using discrete components as shown below in fig 3.10

26

A

T

8

9 P31

S

5 P3.0
1

+5V

•7 iVt L>3 —

D3

J

Serial

Port

Fig 3.11 LOGIC LEVEL TRANSLATOR

The circuit was adopted from an Atmel application note.

NOTE

C2=1000uF

C3=10uF

D3=IN4148
R4=3.3KQ

T1=25A1015
T2=C9014

3.10 PC-RESIDENT TERMINAL SOFTWARE.

For a useful utilization of the logged data, a high level language visual basic

application was provided on the host system. The application enabled the following
processes executed over the serial interface.

1. RTCC. Initialization (time set).

2. Memory initialization.

3. Data dumping from logger onboard memory.

4. Data storage to file.

5. Data display on screen.

27

/

/

/

The visual basic interface was configured with a16KB buffer to hold the data
inflow from the logger. Various visual messages were posted on screen reflecting the rate
of the serial link. The dumped data can be saved to afile for later analysis, or displayed
on acustomized page on the system for visual analysis.

3.11 APPARATUS/ DEVICES USED IN CONSTRUCTION
Some ofthe apparatus used in the construction ofthe device are:

1. Vero-Board

2. Soldering Iron

3. Soldering Lead

4. Lead Sucker

5. Multi-meter

6. Wire/ Jumpers

7. A Plastic Material.

28

/

/
/

J

4.1 TEST

CHAPTER FOUR

TEST, RESULTS AND DISCUSSION OF RESULT

In carrying out the test of the digital temperature logger, the following materials
were applied:

1. Apersonal computer on which the PC-resident terminal software of this
device (a high level visual basic application /program)was provided.

2. Visual Basic Software (Visual Basic 6.0)

3. Serial-to-serial cable (with which the interfacing of the device to the
computer was done).

At the outset, the device was connected to both battery and PHCN power
supply, but the PHCN source of power was applied and then the device was

positioned inside the room to log temperature of the room. Two hours later, the
PHCN power supply was turned off and the device was run automatically by the
back-up battery as source of it's power supply. This was done so as to test the
automated power change designed for the device in the event of power outage.
About an hour later, the device was then taken and interfaced with the computer
so as to access the logged data.

To access the logged data, the device was connected to apersonal computer
via a serial-to-serial cable. But then the device was not recognized by the
computer not until the PC-resident terminal software (the temperature data logger

user interface) for the device was provided on the computer along with an

installation of Visual Basic 6.0 (in which the PC-resident terminal software was

29

/

-loped ,Havi„g comp.eted these processes, the device w. then re-interfaced

PC-resident software.

4.2 Result And Discussion OfResult

On opening, the user interface welcome

illustrated in the table 4.1 below.

Table 4.1 Digital Temperature User Interface.

LOGGING SYSTEM

screen displays on the computer
screen as

TIME

[hour! L^^^Zl [SECWDS~]
' DATE

1 „, |J DAY J [fvIONTH j

j CLEAR NVM \
I |

_yearJ
| SET
j TIME/DATE

J UPLOAD DATA 1
i ;

™^c^nlabJe^^

The time and date button allows the

SAVE FILE

ABOUT~|

CLOSE

then clicks the «set time/date" button

CMOS battery is removed or replaced.

user to set the time , after setting, the
user

to activate it. This is done again only when the

30

Whereas.thedataviewprocessisinitiatedh^,,,^^^,.^^,,
« „i„ pr„mp, ta micr_er ,o dmp dab from ^ nonvo|atne
0«C32> to me computer. The uploaded da. is then viewed by c,icki„g „„ me view „„,
-„. On c,icki„6 me butt0„, ,he tempmture ^ „̂ ^ ^^

4.2 below.

Table 4.2 Temperature display.

Time

21/11/09

temperature data to memory, while the
prompts the micrcWolIeTtol^o^^

next and "previous" buttons allows the user to
access next and previous data. The "close" button is used to close the page.

31

/
d

/

/
i

Furthermore, the uploaded temperature dam can be stored to afile in the computer
memory by clicking „„ the "save f,,e» button. Bu, the data wil, be displayed in
hexadecimal values. After which the memoty can men be cleared or erased by clicking „„
the "clear nvm" button for the logger to log in new sets ofdata.

32

/

7

8.

9.

10

11.

12.

REFERENCES

Jerry C. Whitaker, The electronics handbook, Technical Press, Inc., Beaverton,
Oregon.

What is-data-logging, 2009, @http://www.wisegeek.com.

Data logger, 2009,@ http://en.Wikipedia.org.

Temperature history, 2009 @http://www.capgo.com.

Temperature, 2009, @http.V/physics .nist.gov.com

6. Sensor, 2009, @http//en.wikipedia.org.

Paul Horowitz and Winfield Hill, The art ofelectronics, Cambridge University
Press, pp988.

Thomas E. Newman, Electricity and electronics 1995, pp88ff.

