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Abstract

The phenomenon of long-term dependence provides an elegant explanation and interpretation of
an empirical law, commonly referred to as the “Hurst effect”. To this end , in this study, this
phenomenon which characterizes hydrological and other geophysical time series was studied.
The long-term memory was analysed for some selected hydroclimatic processes (rainfall,
streamflow, temperature, and evaporation) at characteristic time scales, by using heuristic
procedures indicated that there may be the presence of long-term component in mean daily flow
series but there is no discernible reason to suspect the presence of same in the others; ie.,
monthly data series of the rainfall, evaporation and temperature. This may connote the exhibition
of short memory. However, considering the short length of data used and the implication of pre-
processing strategy employed for asymptotic properties to hold, the results are inconclusive.
Therefore it is recommended that robust heuristic methods, long length of data and deeper
preprocessing  strategy be employed.
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1.0

CHAPTER ONE

INTRODUCTION
1.1 Background to the study.

Hydroclimatic process encompasses processes as evaporation and transpiration (E),
Precipitation (P), Run-off (R), Stream flow and Temperature. Hydroclimatology provides
a systematic structure for analyzing how the climate system causes time and space
variations (both global and local) in the hydrologic cycle. Changes in the relationship
between the climate system and the hydrologic cycle underlie floods, drought and
possible future influences of global warming on water resources. Land-based data,
satellite data, and computer models contribute to our understanding of the complex time
and space variations of physical processes shared by the climate system and the
hydrologic cycle.

Hydroclimatic processes has some unique characteristics such as, seasonal (i.e
monthly or multiples of a month), autocorrelation, cross correlation, intermittency and
stationarity. The stochastic analysis, modelling and simulation of climatic and hydrologic

processes such as precipitation, stream flow and sea surface temperature usually assume

stationarity under a time series framework or randomness under a probabilistic
framework. While this assumption may be reasonable within a short time frame (a few
decades depending on the particular case), empirical evidences shows that most

hydroclimatic processes deviate from stationarity in the long term. To some extent., the



assumption of stationarity has persisted because most historical records have been too
short to accurately detect nonstationarity, and because of lack of mathematical
frameworks for analyzing and modelling the dynamics of non stationary processes.
However, as record lengths have increased, trends, oscillatory behavior, and sudden shifts
have been observed in sample records.

Climate is not constant but rather varying in time and expressed by the long —
term (e.g 30 years ) time average of a natural process, defined on a fine scale. The
evolution of climate is represented as a stochastic process. Hydroclimatic process exhibits
a scaling behavior also known as long — range dependence or the Hurst phenomenon and
because of this dependence, the uncemtainty limits of the future are affected by the
available observations of the past. Storage-related stochastic properties such as the range
of cumulative departures R.", the rescaled range Ra*, and the Hurst slope, K have been
widely used in the literature as measures of long-term dependence and for comparing
alternative models of hydrologic series (Hurst, 1951; Wallis and O'Connell, 1973; Hipel
and McLeod, 1994),

1.2 Statement of problem

The presence of long-term memory can be done or assessed by applying different
heuristic methods; though in many cases, they cannot provide any additional information
about the spectral density of the hydroclimatic processes. If long-range dependence is
present, it connotes a significant serial correlation between observations which are far

apart in time. However, it is noted that reliable long-term memory can be performed only
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when the sample size of the available data is large enough for asymptotic properties to
hold. It is strongly suggested that the dearth of continuous data or availability of limited
sample creates indeterminacy problem. But the Question is : what size of sample is
adjudged large enough or appropriate for any meaningful analysis? Thus the fact that no
appropriate length of sample size is advocated in Literature constitute a situation that is
dire since any arbitrary choice of data length might introduce subjectivity in the

conclusions that may be drawn.

1.3  Objectives of study
To assess the presence or otherwise of long — range dependence in hydro climatic process
50 as to determine appropriate modelling schemes.
1.4  Justification

1. Long-range dependent processes provide an elegant explanation and
interpretation of the popular “Hurst effect”.

2. The phehomenon of long-range dependence has a long history; it remain a topic
of active research in the study of economic and financial time series, and has been
extensively documented in hydrology, meteorology and geophysics.

3. Recent results have led to a re-awakening of the need by hydrologists to further
analyse long-term or range dependence in temporal series of hydroclimatic data.

4. This Quest is aimed at developing suitable methods for estimating and

modelling the intensity of long-term dependence in time series, as well as provides

insight to what might be the reasons for the Hurst Phenomenon.




L5  Scopeof study

The scope of this study is limited to the determination of the presence or

otherwise of long term memory in hydro climatic processes and analysis of its intensity.



CHAPTER TWO

20 REVIEW OF RELATED LITERATURE

phenomenon known as scaling behaviour, is a tendency of hydroclimatic variables to exhibit

clustering behaviour in certain periods of time (i.e. droughts). The presence of LTP is usually

including (to mention a few of the more recent studies) Koutsoyianis (2002), Koutsoyiannis
(2003a), Cohn and Lins (2005), Koutsoyiannis and Montanari (2007), Khaliq et al., (2008), and
Hamed (2008). It is hypothesized that LTP may reflect the long-term variability of several
factors such as solar forcing, volcanic activity and so on. It is well known that the presence of
LTP has significant impact on the interpretation of trends identified under the independence or

short-term persistence (STP) assumptions.



