

CPT 411 COURSE GUIDE

Contents

Introduction ... iv
What You Will Be Learning in this Course .. iv
Course Aim ... v
Course Objectives ... v
Working through this course ... vi
Course Material ... vi
Study Units ... vii
Presentation Schedule ... viii
Assessment ... viii
Tutor-Marked Assignment (TMAs) .. ix
Final Examination and Grading ... ix
Course Marking Scheme .. x
Facilitators/Tutors and Tutorials .. x
Summary ... x

iii

CPT 411 COURSE GUIDE

Introduction

Net-Centric or network centered computing is an ongoing area in the
twenty-first century with a great interest among software engineers as it is
an enabling technology for modern distributed computing systems and
applications. Today, Net-Centric applications have invaded the lives of
people in many ways. Net-Centric Computing (NCC) is a distributed
environment where applications and data are downloaded from servers and
exchanged with peers across a network. Net-centric Computing focuses on
large-scale distributed computing systems and applications that
communicate through open, wide-area networks like the Internet. General
examples of large-scale network-centric systems are the World-Wide Web
and Computational Grids. For several years, major changes are being
brought to the world by universal networking capabilities, such as the
Internet. Today’s technology solutions represent the convergence of
computing power, networking capability and the information, data or
knowledge that forms the content of these solutions. Net-centric computing
refers to an emerging technology architecture and an evolutionary stage of
client/server computing. It is a common architecture built on open
standards that supports in different ways for different people to collaborate
and to reach different information sources. The evolutionary nature of net-
centric computing links technological capabilities and strategic
opportunities, helping people in facing today’s new problems and providing
the flexibility to meet tomorrow’s challenges.

What You Will Be Learning in this Course

This course consists of units and a course guide. This course guide tells
you briefly what the course is about, what course material you will be
using and how you can work through these materials. In addition, it
advocates some general guidelines for the amount of time you are likely
to spend on each unit of the course in order to complete it successfully.
It gives you guidance in respect of your Tutor-Marked Assignments
which will be made available in the assignment file. There will be
regular tutorial classes that are related to the course. It is advisable for
you to attend these tutorial sessions.

This course teaches the technology on which everything in the world,
ranging from education, commerce, communication to even the home,
runs which is inter-network.

iv

CPT 411 COURSE GUIDE

Course Aim

The aim of the course is to furnish you with full knowledge on inter-
networking. It teaches how systems connect one with the other,
communication modes, two or more systems processing, a single but
divided large tasks executed together simultaneously, transmission
technologies and much more.

Course Objectives

To achieve the aims set out, the course has a set of objectives. Each unit
has specific objectives which are included at the beginning of the unit.
You may wish to refer to them during your study to check on your
progress. You should always look at the unit objectives after completion
of each unit. By doing so, you would know whether you have followed
the instruction in the unit.

Below are the comprehensive objectives of the course as a whole. By
meeting these objectives, you should have achieved the aims of the
course as a whole. In addition to the aims earlier stated, this course sets
to achieve some objectives. Thus, after going through the course, you
should be able to:

Identify the configurations of Distributed systems
Describe the standards of wireless technology
Implement security schemes or ciphers on the
network Explain the categories of networks
Define the concept of Parallel Systems
Classify parallel Programming Models
Describe Message Passing Programming
Explain the concept of:

 Dependence Analysis o
Open MP Programming o
Evaluation of Programs
oOptimizations for Scalar Architectures and Models for Parallel

Computing
Dependence Analysis, Open MP Programming, Evaluation of
Programs, Optimizations for Scalar Architectures and Models for
Parallel Computing.
Explain the concepts of Distributed

systems: o Characterization of Distributed systems
osystem models
odistributed objects and
oremote method invocation
Implement the concept of Distributed transactions:
oExplain flat & nested distributed transactions and concurrency

v

CPT 411 COURSE GUIDE

Explain Service-oriented architectures:
 Identify the characteristics of SOAs, Hadoop and

Spark Define Mobile and wireless computing
o Enumerate the Technologies for Wireless Communication o
Explain wireless cellular systems
oAppreciate wireless network technologies

Discuss Wireless Application Protocols: Mobile IP, WAP, SMS,
Bluetooth
Implement the Frameworks for mobile application development
(e.g Ionic, React Native, Xamarin, Adobe PhoneGap, J2ME)

Define Cloud computing:
oExplain the cloud computing technologies, infrastructure, and

architecture
Discuss Cloud computing development models (public, private,
community and hybrid cloud), service models (SaaS, PaaS,
IaaS).Improve their data privacy through hardware protection

Working through this course

To complete this course, you are required to read each study unit, read
the textbooks and read other materials which may be provided by the
CODEL

Each unit contains self-assessment exercises and at certain point in the
course, you would be required to submit assignments for assessment
purposes. At the end of the course there is a final examination. The
course should take you about a total of 17 weeks to complete. Below,
you will find listed all the components of the course, what you have to
do and how you should allocate your time to each unit in order to
complete the course on time and successfully.

This course entails that you spend a lot time reading. I would advise that
you avail yourself the opportunity of comparing your knowledge with
that of other learners.

Course Material

The major components of the course are:
 Course Guide
 Study Units
 Presentation Schedule
 Tutor-Marked Assignments
 References/Further Reading

vi

CPT 411 COURSE GUIDE

Study Units

The study units in this course are as follows:

Module 1 Net-Centric Computing Fundamentals
Unit 1
Unit 2
Unit 3
Unit 4
Unit 5

Introduction to Distributed Computing
Mobile and Wireless Computing
Network Security
Client/ Server Computing (Using the web)
Building Web Application

Module
2 Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6

Parallel Systems
Introduction to Parallel Systems
Parallel Programming Models
Message Passing Programming
Dependence Analysis
Open MP Programming
Evaluation of Programs

Module
3 Unit 1
Unit 2
Unit 3
Unit 4
Unit 5

Distributed Systems
Introduction to Distributed Systems
Systems Models
Distributed Objects
Remote Methods Invocation
Using UML for Component Based Designs

Module
4 Unit 1
Unit 2
Unit 3
Unit 4

Distributed Transactions
Introduction to Distributed Transactions
Flat and Nested Distributed Transactions
Concurrency
Characteristics of Service Oriented Architecture- Hadoop
& Spark

Module 5

Mobile & Cloud Computing

Unit 1
Unit 2
Unit 3
Unit 4

Unit 5

Introduction to Mobile and Cloud Computing
Technologies for Wireless Communications
Wireless Cellular Systems
Overview of Wireless LAN, IEEE 802.11, Personal Area
Network, Bluetooth
High Speed Wireless Network: HiperLAN

The first module introduces Distributed Computing, dynamic devices and
mode of transmission, security of connected and communicating systems

vii

CPT 411 COURSE GUIDE

using ciphers, Client and Servers communication and building of web
applications.

Module Two explains parallel systems and parallel programming
models. Other issues treated are Message passing Programming,
Dependence Analysis, Open MP Programming, Program Evaluation
using Algorithms, Optimizations for Scalar Architectures and Models
for Parallel Computing.

In module Three, we have discussed connected Systems, its models and
characteristics, Distributed Objects, Remote Method Invocation and
using UML for Component Based Design. Module Four treated
Transactions on Connected Systems, Flat and Nested Distributed
Transactions, Simultaneity or Concurrency. Module Five introduces
Mobile devices and the Internet, Wireless Communications
Technologies, Wireless Cellular Systems, Wireless Local Area
Networks, Personal Area Networks, IEEE 802.11 and Bluetooth and
High-speed Wireless Networks

Each unit consists of one or two weeks’ work and include an introduction,
objectives, reading materials, exercises, conclusion, summary, tutor-
marked assignments (TMAs), references and other resources. The units
direct you to work on exercises related to the required reading. In general,
these exercises test you on the materials you have just covered or require
you to apply it in some way to assist you in evaluating your progress and to
reinforce your comprehension of the material. Together with TMAs, these
exercises will help you in achieving the stated learning objectives of the
individual units and of the course as a whole.

Presentation Schedule

Your course materials have important dates for early, timely completion
and submission of your TMAs and attending tutorials. You should
remember that you are required to submit all your assignments by the
stipulated time and date. You should guide against working behind
deadlines.

Assessment

There are three aspects to the assessment of the course. First is made up
of self-assessment exercises. Second, consists of the tutor-marked
assignments and third is the written examination/end of course
examination.

You are advised to do the exercises. In tackling the assignments, you are
expected to apply information, knowledge and techniques you have
viii

CPT 411 COURSE GUIDE

gathered during the course. The assignments must be submitted to your
facilitator for formal assessment in accordance with the deadline stated
in the presentation schedule and the assessment file. The work you
submit to your tutor for assessment will count for 30% of your total
course mark. At the end of the course, you will need to sit for a final or
end of course examination of about three hours duration. This
examination will count for 70% of your total course mark.

Tutor-Marked Assignment (TMAs)

The TMA is a continuous assessment component of your course. It
accounts for 30% of the total score. You will be given four TMAs to
answer. Three of these must be answered before you are allowed to sit
for end of course examination. The TMAs would be given to you by
your facilitator and should be returned after you have done the
assignment. Assignment questions for the units in this course are
contained in the assignment file. You will be able to complete your
assignments from the information and material contained in your
reading, references and study units. However, it is desirable in all degree
level of education to demonstrate that you have read and researched
more into your references, which will give a wider view point and may
provide you with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the
deadline given in the presentation schedule and assignment file. If for
any reason you cannot complete your work on time, contact your
facilitator before the assignment is due to discuss the possibility of an
extension. Extension will not be granted after the due date unless in
exceptional circumstances.

Final Examination and Grading

The end of course examination for Net-centric Computing (CIT412) will
be for three (3) hours and it has a value of 70% of the total course score.
The examination will consist of questions, which will reflect the type of
self-testing, practice exercise and tutor-marked assignment problems you
have previously encountered. All areas of the course will be assessed.

Use the time between finishing the last unit and sitting for the examination
to revise the whole course. You might find it useful to review your self-
test, TMAs and comments on them before the examination. The end of
course examination covers information from all parts of the course.

ix

CPT 411 COURSE GUIDE

Course Marking Scheme
Assignment Marks
Assignment 1 – 4 For assignment, best three marks of the four

 counts at 10% each, i.e., 30% of Course
 Marks.
End of Course 70% 0f the overall Course Marks.
Examination
Total 100% of Course Material.

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in support of this course. You
will be notified of the dates, time, and location of these tutorials as well
as the name and phone number of your facilitator, as soon as you are
allocated to a tutorial group.

Your facilitator will mark and comment on your assignments, keep a
close watch on your progress and any difficulties you might face and
provide assistance to you during the course. You are expected to mail
your Tutor-Marked Assignments to your facilitator before the scheduled
date (at least two working days are required). They will be marked by
your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you
need assistance. However, the following might however be the
circumstances in which you would find assistance necessary, hence you
would have to contact your facilitator if:

You do not understand any part of the study or assigned
readings You have difficulty with self-tests
You have question or problem with an assignment or with the
grading of an assignment.

You should endeavor to attend the tutorials. This is the only chance to
have face to face contact with your course facilitator and to ask
questions which may be answered instantly. You can raise any problem
encountered in the course of your study.

To have more benefits from course tutorials, you are advised to prepare
a list of questions before attending them. You will learn a lot from
participating actively in discussions.

Summary

Net-centric Computing is a course that intends to intimate the learner
with basic facts on computer networks, network types and categories,

x

CPT 411 COURSE GUIDE

distributed systems, distributed systems models, parallel systems,
concurrency, wireless networks and standards, cloud computing and
wireless application protocols. Upon completing this course, you would
have been equipped with the knowledge of Net-centric computing
fundamentals, what network is all about and wireless technologies,
cloud computing and service models.

I wish you success in the course and I hope you find it very interesting.

xi

MAIN

COURSE

CONTENTS PAGE

Module 1 Net-Centric Computing Fundamentals…. 1
Unit 1 Introduction to Distributed Computing…… 1
Unit 2 Mobile and Wireless Computing …………. 2
Unit 3 Network Security ….……………………… 22
Unit 4 Client/ Server Computing (Web Application)… 28
Unit 5 Building Web Application…………………... 33

Module 2 Parallel Systems …………..……………….. 49
Unit 1 Introduction to Parallel Systems ……………. 49
Unit 2 Parallel Programming Models ……………… 64
Unit 3 Message Passing Programming …………….. 71
Unit 4 Dependence Analysis ……………………….. 77
Unit 5 OpenMP Programming …………..…………. 82
Unit 6 Evaluation of Programs …………………….. 89

Module 3Distributed Systems ………………………. 96
Unit 1 Introduction to Distributed Transactions…… 96
Unit 2 Systems Models……...…………………….. 104
Unit 3 Distributed Objects……………………….… 116
Unit 4 Remote Method Invocation ………………… 121
Unit 5 Using UML for Component Based Design … 131

Module 4 Distributed Transactions …………….…… 140
Unit 1 Introduction to Distributed Transactions……. 140
Unit 2 Flat & Nested Distributed Transactions ……. 160
Unit 3 Concurrency………….……………………… 169
Unit 4 Characteristics of Service Oriented
 Architecture (Hadoop & Spark)……………… 180

Module 5 Mobile & Cloud Computing ………………. 184
Unit 1 Introduction to Mobile & Cloud Computing … 184
Unit 2 Technologies for Wireless Communications … 193
Unit 3 Wireless Cellular Systems …………………… 199
Unit 4 Overview of Wireless LAN, IEEE 802.11,

Personal Area Network & Bluetooth………… 207
Unit 5 High Speed Wireless Networks: HiperLAN … 218

CPT 411 MODULE 1

MODULE 1: NET-CENTRIC COMPUTING

FUNDAMENTALS

UNIT 1: INTRODUCTION TO DISTRIBUTED

COMPUTING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Distributed Computing
3.2 Web 2.0 Technologies
3.3 Service Orientation
3.4 Virtualization

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

INTRODUCTION TO MODULE

Module 1 presents the essentials of Net-centric computing. Here, we are
going to discuss the concepts of established networks in different
location and job running on each simultaneously (distributed
computing) the output of which are to be combined after completion,
mobility issues and the security of resources running on different
autonomous systems as well as when being transmitted from one point
to the other. Others include client/server concepts and web building.

1.0 INTRODUCTION

A Distributed System is a system whose components are located on
different networked computers, which communicate and coordinate
their actions by passing messages to one another from any system in
order to appear as a single system to the end-user. The computers that
are in a distributed system can be physically together and connected by
a local network, or they can be geographically distant and connected by
a wide area network. A distributed system can consist of any number of
possible components such as mainframes, personal computers,
workstations, minicomputers, and so on. Common use cases of a
distributed systems are electronic banking systems, massive multiplayer
online games, and sensor networks.

1

CPT 411 NET-CENTRIC COMPUTING

1.1 Functionality

There are two general ways that distributed systems function:

 Each component of the system works to achieve a common goal

and the end-user views results as one combined unit.
 Each component has its own end-user and the distributed system

facilitates sharing resources or communication services.
1.2 Architectural models

Distributed systems generally consist of four different basic
architectural models:
 Client-server — Clients contact the server for data, then format it

and display it to the end-user.
 Three-tier — Information about the client is stored in a middle

tier rather than on the client, to simplify application deployment.
 n-tier — Generally used when the server needs to forward

requests to additional enterprise services on the network.
 Peer-to-peer — There are no additional nodes used to provide

services or manage resources. Responsibilities are uniformly
distributed among components in the system, known as peers,
which can serve as either client or server.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Explain the concept of distributed systems

Describe the Architectural Models of Distributing
Computing Explain the term, Service Orientation

Describe the concept, Virtualization

3.0 MAIN CONTENT

3.1 Distributed computing

Distributed Computing is a much broader technology that has been
around for more than three decades now. Distributed computing is
computing over distributed autonomous computers that communicate
only over a network. Distributed computing systems are usually treated
differently from parallel computing systems or shared-memory systems
where multiple computers share a common memory pool that is used for
communication between the processors. Distributed memory systems
use multiple computers to solve a common problem, with computation

2

CPT 411 MODULE 1

distributed among the connected computers (nodes) and using message-
passing to communicate between the nodes.
Example of distributed computing is the grid computing where the
nodes may belong to different administrative domains. Another example
is the network-based storage virtualization solution which uses
distributed computing between data and metadata servers.

