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Abstract

The phenomenon of long-term dependence provides an elegant explanation and interpretation of
an empirical law, commonly referred to as the "Hurst effect". To this end , in this study this
Phenomenon which characterizes hydrological and other geophysical time series was studied
The long-term memory was analysed for some selected hydroclimatic processes (rainfell
streamflow, temperature, and evaporation) at characteristic time scales, by using heuristic
procedures indicated that there may be the presence of long-term component in mean daily flow
series but there is no discernible reason to suspect the presence of same in the others ie
monthly data series ofthe rainfell, evaporation and temperature. This may connote the exhibition
of short memory. However, considering the short length ofdata used and the implication ofpre
processing strategy employed for asymptotic properties to hold, the results are inconclusive
Therefore it is recommended that robust heuristic methods, long length of data and deeper
preprocessing strategy be employed.
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CHAPTER ONE

10 INTRODUCTION

1-1 Background to the study.

Hydrodimatic process encompasses processes as evaporation ^ transpiratio„ (E)
Pronation (P), Run-„ff(R), stream flowand Temperature. HydroCimatology provdes
asys.erna.ic structure for ana.yzing how me climate system causes time and space
variations (both g,oba, md local) in me ^^^ ^^ ^^ ^^
between me chmate system and me hydrologic cycle underlie floods, drought and
possibte tame mfluences of g.obal wamnng on water resources. Land-based daa,
satelhte dam, and computer models contribute to our understanding of the complex time
and space variations of physical processes shared by the climate system and me
hydrologic cycle.

Hydrodimatic processes has some unique characteristics such as, seasonal ft.
monft,y or r„„ltip,es ofamonth), autecorre.ation, cross correlation, mtermittency and
stationary. The Stochastic anaiysis, milling and simulation ofclimatic and hydrologic
processes such as precipitation, stream flow a*, sea surface temperature usually assume
stationary or randomness of the process under consrderation. On the annua, timescale,
the ana,ysis of climatic and hydrologic process is generaUy based on assumed
stationanty under a time series fiamework or randomness under a probabilistic
framework. While mis assumption may be reasonable wimin ashort time frame (a few
decades dependmg on the particular case), empirical evidences shows ma, most
hydrodimatic processes deviate from stationary ,„ the long term. To some extent, the



assumption „f aationarity has pentisted because most hrstorical records have been too
short ,„ accurately detect norctationarity, and because of lack of mathematical
frameworks for analyzing and modelling the dynamics of non stationary processes.
However, as record lengths have mcreased, trends, oscllatory behavior, and sudden shffls
have been observed in sample records.

Climate is no. constant bu, rather varying in time and expressed by the long -
term (eg 30 years ) time average of anatural process, defined on afine scale. The
evolution ofclimate ,s represented as astochastic process. Hydrodimatic process exh.bits
ascaling behavior also known as long - range dependence or the Hum phenomenon and
because of mis dependence, me uncertainty limits of the future are affected by the
available observations ofthe past Storage-related stochastic properties such as the range
ofcumulative departures R." the rescaled range R... and the Hurs, slope. Khave been
widely used in the .rtemture as measures of long-term dependence and for comparing
alternative models of hydrologrc series (Hurst, 1951; Wallis and OConnell, 1973; Hipel
andMcLeod, 1994).

1.2 Statement ofproblem

The presence of long-term memory can be done or assessed by applying different
heuristic methods; though in many cases, they cannot provide any additional information
about the spectral density of the hydrodimatic processes. If long-range dependence is
present, it connotes asignificant serial correlation between observations which are far
apart in time. However, it is noted that reliable long-term memory can be performed only



when the sample size of the available data nlarge enough for asymptotic properties to
hold. It is strongly suggested that the dearth of continuous data or availability of limited
sample creates mdeterrninacy problem. But the Question is : what size of sample is
adjudged large enough or appropriate for any meaningful analysis? Thus the fact that no
appropriate length of sample size is advocated in Literature constitute asituation that is
dire since any arbitrary choice of data length might introduce subjectivity in the
conclusions thatmay be drawn.

13 Objectives ofstudy

To assess the presence or otherwise oflong - range dependence in hydro climatic process
so as to determine appropriate modelling schemes.

1.4 Justification

1. Long-range dependent processes provide an elegant explanation and
interpretation ofthepopular "Hurst effect".

2. The phenomenon of long-range dependence has along history; it remain atopic
of active research in the study of economic and financial time series, and has been
extensively documented in hydrology, meteorology and geophysics.

3. Recent results have led to areawakening ofthe need by hydrologists to further

analyse long-term or range dependence in temporal series ofhydroclimatic data.

4. This Quest is aimed at developing suhable methods for estimating and
modelling the intensity of long-term dependence in time series, as well as provides
insight to what might be the reasons for the Hurst Phenomenon.



1.5 Scope of study

The scope ofthis study is limited to the aeterminatton of the presence or
otherwise oflong term memory in hydro climatic processes and analysis ofrts mtensity.



CHAPTER TWO

20 REVIEW OF RELATED L1TERATTJRE

Annmg Wei «d Raymond M. Uuthod pomted ou, that mere are three main
memods existing to estimate H(Hu.,e„ :me cta|ca| ^ ^ ^ ^
Modified R/S ar.lysi, and me ARAMA model. The firs, two memods are mostiy concerned
wm es,ab„shing whether ,ong-ra„ge^^ exKB m̂ ^ ^ ^^ ^
AHMA model is me extension of an ARFTMA mode,, and i. able to measure the strength of
long-range dependence. Bes.de a„ these, mere is also the Aggregated Variant Memod
(AV^Long term penistence (LTP) which was sti-died fa, by Hurs, (.951), is also a
Phenomenon known as scaling behavour, is atendency of hydrclimatic vanables to exh,b.t
clustering behavrour mcoram periods of time (i.e. drought). The presence of LTP is usually
•nvestigated by estimating the Hurs, exponent„, which ranges between 0and 1. The range 0.5 <
U<1corresponds to apersistent process and the range 0<H<0.5 corresponds „ an
mdependen, process, and the value*-o.5 corresponds to apurely random process. The seating
behaviour has been identified mseveral hydrolog.ca, time series by anumber of investigators
•ncludmg (to mention afew of the more recent stird.es, Koutsoyiams (2002), Koutsoyamus
(2003a), Cohn and Lins (2005), Koutso^is and Montimari (2007), Khali, e,al, (20O8) a„d
Hamed ,2008). I, is hypothesized ma, LTP may reflect me long-term vanab,,ity of several
factors such as solar forcmg, volcanic activity and so on. I, is we,, known ma, me presence of
LTP has significan, nnpac, on me interprdation of trends .dentified under me ^dependence or
short-term persistence (STP) assumptions.