Giorgio Rizzoni, Principle and application ofelectrical Engineering, revised 4th
edition, New York Mc Graw Hills pp713-715.

Km Leatherman, Automatic controls for heating and air conditioning,

principles and application, vol.15, Pergamon Press, pp9,15,23-25.

Jerry C. Whitaker, The electronic handbook, Technical Press, Inc., Beaverton,
Oregon., pp723 .

Embedded systems dictionary by Jack Ganssle and Mike Barr, pi73.

13. 89S51 microcontroller, 2009,@ http//en.wikipedia.org.

14. DS 1307, 2009 @http//www.datasheetcatalog.com.

15. 24C32, 2009, @http//www.datasheetcatalog.com.

34

APPENDIX 1
Applications

lh<LLTH ?" be aPplied °a3ily in *«• Mmo "»y a» otherHegrated-drcun temperature sensors. It can b7 glued or
aoouf0.0) C o,'»josurface temperature.
This p.-ssumes that the ambient air temperature is almost
•he same as the surface temperature; if the air tempeXe
izz:,hi9her wiower ,han me •»•*• «•-«£££me actual temperature ofthe LM35 die would be at an inter^
medate temperature between the surface temperature aTd»» *r temp™*™ Tnis is gxpecially tnM £ ££
plasttc package, where the copper leads are me principal
ture mlln '̂0, """ *"" ln,° "» **»• » »• CSure might be closer to the air temperature than to fteaur-
face temperature.

To minimize this problem, be sure that the wiring to the
LAWS, „ l, uwes the device, is held a, me seme tempeZ
uro as the surface of Interest. The easiest way to doXTs
^LT^r,*™wim ab~d °' •*»» *"-" *»

i,™ h 1S 8nd Wir9S area"atthe s81™ tef"P«™-Ui.e as the surface. and that the LM35 die's temperatunawill
not be affected bytheair temperature

Inl70-*6 me,a' PaCkase can also "<> s°'*>red to ametalsurface or pipe without damage. Of course, In that case the
U?TZ I"?*clrcui'wl"be srounded to th" ™«mlTf^ ^V"35™ Amounted inside asealedmetal tube, and can then be dipped Into abath or screwed2 athreaded hole in atank. As with any ,C. L waTan^
accompanying wiring and circuits must be kept insulated
and dry. to avoid leakage and corrosion. Thb is eLedahv^MMhe^ui, may operate at cold temr^atur^wtS
r^T ^ ?" occur- Printed^circuit coatings and varnishes such as Humiseal and epoxy paints or dl£s are often
usedJotnsure that moisture cannot corrode the W35 oMfc

These devices are sometimes soldered to a small lioht
wefch. heat fin. to decrease the thermal time con^n !nd
speed up the response In slowly-moving air. On the other
oZ;ha T"Jh°"na> m8SS may * addod <° 'he sensot
S££T^ readln9 dospl,e sma"devia,lons ln *•*

TO-46

no heat sink

400*C/w

ioo-c/w

lorrc/w

50-C/W

(24-C/W)

remper^re fn*. of LU35 ^ r„ se^^m,(Thrm., „.,„„„„,
Tf>4g,

small hMtfki

i<xrc/w

4CTC/W

4CTC/W

30-C/W

TO-M,
no heat ss*

i8frc/w

9CTC/W

9<rc/w

4S*C/W

TO-M,
small heal An-

i4trc/w

7CTC/W

rtrc/w

4frc/w

so*

no heat sk*
22<TC/W

105-C/W

SOS

•maf haatln'

ii<rc/w

Still air

Movingair
Still oil
Stirred oil
(Clampod lo motal.
Infinite treatsink)

Typical Applications (Continued)

MOM»ma«NCEUMa

FIGURE 3. LM3S with Decoup.lng ,rom CapaclTe Lo^

CAPACITIVE LOADS

ta^riTh'micropower circuits- me LM35 has alimited abilityto drive heavy capacity loads. The LM35 by itself is abte £
drive 50 pf without special precautions. If heavier toadTare
antopated, i, is easy to isdate or decouple the toa^m a
res∨ see figure 3. Or you can improve the tolerance of

ground; see Figure4.

When the LM35 is applied with a 20011 load resistor asShown in ffrn, 5. 6. or S. it is redely ImmuneT^rln^

(55-C/W)

foil or similar.

TO-202

no heat sk*

25-C/W

TO-202'"

amalhaatfln
«rc/w

40-C/W

(23"C/W)

FIGUHE 4.LM35 with R-C Damper
TUH/5618-20

EST? "^th8 <»*"**"<» to""s abypass from
ET1 BnPUt "°t °n ,he 0Utput- However- ^ with Zhnear circuit connected to wires in ahostile environment, its
maonX"08 ^ ^ "*Ctod "*« bV ihtense electro
^Trchoirrl8"^ re'ayS'r8dto ^^mltters. motorswith arcmg brushes, SCR transients, etc, as its wiring can
™ reC?"9 8n'enna and its i"'̂ al junCoriTcan act
Z T. ^ F°r toSt reSUltS in such «*»•a "«*«* «Pac-to from v„ to ground and aseries R^damper suS^ as
«ll .n series with 0.2 or 1uF from output to ground are
often useful. These are shown In Figures 13. 14. and116

APPENDIX 2.