Figure 1.1.1: Distributed Computing Systems

Distributed computing, however, can include heterogeneous
computations where some nodes may perform a lot more computation,
some perform very little computation and a few others may perform
specialized functionality (like processing visual graphics).

One of the main advantages of using distributed computing is that
efficient scalable programs can be designed so that independent
processes are scheduled on different nodes and they communicate only
occasionally to exchange results – as opposed to working out of a shared
memory with multiple simultaneous accesses to a common memory.

It is obvious that cloud computing is also a specialized form of
distributed computing, where distributed Software as a Service (SaaS)
applications utilize thin clients (such as browsers) which offload
computation to cloud-hosted servers (and services).
Distributed computing, virtualization, service orientation, and Web 2.0
form the core technologies enabling the provisioning of cloud services
from anywhere on the globe.

Distributed computing is a foundational model for cloud computing
because cloud systems are distributed systems. Besides administrative
tasks mostly connected to the accessibility of resources in the cloud, the

3

CPT 411 NET-CENTRIC COMPUTING

extreme dynamism of cloud systems—where new nodes and services
are provisioned on demand—constitutes the major challenge for
engineers and developers.

3.2 Web 2.0 technologies

Web 2.0 technologies constitute the interface through which cloud
computing services are delivered, managed, and provisioned. Besides
the interaction with rich interfaces through the Web browser, Web
services have become the primary access point to cloud computing
systems from a programmatic standpoint.

3.3 Service Orientations

Service orientation is the underlying paradigm that defines the
architecture of a cloud computing system. Cloud computing is often
summarized with the acronym XaaS meaning, Everything-as-a-
Service—that clearly underlines the central role of service orientation.
Infrastructure-as-a-Service solutions provide the capabilities to add and
remove resources, but it is up to those who deploy systems on this
scalable infrastructure to make use of such opportunities with wisdom
and effectiveness.

Platform-as-a-Service solutions embed into their core offering
algorithms and rules that control the provisioning process and the lease
of resources. These can be either completely transparent to developers
or subject to fine control. Integration between cloud resources and
existing system deployment is another element of concern.

3.4 Virtualization

Virtualization is another element that plays a fundamental role in cloud
computing. This technology is a core feature of the infrastructure used
by cloud providers. Virtualization concept is more than 40 years old but
cloud computing introduces new challenges, especially in the
management of virtual environments, whether they are abstractions of
virtual hardware or a runtime environment

Discussion
Which of the security infrastructure is most critical and why?

4.0 Self-Assessment Exercises

 Describe two Service Orientations
 What is Virtualization?

4

CPT 411 MODULE 1

 Give an advantage of Distributed Computing.

Answer
 Infrastructure-as-a-Service solutions provide the capabilities to

add and remove resources, but it is up to those who deploy
systems on this scalable infrastructure to make use of such
opportunities with wisdom and effectiveness.

Platform-as-a-Service solutions embed into their core offering
algorithms and rules that control the provisioning process and the
lease of resources. These can be either completely transparent to
developers or subject to fine control. Integration between cloud
resources and existing system deployment is another element of
concern.

Virtualization is the core feature of the infrastructure used by cloud
providers. but cloud computing introduces new challenges,
especially in the management of virtual environments. Virtual
environments could be abstractions of virtual hardware or a
runtime environment.

One of the main advantages of using distributed computing is that
efficient scalable programs can be designed so that independent
processes are scheduled on different nodes and they communicate
only occasionally to exchange results

5.0 CONCLUSION

Distributed computing is computing over distributed autonomous
computers that communicate only over a network. Distributed computing
systems are usually treated differently from parallel computing systems or
shared-memory systems, where multiple computers share a common
memory pool that is used for communication between the processors

6.0 SUMMARY

Virtualization is another element that plays a fundamental role in cloud
computing. Platform-as-a-Service solutions embed into their core offering
algorithms and rules that control the provisioning process and the lease of
resources. Infrastructure-as-a-Service solutions provide the capabilities to
add and remove resources, but it is up to those who deploy systems on this
scalable infrastructure to make use of such opportunities with wisdom and
effectiveness. One of the main advantages of using distributed computing
is that efficient scalable programs can be designed so that independent
processes are scheduled on different nodes and they communicate only
occasionally to exchange results.

5

CPT 411 NET-CENTRIC COMPUTING

7.0 REFERENCES/FURTHER READING

Moving To The Cloud | ScienceDirect

6

CPT 411 MODULE 1

UNIT 2: MOBILE & WIRELESS COMPUTING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

 3.1 Mobile and Wireless Computing
 3.1.1 Mobile Computing
 3.2 Mobile Communications
 3.3 Mobile Hardware
 3.4 Mobile Software
 3.5 Mobile Classification
 3.6 Advantages
 3.7 Security Issues
 3.8 Current Trends

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Mobile and wireless computing is a human–computer interaction
concept in which a computer could be in motion during normal usage.
Mobile and wireless computing involves mobile communication, mobile
hardware and mobile software, does involve the use of physical cable
but devices are connected through electromagnetic waves. The farther
the usage location to the network source the less the intensity of the
cloud and speed of connection and vice versa.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Define Wireless Communication

Classify Mobile and Cloud Computing
Mention 5 mobile hardware

3.0 MAIN CONTENT

3.1 Mobile & Wireless Computing

Mobile and wireless Computing is a technology that allows transmission
of data, voice and video via a computer or any other wireless enabled
device without having to be connected to a fixed physical link.

7

CPT 411 NET-CENTRIC COMPUTING

Computing Technologies are the technologies that are used to manage,
process, and communicate the data. Wireless simply means without any
wire i.e. connecting with other devices without any physical connection.
Wireless computing is transferring the data or information between
computers or devices that are not physically connected to each other and
having a “wireless network connection”. For example, mobile devices,
Wi-Fi, wireless printers and scanners, etc. Mobiles are not physically
connected but then too we can transfer data.

Mobile is a computing device that not require any network connection
or any connection to transfer data or information between devices. For
example laptops, tablets, smartphones, etc. Mobile computing allows
transferring of the data/information, audio, video, or any other document
without any connection to the base or central network. These computing
devices are the most widely used technologies nowadays.

There are some wireless/mobile computing technologies given below:

 Global System for Mobile Communications (GSM) :

GSM is a Current circuit-switched wireless data communication
technology. It is established in Europe by ETSI (European
Telecommunications Standards Institute) in the mid-1980s. GSM
network has 4 different parks that who’s functions are different: Mobile
Station, BSS (Base Station Subsystem), NSS (Network Switching
Subsystem), OSS (Operation and Support Subsystem).

As the name suggests, GSM is widely used for the mobile
communication system. It operates in the frequency band 900-MHz,
1800-MHz, and 1900-MHz. GSM is developed using TDMA (Time
Division Multiple Access) for better communication using mobile. It is
the most widely used mobile communication system and is mostly
required nowadays. It can achieve maximum data transmission speed or
data transmission rate up to 9.6Kbps (Kilobits per second).

 Code-Division Multiple Access (CDMA) :

CDMA is a type of wireless computing technology. It is developed
during World War II. This technology is mostly used as it provides
better network quality, more storage capacity for voice and data
communications than TDMA, decreases system noise and interference
using power control, provides more security by encoding the user
transmission data into a unique code.

CDMA does not provide any user with a specific frequency instead
utilizes the entire frequency spectrum available for transmission. It

8

CPT 411 MODULE 1

operates in the frequency range of 800 MHz to 1.9 GHz. It uses Soft
Handoff that reduces signal breaks.

 Wireless in Local Loop (WLL) :

WLL is a widely used technology for wireless communication systems.
It is also called a Fixed Wireless Loop. WLL is very easy to develop and
less time is required to install, very cost-effective as wireless systems
are less expensive because the cost of cable installation is not added.
WLL allows users to connect to the local telephone station using a
wireless link and provides advanced features of customer service. It
provides high-quality data transmission and a high data rate. Generally,
two types of WLL techniques are available: Local Multipoint
Distribution Service (LMDS) and Multichannel Multipoint Distribution
Service (MMDS).

 General Packet Radio Service (GPRS) :

GPRS is a type of Packet-based Wireless communication technology. It
is established by ETSI (European Telecommunications Standards
Institute). GPRS can achieve a data transfer rate of up to 114Kbps. It is
very cost-effective, highly stable, can achieve a maximum data rate of
up to 114Kbps (Kilobits per second). It supports Internet Protocol (IP),
X.25 (standard protocol for packet-switched data communication),
Point-to-Point protocol (PPP), and based on Gaussian minimum-shift
keying (GMSK) which is a modulation technique.
The Gateway GPRS Service Node (GGSN) and the Serving GPRS
Service Node (SGSN) are the two core modules required to enable
GPRS on GSM network or TDMA network.

 Short Message Service (SMS) :

SMS is originally created for a phone/mobile that uses GSM Global
System for Mobile communication). This service is used to send text
messages even without the Internet connection between two or more
mobile devices. This technique is very easy, user-friendly, comfortable
and the most effective means of wireless communication.

In this service, less time is required for communication. It does not
require any Internet connection for sending text messages. It allows the
transmission of short messages i.e. up to 160 characters in length. SMS
uses standardized communication protocols. SMS is received by Short
Message Service Center (SMSC).

9

CPT 411 NET-CENTRIC COMPUTING

Figure 3.1 below shows the Internet and various devices connected to it
wirelessly for communication all over the world.

Figure 1.2.1: Internet with Mobile Devices connected

3.2 Mobile communication

 The mobile communication refers to the infrastructure put in
place to ensure that seamless and reliable communication goes on

 These would include devices such as protocols, services,

bandwidth, and portals necessary to facilitate and support
the stated services

 The data format is also defined at this stage

 This ensures that there is no collision with other existing systems

which offer the same service.

 the media is unguided/unbounded, the overlaying infrastructure
is basically radio wave-oriented

That is, the signals are carried over the air to intended devices that are
capable of receiving and sending similar kinds of signals.

3.3 Mobile hardware

 mobile devices or device components that receive or access the

service of mobility

 They would range from portable laptops, smartphones,
tablet Pc's, Personal Digital Assistants

10

CPT 411 MODULE 1

Figure 1.2.2: Mobile Hardware

3.4 Mobile Software

 Mobile software is the actual program that runs on the

mobile hardware

 It deals with the characteristics and requirements of

mobile applications

 This is the engine of the mobile device

 It is the operating system of the appliance

 Its the essential component that operates the mobile device

 Since portability is the main factor, this type of computing

ensures that users are not tied or pinned to a single physical
location, but are able to operate from anywhere. It
incorporates all aspects of wireless communications

Figure 1.2.3: Mobile Software

11

CPT 411 NET-CENTRIC COMPUTING

3.5 Mobile Classification

 Mobile computing is not only limited to mobile phones, but there
are various gadgets available in the market that are built on a
platform to support mobile computing

 They are usually classified in the following categories:

3.5.1. Personal Digital Assistant (PDA)
 The main purpose of this device is to act as an

electronic organizer or day planner that is
portable, easy to use and capable of sharing
information with your computer systems.

 PDA is an extension of the PC, not

a replacement

 These systems are capable of sharing
information with a computer system
through a process or service known as
synchronization

 Both devices will access each other to

check for changes or updates in the
individual devices

 The use of infrared and Bluetooth

connections enables these devices to always
Figure 1.2.4: Personal Data Assistant be synchronized.

 With PDA devices, a user can browse the

internet, listen to audio clips, watch video
clips, edit and modify office documents, and
many more services

 The device has a stylus and a touch sensitive

screen for input and output purposes

3.5.2 Smartphones

It combines the features of a PDA with that of a mobile phone
or camera phone

It has a superior edge over other kinds of mobile phones.

Smartphones have the capability to run multiple
programs concurrently

12

CPT 411 MODULE 1

These phones include high-resolution touch screens,
web browsers that can:

access and properly display standard web pages rather than
just mobile-optimized sites

high-speed data access via Wi-Fi and high speed
cellular broadband.

The most common mobile Operating Systems (OS) used by
modern smartphones include:

 Google's Android

 Apple's iOS

 Nokia's Symbian

 RIM's BlackBerry OS

 Samsung's Bada

 Microsoft's Windows Phone, and embedded Linux

distributions such as Maemo and MeeGo. Such operating
systems can be installed on different phone models, and
typically each device can receive multiple OS software
updates over its lifetime.

Figure 1.2.5: Smart Phones

3.5.3 Tablet PC and iPads

 This mobile device is larger than a mobile phone or a PDA

and integrates into a touch screen and is operated using touch
sensitive motions on the screen They are often controlled by a
pen or by the touch of a finger

 They are usually in slate form and are light in weight. Examples

would include ipads, Galaxy Tabs, Blackberry Playbooks etc.

 They offer the same functionality as portable computers

13

CPT 411 NET-CENTRIC COMPUTING

 They support mobile computing in a far superior way and have
enormous processing horsepower

 Users can edit and modify document files, access high speed

internet, stream video and audio data, receive and send e-mails,
attend/give lectures and presentations among its very many other
functions

 They have excellent screen resolution and clarity

Figure 1.2.6: Ipads & PCs

3.6 Advantages of Mobile Computing

 Location Flexibility

 This has enabled users to work from anywhere as long

as there is a network connection established

 A user can work without being in a fixed position

 Their mobility ensures that they are able to carry out
numerous tasks at the same time and perform their
stated jobs.

 Saves Time

 The time consumed or wasted while travelling from

different locations or to the office and back, has been
slashed

 One can now access all the important documents and

files over a secure channel or portal and work as if they
were on their computer

 It has enhanced telecommuting in many companies

 It has also reduced unnecessary incurred expenses

14

CPT 411 MODULE 1

 Enhanced Productivity

 Users can work efficiently and effectively from
whichever location they find comfortable

 This in turn enhances their productivity level

 Ease of Research

 Research has been made easier, since users earlier
were required to go to the field and search for facts and
feed them back into the system

 It has also made it easier for field officers and

researchers to collect and feed data from wherever they
are without making unnecessary trips to and from the
office to the field

 Entertainment

 Video and audio recordings can now be streamed on-
the-go using mobile computing

 It's easy to access a wide variety of movies,

educational and informative material

 With the improvement and availability of high speed
data connections at considerable cost, one is able to get
all the entertainment they want as they browse the
internet for streamed data

 One is able to watch news, movies, and documentaries

among other entertainment offers over the internet

 This was not possible before mobile computing dawned on
the computing world.

 Streamlining of Business Processes

 Business processes are now easily available
through secured connections

 Looking into security issues, adequate measures have

been put in place to ensure authentication and
authorization of the user accessing the services

 Some business functions can be run over secure links and

sharing of information between business partners can
also take place

15

CPT 411 NET-CENTRIC COMPUTING

 Meetings, seminars and other informative services can be
conducted using video and voice conferencing

 Travel time and expenditure is also considerably reduced

3.7 Security Issues

 Mobile computing has its fair share of security concerns as any

other technology

 Due to its nomadic nature, it's not easy to monitor the proper
usage

 Users might have different intentions on how to utilize

this privilege

 Improper and unethical practices such as hacking, industrial
espionage, pirating, online fraud and malicious destruction are
some but few of the problems experienced by mobile computing

 Another big problem plaguing mobile computing is

credential verification

 As other users share username and passwords, it poses as a
major threat to security

 This being a very sensitive issue, most companies are very

reluctant to implement mobile computing to the dangers
of misrepresentation

 The problem of identity theft is very difficult to contain

or eradicate

 Issues with unauthorized access to data and information by
hackers, is also an enormous problem

 Outsiders gain access to steal vital data from companies, which

is a major hindrance in rolling out mobile computing services.

 No company wants to lay open their secrets to hackers and
other intruders, who will in turn sell the valuable information to
their competitors

 It's also important to take the necessary precautions to

minimize these threats from taking place

 Some of those measures include:

 Hiring qualified personnel.

 Installing security hardware and software

 Educating the users on proper mobile computing ethics

16

CPT 411 MODULE 1

 Auditing and developing sound, effective policies to govern

mobile computing

 Enforcing proper access rights and permissions

 In the absence of such measures, it's possible for exploits and

other unknown threats to infiltrate and cause irrefutable harm

 These may be in terms of reputation or financial penalties

 In such cases, it's very easy to be misused in different

unethical practices.