Long memory refers to the ability of a hydrological system to “remember” past

importance of Mandelbrot's (1972) argument is that it raises the question of whether R/S analysis
can be used to detect long term dependence. Long term dependence to Mandelbrot (1972) means
the "Joseph effect”, named afier the Old Testament prophet who foretold seven years of
prosperity followed by seven years of famine [Mandelbrot and Wallis (1968)]. The "Joseph
effect” implies that a time series has infinite memory, that is, an event occurring today will still
have an effect on events occurring into perpetuity. In studies of geophysical records, Mandelbrot
and Wallis (1969) found a number of series with infinite memory. However, the type of time
series found in this field very possibly has finite memory cycles that are longer than their time
samples, and hence, the infinite memory result. Mandelbrot (1971) was the first to suggest that
R/S analysis could be useful in studies of economic data and provided an economic rationale. In
Mandelbrot (1972), it was further argued that R/S analysis was superior to autocorrelation and
variance analysis since it could consider distributions with infinite variance and was superior to

spectral analysis because it could detect non periodic cycles.

The problem with Mandelbrot's analysis was the adherence to processes with infinite
memory. In the mathematics of fractal geometry developed in Mandelbrot (1982), fractals will
continue to scale to infinity. Peters (1991), on the other hand, argued that in nature, fractals will
stop scaling at a finite point (e.g., the passage ways in your lungs will stop branching at some

finite point). Consistent with Peters (1991), it can be reasonably argued that economic time series



have finite memory and R/S analysis must be used over sub-periods in order to discover the
length of the finite memory or the average non periodic cycle. Most academic studies to this
point have assumed Mandelbrot's infinite memory process and performed the R/S analysis only
on the complete sample. Mandelbrot, however, does acknowledge the existence of finite
memory. In Mandelbrot and Wallis (1969), it is noted that observations far removed in time can
be considered independent and that the R/S analysis will asymptotically approach a random
process. With shorter lags, the dependence will be evident, but a "break” will occur at longer lags
and independence will be obtained. Since Mandelbrot and Wallis (1969) do not observe such a
"break” in geophysical records, they considered, for practical purposes, that these time series
exhibit infinite memory. Mandelbrot (1972) discussed that there can be short term R/S
dependence where a time series has a finite but long memory. It may well be that the time series
has a finite memory and R/S analysis will indicate dependence, but, at longer lags, a "break"
toward random behavior occurs. From a very long run viewpoint, Mandelbrot (1972) considered
this dependence to be a special transient, but went on to say that this does not lessen the
importance of the finite memory component. In fact, Mandelbrot and Wallis (1969), as well as
Peters (1991), used R/S analysis to detect the well known 11 year cycle in sunspot activity. They
add a wamning that processes with a strong periodic element will affect the Hurst phenomenon,
but again they did examine the data for infinite memory and felt that these "subharmonics"

complicate the issue.

In economics, following Peters '(1991) argument, one would expect to find finite
memory processes, and the "break" in the R/S analysis detect these finite memory for non
periodic cycles. Peters (1991) used R/S analysis and a Hurst ( 1951) regression to examine

stock market indices for persistent finite memory and found evidence of a four year



cycle. However, his analysis may be biased by short term Markovian dependence. Davies
and Harte (1987) showed that conventional R/S analysis using a Hurst regression can be
biased toward accepting a long term dependence hypothesis even when the true process is
first order autoregressive. As a result, Lo (1991) developed a modified R/S test that
allows for short-term dependence, non nommal distributions, and conditional
heteroscedasticity under the null hypothesis. In addition, Cheung (1 993) used Monte
Carlo simulation to show that the modified R/S test is robust to non stationary variance
and ARCH (autoregressive conditional heteroscedasticity) effects. The only problem is
that the Lo (1991) modification does assume an infinite memory process.

Fortunately, like R/S analysis, it too can be used on different sub-periods (Cheung
and Lai (1993). In the last decades, the hydrologic and water resources community goes
behind the trails of the climatological community in an attempt to trace the future of
water resources under climate change. As climatic records do not verify a Markovian
behaviour, its adoption has been combined with a decomposition of a climatic series into
components, one of which is Markovian €.g., Mann and Lees (1 996), performed such a
decomposition on stochastic grounds — by spectral methods — whose physical
fundamental may be disputable. The Markovian dependence (also known as
autoregressive of order 1— AR(1)) is the most typical and simple example of the so-called
short-term persistence (STP, also known as short-term dependence). STP is contrasted
with long term persistence (LTP, also known as Hurst phenomenon, Joseph effect, long
memory, long-range dependence, scaling behavior, and multi-scale fluctuation). From a
practical point of view, LTP indicates that the process is compatible with the presence of

fluctuations on a range of timescales, which may reflect the long term varniability of



several factors such as solar forcing, volcanic activity and so forth. LTP can be also
conceptualized as a tendency of clustering in time of similar events (droughts, floods,

etc).