(9 National Semiconductor December 1994

ADC0801/ADC0802/ADC0803/ADC0804/ADC08058-Bit j*P Compatible A/D Converters
General Description
The ADC0801, A0C0802, ADC0803, ADC0804 and
ADOH05 ana CMOS 8*. successive ar^SSn J5S
converters that use a differential potentiometric ladder-
TZ. 5 ^ 256R P™*015- '",ese «=onverters1«Vskjned to allow operation with the NSC800 and INS8080A
derivative control bus with TRI-STATE* output latches rj-
E2£1*B£ "** ** The88 A/Ds «W*~JSatiTi. 2^2 to "" mPcTOPro««sor and no^te?.racing logic Is needed.

Differential analog voltage inputs allow increasing the com-
rnonHTOde rejection and offsetting the analog zero input
h?^" IS* '" ad*ton- *" "***> ™*^ input canbe adjusted to allow encoding any smaller analog vottaoe
span to the full 8 bits ofresolution B™»9 voltage

Features

• 'i?'"'"*!!!! with 8080 ftP derivatives-no interfacing
logic needed- access time- 135 ns

• Easy interface to all microprocessors,
"stand alone"

Typical Applications

Hd!

8080 Interface

I Z«»i«»™(itl0I«lti«l9m«l,0(ZtogQ»p.

®'WN>tt»aS«tanilutt»c<»pt»«««,

or operates

ax *

CUM

• Differential analog voltage inputs
• Logic inputs and outputs meet both MOS and TTL volt-

«fle level specifications

• Works with 2SV (LM336) voltage reference
• On-chip clockgenerator
• 0V to 5V analog input voltage range with single 5V

supply v
• No zero adjust required
• 0.3- standard wkfth 20-pin DIP package
• 20-pin molded chip carrier or small outline package
• Operates rafiometrically or with 5Vrjc, 2.5 Vrjc or ana-

logspanadjusted voltage reference

Key Specifications
Resolution

• Total error

• Conversion time

8 bits

±%LSB, ±%LSBand±1LSB
100 ^s

TL/H/5671-1

Er"°r Specification (Include* FuH-Scale,
Zaro Error, andHon-Unearlty)

FuH-

Se*. vWF/2=i500Voc VRe^^MoConnection

•**«3<»«l15/Pilno»li»iU.s.A.

§>Ja
^^

So
* w

>>

08
Og

is

a «co o
CO
o

>
Q
O
o
00
o
Ol

APPENIDrX 3

n Configurations

(mosu pi.sc

(MISO)P1.6E

<SCK)P1.7C

RSTC

(RXD) P3.0 C

NCC

fTXD)P3.1E

(JNT0)P3.2C
(INT1JP3.3C

(TO) P3.4 C

(T1)P3.5C

P1.0C

P1.1C

P1.2C

P1.3C

P1.4C

(MOSIJP1.SC
(MIS0JP1.6C

(SCKJP1.7C

RSTC

(RXD) P3.0 C
(TXD) P3.1 C
(INTO) P3.2 C
(ifm) P3.3 C

(TO)P3.4 E
(T1) P3.S C

(WR) P3.6 C
(RD) P3.7 C

XTAL2C

XTAL1

GND

PDIP

~C7-

40 nvec

39 3P0.0(AD0)
38 DP0.1(AD1)
37 HP0.2{AD2)
36 DP0.3(AD3)
35 3 P0.4(AD4)
34 UP0.5(AD5)
33 DP0.6(AD6)
32 3P0.7(AD7)
31 HEA/VPP

30 DALE/PROG

29 DPSEN

1 P2.7 (A15)
DP2.6(A14)
DP2.5(A13)
DPZ4(A12)
3P2.3(A11)
3P2.2(A10)
HP2.1(A9)

P2.0 (A8)

TQFP

t n w
SS33

°. O O — CM CI

nnnnnni-ir-,nnn

31

30

29

28

27

26

25

24

23

33 nP0.4(AD4)
32 3P0.5(AD5)

3 P0.6(AD6)
3 P0.7 (AD7)
HEArVPP

3NC

UAIE/PROG

DPSEN

HP2.7(A15)
3P2.6{A14)
3P25(A13)

it

Q q t- en m •,

(So Sff Si Si Si

AT89S51

<M0SI)P1.5C 7

(MBO)P1£c 8

(SCKJP1.7C9
RSTC 10

(RXDJP3.0C 11

NCC 12

(TM))P3-1C 13

(INT0)Pa2C 14

0NTi)pa3c 15
<T0)P3.4C 16

(T1)Pa5C 17_

PLCC

m ry r~

2 « £ <*>

£333

innnr|Phnnnn

O* * * * ?39
38

37

36

35

34

33

32

31

: ry ro

3 P0.4(AD4)
3P0.5(AD5)
3P0.6(AD6)
3P0.7(AD7)
DEA/VPP

INC

DALE/PROG

: DPSEN

HP2.7(A15)
30 DP2.6(A14)

• W W w w S « S « gl
„ K ja3PZ5(M3)

—. —. g *-: q o o

S! si si si S!