 If these factors aren’t properly worked on, it might be an avenue

for constant threat

 Various threats still exist in implementing this kind of technology

3.8 Current Trends

 These are the list of the current mobile technologies starting from

5G technologies which is the hottest mobile technology available
in the market.

3.8.1. 5G

 In telecommunications, 5G is the fifth generation technology
 standard for broadband cellular networks. Telecoms company

 began to deploy it in 2019, and is the planned successor to
 the 4G networks providing connectivity to most
 current cellphones. 5G networks are predicted to have more than
 1.7 billion subscribers worldwide by 2025. 5G networks cellular
 networks’ service area is divided into small geographical areas

 called cells. All 5G wireless devices in a cell are connected to
 the Internet and telephone network by radio waves through a
 local antenna in the cell. It has an advantage of having
 greater bandwidth and download speeds up to 10 gigabits per
 second (Gbit/s). 5G is not only faster than existing networks, 5G

 can connect more different devices. Due to the increased
 bandwidth, the networks will increasingly be used as
 general internet service providers (ISPs) for laptops and desktop
 computers, competing with existing ISPs such as cable internet,
 and also will make possible new applications in internet-of-
 things (IoT) and machine-to-machine areas

3.8.2 4G

• 4G is the fourth generation of broadband cellular
 network technology that precedes 5G. A 4G system must provide

 capabilities defined by ITU in IMT Advanced. Recent
 applications include amended mobile web access, IP telephony,
 17

CPT 411 NET-CENTRIC COMPUTING

gaming services, high-definition mobile TV, video conferencing,
and 3D television.

 WIMAX standard was first-released commercially and deployed
in South Korea in 2006 and has since been deployed in most parts
of the world.

 Long Term Evolution (LTE) standard was first-released
commercially and deployed in Oslo, Norway, and Stockholm,
Sweden in 2009, and has since been deployed throughout most
parts of the world. It was to be considered as 4G LTE. The 4G
wireless cellular standard was defined by the International
Telecommunication Union (ITU) and specifies the key
characteristics of the standard, including transmission technology
and data speeds.

3.8.3. 3G or third generation

 3G mobile telecommunications is a generation of standards for
mobile phones and mobile telecommunication services fulfilling
the International Mobile Telecommunications-2000 (IMT-2000)
specifications by the International Telecommunication Union.
Application services include wide-area wireless voice telephone,
mobile Internet access, video calls and mobile TV, all in a mobile
environment.

3.8.4. Global Positioning System (GPS)

 The Global Positioning System (GPS) is a space-based satellite

navigation system that provides location and time information
in all weather, anywhere on or near the Earth, where there is an
unobstructed line of sight to four or more GPS satellites

 The GPS program empowers the military, civil and

commercial users around the world

 It (GPS) is the backbone for modernizing the global air
traffic system, weather, and location services.

3.8.5. Long Term Evolution (LTE)

 LTE is a standard for wireless communication of high-speed data

for mobile phones and data terminals

 It is based on the GSM/EDGE and UMTS/HSPA network
technologies, increasing the capacity and speed using
new modulation techniques

 It is related with the implementation of fourth Generation (4G)

technology

18

CPT 411 MODULE 1

3.8.6. WiMAX

 WiMAX (Worldwide Interoperability for Microwave Access) is a
wireless communications standard designed to provide 30 to 40
megabit-per-second data rates, with the latest update providing
up to 1 Gbit/s for fixed stations

 It is a part of a fourth generation or 4G wireless-communication

technology

 WiMAX far surpasses the 30-metre wireless range of a
conventional Wi-Fi Local Area Network (LAN), offering a
metropolitan area network with a signal radius of about 50 km

 WiMAX offers data transfer rates that can be superior to

conventional cable-modem and DSL connections, however, the
bandwidth must be shared among multiple users and thus
yields lower speed in practice

3.8.7. Near Field Communication

 Near Field Communication (NFC) is a set of standards for
smartphones and similar devices to establish radio
communication with each other by touching them together or
bringing them into close proximity, usually no more than a few
centimeters

 Present and anticipated applications include contactless

transactions, data exchange, and simplified setup of more
complex communications such as Wi-Fi. Communication is also
possible between an NFC device and an unpowered NFC chip,
called a "tag"

3.9 Conclusion

 Today's computing has rapidly grown from being confined to

a single location

 With mobile computing, people can work from the comfort of

any location they wish to as long as the connection and the
security concerns are properly factored

 In the same light, the presence of high-speed connections has also

promoted the use of mobile computing

 Being an ever growing and emerging technology, mobile

computing will continue to be a core service in computing,
and Information and Communications Technology

Discussion
Why is the Mobile Software important in Mobile and Cloud Computing?

19

CPT 411 NET-CENTRIC COMPUTING

4.0 Self-Assessment Exercise

 Define Mobile Computing.

Answer
Mobile computing is a human–computer interaction in which a
computer could be in motion during normal usage.
 Explain Near Field Communication as one of the current trends

in Mobile Computing

Answer
 Near Field Communication

 Near Field Communication (NFC) is a set of standards for

smartphones and similar devices to establish radio
communication with each other by touching them together or
bringing them into close proximity, usually no more than a few
centimeters

 Present and anticipated applications include contactless

transactions, data exchange, and simplified setup of more
complex communications such as Wi-Fi. Communication is also
possible between an NFC device and an unpowered NFC chip,
called a "tag"

5.0 CONCLUSION

Mobile and Wireless Computing has come to stay in every of our life
endeavors ranging from homes, commerce, education as well as finance.
I doubt if we can recover from it.

6.0 SUMMARY

Mobile and wireless Computing is a technology that allows transmission of
data, voice and video via a computer or any other wireless enabled device
without having to be connected to a fixed physical link. Being an ever
growing and emerging technology, mobile computing will continue to be a
core service in computing, and Information and Communications
Technology. Mobile classification are usually classified into personal
digital assistant (PDA), smartphones and tablet PC and iPads. The
advantages of mobile computing are location flexibility, time savings,
enhanced productivity, ease of research, entertainment and streamlining of
business processes. Mobile computing has its fair share of security
concerns as any other technology. Current Trends in mobile technology
include 5G, 4G, 3G or third generation, Global Positioning System (GPS),
Long Term Evolution (LTE), WiMAX and Near Field Communication.

20

CPT 411 MODULE 1

7.0 REFERENCES/FURTHER READING

file:///C:/Tech-U%20Issues/CSC%20412-

%20Netcetric%20Computing/CSC%20412-
Content/MOBILE%20AND%20WIRELESS%20COMPUTING.
pdf

https://www.geeksforgeeks.org/wireless-mobile-

computing-technologies/

21

CPT 411 NET-CENTRIC COMPUTING

UNIT 3 NETWORK SECURITY

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Fundamentals of Network Security

3.1 Network Security
3.2 Data as the Life-Blood of Business
3.3 Three Keys Focuses of Network Security
3.4 Benefits of Network Security
3.5 Network Security Tools and Techniques

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

The transmission of data from one point A on the network to the other
point, B is a great concern and therefore, there is the need to deploy
measure that can secure the transmission of data away from
unauthorized individuals. Hence, the need for network security.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will be able to:

Explain the concept of network
Understand the importance of network security
Identify and explain the network security tools and techniques.

3.0 Main Content

3.1 Network Security

Network security is a term that describes the security tools, tactics and
security policies designed to monitor, prevent and respond to
unauthorized network intrusion, while also protecting digital assets,
including network traffic. Network security includes hardware and
software technologies (including resources such as savvy security
analysts, hunters, and incident responders) and is designed to respond to
the full range of potential threats targeting your network.

Network security is the defense you use to protect yourself against ever-
increasing cybercrime.

22

CPT 411 MODULE 1

3.3 The Three Key Focuses of Network Security

There are three key focuses that should serve as a foundation of any
network security strategy: protection, detection and response.

Protection entails any tools or policies designed to prevent
network security intrusion.

Detection refers to the resources that allow you to analyze network
traffic and quickly identify problems before they can do harm.
Response is the ability to react to identified network security
threats and resolve them as quickly as possible.

3.4 Benefits of Network Security

Network security tools and devices enable organizations to protect its
sensitive information, overall performance, reputation and its continuity
in business. Secure and reliable networks protect not just organizational
interests and operations, but also any client or customer who exchanges
information with the organization, in addition to the general public. The
benefits of network security are:
 Builds trust
Security for large systems translates to security for everyone. Network
security boosts client and consumer confidence, and it protects your
business from the reputational and legal fallout of a security breach.

 Mitigates risk
The right network security solution will help your business stay
compliant with business and government regulations, and it will
minimize the business and financial impact of a breach if it does occur.

 Protects proprietary information
Your clients and customers rely on you to protect their sensitive
information. Your business relies on that same protection, too. Network
security ensures the protection of information and data shared across the
network.

 Enables a more modern workplace
From allowing employees to work securely from any location using
VPN to encouraging collaboration with secure network access, network
security provides options to enable the future of work. Effective network
security also provides many levels of security to scale with your
growing business.

23

CPT 411 NET-CENTRIC COMPUTING

3.5 Network Security Tools and Techniques

Enterprises’ network encounter varying degrees of threats, and therefore
should be prepared to defend, identify and respond to a full range of attacks.
However, the reality is that the biggest danger to most companies are not fly-
by-night threat actors, but the attackers that are well-funded and are targeting
specific organizations for specific reasons. Hence, network security strategy
needs to be able to address the various methods these actors might employ.
Here are 14 different network security tools and techniques designed to
help you do just that:
 Access control: If threat actors cannot access your network, the

amount of damage they will be able to do will be extremely
limited. But in addition to preventing unauthorized access, be
aware that even authorized users can be potential threats. Access
control allows you to increase your network security by limiting
user access and resources to only the parts of the network that
directly apply to individual users’ responsibilities.

 Anti-malware software: Malware, in the form of viruses,
trojans, worms, keyloggers, spyware, etc. are designed to spread
through computer systems and infect networks. Anti-malware
tools are a kind of network security software designed to identify
dangerous programs and prevent them from spreading. Anti-
malware and antivirus software may also be able to help resolve
malware infections, minimizing the damage to the network.

 Anomaly detection: It can be difficult to identify anomalies in
your network without a baseline understanding of how that
network should be operating. Network anomaly detection engines
(ADE) allow you to analyze your network, so that when breaches
occur, you will be alerted to them quickly enough to be able to
respond.

 Application security: For many attackers, applications are a
defensive vulnerability that can be exploited. Application security
helps establish security parameters for any applications that may
be relevant to your network security.

 Data Loss Prevention (DLP): Often, the weakest link in network
security is the human element. DLP technologies and policies help
protect staff and other users from misusing and possibly compromising
sensitive data or allowing said data out of the network.

 Email security: As with DLP, email security is focused on shoring
up human-related security weaknesses. Via phishing strategies
(which are often very complex and convincing), attackers persuade
email recipients to share sensitive information via desktop or mobile
device, or inadvertently download malware into the targeted
network. Email security helps identify dangerous emails and can
also be used to block attacks and prevent the sharing of vital data.

24

CPT 411 MODULE 1

 Endpoint security: The business world is becoming

increasingly, “bring your own device” (BYOD), to the point
where the distinction between personal and business computer
devices is almost non-existent. Unfortunately, sometimes the
personal devices become targets when users rely on them to
access business networks. Endpoint security adds a layer of
defense between remote devices and business networks.

 Firewalls: Firewalls function much like gates that can be used to
secure the borders between your network and the internet.
Firewalls are used to manage network traffic, allowing authorized
traffic through while blocking access to non-authorized traffic.

 Intrusion prevention systems: Intrusion prevention systems (also
called intrusion detection) constantly scan and analyze network
traffic/packets, so that different types of attacks can be identified and
responded to quickly. These systems often keep a database of known
attack methods, so as to be able to recognize threats immediately.

 Network segmentation: There are many kinds of network
traffic, each associated with different security risks. Network
segmentation allows you to grant the right access to the right
traffic, while restricting traffic from suspicious sources.

 Security information and event management (SIEM):
Sometimes simply pulling together the right information from so
many different tools and resources can be prohibitively difficult
— particularly when time is an issue. SIEM tools and software
give responders the data they need to act quickly.

 Virtual private network (VPN): VPN tools are used to
authenticate communication between secure networks and an
endpoint device. Remote-access VPNs generally use IPsec or
Secure Sockets Layer (SSL) for authentication, creating an
encrypted line to block other parties from eavesdropping.

 Web security: Including tools, hardware, policies and more, web
security is a blanket term to describe the network security
measures businesses take to ensure safe web use when connected
to an internal network. This helps prevent web-based threats from
using browsers as access points to get into the network.

 Wireless security: Generally speaking, wireless networks are
less secure than traditional networks. Thus, strict wireless
security measures are necessary to ensure that threat actors are
not gaining access.

Discussion

What tools can be used to secure the network? Discuss

25

CPT 411 NET-CENTRIC COMPUTING

4.0 Self-Assessment/Exercise

 Identify and explain the benefits of network security?

Answer:
The benefits of network security are the following:
 Builds trust
Security for large systems translates to security for everyone. Network
security boosts client and consumer confidence, and it protects your
business from the reputational and legal fallout of a security breach.

 Mitigates risk
The right network security solution will help your business stay
compliant with business and government regulations, and it will
minimize the business and financial impact of a breach if it does occur.

 Protects proprietary information
Your clients and customers rely on you to protect their sensitive
information. Your business relies on that same protection, too. Network
security ensures the protection of information and data shared across the
network.

 Enables a more modern workplace
From allowing employees to work securely from any location using
VPN to encouraging collaboration with secure network access, network
security provides options to enable the future of work. Effective network
security also provides many levels of security to scale with your
growing business.

5.0 CONCLUSION

Network security tools and devices exist to help your organization
protect not only its sensitive information, but also its overall
performance, reputation and even its ability to stay in business.

6.0 SUMMARY

Three key focuses that should serve as a foundation of any network security
strategy are protection, detection and response Protection entails any tools or
policies designed to prevent network security intrusion. Detection refers to the
resources that allow you to analyze network traffic and quickly identify
problems before they can do harm. Response is the ability to react to identified
network security threats and resolve them as quickly as possible. The network
security tools and techniques are access control, anti-malware, anomaly
detection, application security, data loss prevention (DLP), endpoint security,
firewalls and email security. Others are intrusion prevention
26

CPT 411 MODULE 1

systems, network segmentation, Security information and event management
(SIEM), virtual private network (VPN), web security and wireless security.

7.0 REFERENCES/FURTHER READING

Application Intelligence |Application Visibility | Gigamon

27

CPT 411 NET-CENTRIC COMPUTING

UNIT 4 CLIENT-SERVER COMPUTING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Fundamentals of Client Server Computing

3.1 Client Server Computing
3.2 Characteristics of Client Server Computing
3.3 Difference Between Client Server and Peer-to-Peer

Computing
3.4 Advantages of Client Server Computing
3.5 Disadvantages of Client Server Computing

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

There are two configurations of networks: Client-Server and Peer-to-
Peer networks. In client server, the client requests resources while the
server serves same. In Peer-to-peer configuration, each node is free to
communicate with others or not. The nodes under this configuration are
not over-seen by any node or the other, they relate in a workgroup.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Explain the concept of Client Server category of networks.
Describe a client
Identify the differences between the Client-Server and the Peer-
to-peer configuration of networks

3.0 MAIN CONTENT

3.1 Client Server Computing

In client-server computing, the client requests a resource and the server
provides that resource. A server may serve multiple clients at the same
time while a client is in contact with only one server. Both the client and
server usually communicate via a computer network, as pictured in
figure 1.4.1, but sometimes they may reside in the same system.

28

CPT 411 MODULE 1

Figure 1.4.1: Client-Server Computing

3.2 Characteristics of Client Server Computing

The salient points for client server computing are as follows:

The client server computing works with a system of request and
response. The client sends a request to the server and the server
responds with the desired information.
The client and server should follow a common communication
protocol so they can easily interact with each other. All the
communication protocols are available at the application layer.
A server can only accommodate a limited number of client
requests at a time. So it uses a system based to priority to respond
to the requests.
Denial of Service (DoS) attacks hinders servers’ ability to respond
to authentic client requests by inundating it with false requests. An
example of a client server computing system is a web server. It
returns the web pages to the clients that requested them.