2.1 Stochastic characteristic of hydroclimatic processes.

The stochastic characterization of the underlying processes is important in constructing
such models. In general, the stochastic characteristics of hydroclimatic processes such as
precipitation and runoff depend on the type of data at hand. Hydroclimatic time series
may consist of a single time series (univariate series) or multiple time series (multivariate
series). Data may be available on a continuous time scale or at discrete points in time. For
instance, most hydrologic series of practical interest are discrete time series defined on
hourly, daily, weekly, monthly, bimonthly, quarterly, and annual time intervals,

Hydroclimatic time series are genenally autocorrelated. Autocorrelation in some
series such as streamflow usually arises from the effect of surface, soil, and groundwater
storages that cause the water to remain in the system through subsequent time periods
(Salas, 1993). For instance, basins with significant surface storage in the form of lakes,
swamps, or glaciers, produce streamflow series that are autocorrelated. Likewise,
subsurface storage, especially groundwater storage produces significant autocorrelation
in the streamflow series derived from groundwater outflow. Conversely, annual
precipitation and annual maximum flows (flood peaks) are usually uncorrelated.
Sometimes significant autocorrelation may be the result of trends and/or shifts in the
series (Salas and Boes, 1980; Eltahir, 1989).

Hydroclimatic series may be cross-correlated. For example, the precipitation
series at two nearby sites, or the streamflow series of two nearby gaging stations in a

9



river basin are expected to be cross-correlated because the sites are subject to similar
climatic and hydrologic events. As the sites considered become farther apart, their cross-
correlation decreases. However, because of the effect of some large-scale atmospheric-
oceanic phenomena such as El Nino Southern Oscillation (ENSO), significant cross-
correlation between sea surface temperature (SST) and streamflow between sites
thousands of miles apart can be found (Eltahir, 1996). Furthermore, one would expect a
significant cross-correlation between a streamflow time series and the corresponding
areal average precipitation series over the same basin. Hydroclimatic time series are
intermittent when the variable under consideration takes on nonzero and zero values
throughout the length of the record. For instance precipitation that is observed in a
recording rain gage is an intermittent time series. Likewise, hourly, daily, and weekly
rainfall are typically intermittent time series, while monthly and annual rainfall are
usually non intermittent. However, in semiarid and arid regions even monthly and annual
precipitation and monthly and annual runoff may be intermittent as well,

Traditionally, certain annual hydroclimatic series have been considered to be
stationary, although this assumption may be incorrect as a result of large-scale climatic
vanability, natural disruptions such as a volcanic eruption, and anthropogenic changes
such as the effect of reservoir construction on downstream flow, and the effect of
landscape changes on some components of the hydrologic cycle. On the other hand,
hydroclimatic series defined at time intervals smaller than a year, such as months,
generally exhibit distinct seasonal (periodic) patterns due to the annual revolution of earth

around the sun, which produces the annual cycle in most hydroclimatic processes.
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22  Behavioral properties
a. Overall statistical properties.

The most commonly used statistical properties for analyzing stationary or
non stationary hydroclimatic time series are the sample mean Y, variance s, coefficient
of variation cv, skewness coefficient g , lag-k autocorrelation coefficient 1, and the
spectrum g(f). Coefficients of variation of annual flows are typically smaller than one,
although they may be close to one or greater in streams in arid and semiarid regions. The
coefficients of skewness g of annual flows are typically greater than zero. In some
streams, small values of g are found suggesting that annual flows are approximately
normally distributed. On the other hand, in some streams of arid and semiarid regions, g
can be greater than one.

The lag-k autocorrelation coefficient rry may be determined as

ne=- k0,2 (2.12)
[
N-k
1
=5 D.0ue DO D (2.1b)
i-1

where N is the sample size and £ is the time lag. The plot of n. versus k, i.e., the correlogram,
may give an idea of the degree of persistence of the underlying time series, and it may be useful
for choosing the type of stochastic model that may represent the series. When the correlogram
decays rapidly to zero after a few lags, it may be an indication of small persistence or short
memory in the series, while a slow decay of the correlogram is an indication of large persistence

or long memory.

11



b. Periodic (seasonal) statistical properties.

stochastic properties of hydroclimatic time series, as mentioned above
may be determined from either annual series or for seasonal series as a whole, specific
seasonal (periodic) properties may provide a better picture of the stochastic
characteristics of certain hydroclimatic time series that are defined at time intervals
smaller than a year such as monthly stream flow data. Let the seasonal time series be
represented by y,, v=1,..,N;r=1, . win which v, is the year, r is the season, N is the
number of years of record, and w is the number of seasons per year (e.g, w =12 for
monthly data). Then, for each season 7, one can determine a number of statistics such as
the seasonal mean , variance s’,, coefficient of variation cv, and skewness coefficient 2

Furthermore, the season-to -season correlation coefficient 1y, may be estimated by

Ty = Chor : k=0,12, =1, . (4
(Co’t_kC‘o,,) 9‘2

rK,t = —I' Z(_)—)v,t —y)(yv,t—k "‘j’_t—k) (2.4b)
Nvzg

The statistics y,, s, g,, and Ti,, may be plotted versus time r = 1, ...,o to observe
whether they exhibit a seasonal pattern. Generally, for seasonal stream flow series Vr> 5,
although for some streams ¥r, may be smaller than s,, especially during the "low-flow"
season. Furthermore, for intermittent stream flow series, generally the mean is smaller
than the standard deviation, i.e., y, <s, , throughout the year.