Long memory refer, to me ability ofahydrologica. system to "remember- pas,
states over long term (decad^.Dependence over non period.c cycles is defined as the presence
of extended periods of sim,lar behavior which are of unequal duration (Booth, Kaen and Koveos
(1982). Mandelbro, (1972) argued ma, rosea,*, range (R/S) analysis can detect „„„ period*
cycles even when me cycles have lengths greater man „r equal to the sample period. The
importance ofMandelbrofs (,972) argument is that i, raises me question of whemer R/S ana,ys,s
can be used to detect long tern, dependence. U>ng term dependence to Mandelbrot (1972) means
the "Joseph effect", named after the Old Tesfcmen, prophe, who foretold seven years of
prosperity followed by seven years of famine [Mandelbrot and Wallis (1968)]. The "Joseph
effect" .mplies that atime series has infin.te memory, that is, an even, occurring today will still
have an effec, on events occurring into perpetorty. mstudies ofgeophysical records, Mandelbro,
and Wallis (1969) found anumber of series with intone memory. However, the type of time
series found mmis field very possibly has finite memory cycles that are longer man theu time
samples, and hence, the infinite memory result Mandelbro, (,971) was the first to suggest that
R/S analys* could be usefi.1 in studies ofeconomic da* and provided an economic rationale m
Mandelbro, (.972),,, was tamer argued ma, R* analys, was superior to autocorrelation and
variance analysis since i, could consider distributions wrm mfinite variance and was superior to
spectral analysis because it could detect non periodic cycles.

The problem with Mandelbrot's analys* ™s the adherence to processes with infinite
memcy. In me mamematics of fiactel geometry developed in Mandelbrot (1982), fractals will
continue to scale to infinity. Peters (199!), on the omer hand, argued that in nature, fractius will
Stop seating a, afinite point (e.g, the passage ways in your lungs will stop branching a, some
Mtepom,).Co„s.Ste„, with Peters (1991), i, can be reasonably argued that economic time series



have fimte memory and R/S analysis mus, be used over sub-periods in order to discover the
length of the finite memory or me average non Periodic cycle. Mos, academ.c stird.es to tins
poin, have assumed Mandelbrot's infinite memory process and performed me R/S analysis only
on me complete sample. Mandelbrot however, does acknowiedge me existence of fimte
memo* In Mandelbro. and WaUis (1969), i, is noted tha, observations &r removed in time can
be considered independent and tha, me R/S analysis w.11 asymptotically approach arandom
process. Wim shorter lags, me dependence will be evident b„,a"break" wil, occur a, ,onger lags
and independence will be obtamed. Since Mandelbro, and Wallis (1969) do no, observe such a
"break" in geophysical records, they cons,dered, for practical purples, ma. these time series
exhibit infinite memory Mandelbrot (1972) discussed that there can be short term R/S
dependence where atime series has afinite bu, long memory. I, may well be ma, me time series
has afinite memory and R/S analysis will md.cate dependence, but a. longer lags, a"break"
toward random behavior occurs. From avery long run viewpoint Mandelbrot (1972) considered
this dependence to be aspecial «rans,em, bu, wen, on to say ma, th,s does no, lessen «he
importance of me finite memory component In fact Mandelbrot and Wallis (1969X as well as
Peters (1991), used R/S analysis to deted me well known 11 year cyc,e in sunspo, adivity. They
add awanting ma, processes with astrong periodic element will affed the Hurst phenomenon,
bu, again they did examine me data for infinite memory and tel, ma, these "subharmon.es"
complicate the issue.

In economics, following Peters '(1991) argument, one would expect to find finite
memory processes, and the "break" in the R/S analysis detect these finite memory for non

periodic cycles. Peters (1991) used R/S analysis and aHun* (1951) regression to examine
stock market indices for persistent finite memory and found evidence of afour year



cycle. However, his analysis may be bias*, by short term Marko™„ dependence Dav.es
and Harto (1987) showed ma, conventional R/S analys,s using aHurs, regression cat, be
biased toward accepting along tern dependence hypo«hes.s even when me <rue process is
firs, order autoregress,ve. As aresult U(1991) developed amod.fied R/S ,es, ma,
allows for short-term dependence, „ nonna, datributions, and cond..ional
heterosciasticity under the null hy^mesis. „ addition, cheung (Jm) ^ ^
Cario simulation to show ma. the modnred R/S test is robust to non stationary variance
and ARCH (autoregressive conditional heteroscedastidty) effects. The only problem ,s
ma. me Lo (199,) modification does assume an infinite memory process.

Fortunately, Iflce R/S analysis, it too can be used on different sub-periods (Cheung
and Lai (1993). In me las, decades, the hydrologic and water resources community goes
behrnd the trails of me climatology communhy in an attempt to trace the future of
water resources under climate change. As climatic records do no. venfy aMarkovian
behaviour, its adoption has been combined with adecomposition ofaclimatic series into
components, one of wnich is Markovian e.g., Mann and Lees (1996), performed such a

decomposition on stochastic grounds - by spectral memods - whose phys.cal
fundamental may be disputable The Markovian dependence (also known as
autoregress,ve oforder 1- AR(I)) ,s me mos, typical and simple example ofme so-called
short-term persistence (STP, also known as short-term dependence). STP is contrasted
with long term pentistence (LTP, also known as Hurs, phenomenon, Joseph effect long
memory, long-range dependence, scaling behavor, and multi-scale fluctoation). From a
practical point of view, LTP mdicates tha, me process is compatible with the presence of
fluctuations on arange of timescales, wh,ch may refled the long term variability of



several ladors such as solar forcing, volcanic activity and so forth. LTP can be also
conceptualized as atendency of clustering in time of s.milar evens (droughts, floods,
etc).