3.3 Differences between Client-Server and Peer-to-Peer

Computing

The major differences between client-server computing and peer-to-peer
computing are as follows:

In client server computing, a server is a central node that services
many client nodes. On the other hand, in a peer-to-peer system,
the nodes collectively use their resources and communicate with
each other.

29

CPT 411 NET-CENTRIC COMPUTING

In client server computing, the server is the one that
communicates with the other nodes. In peer-to-peer computing,
all the nodes are equal and share data with each other directly.
Client-Server computing is believed to be a sub-category of the
peer-to-peer computing.

3.4 Advantages of Client-Server Computing

All the required data is concentrated in a single place i.e.
the server. So it is easy to protect the data and provide
authorisation and authentication.
The server need not be located physically close to the
clients yet, the data can be accessed efficiently.
It is easy to replace, upgrade or relocate the nodes in the
client-server model because all the nodes are independent
and request data only from the server.
All the nodes i.e clients and server may not be built on
similar platforms yet, they can easily facilitate the transfer
of data.

3.5 Disadvantages of Client Server Computing

If all the clients simultaneously request data from the server, it
may get overloaded. This may lead to congestion in the network.
If the server fails for any reason, then none of the requests of the
clients can be fulfilled. This leads to failure of the client-server
network.
The cost of setting and maintaining a client-server model are
quite high.

Discussion
What makes the Client Server configuration peculiar from the Peer-to-
peer? Discuss

4.0 SELF-ASSESSMENT/EXERCISE

 Discuss the advantages of client Server computing

Answer:
Advantages of Client-Server Computing

All the required data is concentrated in a single place i.e. the
server. So it is easy to protect the data and provide authorisation
and authentication.
The server need not be located physically close to the clients yet,
the data can be accessed efficiently.

30

CPT 411 MODULE 1

It is easy to replace, upgrade or relocate the nodes in the client-
server model because all the nodes are independent and request
data only from the server.
All the nodes i.e clients and server may not be built on similar
platforms yet, they can easily facilitate the transfer of data.

 Identify the characteristics of client server computing?

Answer:
Characteristics of Client Server Computing
The characteristics of the client-server computing are as follows:

The client server computing works with a system of request and
response. The client sends a request to the server and the server
responds with the desired information.
The client and server should follow a common communication
protocol so they can easily interact with each other. All the
communication protocols are available at the application layer.
A server can only accommodate a limited number of client
requests at a time. So it uses a system based to priority to respond
to the requests.
Denial of Service (DoS) attacks hinders servers’ ability to respond
to authentic client requests by inundating it with false requests.
An example of a client server computing system is a web server.
It returns the web pages to the clients that requested them.

5.0 CONCLUSION

Client server and peer-to-peer computing are unique one from the other
and so, have their merits and demerits. The choice of either is dependent
on the intention of creating your network.

6.0 SUMMARY

In client server computing the server is the one that communicates with the
other nodes. In peer to peer to computing, all the nodes are equal and share
data with each other directly. A server can only accommodate a limited
number of client requests at a time. So it uses a system based to priority to
respond to the requests. The characteristics of the client-server computing
are as follows: the client server computing works with a system of request
and response, client and server should follow a common communication
protocol so they can easily interact with each other, a server can only
accommodate a limited number of client requests at a time and that Denial
of Service (DoS) attacks hinders servers’ ability to respond to authentic
client requests by inundating it with false requests.

31

CPT 411 NET-CENTRIC COMPUTING

7.0 REFERENCES/FURTHER READING

Andrew S., T., & David J., W. (2011). COMPUTER NETWORKS (M.
Horton, H. Michael, D. Tracy, & H. Melinda (eds.); fifth). Pearson
Education.

Joseph, M. K. (2007). Computer Network Security and Cyber Ethics

(review). In portal: Libraries and the Academy (fourth, Vol. 7, Issue
2). McFarland & Company, Inc.
https://doi.org/10.1353/pla.2007.0017

Pande, J. (2017). Introduction to Cyber Security (FCS). http://uou.ac.in

Stewart, J. M., Tittel, E., & Chapple, M. (2011). CISSP: Certified

Information Systems Security Professional Study Guide. Wiley.

32

CPT 411 MODULE 1

UNIT 5 BUILDING WEB APPLICATIONS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Fundamentals Building a Web Applications
 3.1Building a Web Application
 3.1.1 A Web app
 3.2Prerequisites for Building a Web Application
 3.3Steps to Building a Web Application
 3.3.1 Source an Idea
 3.3.2 Do Market Research
 3.3.3 Define your Web App Functionality
 3.3.4 Sketch Your Web Application
 3.3.5 Plan Your Web App Workflow
 3.3.6 Wire-framing/ Prototyping Your Web Application
 3.3.7 Seek Early Validation
 3.3.8 Before Starting the Development Stage
 3.3.9 Architect and Build Your Database
 3.3.10 Build the Front End
 3.3.11 Build Your Back-End
 3.3.12 Host Your Web Application
 3.3.13 Deploy Your Web Application
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

A Web app
An interactive computer program, built with web technologies (HTML,
CSS, JS), which stores (Database, Files) and manipulates data (CRUD),
and is used by a team or single user to perform tasks over the internet.
The HTML and the CSS serves as the front-end to receive data from the
user while the database, programming like Javascript and PHP serves as
the back-end.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Explain the concept of an App

Enumerate the prerequisite for building a web application
Describe the steps for building a web application

33

CPT 411 NET-CENTRIC COMPUTING

3.0 MAIN CONTENT

3.1 Building a Web Application (app)-Prerequisites for
Building a Web Application

To make a data-centric web app from the bottom-up, it is advantageous
to understand:

Backend language (e.g. Python, Ruby) - control how your
web app works
Web front end (HTML, CSS, Javascript) - for the look and feel
of your web app

DevOps (Github, Jenkins) - Deploying / hosting your web app
If you do not have any experience with the points above, you need not
worry. You have two options:
 Learn the points above - there are lots of resources online to help

you. Codecademy is recommend .
 Use a web app builder like Budibase - As a builder, Budibase

will remove the need to learn a backend language. On top of that,
Budibase will also take care of a lot of your DevOps tasks such
as hosting.

3.2 Building a Web Application

3.2.1 Step 1 – Source an idea

Before making a web app, you must first understand what you intend to
build and more importantly, the reason for it.
Your idea should stem from solving someone’s problem. Ideally,
your own problem.

It is important that developer choose an idea which interests him /her.
Ask yourself:
How much time do I have to build this app?
What am I interested in?
What apps do I enjoy using?
What do I like about these apps?

How much time/money will this app save or generate for me (as a
user)?

How much will it improve my life

3.2.2 Step 2 – Market Research

Once you have chosen your idea(s), it is important to research the
market to see:
 If a similar product exists

34

CPT 411 MODULE 1

 If a market exists
The number 1 reason start-ups fail, is the failure to achieve product-
market fit. “Product/market fit means being in a good market with a
product that can satisfy that market.” To quickly find out if a similar
web app exists, use the following tools to search for your idea:
Google

Patent and trademark search
Betalist

Product hunt

If a similar product exists, do not worry. This can be a sign a market for
your new idea exists. Your future competitors have laid the groundwork,
educated the market. It is time for you to swoop in and steal the thunder.
If a similar product does not exist, it is a possibility you have struck
lucky. On the other hand, it is a possibility someone before has ventured
down this path and hit a dead-end.

Nobody wants to experience that, so it is important to dive deep into the
market and source the wisdom of:
 Your Web App’s target market - Share your web app idea on

forums related to your target market. If you know anyone who
works within your target market, explain your idea to them. The
more you talk and receive validation from your target market, the
better.

 Google Trends - A quick search of your web app idea will reveal
relating trends.

 SEO tool – MOZ/Ahrefs is recommended. Google’s keyword
planner will suffice. Write a list of keywords relating to your web
app. If it is an ‘OKR tool’, use the tools to search ‘OKR tool’,
‘OKR app’, and ‘objectives and key results software’. If the SEO
tool indicates there are lots of people searching for your keyword
terms, this is a small indicator you have a target market.

 Social Media - Jump over to Twitter/Facebook groups and
present your idea to your target market.

 Events - If there is a local event in your area attracting people from
your target market, go to it. Share your idea and record the
feedback.

After completing the above steps, you should have enough information
to understand if there is a market for your product. If there is a market
for your product, and there is also established competition, it is
important to research them.

35

CPT 411 NET-CENTRIC COMPUTING

3.2.3 Step 3 - Define your web apps functionality

You have got your idea, you have validated the market, it is now time to
list everything you want your app to do. A common mistake here is to
get carried away. The more functionality you add, the longer it will take
to build your web app. Quite often, the longer a web app takes to build,
the more frustration you will experience.

Only define functionality which solves your target markets problems.
Remember, your web app is a work in progress and the first goal is version
 It will still have cool features and delight your users, but you must
keep things simple.

For direction, I have included a list of basic functions required for a
simple CRM app.
Users can create an account
Users can retrieve lost passwords
Users can change their passwords
Users can create new contacts
Users can upload new contacts
Users can assign a value to contacts
Users can write notes under contacts
Users can label a contact as a lead, customer, or associate
Users can filter contacts by lead, customer, or associate
Users can view the total value of leads, customers and associates

The above list will help you define your features. Once you are done, roll
up your sleeves. It is time to get creative! Moving from the Ideation
stage, to design stage.

3.2.4 Step 4 - Sketch your web app

There are multiple stages of designing a web app. The first stage is
sketching using a notebook (with no lines) and pen/pencil. After step 1,
2 and 3, you should have an idea of what your web app is, who your
users are, and the features it will have. Sketch out the wireframe of your
web apps UI (User Interface) - it does not have to be exact - this is just a
sketch. When sketching, consider the following:

Navigation
Branding
Forms
Buttons
Any other interactive elements

Sketch different versions of your web app. Consider how your web app’s
functionality will affect the overall design. Annotate your sketch and
36

CPT 411 MODULE 1

outline how your app should work. Taking notes will help you clarify
and understand why you have designed certain elements at a later stage.
Overcomplicating the design at this stage will only lead to frustration.

3.2.5 Step 5 – Plan your web apps workflow

It is time to put yourself in the shoes of your user. Here, we are going to
plan your web apps workflow. Now is the time to go back to step 2 and
look at your market research. Take your list of competitors and sign up
to their free trials. Have a quick play around with their product. Write
notes on what you thought was good and what you thought was bad. Pay
particular attention to the workflow.

After you have finished analysing your competitor’s web apps, it is time
to write down different workflows for your app. Consider the following
points:

How does a user signup
Do they receive a verification email
How does a user log in
How does a user change their password
How does a user navigate through the app
How does a user change their user settings
How does a user pay for the app
How does a user cancel their subscription

All of a sudden our one-page web app turns into a 10-page web app.
Write a list of all the different pages your web application will have.
Consider the different states of pages. For example, the homepage will
have two states; logged in and logged out. Logged in users will see a
different page than logged out users.

3.2.6 Step 6 – Wireframing / Prototyping Your Web Application

Ok, it is time to turn those sketches and that new-found understanding of
your web application into a wireframe/prototype.
Wireframing is the process of designing a blueprint of your web
application while Prototyping is taking wireframing a step further,
adding an interactive display.

The decision to wireframe or prototype is up to you. If you have the
time, I would have recommended prototyping as it will make it easier to
communicate your web app when seeking validation. You can
prototype/wireframe using the following tools:
Sketch (macOS)
InVision Studio (macOs)
Adobe XD (macOS, Windows)

37

CPT 411 NET-CENTRIC COMPUTING

Figma (Web, macOS, Windows, Linux)
Balsamiq (macOS, Windows, Web)
I recommend you create a design system / style guide first. You can find
inspiration at UXPin. Design systems improve design consistency. But
it’s not required.

3.2.7 Step 7 – Seek early validation

You have now got a beautiful wireframe/prototype which visually
describes your web app. It is time to show your beautiful wireframe to
the world. At this stage we want constructive feedback.

Simply asking your friends would they use your new web app is not
enough. You should start with a small number of representative users.
Go to your target market’s forums, watering holes, their places of work
and verify the problem with them, and present your solution. Try to
build a rapport with these representatives as they could become your
customers. I like to use this stage to test my sales pitch - the ultimate
tokens of validation are pre-launch sales. Takes notes and document all
feedback. The learning from these meetings will help direct the
development of your MEP (Minimal Excellent Product).

Ok, now you have got great feedback and product validation. It is time
to start building your web app.

3.2.8 Before Starting the development stage.

Before we make our web app, I would like to share the following tips:
 Attempt to get a small section of your app fully working. What

we would call a “Complete Vertical”.
oBuilding the smallest possible section will allow you to piece all

the bits together, and iron out those creases early.
oYou will get great satisfaction early by having something

working - great motivation.
oCreate things that you know you will throw away later - if it gets

you something working now.
 At the start - expect things to change a lot as you learn and

discover what you have not thought about.
oHave faith that your app will stabilise.
oDo not be afraid to make big changes.

 Spend time learning your tools.
oYou may feel like you are wasting your time, reading, or

experimenting with “hello world”. Learning the correct
way to do things will have a huge positive, cumulative
effect on your productivity over time.

38

CPT 411 MODULE 1

� Where possible, “Go with the grain” of your tools. Realise
that as soon as you step out of the normal flow / usage of
your toolset, you are on your own and could be in a deep
time sink. There are always exceptions to this of course!

 Do not avoid issues that need to be fixed.
o Face your issues head on - they will never go away and will

only grow in stature.
o However, If things are still likely to change - its best to spend

as little time as possible on things… It’s a tricky balance!

3.2.9 Step 8 – Architect and build your database

So, we know roughly our web application’s functionality, what it looks
like, and the pages required. Now it is time to determine what
information we will store in our database.

A Database

A database is simply a collection of data! Data can be stored to disk, or
in memory on a server, or both. You could create a folder on your hard
drive, store a few documents, and call it a database. A Database
Management System (DBMS) is a system that provides you with
consistent APIs to (most commonly):

Create databases, update and delete databases
Read and write data to databases

Secure access to a database by providing levelled access to
different areas and functions

What data you need to store and what your users need to do, will
determine the type of database required to run your web app.

Database Types
There are many types of database for many different purposes. A web
app will most commonly use one of the following:

 SQL
You should use a SQL database if your data is very relational. Your data
is relational if you have multiple, well defined record types that have
relationships between them. For example, a “Customer” may have many
“Invoices” stored against their record. Typically, you would create a
Customer table and an Invoice table - which could be linked together by
“Foreign Key” columns. E.g. Customer.Id = Invoice.CustomerId.

SQL databases have an extremely powerful query language that allows you
to present your data in all sorts of useful ways. They have been around

39

CPT 411 NET-CENTRIC COMPUTING

for decades, are very well understood, and usually a safe choice.
MySQL, Postgresql, Microsoft SQLServer are some of the most
common - along with many more modern offerings.

The downside of SQL databases is that you must declare all your tables
and columns up front. There can be a lot of overhead to manage. If you
have never used one before – you are in for a pretty steep learning
curve. However, there are plenty of learning resources available, and it
is always a great skill to have.

 Document Database
You should use a document database if your data is not very relational.
Document databases store “documents”. Each record in your database is
simply a big blob of structured data - often in JSON format. If you need
to store relationships between your records, you will have to write code
to manage this yourself. However, many other aspects of using
document databases are much simpler. Your database can be
“schemaless” - meaning that you do not have to declare your records’
definitions up front. Generally speaking, the bar to entry to a document
database is much lower. They also tend to be much more scalable than
SQL databases. They usually offer some querying capabilities, although
sometimes not as powerful as SQL. Examples of document databases
are: MongoDb, CouchDb, Firebase (serverless), Dynamo Db (AWS).

Decide how to segregate your data
Each of your clients has their own, private dataset. One of the worst
things that can happen to your app is for one client’s data to be seen by
another client.