PDIP

RSTcj
P3.0C :(RXD)

(TXD)P3.ld3
(IRTS)P3.2C4
(IMT1)P3.3r: 5

(T0JP3.4C 6

(T1JP3.5C 7
(WR) P3.6C 8
(R75)P3.7C 9

XTAL2C

XTAL1C

GNDC

PWRGNDC

(A8)P2.0C

(A9)P2.1C

(A10JP2.2C
(A11)P2.3C

(A12)P2.4C

(A13)P2.5C
(A14JP2.6C
(A15) P2.7 C

Tr

42 DP1.7f.SCK)
41 DP1.6(MISO)

10

11

12

13

14

15

16

17

18

19

20

21

40

39

38

3T

3 P1.5 (MOSI)
DP1.4

DP1.3

3 PI .2

36 DP1.1

35 3 P1.0

34 3VDD

33 DPWRVDD

32 3 P0.0(ADO)
31 DP0.1(AD1)
30 1 P0.2 (AD2)
29 3 P0.3 (AD3)
28 1 P0.4 (AD4)

1 P0.5 (AD5)
DPQ.6(AD6)
3P0.7(AD7)
HEA/VPP

3ALE/PK5S
UPSET)

27

26

25

24

23

22

2487B-MICRO-12/03

in Description

Supply voltage (all packages except 42-PDIP).

Ground (all packages except 42-PDIP; for 42-PDIP GND
embedded program memory). connects only the logic core and the

coreand theembedded programSuMyvoltage for the 42-PDIP which connects only the logic

internal puK-ups and carl, useTas*„pulTTiZl PLT- 1* V mM hlgh by ,heP*d tow wl source cum,™ ,W be^TS'£SiXT"***"> «*™* "-'"9
Pom also receives the .ow^rder address ^ dl)r,ng F|ash programming and^^
f*e^

data memory that use 8-bit addressesToW ©mi S3?° * S,"""9 aCCeSSes to externalcial Function Register. (@Rl)- P°rt 2emits the contents of«» P2 Spe-

g^mfr^^^^ addr6SS ^ a"d S°me Con™ si^ ^"ring Flash pro-

AT89S51

2487B-MICRO-12/03

2

Port Pin Alternate Functions

RD (external data memory read strobe)

AT89S51

interna, puH-ups 2}££SitT£51"PU"ed N9h b> ,hepulled low will source current ftj becaui «tbtXp^ P """ ,~'e™"y b9ing
Port 3receives some cental signals for Flash programming and verfcalion
ffiJrSST" ^ *"*"-,-ta"^ *—"•» AT89S51, as shown in ,he

DISRTO bit in SFR Cr (aSnS SE^™^"^^ "" Wa,Chd0!> ,lmes °ut T"«

—'S^aKM^?* -^*•"-"*• -S-.-*-. duringprogramming. ^ pm " *°lhepro9ram !»•»• ""Put (PROG) during Flash

".oTsr^^^^
skipped during each accessto externaTdTmZory. ' ' ""* ^ ALE pulse is

higj^ng.. i^bte„-°;^^ST^^ZT^^L^

Program Store Enable (PSEN) is the read slrobe to external program memory

to external data memily. aebvatons are slopped during each access

EA should be strapped to Vcc for internal program executions

p^° r6CeiVeS the 12-VO,t PWmming enable voltage (VPP) during F.ash

Input to the inverting oscillator amplifier and input to the interna, clock operating circuit.
Output from the inverting oscillator amplifier

jfflnEU

APPENDIX 4

INCLUDE 89c51.mc

adc_port EQU pi
adc_select BIT p3.2
adc_Write BIT p3.3
/'fr***************************^^

sda BIT p2.0
scl BIT p2.1

read_flag EQU 00000001b
write_flag EQU 00000000b
nvm_address EQU 10100000b
rtcc_address EQU IIOIOOOOB
seconds_Address EQU OOh
sig_byte_address EQU 8
sig_byte_offset EQU 8
;******+***+******+*****+++++++++

adc_Value DATA 8
seconds DATA 9

minutes DATA 10

hours DATA 11

day_week DATA 12
day DATA 13

month DATA 14

year DATA 15

control DATA 16
;***************************«****

data_2_write DATA 23
data_Read DATA 24
slave_Address DATA 25
address_lo DATA 26
address_hi DATA 27
count DATA 2 8