2.1 Stochastic characteristic ofhydrodimatic processes

The stochastic characterization of the underlying processes is important in constructing
such models. In general, the stochastic characteristics ofhydrodimatic processes such as
precipitation and runoff depend on the type of data at hand. Hydroclimatic time series

may consist ofasingle time series (univariate series) or multiple time series (multivariate
series). Data may be available on acontinuous time scale or at discrete points in time. For
instance, most hydrologic series of practical interest are discrete time series defined on
hourly, daily, weekly, monthly, bimonthly, quarterly, and annual time intervals.

Hydroclimatic time series are generally autocorrelated. Autocorrelation in some
series such as streamflow usually arises from the effect of surface, soil, and groundwater
storages that cause the water to remain in the system through subsequent time periods
(Salas, 1993). For instance, basins with significant surface storage in the form of lakes,
swamps, or glaciers, produce streamflow series that are autocorrelated. Likewise,
subsurface storage, especially groundwater storage produces significant autocorrelation
in the streamflow series derived from groundwater outflow. Conversely, annual
precipitation and annual maximum flows (flood peaks) are usually uncorrected.
Sometimes significant autocorrelation may be the result of trends and/or shifts in the
series (Salas and Boes, 1980; Eltahir, 1989).

Hydroclimatic series may be cross-correlated. For example, the prestation
series at two nearby sites, or the streamflow series of two nearby gaging stations in a

9



river basin are expected to be cross-correlated because me sites are subject to simuar
climatic and hydrologic evens. As the sites considered become farther apart, their cross-
correlation decreases. However, because of the effed of some large-scale atinosphenc-
oceanic phenomena such as E, Nino Southern Oscination (ENSO), significant cross-
correlation between sea surface temperature (SST) and streamflow between sties
thousands of miles apart can be found (Eltaltir, 19%). Furthermore, one would expect a
significant cross-correlation befcveen astreamflow time series and the contending
areal average precpitation series over the same basin. Hydroclimatic time series are
intermittent when me variable under consideration takes on nonzero and zero values
throughout „e tagm of me record. For instance precipitation ma, is observed in a
recording rain gage is an intermitten, time series Likewise, hourly, daily, and weekly
rainfell are typically intermitten, time series, while monthly and annual ramfel, are
usually non imerntittent However, in semiarid and arid regions even monmly and annual
precipitation and monthly and annual runoffmay be intermittent as well

Traditionally, certain annual hydroclimatic series have been considered to be
stationary, although this assumption may be incorrect as aresult of large-scale climatic
variabilis natural disruptions such as avolcanK eruption, and anthropogenic changes
such as me effect of reservoir consttuction on downstream flow, and me effed of
landscape changes on some component* of the hydrologic cycle. On me omer hand,
hydrodimatic series defined a, time intervals smaller man ayear, such as months,
generally exhmit distind seasonal (periodic) patterns due to the annual revolution ofearth
around the sun, which produces the annual cycle in most hydroclimatic processes

10



2.2 Behavioral properties

a. Overall statistical properties.

The most commonly used statistical properties for analyzing stationary or

non stationary hydroclimatic time series are the sample mean Y, variance s2, coefficient
of variation cv, skewness coefficient g , lag^ autocorrelation coefficient rk and the
spectrum g{f). Coefficients of variation of annual flows are typically smaller than one,
although they may be close to one or greater mstreams in arid and semiarid regions. The
coefficients of skewness g of annual flows are typically greater than zero. In some
streams, small values of gare found suggesting that annual flows are approximately
normally distributed. On the other hand, in some streams ofand and semiarid regions, g
can be greater than one.

The lag-* autocorrelation coefficient rk may be determined as

rk =Cf- k0,2. (2.1a)

N-k

Ck =N£,(yi+>c y)(y> y) (2.1b)
1-1

where Nis the sample size and kis the time lag. The plot of„ versus k, i.e., the correlogram,
may give an idea ofthe degree ofpersistence of the underlying time series, and it may be useful
for choosing the type of stochastic model that may represent the series. When the correlogram
decays rapidly to zero after afew lags, it may be an indication of small persistence or short
memory mthe series, while aslow decay ofthe correlogram is an indication of large persistence
or long memory.

11



b. Periodic (seasonal) statistical properties.

stochastic properties of hydroclimatic time series, as mentioned above

may be determined from either annual series or for seasonal series as awhole, specific
seasonal (periodic) properties may provide a better picture of the stochastic

characteristics of certain hydroclimatic time series that are defined at time intervals

smaller than ayear such as monthly stream flow data. Let the seasonal time series be

represented by yv,r v= 1,.... N; r=1,.... win which v, is the year, r is the season, Nis the

number of years of record, and wis the number of seasons per year (e.g., w=12 for

monthly data). Then, for each season r, one can determine anumber ofstatistics such as

the seasonal mean* variance s'r, coefficient ofvariation cv, and skewness coefficient #,
Furthermore, the season-to -season correlation coefficient rkl may be estimated by

r ckt
K* Z. * Z7~ k=0>]^ *=h ,CO (2.4a)(C0,t-kC0,t) fc

r& - tj- E&v,* -y)(yv,t-k -yt-k) (2.4b)
Jy V=l

The statistics yT„ sr> gr, and rfer, may be plotted versus time r=1, ...,<y to observe

whether they exhibit aseasonal pattern. Generally, for seasonal stream flow series yT >sr,
although for some streams yr, may be smaller than sr, especially during the "low-flow-
season. Furthermore, for intermittent stream flow series, generally the mean is smaller

than the standard deviation, i.e., yT <sT, throughout the year.

The values of the skewness coefficient gr, for the dry season are generally larger
than those for the wet season indicating that data in the dry season depart more from

normality than data in the wet season. Values of the skewness for intermittent hydrologic

13



series are usually larger than skewness for similar non intermittent series. Seasonal

correlations r,r, for stream flow during the dry season are generally larger than those for
the wet season ,and they are significantly different than zero for most ofthe months. On
the other hand, seasonal correlations for monthly precipitation are generally low or not
significantly different from zero for most of the months (Roesner and Yevjevich, 1966),
while for weekly, daily, and hourly precipitation they are generally significant and greater
than zero.