Even if there is only a small amount of non-sensitive leaked data, and no
damage is done, an event like this will massively erode trust in the security
of your app. You must architect a solid strategy for segregating your
clients’ data to make sure that this never happens. Broadly speaking, you
have two options - Physical Separation and Logical Separation.

Physical separation
Every one of your clients has a separate database (although could share
a database server with others). This makes it much more difficult to
make a mistake that leads to data leakage.

Pros:

Most secure
More scalable

Cons:
Managing, maintaining and upgrading is more complex
Query all your clients’ data together is more difficult

40

CPT 411 MODULE 1

For example, listing all Invoices in a database will only return Invoices
for one of your clients. In order to get another Client’s invoices, you
need to connect to another database.

Since each of your client’s data is in its own database, you can easily
spread them all across many database servers, without the need for
“sharding”. Your app will be much easier to scale this way.

The code you will need to write:

When creating a new client, you need to create a new database
and populate with any seed data.
You need to keep a record somewhere of all your clients, and
how to connect to each client’s database.
If you need to upgrade your database (e.g. add a new table), you
need to code to upgrade each separately.
If you need to query all your client’s data into one, you need to
pull the data out of each and aggregate it.

Logical separation
All of your clients are stored in one giant database. Every time you need to
get data for a single client, you must remember to include a filter for the
client. E.g. ‘select’ from customers where customerClientId = “1234”
Pros:

Easier to get started
Easier to maintain and upgrade
Can easily query all your clients’ data with one query

Cons:
Easy to make a mistake that will result in a data
breach More difficult to scale

You now only have one database to manage. Setting this up and
connecting to your database is easy. Your speed to market increases.
When you need to upgrade your database, you can do so with a few
clicks, or by typing a few commands. It is very easy to add new features.
As you gain more users, your database will grow to millions of rows.
Put some effort into how your database handles this extra volume and
load. You will have to start tuning your queries.
When you’re under pressure, it is so easy to forget to include that
“where clientId = 1234” filter. Doing so could result in a business
ending data breach.

Ensure your database is secured. You should look into best practices
for securing your particular database. Some databases come with a
default administrator login, which people often forget to change. This
could leave your data open to the world.

41

CPT 411 NET-CENTRIC COMPUTING

From the start, you should create a login with “Just Enough” access. If
your app only reads and writes data, then it should authenticate to your
database using a login with only data reading and writing access.

3.2.10 Step 9 - Build the frontend

Note: In reality, you will build your backend and frontend at the same
time. But for this post, we’ll keep it simple.

A frontend
The Frontend is the visual element of your web application. It defines
what you see and interact with. The frontend is developed with HTML,
CSS, and JavaScript.

If using server pages, getting started is super easy. Your backend
framework is all set up and ready to start building. This is where the
huge benefit lies with server pages.
With SPA, it’s a little trickier.
First, you need to set up your development environment. The
components of this will be:
 A code editor, such as VS Code, Sublime Text
 A compilation, and packaging

framework: Webpack
Gulp
Grunt

This is also used for serving and “Hot Loading” your application at
development time, on a nodejs web server, running on localhost.
 A frontend framework (strictly not necessary, but highly advised

unless you are an experienced frontend developer):
React
Ember
Vue
Svelte
The list is endless!

 Configuring your packaging tool to talk to your backend - which is
most likely running on a different port on localhost. Usually, this is
done using Node’s HTTP proxy. Most packaging solutions have
this option built-in, or available as plugins. This point commonly
gets people stuck, and may need a diagram. Remember - if you
write your backend API in C Sharp (for example) then at
development time, you will be running it on a local web server,
through your code editor. i.e. your frontend and backend are
running on 2 different web servers, in development. However, in
production, your frontend should (probably) be running on the

42

CPT 411 MODULE 1

SAME web server as your backend - mainly because you want
them to run under the same domain. This means a few things:

At dev (development) time, your frontend should make API

requests to its own (Nodejs server - e.g. Webpack dev server). This
Nodejs server should then proxy all “/api” request to your
backend server.
When building for production, you need to get your compiled
frontend files into your backend server - so they can be served as
static files. You can copy and paste the files in when you deploy,
but you will want to set up some sort of script to do this.

There is always a significant time required to set up your dev
(development) environment for a SPA. There are plenty of boilerplate
templates out there for your frameworks of choice. However, I have
never written an app that has not eventually needed some custom code
on top of the boilerplate.
Still, I always choose a SPA.
The end product for a web app is a much more usable application.

When you are up and running with your dev environment, I find
SPAs much more productive to work with - which is more likely
to do with the capabilities of modern javascript frameworks than
anything else.
Writing a SPA is really the only way to make a Progressive Web
Application.

You should now have a better idea of how to setup your frontend and
define the look and feel of your web app. In most cases, I build the
frontend and backend together.

3.2.11 Step 10 - Build your backend

The backend is typically what manages your data. This refers to
databases, servers, and everything the user cannot see within a web
application. Building your backend is one of the toughest parts of web
app development. If you feel overwhelmed, a tool like Budibase can
take away many of the complexities - including the following tasks. If
you feel confident, continue.

When building your web app, you need to choose between:

Server Pages (Multiple Page Application)
and Single Page Application

“But is not this the frontend?” - I hear you say. Yes! But your choice
will affect how you develop your backend.

43

CPT 411 NET-CENTRIC COMPUTING

The primary jobs of the backend will be to:

Provide HTTP endpoints for your frontend, which allow it to
operate on your data. E.g. Create, Read, Update and Delete

(“CRUD”) records.
Authenticate users (verify they are who they say they are: a.k.a
log them in).
Authorization. When a logged in user makes a request, the
backend will determine whether they are allowed (authorized) to
perform the requested action.

Serve the frontend

If you have chosen Server Pages, your backend will also be generating
your frontend and serving it to your user.
With a single page app, the backend will simply serve your static
frontend files (i.e. your “Single Page” and it is related assets).
When choosing your backend:
Go with what is familiar.
Try Budibase

Server Pages / SPA should inform your decision of framework
choices within your chosen language. For example, a SPA will

only require an API only framework. Server pages need their
own framework.
 Django
 Express
oFlask

How will users authenticate?
oUsername and password?
oOpen ID (i.e. sign in as Google, FB, etc)
Be sure to read up on security best practices. I highly
recommend: OWASP

What user levels will you create in the system?

Environments. You will usually need to create multiple environments.
For example:
Testing - for all the latest development features.
Beta - to give early releases to clients.
Production - Your live system.

3.2.12 Step 11 - Host your web application

Hosting involves running your web app on a particular server. When
using Budibase, this step can be automated with Budibase hosting . With
Budibase, you are still required to buy a domain. If you are not using
Budibase to host your web application, follow these quick steps:\

44

CPT 411 MODULE 1

 Buy a domain - Namecheap
 Buy/Setup an SSL certificate - Let’s Encrypt
 Choose a cloud

provider: Amazon
MS Azure
Google Cloud Platform

Lower cost: Digital Ocean / Linode - if you are happy
managing your own VMs
Zeit Now, Heroku, Firebase are interesting alternatives
that aim to be faster and easier to get things done - you
should read about what they offer.

Choosing one of these hosting options will almost certainly provide you
with everything you need. They have ample documentation and
community supports, and are generally reliable options.

3.2.13 Step 12 - Deploy your web app

You have sourced your idea, validated it, designed and developed your
web app, and chosen your hosting provider. You are now at the last step.
Well done!

The deployment step includes is how your web application gets from
your source control on your computer to your cloud hosting from step
11. How does your application get from Source Control / Your
computer to your cloud hosting provider?
The following development tools provide continuous integration and
will help you with deploying your web app to your cloud hosting:

GitLab
Bitbucket
Jenkins

To start with, you can just deploy directly from your machine of course.
You have made a web application. Well done. You should take some time
to celebrate this achievement. You are the proud owner of a new web app.

Discussion
How can cybercrime be mitigated? Discuss

4.0 SELF-ASSESSMENT/EXERCISE

 Mention and explain the Database types.
There are many types of database for many different purposes. A web
app will most commonly use one of the following:

45

CPT 411 NET-CENTRIC COMPUTING

 SQL
You should use a SQL database if your data is very relational.
Your data is relational if you have multiple, well defined record
types that have relationships between them. For example, a
“Customer” may have many “Invoices” stored against their
record. Typically, you would create a Customer table and an
Invoice table - which could be linked together by “Foreign Key”
columns. E.g. Customer.Id = Invoice.CustomerId.

SQL databases have an extremely powerful query language that
allows you to present your data in all sorts of useful ways. They
have been around for decades, are very well understood, and
usually a safe choice. MySQL, Postgresql, Microsoft SQLServer
are some of the most common - along with many more modern
offerings.

The downside of SQL databases is that you must declare all your
tables and columns up front. There can be a lot of overhead to
manage. If you have never used one before – you are in for a
pretty steep learning curve. However, there are plenty of learning
resources available, and it is always a great skill to have.

 Document Database
You should use a document database if your data is not very
relational. Document databases store “documents”. Each record
in your database is simply a big blob of structured data - often in
JSON format. If you need to store relationships between your
records, you will have to write code to manage this yourself.
However, many other aspects of using document databases are
much simpler. Your database can be “schemaless” - meaning that
you do not have to declare your records’ definitions up front.
Generally speaking, the bar to entry to a document database is
much lower. They also tend to be much more scalable than SQL
databases. They usually offer some querying capabilities,
although sometimes not as powerful as SQL. Examples of
document databases are: MongoDb, CouchDb, Firebase
(serverless), Dynamo Db (AWS).

 What do we mean by the backend, the types and what determine

your backend choice? Explain.
The backend is typically what manages your data. This refers to
databases, servers, and everything the user cannot see within a
web application. Building your backend is one of the toughest
parts of web app development. If you feel overwhelmed, a tool

46

CPT 411 MODULE 1

like Budibase can take away many of the complexities - including
the following tasks. If you feel confident, continue.
When building your web app, you need to choose between:
Server Pages (Multiple Page Application)
and Single Page Application

“But is not this the frontend?” - I hear you say. Yes! But your choice
will affect how you develop your backend.
The primary jobs of the backend will be to:
 Provide HTTP endpoints for your frontend, which allow it to

operate on your data. E.g. Create, Read, Update and Delete
(“CRUD”) records.

 Authenticate users (verify they are who they say they are: a.k.a log
them in).

 Authorization. When a logged in user makes a request, the backend
will determine whether they are allowed (authorized) to perform
the requested action.

 Serve the frontend
If you have chosen Server Pages, your backend will also be
generating your frontend and serving it to your user.

With a single page app, the backend will simply serve your static
frontend files (i.e. your “Single Page” and it is related assets).

When choosing your backend:
 Go with what is familiar.
oTry Budibase
o

Server Pages / SPA should inform your decision of framework
choices within your chosen language. For example, a SPA will
only require an API only framework. Server pages need their
own framework.
§
§
§

Django
Express
Flask

5.0 CONCLUSION

There are many types of database for many different purposes. A web
app will most commonly use one of SQL or Document database. You
should look into best practices for securing your particular database.
Some databases come with a default administrator login, which people
often forget to change. This could leave your data open to the world.

From the start, you should create a login with “Just Enough” access. If
your app only reads and writes data, then it should authenticate to your
database using a login with only data reading and writing access.

47

CPT 411 NET-CENTRIC COMPUTING

6.0 SUMMARY

Building a Web Application steps include: Source an idea, Market
Research, Define your web apps functionality, Sketch your web app,
Plan your web apps workflow, Wireframing / Prototyping Your Web
Application, Seek early validation, Architect and build your database,
Build the frontend, Build your backend, Host your web application and
Deploy your web app. To make a data-centric web app from the bottom-
up, it is advantageous to understand: Backend language (e.g. Python,
Ruby) - control how your web app works; Web front end (HTML, CSS,
Javascript) - for the look and feel of your web app; and DevOps (Github,
Jenkins) - Deploying / hosting your web app. There are many types of
database for many different purposes but a web app will most commonly
use one of SQL and Document database. The backend is typically what
manages your data. This refers to databases, servers, and everything the
user cannot see within a web application.

Building your backend is one of the toughest parts of web app
development. If you feel overwhelmed, a tool like Budibase can take
away many of the complexities - including the follow tasks.

7.0 REFERENCES/FURTHER READING

The web framework for perfectionists with deadlines | Django
(djangoproject.com)
Studio | InVision (invisionapp.com)

48

CPT 411 MODULE 2

MODULE 2: PARALLEL SYSTEMS

UNIT 1: INTRODUCTION TO PARALLEL SYSTEMS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Parallel Processing Systems
3.2 Flynn’s Classification of Parallel Systems
3.3 Relevance of Flynn’s Classification to Parallel Systems
3.4 Parallel Computers and Applications

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

Introduction of Module
Parallel computing is a type of computation in which many
calculations or processes are carried out simultaneously. Large problems
can often be divided into smaller ones, which can then be solved at the
same time. There are several different forms of parallel computing: bit-
level, instruction-level, data, and task parallelism. Parallelism has long
been employed in high-performance computing, but has gained broader
interest due to the physical constraints preventing frequency scaling. As
power consumption (and consequently heat generation) by computers
has become a concern in recent years, parallel computing has become
the dominant paradigm in computer architecture, mainly in the form of
multi-core processors.

This module will consist of four units are
follows Unit 1: Introduction to Parallel Systems
Unit 2: Parallel Programming Models Unit 3:
Message Passing Programming Unit 4:
Dependence Analysis Unit 5: OpenMP
Programming Unit 6: Evaluation of Programs

49

CPT 411 NET-CENTRIC COMPUTING

1.0 INTRODUCTION

Parallel systems deal with the simultaneous use of multiple computer
resources that can include a single computer with multiple processors, a
number of computers connected by a network to form a parallel
processing cluster or a combination of both.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Define the concept of Parallel Systems
Explore the Parallel Systems types
Differentiate between the two Single Instruction, Multiple Data
stream (SIMD) schemes

3.0 MAIN CONTENT

3.1 Parallel Processing Systems

Parallel Processing Systems are designed to speed up the execution of
programs by dividing the program into multiple fragments and
processing these fragments simultaneously. Such systems are
multiprocessor systems also known as tightly coupled systems. Parallel
systems deal with the simultaneous use of multiple computer resources
that can include a single computer with multiple processors, a number of
computers connected by a network to form a parallel processing cluster
or a combination of both. Parallel computing is an evolution of serial
computing where the jobs are broken into discrete parts that can be
executed concurrently.

Each part is further broken down to a series of instructions. Instructions
from each part execute simultaneously on different CPUs. Parallel systems
are more difficult to program than computers with a single processor
because the architecture of parallel computers varies accordingly and the
processes of multiple CPUs must be coordinated and
synchronized. Several models for connecting processors and memory
modules exist, and each topology requires a different programming
model. The three models that are most commonly used in building
parallel computers include synchronous processors each with its own
memory, asynchronous processors each with its own memory and
asynchronous processors with a common, shared memory.

50

CPT 411 MODULE 2

3.2 Flynn’s Classification of Parallel Systems

Flynn has classified the computer systems based on parallelism in the
instructions and in the data streams. These are:

 Single Instruction, Single Data stream (SISD):
An SISD computing system is a uniprocessor machine capable of
executing a single instruction, which operates on a single data stream
(see Figure 2.1.1 below). In SISD, machine instructions are processed
sequentially; hence computers adopting this model are popularly called
sequential computers. Most conventional computers are built using the
SISD model. All the instructions and data to be processed have to be
stored in primary memory. The speed of the processing element in the
SISD model is limited by the rate at which the computer can transfer
information internally. Dominant representative SISD systems are IBM
PC, Macintosh, and workstations.

Figure 1.1.1: Single Instruction, Single Data stream (SISD)

 Single Instruction, Multiple Data stream (SIMD):
SIMD represents single-instruction multiple-data streams. The SIMD
model of parallel computing includes two parts such as a front-end
computer of the usual von Neumann style, and a processor array as
displayed in the figure 2.1.2.

The processor array is a collection of identical synchronized processing
elements adequate for simultaneously implementing the same operation
on various data. Each processor in the array has a small amount of local
memory where the distributed data resides while it is being processed in
parallel. The processor array is linked to the memory bus of the front
end so that the front end can randomly create the local processor
memories as if it were another memory.