The values of the skewness coefficient &:, for the dry season are generally larger
than those for the wet season indicating that data in the dry season depart more from

normality than data in the wet season. Values of the skewness for intermittent hydrologic

13



series are usually larger than skewness for similar non intermittent series. Seasonal
correlations r;.,, for stream flow during the dry season are generally larger than those for
the wet season , and they are significantly different than zero for most of the months. On
the other hand, seasonal correlations for monthly precipitation are generally low or not
significantly different from zero for most of the months (Roesner and Yevjevich, 1966),
while for weekly, daily, and hourly precipitation they are generally significant and greater
than zero.

Complex long-term dependence (long memory) of seasonal flows may be evident
when the correlations r;.,, are significant and decay slowly as k increases beyond w
seasons (beyond a year). These correlations are usually small or not significant for many
streams, but in river systems, such seasonal correlations may persist for several years. In
addition, some streamflow hydrographs such as daily and weekly hydrographs may
possess directionality (nonreversibility), which means that some of their statistical

properties change when direction of time is reversed. (Femandez and Salas, 1986)

23  Component of hydroclimatic analysis

Hydroclimatic time series may exhibit trends, shifts or jumps, seasonality,
autocorrelation, and non-normality. These attributes of hydroclimatic time series are
referred to as components (Salas, 1993). In general, natural and human-induced factors
may produce gradual and instantaneous trends and shifts (jumps) in hydroclimatic series.
For example, a large forest fire in a river basin can immediately affect the runoff,
producing a shift in the runoff series, whereas a gradual killing of a forest (e.g., by an

insect infestation that takes years for its population to build up) can result in gradual

14



changes or trends in the runoff series. A large volcanic explosion such as the one at
Mount St. Helens in 1980 or a large landslide can produce sudden changes in the
sediment transport series of a stream. Trends in non-point-source water quality series
may be the result of long-term changes in agricultural practices and agricultural land
development. Likewise, shifts in certain water quality constituents may be caused by
agricultural activities such as sudden changes in the use of certain types of pesticides.
Changes in land use and the development of reservoirs and diversion structures may also
cause trends and shifts in stream flow series.
24  Long term phenomenon

Long-term memory refers to the continuing storage of information. In Freudian
psychology, long-term memory would be called the preconscious and unconscious. This
information is largely outside of our awareness, but can be called into working memory
to be used when needed. Some of this information is fairly easy to recall, while other
memories are more difficult to access. Long-term memory (LTM) is memory in which
associations among items are stored, as part of the theory of a dual-store memory model.
According to the theory, long term memory differs structurally and functionally from
working memory or short-term memory, which ostensibly stores items for only around
20-30 seconds and can be recalled easily. This differs from the theory of the single-store
retrieved context model that has no differentiation between short-term and long-term
memory. According to Miller (1956), whose paper popularized the theory of the “magic
number seven,” short-term memory is limited to a certain number of chunks of
information, while long-term memory has a limitless store. According to the dual-store

memory model set forth by Atkinson and Shiffrin (1968), memories can reside in the
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short-term “buffer” for a limited time while they are simultaneously strengthening their
associations in long-term memory. When items are first presented, they enter short-term
memory, but because it has limited space, as new items enter, old ones leave. However,
each time an item is rehearsed while it is in short-term memory, it is also increasing its
strength in long-term memory. In long-term store, items are recalled through retrieval
cues in a two-step process. First, context is used as a cue to probabilistically select an
item to be potentially recalled. Second, that item is probabilistically determined to be
recalled or not.

Long-term correlations have been first observed by H.E. Hurst, who found “long-
range statistical dependencies” in river-runoff records, and mathematically described by
Mandelbrot (B.B. Mandelbrot, J R. Wallis, Noah, Joseph 1968). In the last decades, it has
become clear that long term correlations are abundant in nature, characterizing, for
example, temperature records (D. Rybski, A. Bunde, H. von Storch (2007), hydrological
records, physiological records , economic records and even records of human activity [P.
(Ivanov et al,, .2007). In long-term correlated records, large events well above the
average are more likely to be followed by large events, and small events well below the
average by small events. This persistence occurs on all time scales. For example, a week
where the temperature is high, is more likely to be followed by a warm week than by a
cold week, a warm month is more likely followed by a warm month than by a cold one,
and the same holds on annual and decadal scales, and probably even on centennial scales
(Rybski et al., (2006). This persistence on all scales is characterized by an autocorrelation
function that decays in time by a power law, C(s) ~ s with an exponent y between O and

1.
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While investigating the discharge time series of the Nile niver for the design of the
Aswan High Dam, Hurst (1951) discovered a special behavior of hydrological and other
geophysical time series, which has become known as the “ Hurst phenomenon”. This
behavior is essentially the tendency of wet years to cluster into wet periods, or of dry
years to cluster into drought periods. The term “Joseph effect” introduce by Mandelbrot
(1997) has been used as an alternative for the same behavior - Since its discovery, the
Hurst phenomenon has been verified in the several environmental quantities, such as
wind power variations (Haslett & Raftery. 1989), global mean temperature (Bloom field,
1992), flow of the River Nile (Eltahir, 1996 ), flows from the river warta, Poland
(Radziejewski & Kundzewicz, 1997), monthly and daily inflows of lake maggiore, Italy
(Montanari et al., 1997), annual stream flow records across the continental United States
(Vogel et al,, 1998), an indexes of North Atlantic Oscillation (Stephenson et al., 2000). In
addition, the Hurst Phenomenon has gained new interest today due to its relationship to
climate changes (e.g., Evans, 1996).