Complex long-term dependence (long memory) ofseasonal flows may be evident
when the correlations rk.T, are significant and decay slowly as kincreases beyond a>
seasons (beyond ayear). These correlations are usually small or not significant for many
streams, but in river systems, such seasonal correlations may persist for several years. In
addition, some streamflow hydrographs such as daily and weekly hydrographs may
possess directionality (nonreversibility), which means that some of their statistical
properties change when direction oftime is reversed. (Fernandez and Salas, 1986)

23 Component ofhydroclimatic analysis

Hydroclimatic time series may exhibit trends, shifts or jumps, seasonality,
autocorrelation, and non-normality. These attributes of hydroclimatic time series are

referred to as components (Salas, 1993). In general, natural and human-induced factors
may produce gradual and instantaneous trends and shifts (jumps) in hydroclimatic series.
For example, a large forest fire in a river basin can immediately affect the runoff,
producing ashift in the runoff series, whereas agradual killing ofaforest (e.g., by an
insect infestation that takes years for its population to build up) can result in gradual

14



changes or trends in the runoff series. Alarge volcanic explosion such as the one at
Mount St. Helens in 1980 or a large landslide can produce sudden changes in the
sediment transport series of astream. Trends in non-point-source water quality series
may be the result of long-term changes in agricultural practices and agricultural land
development. Likewise, shifts in certain water quality constituents may be caused by
agricultural activities such as sudden changes in the use of certain types of pesticides.
Changes mland use and the development of reservoirs and diversion structures may also
cause trends andshifts in stream flowseries.

2.4 Long term phenomenon

Long-term memory refers to the continuing storage of information. In Freudian

psychology, long-term memory would be called the preconscious and unconscious. This

information is largely outside of our awareness, but can be called into working memory
to be used when needed. Some of this information is fairly easy to recall, while other
memories are more difficult to access. Long-term memory (LTM) is memory in which
associations among items are stored, as part ofthe theory ofadual-store memory model.
According to the theory, long term memory differs structurally and functionally from
working memory or short-term memory, which ostensibly stores items for only around
20-30 seconds and can be recalled easily. This differs from the theory of the single-store
retrieved context model that has no differentiation between short-term and long-term
memory. According to Miller (1956), whose paper popularized the theory of the "magic
number seven," short-term memory is limited to a certain number of chunks of

information, while long-term memory has alimitless store. According to the dual-store

memory model set forth by Atkinson and Shiffrin (1968), memories can reside in the

15



short-term "buffer" for alimited time while they are simultaneously strengthening their
associations in long-term memory. When items are first presented, they enter short-term
memory, but because it has limited space, as new items enter, old ones leave. However,
each time an item is rehearsed while it is in short-term memory, it is also increasing its
strength in long-term memory. In long-term store, items are recalled through retrieval
cues in atwo-step process. First, context is used as acue to probabilistically select an
item to be potentially recalled. Second, that item is probabilistically determined to be
recalled or not

Long-term correlations have been first observed by H.E. Hurst, who found "long-
range statistical dependencies- in river-runoff records, and mathematically described by
Mandelbrot (B.B. Mandelbrot, JR. Wallis, Noah, Joseph 1968). In the last decades, it has
become clear that long term correlations are abundant in nature, characterizing, for
example, temperature records (D. Rybski, ABunde, H. von Storch (2007;. hydrological
records, physiological records ,economic records and even records ofhuman activity [P.
(Ivanov et al., 2007). In long-term correlated records, large events well above the
average are more likely to be followed by large events, and small events well below the

average by small events. This persistence occurs on all time scales. For example, aweek
where the temperature is high, is more likely to be followed by awarm week than by a
cold week, awarm month is more likely followed by awarm month than by acold one,
and the same holds on annual and decadal scales, and probably even on centennial scales

(Rybski et al., (2006). This persistence on all scales is characterized by an autocorrelation
function that decays in time by apower law, C(*) ~s^ with an exponent y between 0and
1.
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While investigating the discharge time series ofthe Nile nver for the des,gn ofthe
Aswan Hrgh Dam, Hurs. (1951) discover*, aspecial behavior of hydro,og,cal and other
geophys.cal time series, which has become known as the - Hurst phenomenon" This
behavior is essentially the tendency of wet yeare to cluster ,„„, ^ ^ or rf ^
years to cluster into drought periods. The term "Joseph effect" introduce by Mandelbro.
(1997) has been used as an alternative for the same behavior .Since its discovery, me
Hurs, phenomenon has been verified in the several environmental quantities, such as
wind power variations (Haslet, &Raftery. ,989), g,„bal mean tempen.ti.re (Bloom field,
1992), flow of me R,ver Nile (Ehahir, 1996 ), flows from me river warta, Poland
(Radziejewski &Kundzewicz, 1997), monmly and daily inflows of lake maggiore, Italy
(Montanari «a,., ,997), annual stream flow records across me continent United States
(Vogel e, a.., 1998), an indexes ofNorth Atlantic Oscllation (Stephenson e, al., 2000). In
addition, the Hurs, Phenomenon has gained new interest today due to its relationshm to
climate changes (e.g., Evans, 1996).

Biologically, short-term memory is a temporary potentiation of neural
connedions that can become long-term memory through me process of rehearsal and
meaningftl association. No, mud, is know, abou, me underlying bioIog.cal mechamsms
of long-term memory, bu, me process of long-term potentiation, which involves a
Physical change i„ me stiuctore of neurons, has been proposed as the mechanism by
which short-term memories move into long-term storage. The time scale involved a, each
level ofmemory processing remains under investigation. As long-term memory ,s subjed
,o lading in me natera, forgetting process, several recalls/retrievals of memory may be
needed for long-term memories to last for years, dependent also on me depth of
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processing Ind,vidual retiievals can teke place in increasing intervals in accordance wim
the principle of spaced repetition. This can happen qulK „atUraIly .hrough reflection or
deHberate recall (also known as recapitulation), often dependent on the perceived
importance of the material.