51

CPT 411 NET-CENTRIC COMPUTING

Figure 2.1.2: Single instruction stream, multiple data stream (SIMD)

A program can be developed and performed on the front end using a
traditional serial programming language. The application program is
performed by the front end in the usual serial method, but problem
command to the processor array to carry out SIMD operations in
parallel. The similarity between serial and data-parallel programming is
one of the valid points of data parallelism. Synchronization is created
irrelevant by the lock-step synchronization of the processors. Processors
either do nothing or similar operations at the same time.

In SIMD architecture, parallelism is exploited by using simultaneous
operations across huge sets of data. This paradigm is most beneficial for
solving issues that have several data that require to be upgraded on a
wholesale basis. It is dynamically powerful in many regular scientific
calculations.

Two main configurations have been applied in SIMD machines. In the
first scheme, each processor has its local memory. Processors can
interact with each other through the interconnection network. If the
interconnection network does not support a direct connection between
given groups of processors, then this group can exchange information
via an intermediate processor.

In the second SIMD scheme, processors and memory modules
communicate with each other via the interconnection network. Two
processors can send information between each other via intermediate
memory module(s) or possibly via intermediate processor(s). The BSP
(Burroughs’ Scientific Processor) used the second SIMD scheme.

52

CPT 411 MODULE 2

Figure 2.1.2a: Single instruction stream, multiple data stream (SIMD)
Scheme-1

Figure 2.1.2b: Single Instruction, Multiple Data stream (SIMD)
Scheme-2
 Multiple Instruction, Single Data stream (MISD).
In this association, multiple processing elements are structured under the
control of multiple control units. Each control unit is handling single
instruction stream and processed through its corresponding processing
element. But single processing element is processing only a one data
stream at a time. Hence, for handling single data stream and multiple
instruction streams, multiple processing elements and multiple control
units are organised in this classification. All processing elements are
relate with the common shared memory for the organisation of one data
stream as given in Figure 2.1.3. The only identified instance of a
computer capable of MISD operation is the C.mmp built by Carnegie-
Mellon University.

53

CPT 411 NET-CENTRIC COMPUTING

This type of computer organisation is denoted as:
Is > 1
Ds = 1

Figure 2.1.3: Multiple-Instruction Single-Data streams (MISD)
This classification is not popular in commercial machines as the thought
of single data streams implementing on multiple processors is rarely
functional. But for the particular applications, MISD organisation can be
very useful. For example, Real time computers need to be fault tolerant
where several processors implement the same data for producing the
redundant data. This is also called as N- version programming. All these
redundant data are measured to as results which should be similar;
otherwise faulty unit is returned. Thus MISD machines can be useful to
fault tolerant real time computers.

 Multiple Instruction, Multiple Data stream (MIMD).
MIMD stands for Multiple-instruction multiple-data streams. It includes
parallel architectures are made of multiple processors and multiple
memory modules linked via some interconnection network. They fall
into two broad types including shared memory or message passing.

A shared memory system generally accomplishes interprocessor
coordination through a global memory shared by all processors. These
are frequently server systems that communicate through a bus and cache
memory controller.

The bus/ cache architecture alleviates the need for expensive multi-ported
memories and interface circuitry as well as the need to adopt a message-
passing paradigm when developing application software. Because access to
shared memory is balanced, these systems are also called SMP (symmetric
multiprocessor) systems. Each processor has an equal opportunity to
read/write to memory, including equal access speed.

54

CPT 411 MODULE 2

Figure 2.1.4: Multiple-Instruction Multiple-Data streams (MIMD)

The above classification of parallel computing system is focused in terms
of two independent factors: the number of data streams that can be
simultaneously processed, and the number of instruction streams that can
be simultaneously processed. Here, by ‘instruction stream’ we mean an
algorithm that instructs the computer what to do whereas ‘data stream’ (i.e.
input to an algorithm) means the data that are being operated upon.

3.3 Relevance of Flynn’s Classification to Parallel Systems

Even though Flynn has classified the computer ‘systems into four types
based on parallelism but only two of them are relevant to parallel
computers. These are SIMD and MIMD computers.

55

CPT 411 NET-CENTRIC COMPUTING

SIMD computers are consisting of ‘n’ processing units receiving a
single stream of instruction from a central control unit and each
processing unit operates on a different piece of data. Most SIMD
computers operate synchronously using a single global clock. The block
diagram of SIMD computer is shown below:

Figure 2.1.5: Single Instruction, Multiple Data stream (SIMD) Block
Diagram

MIMD computers are consisting of ‘n’ processing units; each with its
own stream of instruction and each processing unit operate on unit
operates on a different piece of data. MIMD is the most powerful
computer system that covers the range of multiprocessor systems. The
block diagram of MIMD computer is shown.

Figure 2.1.6: Multiple Instruction, Multiple Data stream (MIMD) Block
Diagram

The SIMD systems are easier to program because it deals with single
thread of execution. On the hand, the MIMD machines are more
efficient because you can utilize the full machine power.

3.4 Parallel Computers and Applications

Parallel operating systems are primarily concerned with managing the
resources of parallel machines. A parallel computer is a set of processors
that are able to work cooperatively to solve a computational problem. So,
56

CPT 411 MODULE 2

a parallel computer may be a supercomputer with hundreds or thousands
of processors or may be a network of workstations.
A few years ago, parallel computers could be found only in research
laboratories and they were used mainly for computation intensive
applications like numerical simulations of complex systems. Today,
there are a lot of parallel computers available in the market; used to
execute both data intensive applications in commerce and computation
intensive applications in science and engineering.

Today, new applications arise and demand faster computers. Commercial
applications are the most used on parallel computers. A computer that runs
such an application should be able to process large amount of data in
sophisticated ways. These applications include graphics, virtual reality, and
decision support, parallel databases, medicine diagnosis and so on. We can
say with no doubt that commercial applications will define future parallel
computers architecture but scientific applications will remain important
users of parallel computing technology.

Concurrency becomes a fundamental requirement for algorithms and
programs. A program has to be able to use a variable number of
processors and also has to be able to run on multiple processors
computer architecture. According to Tanenbaum, a distributed system is
a set of independent computers that appear to the user like a single one.
So, the computers have to be independent and the software has to hide
individual computers to the users. MIMD computers and workstations
connected through LAN and WAN are examples of distributed systems.
The main difference between parallel systems and distributed systems is
the way in which these systems are used. A parallel system uses a set of
processing units to solve a single problem A distributed system is used
by many users together.

Discussion
What is the difference of firewalls at Application security and internet
security?

4.0 SELF-ASSESSMENT/EXERCISES

 What is Parallel Systems

Answer:
Parallel Processing Systems are designed to speed up the execution of
programs by dividing the program into multiple fragments and processing
these fragments simultaneously. Such systems are multiprocessor systems
also known as tightly coupled systems. Parallel systems deal with the
simultaneous use of multiple computer resources that can include a single
computer with multiple processors, a number of computers

57

CPT 411 NET-CENTRIC COMPUTING

connected by a network to form a parallel processing cluster or a
combination of both. Parallel computing is an evolution of serial
computing where the jobs are broken into discrete parts that can be
executed concurrently.

 What are the Flynn’s Classification of Parallel Systems?

Answer:
 Single instruction stream, single data stream (SISD):
An SISD computing system is a uniprocessor machine capable of
executing a single instruction, which operates on a single data stream
(see Figure 2.1.1 below). In SISD, machine instructions are processed
sequentially; hence computers adopting this model are popularly called
sequential computers. Most conventional computers are built using the
SISD model. All the instructions and data to be processed have to be
stored in primary memory. The speed of the processing element in the
SISD model is limited by the rate at which the computer can transfer
information internally. Dominant representative SISD systems are IBM
PC, Macintosh, and workstations.

Figure 2.1.1: Single Instruction, Single Data stream (SISD)

 Single Instruction, Multiple Data stream (SIMD):
SIMD represents single-instruction multiple-data streams. The SIMD
model of parallel computing includes two parts such as a front-end
computer of the usual von Neumann style, and a processor array as
displayed in the figure 2.1.2.

The processor array is a collection of identical synchronized processing
elements adequate for simultaneously implementing the same operation on
various data. Each processor in the array has a small amount of local
memory where the distributed data resides while it is being processed in
parallel. The processor array is linked to the memory bus of the front end

58

CPT 411 MODULE 2

so that the front end can randomly create the local processor memories
as if it were another memory.

Figure 2.1.2: Single instruction stream, multiple data stream (SIMD)
A program can be developed and performed on the front end using a
traditional serial programming language. The application program is
performed by the front end in the usual serial method, but problem
command to the processor array to carry out SIMD operations in
parallel. The similarity between serial and data-parallel programming is
one of the valid points of data parallelism. Synchronization is created
irrelevant by the lock-step synchronization of the processors. Processors
either do nothing or similar operations at the same time.

In SIMD architecture, parallelism is exploited by using simultaneous
operations across huge sets of data. This paradigm is most beneficial for
solving issues that have several data that require to be upgraded on a
wholesale basis. It is dynamically powerful in many regular scientific
calculations.

Two main configurations have been applied in SIMD machines. In the
first scheme, each processor has its local memory. Processors can
interact with each other through the interconnection network. If the
interconnection network does not support a direct connection between
given groups of processors, then this group can exchange information
via an intermediate processor.

In the second SIMD scheme, processors and memory modules
communicate with each other via the interconnection network. Two
processors can send information between each other via intermediate
memory module(s) or possibly via intermediate processor(s). The BSP
(Burroughs’ Scientific Processor) used the second SIMD scheme.

59

CPT 411 NET-CENTRIC COMPUTING

Figure 2.1.2a: Single instruction stream, multiple data stream (SIMD)
Scheme-1

Figure 2.1.2b: Single Instruction, Multiple Data stream (SIMD)
Scheme-2

 Multiple Instruction, Single Data stream (MISD).
In this association, multiple processing elements are structured under the
control of multiple control units. Each control unit is handling single
instruction stream and processed through its corresponding processing
element. But single processing element is processing only a one data
stream at a time. Hence, for handling single data stream and multiple
instruction streams, multiple processing elements and multiple control
units are organised in this classification. All processing elements are
relate with the common shared memory for the organisation of one data
stream as given in Figure 2.1.3. The only identified instance of a
computer capable of MISD operation is the C.mmp built by Carnegie-
Mellon University.

60

CPT 411 MODULE 2

This type of computer organisation is denoted as:
Is > 1
Ds = 1

Figure 2.1.3: Multiple-Instruction Single-Data streams (MISD)
This classification is not popular in commercial machines as the thought
of single data streams implementing on multiple processors is rarely
functional. But for the particular applications, MISD organisation can be
very useful. For example, Real time computers need to be fault tolerant
where several processors implement the same data for producing the
redundant data. This is also called as N- version programming. All these
redundant data are measured to as results which should be similar;
otherwise faulty unit is returned. Thus MISD machines can be useful to
fault tolerant real time computers.

 Multiple Instruction, Multiple Data stream (MIMD).
MIMD stands for Multiple-instruction multiple-data streams. It includes
parallel architectures are made of multiple processors and multiple
memory modules linked via some interconnection network. They fall
into two broad types including shared memory or message passing.
A shared memory system generally accomplishes interprocessor
coordination through a global memory shared by all processors. These
are frequently server systems that communicate through a bus and cache
memory controller.

The bus/ cache architecture alleviates the need for expensive multi-ported
memories and interface circuitry as well as the need to adopt a message-
passing paradigm when developing application software. Because access to
shared memory is balanced, these systems are also called SMP (symmetric
multiprocessor) systems. Each processor has an equal opportunity to
read/write to memory, including equal access speed.

61

CPT 411 NET-CENTRIC COMPUTING

Figure 2.1.4: Multiple-Instruction Multiple-Data streams (MIMD)
The above classification of parallel computing system is focused in terms
of two independent factors: the number of data streams that can be
simultaneously processed, and the number of instruction streams that can
be simultaneously processed. Here, by ‘instruction stream’ we mean an
algorithm that instructs the computer what to do whereas ‘data stream’ (i.e.
input to an algorithm) means the data that are being operated upon.

62

CPT 411 MODULE 2

5.0 CONCLUSION

There seem to be no system that functions serially even, the human system
works in parallel. For example, the respiratory system, circulatory system
and locomotive system are all functioning simultaneously. The parallel
computers run a number of job chunks simultaneously.

6.0 SUMMARY

Parallel Processing Systems are designed to speed up the execution of
programs by dividing the program into multiple fragments and processing
these fragments simultaneously. Flynn’s Classification of Parallel Systems
are Single Instruction, Single Data stream (SISD); Single instruction
stream, multiple data stream (SIMD); Multiple-Instruction Single-Data
streams (MISD) and Multiple-Instruction Multiple-Data streams (MIMD).
The above classification of parallel computing system is focused in terms
of two independent factors: the number of data and the number of
instruction streams that can be simultaneously processed. Parallel operating
systems are primarily concerned with managing the resources of parallel
machines. A parallel computer is a set of processors that are able to work
cooperatively to solve a computational problem.

7.0 REFERENCES/FURTHER READING

https://ecomputernotes.com/fundamental/disk-operating-system/parallel-
processing-systems
https://www.tutorialspoint.com/what-is-mimd-architecture

63

CPT 411 NET-CENTRIC COMPUTING

UNIT 2 PARALLEL PROGRAMMING MODELS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Parallel Programming Models
3.2 MPI
3.3 OpenMP
3.4 MapReduce
3.5 OpenCL

3.6 CUDA
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

In computing, a parallel programming model is an abstraction of
parallel computer architecture, with which it is
convenient to express algorithms and their composition in programs. The
value of a programming model can be judged on its generality: how well a
range of different problems can be expressed for a variety of different
architectures, and its performance: how efficiently the compiled programs
can execute. The implementation of a parallel programming model can take
the form of a library invoked from a sequential language, as an extension to
an existing language, or as an entirely new language.
Consensus around a particular programming model is important because
it leads to different parallel computers being built with support for the
model, thereby facilitating portability of software. In this sense,
programming models are referred to as bridging between hardware and
software.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

Explain the concept of Parallel programming
Enumerate and explain 4 of the parallel programming models

64

CPT 411 MODULE 2

3.0 MAIN CONTENT

3.1 Parallel Programming Models

A parallel programming model is a set of program abstractions for
fitting parallel activities from the application to the underlying parallel
hardware. It spans over different layers: applications, programming
languages, compilers, libraries, network communication, and I/O
systems. Two widely known parallel programming models are:
 shared memory and
 message passing
There are also different:
 combinations of both.

 In the shared-memory programming model, tasks share a common

address space, which they read and write in an asynchronous
manner. The communication between tasks is implicit. If more
than one task accesses the same variable, the semaphores or locks
can be used for synchronization. By keeping data local to the
processor and making private copies, expensive memory accesses
are avoided, but some mechanism of coherence maintenance is
needed when multiple processors share the same data with the
possibility of writing.

 In the message-passing programming model, tasks have private
memories, and they communicate explicitly via message
exchange. To exchange a message, each sends operation needs to
have a corresponding receive operation. Tasks are not
constrained to exist on the same physical machine.

 A suitable combination of two previous models is sometimes
appropriate. Processors can directly access memory on another
processor. This is achieved via message passing, but what the
programmer actually sees is shared-memory model.

Mainstream parallel programming environments are based on
augmenting traditional sequential programming languages with low-level
parallel constructs (library function calls and/or compiler directives).

3.1 The Programming Models

3.1.1 Message Passing Interface (MPI)

The MPI is a library of routines with the bindings in Fortran, C, and C++
and it is an example of an explicitly parallel API that implements the
message-passing model via library function calls. The set of processes with
separate address spaces coordinate the computation by explicitly sending
and receiving messages. Each process has a separate address

65

CPT 411 NET-CENTRIC COMPUTING

space, its own program counter, and its own call stack. However, high-
level constructs such as synchronization, communication, and mapping
data to processes are left to a programmer to implement. MPI supports
point-to-point communication between any two processes. It also
enables the collective communication operations where a group of
processes perform global/collective operations, such as gather, scatter,
reduce, and scan.

In an heterogeneous environment, in order to optimize the performance,
an MPI implementation may map processes to processors in a particular
way. Similarly, an MPI implementation may optimize the way processes
communicate during a global operation. For example, in case of
MPI_Reduce, the communicating nodes do not have to form a tree
structure, if an alternative structure brings better performance for the
underlying parallel machine.