Biologically, short-term memory is a temporary potentiation of neural
connections that can become long-term memory through the process of rehearsal and
meaningful association. Not much is known about the underlying biological mechanisms
of long-term memory, but the process of long-term potentiation, which involves a
physical change in the structure of neurons, has been proposed as the mechanism by
which short-term memories move into long-term storage. The time scale involved at each
level of memory processing remains under investigation. As long-term memory is subject
to fading in the natural forgetting process, several recalls/retrievals of memory may be

needed for long-term memories to last for years, dependent also on the depth of
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processing. Individual retrievals can take place in increasing intervals in accordance with
the principle of spaced repetition. This can happen quite naturally through reflection or
deliberate recall (also known as recapitulation), often dependent on the percetved
importance of the material.

There are actually three different types (or aspects or parts) of long-term memory,
the Episodic memory, Semantic, and procedural memory. (a)Episodic memory: This
refers to our ability to recall personal experiences from our past. When one recount
events that happened during his/her childhood, a ballet or food taken at breakfast, one is
employing long-term episodic memory. As the name suggests, this aspect of memory
organizes information around episodes in our lives. When one tries to recall the
information, one attempts to reconstruct these episodes by picturing the events in our
minds. Episodic memory enables us to recall not only events, but also information related
to those events. For example, a baseball coach faced with an unusual situation requiring a
rule interpretation might think like this: "I remember a similar situation in a professional
baseball game... When was it_? Last year... Reds vs. Giants... It was a night game, and
the Giants had runners on first and second, when a line drive bounced and hit the
umpire... What was the call...? I think they gave the batter a single and let the runners
advance one base... But | thought when the ball hit the umpire it remained in play....
Now I remember! If the umpire is in front of the fielders, it's a dead ball and a single. If
the umpire would have been behind the fielder, it would have remained in play...."

(b) Semantic memory: Semantic memory stores facts and generalized information. It
contains verbal information, concepts, rules, principles, and problem-solving skills.

While episodic memory stores information as images, semantic memory stores

18



information in networks or schemata. Information is most easily stored in semantic
memory when it is meaningful - that is, easily related to existing, well-established
schemata. By using information on numerous occasions after it has been initially learned,
we solidify the connections among elements of information, make it easier to retrieve
when we need to use it, and make it more likely that this information will be available to

help us accept and store additional information in the future.

series of steps, or stimulus-response pairings. When one retrieve information from
procedural memory, one retrieve one step, which triggers the next, etc.

These various parts of long-term memory do not operate in isolation from one
another. While it is not clear how they work together, it is clear that they are related and
overlap. For example, a teacher who 1s asked to write a letter of recommendation for a
former student might wish to retrieve information about the ability of that student
compared to other students. To do this, he/she might first use episodic memory to form
an image of that student as a real person performing real activities in his/her class several
years ago, and this image might help her recall specific details of class performance and
term papers written by that student Likewise, a college student writing a paper in a
history course on mercantilism might first listen to or read a semantic presentation on the
topic, perform an episodic memory search to recall instances in his own life when he
himself experienced what the teacher was talking about, recall the semantic definitions of
related terms from another course, and continue this process until he felt he could

understand and integrate the new information. The key ingredient that facilitates long-
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term storage is meaningfulness. This term refers not to the inherent interest or worthiness
of information, but rather to the degree to which it can be related to information already
stored in our long-term memory. One concept or piece of information is more meaningful
than another if the learner can make a larger number of connections between that piece of
information and other information already in long-term memory. Theoretically, the
capacity of long term memory could be unlimited, the main constraint on recall being

accessibility rather than availability.

In statistical terms, the presence in a time series of long term fluctuations implies
dramatically increased uncertainty, especially on long timescales, in comparison to
classical statistics. This is easy to understand, as the observed record could be a small
portion of a longer cycle whose characteristics might be difficult to infer on the basis of
the available observations. In this respect, in processes characterized by LTP, the results
of the statistical analysis may be difficult to decipher. As a consequence, the application
of statistical tools to climatic time series should be carefully considered and classical
statistics should be carefully revisited to locate points that may produce misleading or
incorrect results. In stochastic terms, STP and LTP are conceptualized in terms of
conditional probabilities for the future given past observations, Thus, in a Markovian
process, the future is not influenced by the past when the present (a time instant) is
known whereas in a process exhibiting LTP, the influence of the past (the entire history)
never ceases. Both Markovian dependence and LTP, can result from physical principles.
For example, the maximum entropy principle results in Markovian dependence if the

maximization of entropy is done on a particular timescale and in LTP if the maximization

20



is done on a range of timescales (Koutsoyiannis, 2005b). Despite dominance of the
Markovian behavior in chimatologists’ views, its two aforementioned features (non
influence of the past, exclusiveness of a single scale of fluctuation) and other features

might make it mmplausible. Probability, statistics and stochastic processes provide

deterministic dynamics may trace an irregular trajectory, whose future may be
unpredictable in deterministic sense. Unpredictability or future uncertainty depends then
on the degree of nonlinearity and the dimensionality (number of degrees of freedom) of
the deterministic system as well as the time horizon of prediction. For chaotic systems,
the deterministic dynamics cannot produce a good prediction for a large time horizon.
This is particularly the case in high-dimensional systems, where a stochastic approach
may give better results (mean predictions and uncertainty limits) than a pure deterministic
approach. This is reflected for instance in the recently developed method of ensemble
weather predictions, a method based on the idea of Monte Carlo (ie. stochastic)
simulation, whose use has now been generalized in meteorological services.