There are actually three different types (or aspec* or parts) oflong-term memory,
the Ep.sodic memory, Semantic, and procedural memory. (a)Episodic memory: This
refers to our ability to recall personal experiences from our past When „„e recoun,
evems that happened during his/her childhood, aballd or food taken at breakfest, one .s
employing ,„„g.,erm episod.c memory. As me name suggests, this aspect of memory
organizes information around epBodes in our lives. When one tries to recall the
information, one attempts to reconstiud these episodes by picturing the evens in our
minds. Ep,sodic memory enables us to recall not only events, but also information related
to those evens. For example, abaseball coach feced wim an unusual shuation requiring a
rule interprdation ntigh, mink like mis: "I remember asimilar situation in aprofessional
baseball game.. When was it..? Las. year... Reds vs. Giants... ft was a.tight game, and
the Giants had runners on first and second, when aIme drive bounced and h„ the
ump,re... What was the call...? Imink «hey gave me batter asingle and Id me runner
advance one base... Bu, Ithough, when me ball hi, the umpire i, renamed in play....
Now Iremember! If the umpire is i„ front „f me fibers, ift adead ball and asingle. If
the umpire would have been behind me fielder, i, would have remained ,n play...."
(b) Semantic memory: Semantic memory stores fads and generalized .nformation ft
contains verbal information, concepS, rules, principles, and problem-solving skills
While episodic memory stores information as images, semantic memory stores
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information in networks or schema*. Information is most eas..y stored in semantic
memory when ,, ,s meaningfc, . „*, ,, ^ related fc .^^^^

schemata By using information on numerous occasions after i, has been initially learned,
we solidify the connedions among element, of information, make ., easier to remove
when we need to use it, and make i, more likely that mis information w.l be avatiable to
help us accept and store additional information in the future

(OProcedural memory: Procedural refers to the abilny to remember how to perform a
task or to employ astrategy. The steps in various procedures are apparently stored in a
series of steps, or stimulus-response pairings When one retrieve information from
procedural memory, one retrieve one step, which triggers the next, etc

These various parts of long-term memory do no. operate in isolation from one
another. While i, is no. clear how «hey work togdher, i, is dear that they are related and
overlap For example, ateacher who is asked to write aletter of recommendation for a
former student might wish to retrieve information about me ab.lity of ma, smden,
compared to omer students T„ do oris, he/she m,ght firs, use episodic memory to form
an image ofma, student as areal person performmg .eal adivities .„ h.s/her class several
yea* ago, and mis image migh, help her recall specific detitils of class performance and
term papers written by that student Likewise, acollege student writing apaper in a
history course on mercantile ntight firs, ,isten ,„ Cr read asemantic presentation on the
topic, perform an episodic memory search to recall instances in his own life when he
himselfexpenenced what me teacber was talking about, recall the semantic definitions of
related terms from another course, and continue mis process until he fel, he could
understand and integrate the new mformation. The key ingredient that faciltiates long-
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term storage is meaningless. This term refers no, to me inhere* interes, or worthiness
of information, bu, ramer to me degree to which i. can be related to information already
Stored mour long-term memory. One concept or piece of mformation is more mean.ngfl.1
man another if the learner can makealarger number ofconnections between «ha, plece of
.nformation and other information already in long^erm memory. Theordically, me
capactiy of long term memory could be unlimrted, me main constrain, on recall being
accessibility rather than availability.

In stetistical terms, me presence in atime ser.es of long term Auctions .mplies
dramaticaUy increased uncertain*, especally on k>ng timescales, in comparison „
class,cal stetistics. This is easy to underhand, as me observed record could be asmall
portion ofalonger cycle whose characteristics might be difficult to infer on the basis of
the ava.lab.e observations. In this respect mprocesses characterized by LTP, the resufts
of the statistical analysis may be difficult to decipher. As aconsequence, the appl.ca.ion
of statistical tools to climatic time series should be carefully considered and class.cal
statistics should be carefully revisited to locate poims ma, may produce m,s.eadmg or
incorrec, resuhs. mstochastic terms, STP a*d LTP are concep.ual.zed in terms of
conditional probabihties for me futore given pas, observations. Thus, maMarkovian
process, the fin™ ,s no, mfluenced by me pas, when me present (a time .nstant) ,s
known whereas in aprocess exhibiting LTP, the mfluence of the pas, (me entire h,story)
never ceases. Bom Maricovian dependence and LTP, can resul, from physical pnncple,
For example, me maximum entropy principle res„hs in Markovian dependence if me
maximization ofentiopy is done on aparticular timescale and in LTP ifme max.miza.ion
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is done on arange of timescales (Komsoyiannis, 2005b). Despite dominance of me
Markovian oehavor in Cmatologists" vews, its two aforementioned features (non
influence of me past exclusiveness ofasmgle scab of flucteation) and other featores
m.gh, make i, implausible. Probability, stetistics and stochastic processes prov.de
matitematical tools to descnbe LTP convenientiy and efficentiy. To fight acommon
misconception, ,, should be stressed that the use of such to„,s should no, be confused
with admitting „a, titings happen spontaneously and randomly or whhou, acause. I, is
well known today (from chaos literatore) ma, even asimple nonlmear system w.th purely
determi„,s,ic dynam,cs may trace an irregular trajectory, whose future may be
unpredidable mdetermntistic sense. Unpredidabihty or fetore uncertainty depends then
on the degree of nonhnearity and the dimensionality (number of degrees of freedom) of
the deterministic system as well as the time horizon of pred,dion. For chaotic systems,
me determine dy^ntics canno, produce agood prediction for alarge time horizon
This is particularly the case ,» high-dimens,onal systems, where astochastic approach
may give better resuhs (mean prediction and uncertamty limits) man apure determine,
approach. Tins .s reflected for instence in me recently developed method of ensemble
weamer predictions, amemod based on me ,dea of Monte Carlo (,e. stochastic)
simulation, whose use has now been generalized in meteorolog.cal services.

An example ofmis type, more closely related to the subject ofmis study, has been
proposed by Koufcoyannis (2006). This example deals wim asimple toy model ma, was
devised to numic the evolution of long hydrocUmatic time series The mode, i purely
determine (mvolving „„ random component) and nonlinear, and has only two degrees
of freedom Apphcation of me model demons«rates ma. (a) extremely simple
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deterministic dynamics can produce trajectories exh,bi,ing LTP; (b) large-scale climatic
fluduations („ke upward or downward trends) can emerge wrmou, any apparent reason;
and (c) deterministic dynamics do no. help predid cbmatic evolution, ever, in me case of
the caricature model wm only ^ degrees offreedom. Thus, mis demonsm.tion justifies
(a) the utiltiy ofastochastic description even for systems wim perfedy known purely
determine dynam,cs and (b) me presence ofLTP in al, examined hydro C.matic series

To date, there is considerable empirical evKlence for the presence of LTP rn
hydrocl.ma.ic and omer geophysical records, as well as time senes from other fields. In
fact, the history of LTP stiuted more man hatf acentory ago, after tis d,scovery in
geophysics by Hms, (1951), almough, .„ amamematica. (stochastic processes) and
Pl.ys.cal contex, (torbulence), „, ^ ^ ^ ^^ ^̂ ^ ^
Kolmogorov (1940), and Shiryaev (1989).