3.2.2. OpenMP (Open Multi-Processing)

On the other side, OpenMP is an example of mainly implicit parallel API
intended for shared-memory multiprocessors. It exploits parallelism
through compiler directives and the library function calls. Unlike MPI,
where all threads are spawned at the beginning of the execution and are
active until the program terminates, in OpenMP, a single master thread
starts execution, and additional threads are active only during the execution
of a parallel region. To reduce the overheads, these threads are spawned
when the program enters a parallel region for the first time, and they are
blocked while the program is executing a nonparallel region.

Sections work-sharing construct breaks work into multiple distinct
sections, such that each section is entirely executed by a single thread. It
is an example of task parallelism paradigm. Its general form is presented
in figure 2.2.1.

66

CPT 411 MODULE 2

Figure 2.2.1: OpenMP Session Construct

For work-sharing construct splits iterations of a loop among different
threads, such that each iteration is entirely executed by a single thread. It
is an example of data-parallelism paradigm. Its general form is shown in
figure 2.2.2.

Figure 2.2.2: OpenMP For Constrauct

Cilk is a language extension for C programming language with parallel
constructs, resembling to OpenMP. Both OpenMP and Cilk can
automatically choose parallelism to achieve good performance. Cilk++
brings the same for C++ language.

Nesting OpenMP is unfortunately not fully composable, which can be a
serious limitation when compared with the other abstract parallel
programming models. Nesting of OpenMP can create explosive numbers of
threads in recursive situations, which rapidly exhaust system resources,
especially stack space, and require that the program be shut down. To
prevent this, the maximum number of levels of parallel nesting that will

67

CPT 411 NET-CENTRIC COMPUTING

be activated when using OpenMP is set to one by default. While this is
somewhat limiting (nested parallelism as supported by TBB and Cilk
Plus is incredibly useful), it avoids a generally intolerable condition.
With the continued popularity of OpenMP being so strong, we can
expect additional proposals to refine OpenMP into a better ability to
exploit nested parallelism opportunities when they exist. Without such
solutions, programs are best to avoid relying on nesting of parallelism in
order to get performance if using OpenMP.

3.2.3. MapReduce

One of the most widely used parallel programming models today is
MapReduce. MapReduce is easy both to learn and use, and is especially
useful in analyzing large datasets. While it is not suitable for several
classes of scientific computing operations that are better served by
message-passing interface or OpenMP, such as numerical linear
algebra or finite element and finite difference computations,
MapReduce's utility in workflows frequently called “big data” has made
it a mainstay in high performance computing. MapReduce programming
model and the Hadoop open-source framework supports it.

3.2.4. OpenCL (Open Computing Language)

OpenCL has some advantages over other parallel programming models.
First of all, it is the only one of the “open” standards for which there,
actually, are implementations by all major vendors—unlike for OpenMP
or OpenACC. The level of vendor support, however, is a different story.
OpenCL is a library that can be used with any C/C++ compiler, which
makes it independent of additional tools. The kernels are written
separately in a C-like language and compiled at runtime for the present
hardware. The kernel compiler comes with the OpenCL implementation
provided by the hardware vendor. A kernel written in OpenCL will run
everywhere, including conventional CPUs, Intel Xeon Phi coprocessors,
GPGPUs, some FPGAs, and even mobile devices.

OpenCL programs are divided into host and kernel code. Only the latter is
executed on the compute device. In the host program, kernels and memory
movements are queued into command queues associated with a device. The
kernel language provides features like vector types and additional memory
qualifiers. A computation must be mapped to work-groups of work-items
that can be executed in parallel on the compute units (CUs) and processing
elements (PEs) of a compute device. A work-item is a single instance of a
kernel function. For each kernel-call, an NDRange (n-dimensional range)
specifies the dimension, number, and shape of the work-groups. Global
synchronization during the execution of a kernel is

68

CPT 411 MODULE 2

unavailable. Work-items inside a work-group can be synchronized.
OpenCL provides a complex memory model with a relaxed consistency.

3.2.5. The CUDA (Compute Unified Device Architecture)

programming model

The CUDA programming model is a parallel programming model that
provides an abstract view of how processes can be run on underlying
GPU architectures. The evolution of GPU architecture and the CUDA
programming language have been quite parallel and interdependent.
Although the CUDA programming model has stabilized over time, the
architecture is still evolving in its capabilities and functionality. GPU
architecture has also grown in terms of the number of transistors and
number of computing units over years, while still supporting the CUDA
programming model.

Until 2000 GPU architectures supported fixed pipeline functionality tightly
coupled with graphics pipeline. Separate silicon real estate was dedicated to
each state of the pipeline. Around 2001 programmability for 2D operations
(pixel shaders) and 3D operations (vertex shaders) were introduced. Then
from approximately 2006 through 2008 all these operations were combined
to be executed by a shared and common computational unit using a much
higher-level programmable feature. This programmability was introduced
as the CUDA programming model. Since then the CUDA programming
model has been used to implement many algorithms and applications other
than graphics, and this explosion of use and permeability of CUDA with
hitherto unknown applications has catapulted the GPU’s near ubiquitous
use in many domains of science and technology. Since then all the GPUs
designed are CUDA-capable. It should be noted that before CUDA was
released, there were attempts to create high-level languages and template
libraries But such efforts tapered down with the introduction of CUDA, and
more effort was spent on refining CUDA and building libraries using its
constructs.

Discussion
Explain the peculiarities of the CUDA programming model.

4.0 SELF-ASSESSMENT/EXERCISES

Mention and explain two widely known parallel programming models:
Answer
 shared memory and
 message passing
 In the shared-memory programming model, tasks share a common

address space, which they read and write in an asynchronous
manner. The communication between tasks is implicit. If more

69

CPT 411 NET-CENTRIC COMPUTING

than one task accesses the same variable, the semaphores or locks
can be used for synchronization. By keeping data local to the
processor and making private copies, expensive memory accesses
are avoided, but some mechanism of coherence maintenance is
needed when multiple processors share the same data with the
possibility of writing.

 In the message-passing programming model, tasks have private
memories, and they communicate explicitly via message
exchange. To exchange a message, each sends operation needs to
have a corresponding receive operation. Tasks are not
constrained to exist on the same physical machine.

 Define the term, Parallel Programming

Answer:
A parallel programming model is a set of program abstractions for
fitting parallel activities from the application to the underlying parallel
hardware. It spans over different layers: applications, programming
languages, compilers, libraries, network communication, and I/O
systems.

5.0 CONCLUSION

A suitable combination of two previous parallel programming models is
sometimes appropriate. Processors can directly access memory on
another processor. This is achieved via message passing, but what the
programmer actually sees is shared-memory model

6.0 SUMMARY

In computing, a parallel programming model is an abstraction of
parallel computer architecture, with which it is
convenient to express algorithms and their composition in programs.
Two widely known parallel programming models are: shared memory
and message passing. Some of the Parallel Programming models are
Message Passing Interface(MPI), Open Multi-processing (OpenMP),
MapReduce, Open Computing Language(OpenCL) and Compute
Unified Device Architecture (CUDA)

7.0 REFERENCES/FURTHER READING

Linköping University Electronic Press

ttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-40734
High-Performance Computing - an overview | ScienceDirect Topics
https://en.wikipedia.org/wiki/Parallel_programming_model

70

CPT 411 MODULE 2

UNIT 3 MESSAGE PASSING PROGRAMMING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Messages and Message-Passing Programming
3.2 Message-Passing Programming Model
3.4 Single-Program-Multiple-Data (SPMD)

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

In computer science, message passing is a technique for invoking
behavior (i.e., running a program) on a computer. The invoking program
sends a message to a process (which may be an actor or object) and
relies on that process and its supporting infrastructure to then select and
run some appropriate code. Message passing differs from conventional
programming where a process, subroutine, or function is directly
invoked by name. Message passing is key to some models of
concurrency and object-oriented programming.

Message passing is ubiquitous in modern computer software. It is used
as a way for the objects that make up a program to work with each other
and as a means for objects and systems running on different computers
(e.g., the Internet) to interact. Message passing may be implemented by
various mechanisms, including channels.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

Define what a Message is
Explain the concept of Message Passing

Itemize and explain the different Message Passing Programming
models

71

CPT 411 NET-CENTRIC COMPUTING

3.0 MAIN CONTENT

3.1 The message-passing

A message transfer is when data moves from variables in one sub-
program to variables in another sub-program. The message consists of
the data being sent. The message passing system has no interest in the
value of this data. It is only concerned with moving it. In general the
following information has to be provided to the message passing system
to specify the message transfer.

Which processor is sending the message?
Where is the data on the sending processor?
What kind of data is being sent?
How much data is there?
Which processor(s) are receiving the message?
Where should the data be left on the receiving processor?
How much data is the receiving processor prepared to accept?

In general, the sending and receiving processors will cooperate in
providing this information. Some of this information provided by the
sending processor will be attached to the message as it travels through
the system and the message passing system may make some of this
information available to the receiving processor.

As well as delivering data, the message passing system has to provide
some information about progress of communications. A receiving
processor will be unable to use incoming data if it is unaware of its
arrival. Similarly, a sending processor may wish to find out if its
message has been delivered. A message transfer therefore provides
synchronisation information in addition to the data in the message.

The essence of message passing is communication and many of the
important concepts can be understood by analogy with the methods that
people use to communicate, phone, fax, letter, radio etc. Just as phones
and radio provide different kinds of service different message passing
systems can also take very different approaches. For the time being we
are only interested in general concepts rather than the details of
particular implementations.

3.2 The message-passing programming model

The sequential paradigm for programming is a familiar one. The
programmer has a simplified view of the target machine as a single
processor which can access a certain amount of memory. He or she
72

CPT 411 MODULE 2

therefore writes a single program to run on that processor. The paradigm
may, in fact, be implemented in various ways, perhaps in a time-sharing
environment where other processes share the processor and memory, but
the programmer wants to remain above such implementation-dependent
details, in the sense that the program or the underlying algorithm could
in principle be ported to any sequential architecture -- that is after all the
point of a paradigm.

Figure 2.3.1: The sequential programming paradigm

The message-passing paradigm is a development of this idea for the
purposes of parallel programming. Several instances of the sequential
paradigm are considered together. That is, the programmer imagines
several processors, each with its own memory space, and writes a program
to run on each processor. So far, so good, Parallel programming by
definition requires co-operation between the processors to solve a task,
which requires some means of communication. The main point of the
message-passing paradigm is that the processes communicate by sending
each other messages. Thus the message-passing model has no concept of a
shared memory space or of processors accessing each other's memory
directly -- anything other than message-passing is out with the scope of the
paradigm. As far as the programs running on the individual processors are
concerned, the message passing operations are just subroutine calls. Those
with experience of using networks of workstations, client-server systems or
even object-oriented programs will recognise the message-passing
paradigm as nothing novel.

3.3 Single Program Multiple Data Streams (SPMD)

SPMD mode is a method of parallel computing, its processors run the
same program, but execute different data. SPMD could get better
computing performance through increasing the number of processors.
This also increased power consumption, and had problems of heat
dissipation at high clock speeds. Previously, computing performance
was increased through clock speed scaling. Parallel computing allow
more instructions to complete in a given time through parallel execution.
Nowadays, parallel computing has entered main stream use, following
the introduction of multi-core processors.

73

CPT 411 NET-CENTRIC COMPUTING

3.3.1 SPMD operation mechanism

The same program code is loaded to all the processors. Data is
distributed to each processor. The barrier is like a control signal
generated by all processors. It could synchronize the execution of
processors at some point.

The first example of SPMD: Titanium
Titanium is a Java-based language for writing high performance
scientific applications on large scale multiprocessors.

public static void main(String[] args) {
System.out.println("Hello from thread " + Ti.thisProc()) ;
Ti.barrier() ;
if (Ti.thisProc() == 0)
System.out.println("Done.") ; }

Data locality: No communication between processors.

The second example of SPMD: MPI
MPI is a standard interface for message passing parallel programs written
in C, C++, or Fortran.
begin program
x = 0z = 2b = 7
if (rank == 0) then
x = x + 1b=x* 3
send(x)
else
receive(y)
z=b* y (10)
endif
f = reduce(SUM,z)
end program

we can see that the variable y will be assigned the constant value 1 due
to the send of x and the corresponding receive into y. SPMD has a local
view of execution.

3.3.2 Advantages of SPMD

 Locality
Data locality is essential to achieving good performance on large-scale
machines, where communication across the network is very expensive.

74

CPT 411 MODULE 2

 Structured Parallelism
The set of threads is fixed throughout computation. It is easier for
compilers to reason about SPMD code, resulting in more efficient
program analyses than in other models.

 Simple runtime implementation
SPMD belongs to MIMD, it has a local view of execution and parallelism
is exposed directly to the user, compilers and runtime systems require less
effort to implement than many other MIMD models.

3.3.3 Disadvantages of SPMD

 SPMD is a flat model, which makes it difficult to write hierarchical

code, such as divide-and-conquer algorithms, as well as programs
optimized for hierarchical machines.

 The second disadvantage may be that it seems hard to get the desired
speedup using SPMD.

The advantages of SPMD are very obvious, and SPMD is still a
common use on many large-scale machines. Many scientists have done
researches to improve SPMD, such as the recursive SPMD, which
provides hierarchical teams. So, SPMD will still be a good method for
parallel computing in the future.

Discussion
Discuss Single Program multiple Data (SPMD).

4.0 SELF-ASSESSMENT/EXERCISES

 What actually is the interest of a Message-passing System?

Answer
The message passing system has no interest in the value of this data. It is
only concerned with moving it. In general the following information has
to be provided to the message passing system to specify the message
transfer. Which processor is sending the message:
 Where is the data on the sending processor.
oWhat kind of data is being sent.
oHow much data is there.
oWhich processor(s) are receiving the message.

5.0 CONCLUSION

The message-passing paradigm is a development of this idea for the
purposes of parallel programming. Several instances of the sequential
paradigm are considered together. That is, the programmer imagines

75

CPT 411 NET-CENTRIC COMPUTING

several processors, each with its own memory space, and writes a
program to run on each processor. So far, so good, but parallel
programming by definition requires co-operation between the processors
to solve a task, which requires some means of communication

6.0 SUMMARY

Message-passing paradigm involves a set of sequential programs, one
for each processor. In reality, it is rare for a parallel programmer to
make full use of this generality and to write a different executable for
each processor. Indeed, for most problems this would be perverse --
usually a problem can naturally be divided into sub-problems each of
which is solved in broadly the same way. Single Program Multiple
Data Streams (SPMD) mode is a method of parallel computing, its
processors run the same program, but execute different data. The
advantages of SPMD are data locality, structured parallelism and simple
runtime implementation while the disadvantages are that SPMD is a flat
model, which makes it difficult to write hierarchical code and that it
seems hard to get the desired speedup using SPMD.

7.0 REFERENCES/FURTHER READING

Neil MacDonald, Elspeth Minty, Tim Harding, Simon Brown,

Edinburgh Parallel Computing Centre, The University of
Edinburgh. (Course Notes)

Advances in GPU Research and Practice | ScienceDirect
https://slideplayer.com/slide/7559656/

76

CPT 411 MODULE 2

UNIT 4 DEPENDENCE ANALYSIS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Dependency Analysis
3.2 How Dependencies are Found
3.3 Why Do We use Dependency Analysis
3.4 How Dependency Analysis Works

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Dependencies are the relationships that exist between the constituent
parts, or entities, of a complete system. A single dependency represents
a directional relationship, and therefore a sequence, between a pair of
system entities.

For example, if the system were a journey, there might be a walking
dependency from a flight to a taxi. If this is applied to a software context,
in a codebase, a function may depend on (invoke) another function. As you
can infer, dependencies can have types, or behaviour, as well as a direction,
indicating how the transition occurs and in what order. Dependency
analysis is the process of extracting the set of entities, their dependencies
and their types and direction, from the system so that the system structure
can be analysed, understood and improved.