An example of this type, more closely related to the subject of this study, has been
proposed by Koutsoyiannis (2006). This example deals with a simple toy model that was
devised to mimic the evolution of long hydroclimatic time series. The model is purely
deterministic (involving no random component) and nonlinear, and has only two degrees

of freedom. Application of the model demonstrates that (@) extremely simple
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deterministic dynamics can produce trajectories exhibiting LTP; (b) large-scale climatic
fluctuations (like upward or downward trends) can emerge without any apparent reason;
and (c) deterministic dynamics do not help predict climatic evolution, even in the case of
the caricature model with only two degrees of freedom. Thus, this demonstration Justifies
(a) the utility of a stochastic description even for systems with perfectly known purely
deterministic dynamics and (b) the presence of LTP in all examined hydro climatic series.

To date, there is considerable empirical evidence for the presence of LTP in
hydroclimatic and other geophysical records, as well as time series from other fields. In
fact, the history of LTP started more than half a Century ago, after its discovery in
geophysics by Hurst (1951), although, in a mathematical (stochastic processes) and
physical context (turbulence), the concept has been pioneered a decade earlier by
Kolmogorov (1940), and Shiryaev (1989).

Throughout these decades, the studies providing indications that LTP may be
omnipresent in several natural (hydroclimatic, geophysical, biological) and human
associated (social, economical and technological) processes have been so numerous that
it is difficult to shape a complete picture; yet it is worth giving some recent examples
(which contain additional references). LTP properties of temperature at a point, regional
or global basis, have been studied by Bloomfield (1992), Koscielny-Bunde et al., (1996,
1998), Pelletier and Turcotte (1997), Koutsoyiannis (2003), Monetti et al., (2003) and
Koutsoyiannis et al, (2006). Similar analyses have been conducted for other
climatological time series including wind power and indexes of North Atlantic
Oscillation (Haslet & Raftery, 1989; Stephenson et al., 2000) as well as proxy series such

as tree-ring widths or isotope concentrations (Pelletier and Turcotte, 1997;

22



Koutsoyiannis, 2002; Beran and Feng, 2002; Craigmile, 2004b). Numerous studies have
indicated LTP in hydrological time series and particularly in river flows (Eltahir, 1996;
Montanari et al, 1997; Pelletier and Turcotte, 1997, Koutsoyiannis, 2002, 2003;
Radziejewski and Kundzewicz, 1997; Sakalauskiene, 2003; Yue and Gan, 2004;
Koscielny-Bunde, 2006). Similar findings have been reported in diverse scientific fields
such as biology (Peng et al., 1994), physiology (Hausdorff et al.,, (1997), economics (Ray
and Tsay, 2000), and Intemnet computing (Karagiannis et al, 2004). The similarity of
behaviours in such diverse complex systems should not be regarded as coincidence;
rather some fundamental explanation behind this should be investigated, as is for instance
the Central Limit Theorem (CLT) for the emerging of the normal distribution in diverse
processes. Perhaps, this explanation is the principle of maximum entropy, which also
produces the normal distribution independently of CLT (Koutsoyiannis, 2005a, b). Most
recently, the presence of LTP in temperature data has been considered by Cohn and Lins
(2005) and Rybski et al(2006). Both have found that instrumental records and
reconstructed time series of temperature are compatible with the hypothesis of LTP and
therefore suggested that this property should be taken into account in statistical tests.
Earlier, Koutsoyiannis (2003) arrived at similar conclusions, arguing that there is the
need in hydroclimatic research to adapt classical statistics, which is based on the
Independent—Identically—Distributed (IID) paradigm, so as to account for the observed
LTP behavior. Also a variety of methods shed light on the statistical problems related to

LTP (Beran and F eng, 2002; Kantelhardt et al, 2002; Craigmile, 2004a, b).

In this respect, Cohn and Lins (2005) and Rybski et al., (2006) have suggested a

necessary rectification of the prevailing incorrect practices. Both have proposed statistical tests,
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Research Unit - CRU). The LTP and trend properties of this record had been studied earlier by
Smith (1993), Beran and Feng (2002), and Craigmile et al, (2004a). Cohn and Ling (2005) and
Rybski et al, (2006) focused on the well known detection problem (whether or not climatic
changes have occurred) and attribution problem (whether or not observed changes are related to
anthropogenic forcing of the climate system). Interestingly, however, their conclusions on these

problems are opposite. Rybski et al., (2006) concluded that the hypothesis that at least part of the

Cohn and Lins (2005) stated that, given what is known about the complexity, long-term

persistence, and non-linearity of the climate system, this warming can be due to natural

dynamics. This disagreement may indicate that our understanding of the behavior of LTP and its

it into long-memory runoff. In view of the projected charges in climate and the hydrological

cycle, these findings show that decadal- scale variations in drought or flood risk can be predicted
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Aggregated standard deviation method (asd)

The method is based on the analysis of the variability of the data aggregated at

different time scales. Specifically, let X; be a stationary process on discrete time 7

(referring to years in our case) with (true — or Population) standard deviation o and let

Xi+-+X,_
Xi(k)= i > i—k+1 (25)

denote the aggregate (average) process at time scale k, with (true) standard deviation

o®(the notation implies that XV = Xi). For sufficiently large £, x® represents the
l ]

climatic process; Now, LTP is expressed by the elementary scaling property

g
o® = 1w (2.6)
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b. Detrended fluctuation analysis (dfa)

trends. In DFA, one considers the cumulative sum ("profile") of the ®; and studies its
fluctuations around polynomial best fits in time windows of size s.
In general, the DFA procedure consists of three steps:

(1) Determine the profile:

of the (deseasoned) record -; of length N and cut it into N; = int (N/s) non-overlapping
segments of equal length s (an illustrative F 1gure can be found, e.g., in Kantelhardt et al ,
(2001).