Throughout these decades, me studies prov,ding indications ma, LTP may be
omnipresen, in several natera, (hydrochmatic, geophysical, b,o,og,cal) and human
associated (socal, econonucal and technological) processes have been so numerous ma,
i, is difficult to shape acomplete pidure; ye,,, is worm givmg some recen, examples
(which contain addrtional references). LTP properties oftemperatiue a, apota, regional
or global basis, have been studied by Bloomfield (1992), Koscelny-Bunde e, al., (1996,
1998), Pelld.er and Turcotte (1997), Komsoyannis (2003X Monetti dal., (2003) and
Koufcoyanms d al., (2006). Similar analyses have been conducted for omer
climatology time series including wind power and mdexes of North Atiantic
Oscillation (Hasld &Raftery,, 989; Stephenson «al, 2000) as well as proxy series such
as tree-ring widths or isotope concentrations (Pelletier and Turcotte, 1997;
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Koutsoyiannis, 2002; Beran „, Feng, 2002; Craigmile, 2004b) Numerous studies have
ind.cated LTP «hydr„l„g.ca, time series and particularly .„ nver flows (E,^, I996;
Montanari d al, ,997; Pelletier and Turcotte, .997, Koutsoyiannis, 2002, 2003;
Radz.ejewsk. and Kundzewicz. ,997; Sakalausk,™, 2003; Yue and Gan, 2004-
Koscielny-Bunde, 2006). Sintilar findmgs have been reported ,„ divorce sdentific fields
such as b.ology (Peng dal., 1994), physiology (Hausdorffetal., (1997X economics (Ray
and Tsay, 2000), and Intemd computing (TOuagiamtis «al, 2004). The sintilarity of
behavours msuch diverse complex systems should no, be regarded as comcdence;
rather some fimdamental explanation behind mis should be mvestigated, as is for instance
the Central L,m.t Theorem (CLT) for me emerging of me normal distribution in diverse
processes Perhaps, mis explanation is me princple of maximum entropy, wh,ch also
produces me normal d^tribution independently ofCLT (Koutsoyiamris, 2005a, b). Most
recentiy, the presence ofLTP in temperatiore data has been considered by Cohn and Lms
(2005) and Rybski e, al.,(2006). Bom have found ma, instrumental records and
reconstructed time series of te.nperati.re are compatible with the hypothes* ofLTP and
therefore suggested ma, this property should be teken mto account in statistical tests.
Earlier, Koufcoyamtis (2003) amved a. similar conclusions, arguing tha, mere is me
need in hydroclimatic research to adap, classical stetistics, wh,ch is based on me
IndependeuMdemically-Distiibuted (UD) paradigm, so as to account for the observed
LTP behavior. Also avariety of methods shed light on the statistical problems related to
LTP (Beran and Feng, 2002; Kantelhardt etal., 2002; Craigmile, 2004a, b)

In tins respect, Cohn and Lms (2005) and Rybsk, e, al., (2006, have suggested a
necessary rectification of me prevaHing incorrect practices. Bom have proposed stetistica, tests,
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wh,ch mey have ..lustiated essentially on the same chmatic record; for example, me •nsti.men.a.
tempe.ti.re record of the Northern Hemisphere between ,856 and 2004 (due to Climatic
Research Un„ -CRU). ^ LTP and trend properties ofmK record had been stodted earlier by
Sm.m (1993), Beran and Feng (2002), and Craigmtie dal., (2004a, Cohn and Lins ,2005, and
Rybsk. da,., (2006) focused on me we., known detection problem (whemer or no, chmatic
changes have occurred) and attribution problem (whether or no, observed changes are related to
anmropogenic forcing of «he Cmate system) Interesting,,, however, mdr conclusions on mese
problems are opposite. Rybski da.., (2006) conclude ma, me hypomesis ma, a, leas, part ofme
recen, warming canno, he so.e.y rented to natural factors can be accepted wrth avery low risk
Cohn and Lms (2005) stated ma, glven ^ is _ ^ ^ ^^
perststence, and non-hneanty of me climate system, tins warming can be due to natiual
dynam.cs This d.agreemen, may indicate tha, our understimdmg ofme behavor ofLTP and tis
consequences in chmatic arutiyses and stetistica. testing ,s „ot^^ya ^ ^ ^^
•ns.gh«s are needed, ft, conclusion, long memory ,s ahydro.og.ca, property ft* can ,ead to
prolonged drough* or the temporal clustering ofextreme floods in ariver. Arulysis of 28 Long
(UP to .45 years), continuous instinmema, runoff series from s.x European, American and
African rivers revealed ma, tins effect mcreases downstream. Sunulations reproduce me increase
qualitatively and show tha, ariver network aggregates short-memory prestation and converts
•t mto long-memory runoff ft, yew of the projected charges in climate and me hydrologica,
cycle, mese findmgs show tha, decadal- scale variations in drought or flood nsk can be predicted
for manuals rivers wim higher predictabihty downstream. Spatial aggregation, may afco
explam fte emergence of long memory in omer networks, such as the bntin or mose formed by
computers.
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However Litentiure has proven over me years ma, mere are severa. approaches m
determmmg ,ong term memory; examples are: C.ass.ca, rescaled range, mod,fied rescale
memcd, Aggrega,ed vanance mdhod (Avm), aggregated stendard devotion memod (Asd),
detrended fluctuation analysis, (DFA).