;********************************

count1 DATA 2 9

count2 DATA 30

count3 DATA 31

tempi DATA 33

temp2 DATA 34

ERROR DATA 35

nvm_interval DATA 36
interval_temp DATA 37
countl_reload DATA 38
count2_reload DATA 30
count3_reload DATA 40
R6_TEMP DATA 41
R7JTEMP DATA 42
new_count DATA 43
;********************************

stack EQU 90
Z**************************,^^^

sec5 BIT 127 . check
for the correct positions here'ii
rtcc BIT sec5-l

mem_full BIT sec5-2
timeout BIT sec5-3
error_led BIT sec5-4
new_mem BIT sec5-5

pointer_Address EQU 4094
interval_Address EQU 4092
NVM_SELECT EQU 4093
;*x*,*,H*H***n****HH*H»*,H

buffer DATA 50 ; 60 before
host_time_Date_lenght equ 7
Z****************************^^

led_Green bit p3.4
led_orange bit p3.5
led_red bit p3.6
z*****************************,^

org OOOOh

LJMP start_up
;*****************************

org 0003h
RET I

;*****************************

org OOObh

LJMP tf0_isr

org 0013h
RETI

;*******************,*********

org OOlbh
RETI

,•*****************************

org 0023h

LJMP serial_isr

;*****************************

org 0030h

start_uP: CLR ea

MOV sp,#stack
call sys init

;*****************************,>.*

main: call get_temp
call store_temp
SETB EA

SJMP main
;********************************

get_Temp:

adc_port

JNB sec5,$

CLR sec5

CPL led_orange
CLR EA

CLR adc_write
SETB adc_write
MOV R2,#100
DJNZ R2,$

MOV adc_value,

RET

;*******************************,,.

host_Error: MOV error,#8
CALL GET_eRROR
RET

;*******************************,,.

sys_init: call long_delay
CLR adc_select
SETB sda

SETB scl

CLR mem_full
call clear_Error
MOV tmod,#22h

MOV scon,#50h
MOV tcon,#0

MOV th0,#16

MOV tl0,#16

MOV thl,#0fDh

MOV tll,#0fDh

MOV countl,#2 40
MOV count2,#16
MOV

interval_temp,#150
set up for 15-min sampling
interval, change this!!!

MOV new_count,#6
SETB trO

SETB trl

SETB ti

SETB ren

CLR ri

call init_timer
MOV ie,#10010010b
RET

;********************************

store_temp: call
load_time date ; CLEARED

JC

error_store_Temp

call

load_pointer ; CLEARED
JC.