(2) In each of these Segments v determine the local polynomial trend (of given order n)bya
least-square fit and determine the variance F2(v) around it

/2

1
; 1 &
Wiy 0 2
F (S)-[Ns é;ﬁ (1)]

2.8)
For different detrending orders 7, one obtains different fluctuation functions F ®(s) . For

long-term correlated data without deterministic trend, the F ®(s) all scale the same,
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2.5

F®(§) ~ g (2.9)
with

_J1—=y/2 for0 <y <1
o = 1/2 fory > 1.

By definition, DFA, eliminates trends of order n in the profile which represent trends of

ordern -1 in the original record.

Detecting long memory and modelling.



by salas et al., (1982), who developed an estimation procedure for ARIMA models with
periodic coefficients. However, all these models failed in modeling data affected by long-
term persistence, because they are not able to reproduce the autocorrelation pattern of
data affected by long memory. This can be an important limitation, since long-memory
was found by many authors to be present in hydrological records. (Lawrance and
Kottegoda, 1977; Momtanari et al, 1996,1997). Seasonal long-memory models were
considered by Gray et al., (1989), who developed the so — called GARMA (Gegenbauer
autoregressive moving average) model, a stochastic process able to model long-lasting
and non deterministic periodic components. This model is not able to take into account
both seasonal and non seasonal long memory. Another periodic long-memory model was
introduced by porter — Hudak (1990) and hassle (1994), who developed a seasonal
fractional differencing filter.

Recently, Giraitis and Leipus (1995) developed a generalized form of the
FARIMA model, which combines periodic and non periodic long memory. Both the
seasonal fractional differencing filter and the GARMA model are special cases of the
generalized FARIMA model which allow the modeling of a wide variety of periodic
processes. This very flexibility however, sometimes makes the identification procedure
difficult to perform. Thus, the identification of some special cases of the generalized
FARIMA process, having a clearly identifiable covariance structure (Such as the
GARIMA model), can help the analyst in choosing the right formulation of the model for

the data.
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CHAPTER THREE

3.0 MATERIALS AND METHOD
3.1  Study area

Kaduna state is located on the southern end of the high plains of northern Nigeria,

bounded by parallels 9°03"N and 11°32’ N. and extends from the upper River Mariga on 6° 05’

| E to 8° 48’ E on the foot slopes of the scrap of Jos plateau. Stream valley incisions and

| dissections of the high plains are evident in several areas, especially in the Zaria region, they are

- due more to anthropogenic influences and climatic factors than regional geologic instability.

The state experiences a typical tropical continental climatic with distinct seasonal
regimes, oscillating between cool to hot dry and humid to wet. These two seasons reflect the
influence of tropical continental and equatorial maritime air masses which sweep over the entire
country. However, in Kaduna state , the seasonality is pronounced with the cool to hot dry
season being longer, than the rainy season. Again the spatial and temporal distribution of rain
varies, decreasing from an average of about 1530mm in Kafanchan and kagoro areas in the
southeast to about 1015mm in Ikaramakarfi districts in the northeast. High storm intensities
(ranging from 60mm hr 1 to 99mm hr 1) plus the nature of surface run of build up the good
network of medium sized river systems. High Evaporation during the season, however, creates

water shortage problems especially in Igabi, Giwa, Soba, Makarfi and Ikara LGAs.
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Plate 3.1: Map of Kaduna State showing Local Government Areas.

32  Data assembly and management

3.2.1 Data Used

In this study, streamflow, Temperature, rainfall, and evaporation data from
Kaduna is used, a total of 26years (1980-2005) to be precise. For purposes of this study,
the daily flow data were aggregated to monthly flow series by taking the average of each

month’s flow.
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32.2 Data Preprocessing

To investigate the long-term memory, seasonality or periodicity must be
removed. Processes which induce non stationarity in the mean are particularly
problematic, since these are most likely to lead to spurious detection of long memory.
Generally seasonal or periodic variations in the mean, variance, and covariance are to be
expected. These are sources of non stationarity and should be carefully accounted for
when modeling the data. To remove the seasonality in the daily and monthly series, the

series were standardise; standardisation was done by applying

m(i)=£"—;£ 3.1

Where, X is the daily mean, s; the standard deviation, and x; is the data series
3.3  methodology

33.1 Classical rescale range (R/S)

The classical R/S-analysis aims at inferring from an empirical record the value of
the Hurst parameter for long-range dependent process that presumably generated the
record at hand. In practice, classical R/S-analysis is based on a heuristic graphical
approach where the resulting R/S values are plotted against the lag in a log-log plot (pox
plot) to yield a straight line with slope equal to H (i.e., the Hurst exponent) in this
context, the R/S statistic is the range of partial sums of deviations (R) of times series

from its mean, rescaled by its standard deviation (S). Thus, given a sample of N

observations and2 <7< N one can define
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Hurst (1951) found that
E[R (n)/S (n)] = (g)” 3.6

where the ratio of R (n)/S (n) is defined here as Q(n), and H is the Hurst exponent while n
is the number of segments or blocks; similarly, X and < x > represent the demeaned and
mean of the data points in each blocks respectively. To this end, for any lag » and
25n<N_ there are Int [N/n] estimates of R(n) and S(n) where the eventual value of
R(n)/S(n) is averaged over all the estimates of R(n)/S(n), precisely over all Int [N/n].