»• Aggregated standard deviation memod (asd)

The memod is based on the analys,s of the variability of the date aggregated a,
dtiferen. time scales. Specmcally, le, X, be astetiomuy process on d^crete time ,
(referring to years in our case) wim (true- orwMstendard delation .and ,e,

yWj' + - + Ui
' K (2-5)

denote the aggregate (average) process at time scale *, ** (true) standard deviation
Athe notation implies that l*> . Xiy For sufficiently ^ , ^ ^^ ^
chmatic process; Now,LTP is expressed by the elementary scaling property

K1-" (2.6)

where His me Hurs, exponent, which for stetionary and postiively correlated processes
varies in ft, nmge (0.5,,) „. o, mea.s independence and mcreasmg values represen,
increasing LTP intensities.
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b. Detrended fluctuation analysis (dfa)

The Defended Flucteation Analys,s (DFA, Kawe.l-establ.shed memod for
determmmg fte scalmg of long^n correlations .„ me presence of .rends wtthou,
knowmg ft* origm and shape (MS. Ta„u, V. Teverovsky, W. WilHnger (1995). The
DFA depends less on fintie s.ze effects and can el.minate systematically .olynom.a,
trends, In DFA, one cons,ders me cumulative sum Cprofile, of fte Wi and stodies ,ts
fluctuation around polynomial best fhs in time window ofsize s.
In general, the DFA procedure consists ofthree steps:
(1) Determine the profile:

i

no=£<ofe (27)
k=l

of me (deseasoned, record .<« of lengm Nand cu,,, mto N, -m, (N/s, non-overlappmg

(2001).

(3) Average over a„ segment, and teke me square too, to obtem ft. DFA(„) flucteation
function:

1/2

F{n>(s) =

For differen, detrending orders „, one obtams different fluctuation tactions F«(s) For
•ong-term correlated date wiftou. determmistic trend, meF«Wall scale me:

same,
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Fw(S)~Saa
(2.9)

with

an =l]-r/2 forO<K<i
{ V^ fory > 1.

(2.10)

By definition, DFA„ eliminates trends of order „in the orofil. ^ u
er nmthe profile which represent trends of

ordern-lintheoriginalrecord.

25 Detecting long memory and modelling.

""presence°f'-"-->." atime series can ,e detected by estima,mgfte-eoffteHurs.exp.en.^^,^^^^^^^

Prov.de me firs, .„d,catio„ ofdefter long memory is presen, ,„ fte da(a „^
Heunstic methods, such as fte R* estimation procedures have been mostiy apphed to
-ualtimesenes.Paststed.eshaveoftencometoco.lusionfta.fteflowdatecana.o
beweUfi.byashor.-memo^model.How.ver.amtua.timeseriestendtobeshor.Tbis- and potential lack of rehab,* „f fte „ meftod when dealmg .ft short sample
» ^motivated .urfteranalysis using ofter probable robus, approaches

Seasonal stochastic processes are freq„ently app„ed to hydrolog, time series .„
order to mode, date affected by anon^erm^ Per.odK component Tb,s approach
^"'"^"••^^^^^^^^
Peachy of fte weafter. Seasonal autotegressrve mtegrated movmg average (ARJMA)
n.ode,s,aheadycorB,eredbyBoxa„d^ms(,976,a„d&,,ydescnbalbyBr„ckwe,,
-Daysf^O.are.delyapp^^fterformulation^^^^^
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by salas et al., (1982), who developed an estimation procedure for ARJMA models with

periodic coefficients. However, all these models tailed in modeling data affected by long-
term persistence, because they are not able to reproduce the autocorrelation pattern of

data affected by long memory. This can be an important limitation, since long-memory
was found by many authors to be present in hydrological records. (Lawrance and

Kottegoda, 1977; Momtanari et al., 1996,1997). Seasonal long-memory models were

considered by Gray et al., (1989), who developed the so - called GARMA (Gegenbauer

autoregressive moving average) model, astochastic process able to model long-lasting

and non deterministic periodic components. This model is not able to take into account

both seasonal and non seasonal long memory. Another periodic long-memory model was

introduced by porter - Hudak (1990) and hassle (1994), who developed a seasonal
fractional differencing filter.

Recentiy, Giraitis and Leipus (1995) developed a generalized form of the

FARIMA model, which combines periodic and non periodic long memory. Both the

seasonal fractional differencing filter and the GARMA model are special cases of the

generalized FARIMA model which allow the modeling of a wide variety of periodic

processes. This very flexibility however, sometimes makes the identification procedure

difficult to perform. Thus, the identification of some special cases of the generalized

FARIMA process, having a clearly identifiable covariance structure (Such as the

GARBVIA model), can help the analyst in choosing the right formulation ofthe model for
the data.
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CHAPTERTHREE

3.0 MATERIALS AND METHOD

3.1 Study area

I

j Kaduna state is located on the southern end of the high plains of northern Nigeria,
jbounded by parallels 9»03'N and n»32'R and ex^
JEto 8° 48' Eon the foot slopes of the scrap of jos plateau. Stream valley incisions and
jdissections ofthe high plains are evident in several areas, especially in the Zaria region, they are
Idue more to anthropogenic influences and climatic factors than regional geologic instability.

The state experiences a typical tropical continental climatic with distinct seasonal

regimes, oscillating between cool to hot dry and humid to wet These two seasons reflect the
influence of tropical continental and equatorial maritime air masses which sweep over the entire
country. However, in Kaduna state , the seasonality is pronounced with the cool to hot dry
season being longer, than the rainy season. Again the spatial and temporal distribution of rain

varies, decreasing from an average of about 1530mm in Kafanchan and kagoro areas in the
southeast to about 1015mm in Draramakarfi districts in the northeast High storm intensities
(ranging from 60mm hr 1to 99mm hr 1) phis the nature of surface run of build up the good
network of medium sized river systems. High Evaporation during the season, however, creates
water shortage problems especially in Igabi, Giwa, Soba, Makarfi and Ikara LGAs.
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Plate 3.1: Map ofKaduna State showing Local Government Areas.

3.2 Data assembly and management

3.2.1 Data Used

In this study, streamflow, Temperature, rainfall, and evaporation data from

Kaduna is used, atotal of26years (1980-2005) to be precise. For purposes of this study,
the daily flow data were aggregated to monthly flow series by taking the average ofeach
month's flow.
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3.2.2 Data Preprocessing

To investigate the long-term memory, seasonality or periodicity must be

removed. Processes which induce non stationarity in the mean are particularly
problematic, since these are most likely to lead to spurious detection of long memory.
Generally seasonal or periodic variations in the mean, variance, and covariance are to be

expected. These are sources of non stationarity and should be carefully accounted for

when modeling the data. To remove the seasonality in the daily and monthly series, the
series were standardise; standardisation was done by applying

m(i)-—- 3A
Si

Where, Xis the daily mean, s, the standard deviation, and xt is the data
series

3.3 methodology

33.1 Classical rescale range (R/S)

The classical R/S-analysis aims at inferring from an empirical record the value of

the Hurst parameter for long-range dependent process that presumably generated the

record at hand. In practice, classical R/S-analysis is based on a heuristic graphical

approach where the resulting R/S values are plotted against the lag in alog-log plot (pox

plot) to yield a straight line with slope equal to H(i.e., the Hurst exponent) in this

context, the R/S statistic is the range of partial sums of deviations (R) of times series

from its mean, rescaled by its standard deviation (S). Thus, given a sample of N

observations and2 ^ " ^ N, onecan define
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x(».»)=Z[*>-<*>-]