error_store_temp

call write_temp

error_Store_temp

store_pointer

error_store_temp

JC

call

JC

RET

error_store_temp: call get_Error
RET

;********************************

write_temp: jb mem_full,
exit_Write_temp

MOV

data_2_write, day
call write_nvm
JC

error_write_temp
call

inc_Address
MOV

data_2_write, month

call write_nvm
JC

error_write_temp
call

inc_Address

MOV

data_2_write, year
call write_nvm
JC

error_write_temp

call

inc_Address
MOV

data_2_Write, hours '
call write_nvm
JC

error_write_temp
call

inc_address
MOV

data_2_write,minutes
call write_nvm
JC

error_write_temp
call

inc_Address
MOV

data_2_write, adc Value

error_write_temp

call write_nvm
JC

RET

exit_write_temp: MOV error,#10
; return 10 if memory full

SETB C

RET

error_write_temp: MOV error,#0
RET

;********************************

load_time_date: MOV R0,#seconds
MOV

address_lo,#seconds_address
MOV count,#8

load_time_loop: call read_rtcc
JC

error_load_date_time
MOV @R0,

data_read
inc rO

inc address_lo
djnz count,

load_time_loop
CLR C

RET

error_load_Date_time: MOV
error,#1

RET

;********************************

load_pointer: MOV

address_hi,#high(pointer_address)
MOV address_lo,

#low(pointer_address)
call read_nvm
JC

ERROR_LOAD_POINTER
MOV R7_TEMP,

data_read
call

inc_Address

call read_nvm
JC

ERROR_LOAD_POINTER
MOV r6_TEMP,

data_Read

MOV addressjii,
r7_TEMP

MOV address_lo,
r6_TEMP

CALL

GET_ADDRESS

CLR C

RET

ERROR_LOAD_POINTER:
ERROR,#2

MOV

RET

;******************************^
****** **************

store_pointer: MOV R7_TEMP,
address_hi

MOV r6_TEMP,
address_lo

MOV

addressjii,#high(pointer_address)
MOV

address_lo,#low(pointer_address)
MOV

data_2_Write,r7_TEMP
call write_nvm
JC

ERROR_STORE_POINTER
call

inc_address
MOV

data_2_Write, r6_TEMP
call write_nvm
JC

ERROR_STORE_POINTER
CLR C

RET

ERROR_STORE_POINTER: MOV
ERROR,#3

RET

;********************************

inc_address: MOV A,
address_lo

add a,#l

mov address lo,

address hi

clr a

addc a,

mov address hi,

ret
;********************************

tf0_isr:
exit_isr

MOV countl,#240
DJNZ count2,

exit_isr

MOV count2,#16

cpl led_Green
DJNZ

interval_temp, exit isr

DJNZ countl,

MOV

intervalJTemp, #150
sample every 15 minutes

DJNZ

new_count,exit_isr
MOV

new_count,#6

SETB sec5
exit_isr: RETI

;******************************,,.*

write_nvm: MOV
slave_address, #nvm_address

CLR rtcc

call write

ret
z****************************^^

read_nvm: MOV

slave_address, #nvm_address
CLR rtcC

call read

RET

;********************************

WRITE_RTCC: MOV
SLAVE_aDDRESS, #RTCC_aDDRESS

SETB RTCC

CALL WRITE

RET
;********************************

READ_RTCC: MOV
SLAVE_ADdRESS,#RTCC_aDDRESS

SETB RTCC

CALL READ

RET

;*****************************,j.+ i

write:

SLAVE_Address

#write_flag

SKIP_wRITEl

ADDRESS HI

SKIP_wRITEl:
address LO

data 2 Write

CALL i2c_Start
MOV A,

ORL A,

CALL write_byte
JC write_Abort
JB rtcc,

MOV A,

CALL WRITE_BYTE
JC WRITE_aBORT
MOV A,

CALL write_byte
JC write_Abort
MOV A,

write_time_out

write_abort:
i2c_Stop

write time out

CALL write_byte
JC write_Abort
CLR C

CALL i2c_Stop
call

RET

CALL

ret

CALL

Z*******************.********,,.,^^

rf^************************^

read:

SLAVE_Address

#write_flag

SKIP_READ1

ADDRESS HI

SKIP_READ1:
address LO

SLAVE_Address

#read flag

CALL i2c_Start
MOV A,

ORL A,

CALL write byte
JC read_AborT
JB rtcc,

MOV A,

CALL WRITEJ3YTE
JC READ_ABORT
MOV A,

CALL write_byte
JC read_abort
CALL i2c_Start
MOV A,

ORL A,

CALL write_byte
JC read_Abort
CALL read_byte
MOV data_Read,

CALL NO_aCK
CLR C

CALL I2C_STOP
RET

read_Abort: CALL i2c_Stop
RET

;********************************

i2c start: SETB SDA

SETB SCL

CALL dly_7us
CLR SDA

LCALL dly_5us
CLR SCL

CALL dly_7us
CLR C

RET
;***************************** + Jr +

i2c_stop: CLR SDA

CALL dly_5us
SETB SCL

CALL dly_7us
SETB SDA

RET
Z*******************************^.

no_Ack: SETB SDA

NOP

NOP

SETB SCL

NOP

NOP

NOP

CLR SCL

RET

;********************************

write_byte:
write_loop:

MOV R7,#8

RLC A

MOV SDA, C

NOP

NOP

SETB SCL

CALL dly_7us
CLR SCL

CALL dly_7us
DJNZ R7,

SETB SDA

NOP

NOP

NOP

SETB SCL

NOP

NOP

MOV C, SDA

CLR SCL

RET

write_loop

;********************************

read_byte:

read_loop:

MOV R7,#8

SETB SDA

NOP

SETB SCL

CALL dly_7us
SETB SDA

NOP

NOP

MOV C, SDA

RLC A

NOP

NOP

CLR SCL

CALL dly_5us
DJNZ R7, read_loop
MOV data_Read, A
RET

;********************************

write_time_out: CALL
small_delay

RET
;********************************

DLY_7US: NOP

NOP

NOP

NOP

NOP

NOP

NOP

RET
;********************************

DLY_5US: NOP

NOP

NOP

RET

;********************************

get_address: call
inc_address ; if address = OOOOh,
use the stored nvm address
pointer in 4093

MOV A,
address_lo

ORL A,
address_hi

JNZ skipl
CLR mem_full
SETB new_mem
RET

;********************************

skipl: CLR mem_full
CLR new_mem
MOV A,

address_hi

CJNE

A, #high(INTERVAL_ADDRESS), chkl
MOV A,

address_lo
CJNE

A,#low(INTERVAL_ADDRESS), chk2
backl: MOV

address hi,#0

MOV

SETB mem_full
CLR new_mem
RET

JNC backl

RET

address_lo,#0

back2:

chkl:

chk2: JNC back2

RET
;*******************************.<

send_Data: CLR ti
; cleared

MOV sbuf, A

JNB TI,$

CLR TI

call

small_delay
RET

;********************************

SMALL_DELAY:
; cleared

SMALL_LOOP:
RELOAD A:

TEMP2,RELOAD_a
THIS HERE

small_loop

MOV TEMPI,#20

MOV temp2,#0
NOP

NOP

NOP

DJNZ

; ChANGED

DJNZ tempi,

RET
;********************************

connect_host: CALL read_port
; cleared

JB

timeout,exit_CONNECT
CJNE A, #"$",

exit_CONNECT

CALL READ_PORT
JB

timeout,exit_CONNECT
CJNE A,#"0",

exit_CONNECT

CALL read_port
JB timeout,

exit_CONNECT
;********************************

CJNE A,#"l",
chkla ; cleared

CALL

set_time_DATE

SETB error_led
RET

;********************************

cHKla: CJNE A,#"2",
CHK2a ; cleared

CALL dump_Data
SETB error_led
RET

;********************************

chk2a: CJNE A,#"3",
chk3a ; cleared

call init_nvm

setb error_led
ret

chk3a:

exit_connect: RET
;********************************

serial_isr: CLR ti
; cleared

JNB ri,

exit_serial2
call

connect_host
MOV

DPTR,#START_UP
PUSH dpi

PUSH dph
exit_Serial2: RETI
;********************************

init_nvm: Call
init_pointer

JC

EXIT_INIT_NVM

CLR mem_full
MOV

DPTR,#INIT_NVM_CMD
CALL WRITE_CMD
CLR A

CALL SEND_DATA
RET

exit_init_nvm: MOV
DPTR,#INIT_NVM_CMD2

CALL WRITE_CMD
MOV A, ERROR

CALL SEND_dATA
CALL GET_eRROR
RET

INIT_NVM_CMD:
INIT NVM CMD2:

DB "$03",0

DB "$E3",0

.********************************

init_pointer: MOV
address_hi,#high(pointer address)

MOV

address_lo,#low(pointer_address)
MOV

DATA_2_WRITE,#0FFH

call write_nvm
JC

error_init_pointer
CALL

INC_aDDRESS

CALL WRITE_NVM
JC

error_init_pointer
RET

error_init_pointer:
error,#6

MOV

RET

;********************************

set_time_date: MOV

R3,#host_time_Date_lenght
call read_host
JNC SKIP_SET
JMP HOST_eRROR

SKIP_sET: MOV R0,#BUFFEr
MOV Rl,#SECONDs
MOV COUNT,#7

CALL BIN_2_HEX
MOV R0,#seconds
MOV

MOV

ADDRESS_LO,#SECONDS_aDDRESS
MOV COUNT,#7

CALL WRITE_TIME
JC

SET_TIME_DATE_FAIL

TIME_UPDATE_PASS: MOV DPTR,#CMD1
CALL WRITE_CMD
CLR A

CALL SEND_dATA
RET

;********************************

address hi,#0

set_time_Date_fail:
DPTR,#CMD2

MOV

CALL WRITE_CMD
MOV A, ERROR

CALL SEND_dATA
CALL GET_eRROR
RET

CMD1: DB "$01",0
CMD2: DB "$E1",0
;********************************

WRITE CMD: CLR A

EXIT_WRITE CMD

MOVC A,0A+DPTR
JZ

CALL SEND_DATA
INC DPTR

SJMP WRITE_CMD
_ _ RET

;*******************************^

EXIT_wRITE CMD:

START_TIMER2:
COUNT1_RELOAD,#100

MOV

MOV

COUNT2_RELOAD,#100
MOV

CALL

COUNT3_RELOAD,#4

START_TIMER

RET
;*******************************+

BIN 2 HEX:

BIN 2 HEX

MOV A,@R0

MOV B,#10

DIV AB

SWAP A

ORL A,B

MOV @R1,A
INC R0

INC Rl

DJNZ COUNT,

RET

;********************************

read_host:
GET_100P:

MOV R0,#BUFFER

CALL READ PORT

fuck_this
jb timeout,

MOV @R0, A
INC R0

R3,get_loop
DJNZ

clr c

ret

fuck_this: setb c

ret

;*******************************,

read_port: CLR timeout
; uSe hardware timeout

generator here!!!!

CALL

START_TIMER2
PORT LOOP:

PORT LOOP

JBC RI, GO_READ
JNB TIMEOUT,

SETB TIMEOUT

RET

,-*******************************

go_READ:

start timer:

long_delay2:
LONG dELAY

long_delay:
R7,#100

later

RE_R7:
RE R6:

RE_R6

R7,RE R7

call stop_timer
MOV A, sbuf
ret

CLR tfO

SETB trO

RET
;******************************+i

CALL

CALL LONG_DELAY
RET

;********************************

MOV

; replace this

MOV R6,#0
NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

nop

DJNZ R6,

DJNZ

RET

;********************************

stop_timer: CLR trO

CLR tfO

RET
;********************************

convert_2_Ascii:
#9, chk_10
go_l:
#30h

exit_l
chk 10:

CJNE A,

ADD A,

JMP

JC go 1

#37h

exit_l: RET
;********************************

dly_2ms:
RELOAD 2MS:

RELOAD 2MS

MOV R7,#0
NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

DJNZ R7,

RET
;********************************

dly_100us:
R7,#50

init_loop:

ERROR_INIT_TIMER

data_Read

init_loop

COMPARE SIG BYTE

MOV

DJNZ R7,$
REt

;********************************

DEC_DPTR: MOV A, DPL
CLR C

SUBB A,#l

MOV DPL,A
MOV A, DPH

SUBB A,#0

MOV DPH, A
RET

;********************************

init_timer: MOV R0,#buffer
MOV

address_lo,#seconds_Address
MOV count,#20
call read_rtcc
JC

MOV @R0,

INC R0

INC address lo

DJNZ count,-

acall

JC GO_INIT
RET

ERROR_INIT_TIMER: CALL
TIMER_INIT_ERROR

JMP $

;*******************************

go_init: MOV seconds,#0
MOV minutes,#0
MOV hours,#0
MOV day_Week,#3
MOV day,#01h
MOV month,#01h
MOV year,#0 9h
MOV control,#0
MOV

address_lo,#seconds_Address
MOV R0,#secondS
MOV count, #8
acall

jc exit_init2
acall

jc exit_init2
CLR C

RET

exit_init2: acall
ERROR_INIT_TIMER

RET
;********************************

write time:

write time

write_sig_byte

data_2_write,@R0
MOV

call write_rtcc

jc

INC address_lo
INC R0

DJNZ

RET

exit Write time

count,write time

exit Write time: MOV ERROR,#07H
RET

;********************************

write_sig_byte:
DPTR,#sig_byte_msg

MOV

MOV

address_lo,#sig_byte_Address
acall write_sig
RET

;********************************

write_Sig:

A,@a+dptr

exit_write_Sig

data_2_write, A

write_rtcc

exit_write_sig

address lo

call

jc

INC

INC DPTR

JMP
write_Sig
exit_Write_Sig: ret

sig_byte_msg: qq
"DS1307",0
;******************************i)t

compare_sig_byte: MOV
R0,#buffer+sig_byte_offset

MOV A,@R0

XRL A,#"D"

JNZ EXIT

INC R0

MOV A,@R0

XRL A,#"S"

JNZ EXIT

INC R0

MOV A,@R0

XRL A,#"l"

JNZ EXIT

INC R0

MOV A,@R0

XRL A,#"3"

JNZ EXIT

INC R0

MOV A,@R0

XRL A,#"0"

JNZ EXIT

INC R0

MOV A,@R0

XRL A,#"7"

JNZ EXIT

CLR C

RET

EXIT: setb C
RET

dump_NVM:
load_pointer

call

JC error_dumpl
JB new mem,

error_dump2
CLR A

MOVC skip_dumpl
JB mem_full,

JZ ADDRESS HI
MOV DPH,

MOV DPL,ADDRESS LO
MOV

SJMP dumpl

;*****************************+v

skip_dumpl:

DUMP1:

ADDRESS_LO,#0

ADDRESS_HI,#0
DUMP1 LOOP:

MOV DPTR,#4092

MOV

MOV

CALL READ_NVM
JC ERROR_DUMPl
MOV A,

MOV B,#16
DIV AB

CALL

CALL SEND_dATA
MOV A, B

CALL

CALL SEND_dATA
CALL

CALL DEC_DPTR
MOV A, DPH

ORL A, DPL

JNZ DUMPl_LOOP
CLR C

RET
;********************************

DATA_READ

CONVERT_2_ASCII

CONVERT_2_aSCII

INC_ADDRESS

ERROR DUMP1:

error_dump2:

CMD STATUS:

SETB C

MOV ERROR,#4
RET

SETB C

MOV error,#9
RET

;********************************

DUMP_DATA: MOV
DPTR,#CMD_sTATUS2

CALL WRITE_CMD
CALL DUMP_NVM
JC

ERROR_DUMP_DATA
RET

;********************************

ERROR_DUMP_DATA: MOV A,error
CALL SEND_DATA
CALL GET_eRROR
RET

DB "$E2",0

10

CMD_sTATUS2: DB "$02" 0
;*****************************+^

clear_error: SETB led_red
SETB led_orange
RET

;*******************.***********^

get_Error: call
clear_error

MOV A, ERROR
MOV

DPTR,#ERROR_TABLE
CLR C

RLC A

JMP @A+dPTR
;******************************^

ERROR_TABLE: AJMP
TEMP_wRITE_ERROR

AJMP

TIME_DATE_LOAD_eRROR
AJMP

POINTER_LOAD_ERROR
AJMP

POINTER_sTORE_ERROR .
AJMP

DATA_dUMP_ERROR
AJMP

NVM_INIT_ERROR
AJMP

POINTER_INIT_ERROR

TIME_wRITE_ERROR

host_Error2

new mem error

mem_full_error
;********************************

;********************************

TEMP_wRITE_ERROR:
pointer_load_Error:
data_dump_Error:
nvm_init_error:
pointer_init_error:
pointer_Store_Error:
led_Red

led_green

led_orange

RET
;********************************

AJMP

ajmp

ajmp

ajmp

clr

CLR

SETB

;*****************************^

TIME_DATE_LOAD_ERROR:
TIME_WRITE_ERROR:
TIMER_INIT_ERROR:
led_orange

led_red

led_green

ret
;****************************^

CLR

SETB

CLR

11

;****************************+^

new_mem_error:
host_error2:
mem_full_error:
led Red

led_orange

led_green

CLR

CLR

CLR

RET