In this study, equations (3 2-3.6) were estimated for both the daily and monthly

series. In doing so, suppose w is a series of natural integers such as 1, 2, 3, and N is total

observations, n series is set as 4,5 . WS N/2 for both daily and monthly flow series
while the R/S statistic was calculated for 155 for monthly and 288 for daily

logarithmically spaced values of n respectively.
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332  Aggregated variance method

For the given time series X; of length N, the corresponding

aggregated series is defined by
1 km
X" = — Z X@ k=12, (3.7)
i=(k—-Dm+1

for successive values of m. Its sample variance is

Varx™ = X ™ (k) — EX™)2 (3.8)

k

Il
[y

S|z~
[]=1=

In this study, equations (3.7 and 3.8) are estimated for both the daily and monthly series.
The sample variance VarX™ should be asymptotically proportional to m?¥2 for large
N/m and m,where m is number of blocks and the resulting points should form a straight

line with slope B =2H —2 and -1 < B < 0. suppose w is a series of natural integers such

as 1, 2, 3, and N is total observations, m series is set as 2,3..,¥s N/2 for both daily
and monthly flow series while the Variance was calculated for 155 for monthly and 290

for daily logarithmically spaced values of n respectively.
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CHAPTER FOUR

40 RESULTS AND DISCUSSION

41 Presentation of result
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Figd. 1 Pox plots of the Daily flow (m’/s): (a) R/S analysis, (b) Aggregated Variance method; n

and m are number of blocks in the respective methods
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Fig 4.2 Pox plots of the Monthly flow (m’/s): () R/S analysis, (b) Aggregated Variance method
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Fig 4.3 Pox Plot of the Monthly Evaporation (mm) : (@) R/S analysis, (b) Aggregated Variance
method
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Fig 4.4 Pox Plot of the Monthly Rainfall (mm) : (@) R/S analysis, (b) Aggregated Variance
method
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Fig 4.5 Pox Plot of the Monthly Temperature(mm) : (a) R/S analysis, (b) Aggregated Variance
method

42  Summary of results

Table 4.1 Rescaled range statistic (R/S)

Time series Hurst exponent (H)
Standardized daily flow (ms) 0.9086
Standardized monthly flow(m’/s) 0.2145
Standardized monthly evaporation(mm) 0.3908
Standardized monthly rainfall(mm) 0.5370
Standardize monthly temperature(mm) 0.4743
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Table 4.2 Aggregated variance method (AVM)

Time series Slope Hurst exponent (H)
Standardized daily flow (m7/s) -0.3560 0.8220
Standardized monthly flow(m?/s) -1.2654 0.3673
Standardized monthly evaporation(mm) -1.6598 0.1701
Standardized monthly rainfall(mm) -0.9715 0.5142
Standardize monthly temperature(mm) -1.0988 0.4506

*Hurst exponent (H) is computed according to the Equation: Slope B= 2H-2 as shown in the

chapter three of this work

4.3 Discussion of result

The two heuristic methods described in Chapter three were used to evaluate the Hurst

exponent in the flow, Evaporation, Rainfall, and Temperature series. Both the R/S and the

Aggregated Variance pox plot suggest that Long-memory component may be present in the

Daily flow series (Figs 4.1a, 4.1b). But the scenario presented above is completely different for

the monthly series (i.e., Stream flow, Evaporation, Rainfall and Temperature (extreme event),

The values of H obtained applying the R/S statistic and the aggregated variance method

respectively for monthly series as mentioned above indicate the absence of long-memory

component(Figs 4.2a, 4.2b, 4.3a,4.3b, 4.4a, 44b,4.52 and 4.5b). This result accords with the

findings of M. Y. Otache (2008) in his Contemporary Analysis of Benue River flow Dynamics
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CHAPTER FIVE
5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Based on the heuristic tests carried out on the stream flow, evaporation, rainfall and temperature
series using the classical R/S and the aggregated variance method, in terms of the Hurst exponent
values, one comes to the conclusion that the daily flow series may display long-term memory
although it is difficult to estimate precisely the measure of persistence. The other series, i.e., the
monthly series (i.e., Stream ﬂow_, evaporation, rainfall and temperature) examined show that
there is no discernible reason to suspect the presence of long-term memory, indicating that there
is no significant serial correlations in the series, Considering the fact that limited data is used for
analysis in this study and only standardization were done as method of data preprocessing, the
results obtained here are inconclusive from Practical point of view rather than academic and thus

subject to further analysis.
5.2 Recommendations

In considering how important were simulation and modeling in Agricultural and hydroclimatic
process, It is therefore recommended that robust heuristic methods, long length of data and

importantly, deseasonalisation of data based on classical harmonic analysis be employed.
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