*(»)=mKX(,,»)-rjtaX(/,»)

*(«)=

l<i<B

-)l/2
1 "

L" .=1

3.2

3.3

3.4

3.5

Hurst (1951) found that

E[R(n)/S(n)]-(f)" 3.6

where the ratio ofR(nys (n) is defined here as Q», and His the Hurst exponent while n
is the number of segments or blocks; similarly, Xand <x>represent the demeaned and

mean of the data points in each blocks respectively. To this end, for any lag nand

2*»*N, there are Int [Mfe] estimates of*f») and S(n) where the eventual value of
R(n)/S(n) is averaged over all the estimates ofR(n)/S(n), precisely over all Int [N/n].

In this study, equations (3.2-3.6) were estimated for both the daily and monthly
series. In doing so, suppose wis aseries ofnatural integers such as 1, 2, 3, and Nis total

observations, nseries is set as 4, 5, .., " **/* for both daily and monthly flow series

while the R/S statistic was calculated for 155 for monthly and 288 for daily
logarithmically spaced values ofnrespectively.
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33.2 Aggregated variance memod

For the given time series X, of length N, the corresponding
aggregated series isdefined by

km

r(m) r . 1
)(fc)=m X X« *=U

i=(k-i)m+i

for successive values ofm. Its sample variance iis

1 ^

(3.7)

W"° =WZ>(m)(*) " EX(m)? (3-8)
m *=1

In this study, equations (3.7 and 3.8) are estimated for both the daily and monthly series.

The sample variance Var*™ should be asymptotically proportional to mm2 for large
N/m and m,where mis number of blocks and the resulting points should form astraight
line with slope |3 =2H -2 and -1 <0<0. suppose wis aseries ofnatural integers such

as 1, 2, 3, and Nis total observations, mseries is set as 2, 3.. ., w*N/2 for both daily
and monthly flow series while the Variance was calculated for 155 for monthly and 290
for daily logarithmically spaced values ofnrespectively.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Presentation ofresult
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F,g4. 1Pox plots ofthe Daily flow (m3/s): (a) R/S analysis, (b) Aggregated Variance method; n
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Fig 4.2 Pox plots ofthe Monthly flow (m3/s): (a) R/S analysis, (b) Aggregated Variance method
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Fig 4.3 Pox Plot of the Monthly Evaporation (mm) (a) R/S analysis, (b) Aggregated Variance
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4.2 Summary ofresults

Table 4.1 Rescaled range statistic (R/S)

1 lme series Hurst exponent (H)
Standardized daily flow (m /s)

0.9086

Standardized monthly flow(m3/s)
0.2145

Standardized monthly evaporation(mm)
0.3908

Standardized monthly rainfall(mm)
0.5370

Standardize monthly temperature(mm)
0.4743
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Table 4.2 Aggregated variance method (AVM)

Standardized daily flow (m7s)

Standardized monthly flow(m3/s)

Standardized monthly evaporation(mm) _1 6598

Standardized monthly rainfall(mm) _097l5

Standardize monthly temperature(mm) -1.0988

Slope Hurst exponent (H)

-0.3560 0.8220

1.2654 0J673

0.1701

0.5142

0.4506

'HU,St e^°«" (H) is computed according tefle Equation: Slope p= ZH^^^^r
chapter three ofthis work

4.3 Discussion of result

The two heuristic memods described in Chapter three were used te evaluate me Hurs,
exponent in me flow, Evaporation, Rainfall, and Temperature series Bom me R/S and me
Aggrega,* Variance pox plo, sugges, ma, Umg-memory componen, may be presen, in me
Daily flow series (F.gs 4. la, 4.1 b) Bu, me scerano presented above is comply d,fferen, for
me monmly series (i.e., Stream flow, Evaporation, Rainfcl. and Temperate (extreme even,).
The values of Hobtained appIyi„g me R/S statistic and me aggregated variance memod
respectively for monmly series as mentiored above indicate me absence of long-memory
component 4.2a, 4.2b, 4.3a,4.3b, 4.4a, 4.4b,4.5a and 4.5b). TO, resul, accords wim me
findmgs of MY. Cache (2008) in hK Contemporary Analysis of Benue River flow Dynamics
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- Meddling, Because of me relative,, sfc,r, lengm of me da. series and „s probable
vanabih-y, mere „VB.b,e present of^.^^ ^ ^ ^ ^^
and excess scatter winch may cause uncer^ mme slopes and mus render me computed
value of me Hurs, exponen, mKalisoc ^ 4,„ ^ ^ ^ ^ ^ ^ ^
especally „* me aggrega*. vanance memod. maddmon,,, is imporB„t to note _ „„ me
fmdmgs te me sandard^tion ofbom me mean daily and monmly senes does grea„y explams
the vanance in the original data.
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CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Based on me heuristic tests carried o„, „» me stream flow, evaporation, rainfall and temperas
-es usingmeclassical R/S and me aggregated variance memod, in terms of«he Hurs, exponen,
values, one comes ,„ me conclusion ma, me daily flow series may display long-term memory
a.»o„ghi,isdifflcu,,toes,in,,eprecise,ymemeasureofpersisttnce.T1,e„merseries ,. me
-mly series (i.e., Stream flow, evaporation, ramfall and temperate) examined show ma,
mere ,s „„ disced reason to suspec, me presence of ,„„g.,erm memo,,, indicati„g mat ^
, no sigmflcan, serial correlations in me series. Considering me fac, ,ha, Ihm.ed date is used for
-lysis in mis smdy and only sandal were done as memod of date preprocessing me
resul. chained here are inconclusive from practical poin, of view ramer man academic and mas
subject to further analysis.

5.2Recommendations

In considering how importen, were simulation ^ modeling fa^^^ ^^
process, „is merefore recommended ma, robus, heuristic mettods, long lengm of date and
•mporamly, deseasonalisation ofdaa based on classical harmonic analysis be employed.
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