3.0 MAIN CONTENT

3.1 Dependency analysis

When examining an artifact for re-use you might want to understand
what it depends on. Developing a service that has a dependency on a
large number of other distinct systems is likely to result in something
that has to be revalidated every time each of those dependencies changes
(which might therefore be quite often). To undertake a typical
dependency analysis, perform the following steps:
 Identify the artefact with dependencies you want to analyze.
 Trace through any relationships defined on that artefact and identify

the targets of the relationships. This impact analysis thus

77

CPT 411 NET-CENTRIC COMPUTING

results in a list of "dependencies" that the selected artefact
depends on.

 If these "dependencies" also depend on other artefacts, then the
selected artefact will also have an indirect dependency. The
impact analysis must therefore act recursively looking for
relationships from any of the "dependencies".

This process continues until a complete graph is obtained starting at the
selected artefact and finishing with artefacts that have no further
dependencies. The selected artefact might have a dependency on any
artefact in the graph. Kindly note that an object can exist multiple times
in the graph if it can be reached in different ways.

3.2 How dependencies are found

When impact analysis is started, it does not change the direction of
processing through the graph. For example, an object, B, has a
dependency on object C, and object B is depended on by objects A and
D, as shown in Figure 1 below.

If object A is selected for analysis, the results list includes object B and
object C. Despite object D also having a dependency on objects B and
C, the analysis keeps tracing down through the dependencies and will
not find any objects which are backwards in the dependency hierarchy
that are not directly linked to the selected object, so object D will not be
in the results list.

Figure 2.4.1. Dependency analysis graph

3.3 Why use dependency analysis

A codebase may have been initially designed with a modular or layered
architecture, but over time, that clean structure could have been eroded,
introducing unexpected coupling between elements, which can damage or
even destroy the architectural intent. This can lead to ongoing development
or maintenance of the codebase becoming more complex and time
consuming to do, which can result in additional errors and complications
creeping into the code. The longer these problems go unchecked, the more
the problems can be compounded into the codebase
78

CPT 411 MODULE 2

and therefore more expensive in time and money to address. Beyond
dependency analysis tools providing a way for you to address such
problems, they may also offer the ability to enforce structural rules
dictating how the different modules/layers or external entities such as
third party libraries may interact with and within the system
respectively. Once in place these rules typically allow the codebase to
be automatically checked for adherence and where violations are
detected, notifications of said problems can be immediately brought to
the attention of team members so the problems can be more quickly
identified and addressed before the issues become too embedded.

3.3.1 Improve Refactoring

Software architecture evaluation and refactoring should be a standard
activity in any development process because it is a way to reduce risk. It
is relatively inexpensive, and it pays for itself in the reduction of costly
errors or schedule delays. As software teams grow and/or become more
distributed, understanding software architecture becomes even more
vital. Dependency analysis allows everyone on the team to have a clear
understanding of the architecture (what components depend on other
components, etc.).

3.3.2 Reduce Technical Debt

Technical debt is a common concept in modern software development
practices that happens when there is no core set of well-defined and
enforceable design rules for a code base combined with a culture that
does not value creating technical wealth. By establishing and iteratively
improving design rules, using dependency analysis, technical debt is
paid down and the code base is easier to understand and maintain.
Development accelerates and this establishes technical wealth.

3.3.3 Understand Impact of Change

Automatic impact analysis, a feature of dependency analysis, will
highlight which parts of the application will be affected by planned
codebase changes, such as replacement of modules or third party
libraries. Understanding the impact of changes enables teams to quickly
and accurately respond to change requests. With impact analysis, teams
can be responsive while maintaining control over scope and customer
expectations. Impact analysis helps developers calculate the impact of
change.

79

CPT 411 NET-CENTRIC COMPUTING

3.4 How dependency analysis works

From the perspective of software dependency analysis, there must be an
initial parsing phase to gather all the data. There can be different
qualities of parsing depending on the approach taken. Some approaches
rely on a scan of directories containing the codebase in question whilst
other mechanisms exist where the codebase is compiled, resulting in a
more complete and precise picture. Once the “database” of information
exists, it is loaded into some tool that provides a suitable way of
visualising the structure of the codebase, and functionality to assist the
user in understanding and improving the architecture.
Extract
Dependencies can be extracted using a variety of tools and techniques
depending on the language or software that is being analysed. This can
be as simple as scanning directories for languages such as C# or Java, to
using static analysis tools for languages such as C and C++.

Import
Most enterprise class dependency analysis tools have more than one
import mechanism for dependencies. This will generally include a
number of different supported languages, possibly with the ability for
the definition of custom import processes.

Interact
Once you have the data imported dependency analysis tools allow you
to interact with the dependencies to visualise the implementation against
a ‘reference’ architecture. Features such as impact analysis and change
logs can be used to help ensure there is no ‘architecture creep’ in the
implementation.

Discussion
What is dependency Analysis and how are dependencies found?

4.0 SELF-ASSESSMENT EXERCISE

How dependency analysis works?
From the perspective of software dependency analysis, there must be an
initial parsing phase to gather all the data. There can be different
qualities of parsing depending on the approach taken. Some approaches
rely on a scan of directories containing the codebase in question whilst
other mechanisms exist where the codebase is compiled, resulting in a
more complete and precise picture. Once the “database” of information
exists, it is loaded into some tool that provides a suitable way of
visualising the structure of the codebase, and functionality to assist the
user in understanding and improving the architecture.

80

CPT 411 MODULE 2

Extract
Dependencies can be extracted using a variety of tools and techniques
depending on the language or software that is being analysed. This can
be as simple as scanning directories for languages such as C# or Java, to
using static analysis tools for languages such as C and C++.
Import
Most enterprise class dependency analysis tools have more than one
import mechanism for dependencies. This will generally include a
number of different supported languages, possibly with the ability for
the definition of custom import processes.
Interact
Once you have the data imported dependency analysis tools allow you
to interact with the dependencies to visualise the implementation against
a ‘reference’ architecture. Features such as impact analysis and change
logs can be used to help ensure there is no ‘architecture creep’ in the
implementation.

5.0 CONCLUSION

Computer systems face a number of security threats. One of the basic
threats is data loss, which means that parts of a database can no longer
be retrieved. This could be the result of physical damage to the storage
medium (like fire or water damage), human error or hardware failures.
Another security threat is unauthorized access. Many computer systems
contain sensitive information, and it could be very harmful if it were to
fall in the wrong hands. Imagine someone getting a hold of your social
security number, date of birth, address and bank information. Getting
unauthorized access to computer systems is known as cracking.

6.0 SUMMARY

To undertake a typical dependency analysis, perform the following steps:
 Identify the artefact with dependencies you want to analyze.
 Trace through any relationships defined on that artefact and identify

the targets of the relationships. This impact analysis thus results
in a list of "dependencies" that the selected artefact depends on.

 If these "dependencies" also depend on other artefacts, then the
selected artefact will also have an indirect dependency. The
impact analysis must therefore act recursively looking for
relationships from any of the "dependencies".

7.0 REFERENCES/FURTHER READING

WebSphere Service Registry and Repository /8.5.6/

81

CPT 411 NET-CENTRIC COMPUTING

UNIT 5 OPENMP PROGRAMMING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

 3.1 Introduction to Open Specification for Multi-Processing
 (OpenMP)
 3.2 Brief History to OpenMP
 3.3 A Thread
 3.4 A Process
 3.5 Differences between Threads and Processes
 3.6 OpenMP Programming Model
 3.6.1 Explicit Parallelism
 3.6.2 Compiler Directive Based
 3.6.3 Fork-Join Parallelism
 3.6.4 Join
 3.7 A Program
 3.8 OpenMP/ Hello World
 3.8.1 Steps to Create a Parallel Program

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

OpenMP is a library for parallel programming in the SMP (symmetric
multi-processors, or shared-memory processors) model. When
programming with OpenMP, all threads share memory and data.
OpenMP supports C, C++ and Fortran. The OpenMP functions are
included in a header file called omp.h .

OpenMP program structure: An OpenMP program has sections that
are sequential and sections that are parallel. In general an OpenMP
program starts with a sequential section in which it sets up the
environment and initializes the variables.

When run, an OpenMP program will use one thread (in the sequential
sections), and several threads (in the parallel sections).
There is one thread that runs from the beginning to the end, and it's
called the master thread. The parallel sections of the program will cause
additional threads to fork. These are called the slave threads.
A section of code that is to be executed in parallel is marked by a special
directive (omp pragma). When the execution reaches a parallel section
82

CPT 411 MODULE 2

(marked by omp pragma), this directive will cause slave threads to form.
Each thread executes the parallel section of the code independently.
When a thread finishes, it joins the master. When all threads finish, the
master continues with code following the parallel section.
Each thread has an ID attached to it that can be obtained using a runtime
library function (called omp_get_thread_num()). The ID of the master
thread is 0.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Explain the concept of OpenMP programming

Define the concept of thread, process and differentiate between
threads and processes

Identify and explain the OpenMP programming models

3.0 MAIN CONTENT

3.1 Introduction to Open Specification for Multi-Processing

(OpenMP)

Open MP means Open specifications for MultiProcessing via collaborative
work between interested parties from the hardware and software industry,
government and academia. It is an Application Program Interface (API)
that is used to explicitly direct multi-threaded, shared memory parallelism.
API components include Compiler directives, Runtime library routines and
Environment variables. Portable because API is specified for C/C++ and
Fortran & Implementations on almost all platforms including Unix/Linux
and Windows. Standardization is ensured by Jointly defined and endorsed
by major computer hardware and software vendors and it is possible to
become ANSI standard.

3.2 Brief History of OpenMP

In 1991, Parallel Computing Forum (PCF) group invented a set of
directives for specifying loop parallelism in Fortran programs. X3H5, an
ANSI subcommittee developed an ANSI standard based on PCF. In
1997, the first version of OpenMP for Fortran was defined by OpenMP
Architecture Review Board. Binding for C/C++ was introduced later.
Version 3.1 of it was available since 2011.

83

CPT 411 NET-CENTRIC COMPUTING

Figure 3: Open Specification for MultiProcessing (OpenMP)

3.3 Thread

A process is an instance of a computer program that is being executed. It
contains the program code and its current activity. A thread of execution
is the smallest unit of a process that can be scheduled by an operating
system. Thread model is an extension of the process model where each
process consists of multiple independent instruction streams (or threads)
that are assigned computer resources by some scheduling procedures.
Threads of a process share the address space of this process. Global
variables and all dynamically allocated data objects are accessible by all
threads of a process. Each thread has its own run-time stack, register,
program counter. Threads can communicate by reading/writing
variables in the common address space.

3.4 A Process

A process contains all the information needed to execute the program.
Process ID
Program code

Data on run time stack
Global data

Data on heap

Each process has its own address space. In multitasking, processes are
given time slices in a round robin fashion. If computer resources are
assigned to another process, the status of the present process has to be
saved, in order that the execution of the suspended process can be
resumed at a later time.

84

CPT 411 MODULE 2

3.5 Differences between threads and processes

A thread is contained inside a process. Multiple threads can exist within
the same process and share resources such as memory. The threads of a
process share the latter’s instructions (code) and its context (values that
its variables reference at any given moment). Different processes do not
share these resources.

3.6 OpenMP Programming Model

OpenMP is based on the existence of multiple threads in the shared
memory programming paradigm. A shared memory process consists of
multiple threads.

3.6.1 Explicit Parallelism

In Explicit Parallelism, a Programmer has full control over parallelization.
OpenMP is not an automatic parallel programming model.

3.6.2 Compiler Directive Based

Most OpenMP parallelism is specified through the use of compiler
directives which are embedded in the source code. OpenMP is not
necessarily implemented identically by all vendors. It is meant for
distributed-memory parallel systems (it is designed for shared address
spaced machines) but guaranteed to make the most efficient use of shared
memory. Required to check for data dependencies, data conflicts, race
conditions, or deadlocks. Required to check for code sequences, meant to
cover compiler-generated automatic parallelization and directives to the
compiler to assist such parallelization. Designed to guarantee that input or
output to the same file is synchronous when executed in parallel.

3.6.3 Fork-Join Parallelism

OpenMP program begin as a single process: the master thread. The
master thread executes sequentially until the first parallel region
construct is encountered. When a parallel region is encountered, master
thread create a group of threads by FORK and becomes the master of
this group of threads, and is assigned the thread id 0 within the group.
The statement in the program that are enclosed by the parallel region
construct are then executed in parallel among these threads.

Discussion
Is there a difference among the OpenMP programming models, discuss.

85

CPT 411 NET-CENTRIC COMPUTING

4.0 SELF-ASSESSMENT EXERCISES

 Enumerate and explain the OpenMP programming models

OpenMP Programming Model
OpenMP is based on the existence of multiple threads in the shared
memory programming paradigm. A shared memory process consists of
multiple threads.

Explicit Parallelism
In Explicit Parallelism, a Programmer has full control over parallelization.
OpenMP is not an automatic parallel programming model.

Compiler Directive Based
Most OpenMP parallelism is specified through the use of compiler
directives which are embedded in the source code. OpenMP is not
necessarily implemented identically by all vendors. It is meant for
distributed-memory parallel systems (it is designed for shared address
spaced machines) but guaranteed to make the most efficient use of shared
memory. Required to check for data dependencies, data conflicts, race
conditions, or deadlocks. Required to check for code sequences, meant to
cover compiler-generated automatic parallelization and directives to the
compiler to assist such parallelization. Designed to guarantee that input or
output to the same file is synchronous when executed in parallel.

Fork-Join Parallelism.
OpenMP program begin as a single process: the master thread. The master
thread executes sequentially until the first parallel region construct is
encountered. When a parallel region is encountered, master thread create.

 group of threads by FORK and becomes the master of this group

of threads, and is assigned the thread id 0 within the group. The
statement in the program that are enclosed by the parallel region
construct are then executed in parallel among these threads.

 Explain the concept of a thread, process and explain the
differences between the two

 Thread
A process is an instance of a computer program that is being executed. It
contains the program code and its current activity. A thread of execution
is the smallest unit of a process that can be scheduled by an operating
system. Thread model is an extension of the process model where each
process consists of multiple independent instruction streams (or threads)
that are assigned computer resources by some scheduling procedures.
Threads of a process share the address space of this process. Global
variables and all dynamically allocated data objects are accessible by all
86

CPT 411 MODULE 2

threads of a process. Each thread has its own run-time stack, register,
program counter. Threads can communicate by reading/writing
variables in the common address space.

A Process
A process contains all the information needed to execute the program.
Process ID
Program code

Data on run time stack
Global data

Data on heap

Each process has its own address space. In multitasking, processes are
given time slices in a round robin fashion. If computer resources are
assigned to another process, the status of the present process has to be
saved, in order that the execution of the suspended process can be
resumed at a later time.

Differences between threads and processes
A thread is contained inside a process. Multiple threads can exist within
the same process and share resources such as memory. The threads of a
process share the latter’s instructions (code) and its context (values that
its variables reference at any given moment). Different processes do not
share these resources.

5.0 CONCLUSION

More efficient, and lower-level parallel code is possible, however
OpenMP hides the low-level details and allows the programmer to
describe the parallel code with high-level constructs, which is as simple
as it can get.

OpenMP has directives that allow the programmer to:
specify the parallel region

specify whether the variables in the parallel section are private or
shared

specify how/if the threads are synchronized
specify how to parallelize loops
specify how the works is divided between threads (scheduling)

6.0 SUMMARY

Open MP means Open specifications for MultiProcessing via
collaborative work between interested parties from the hardware and
software industry, government and academia. It is an Application

87

CPT 411 NET-CENTRIC COMPUTING

Program Interface (API) that is used to explicitly direct multi-threaded,
shared memory parallelism. A thread of execution is the smallest unit of
a process that can be scheduled by an operating system. Thread model is
an extension of the process model where each process consists of
multiple independent instruction streams (or threads) that are assigned
computer resources by some scheduling procedures. Threads of a
process share the address space of this process. Global variables and all
dynamically allocated data objects are accessible by all threads of a
process. Each thread has its own run-time stack, register, program
counter. Threads can communicate by reading/writing variables in the
common address space. A process contains all the information needed to
execute the program vis-à-vis the Process ID, Program code, Data on
run time stack, Global data and Data on heap.

7.0 REFERENCES/FURTHER READING

OpenMP | Introduction with Installation Guide
In C/C++/Fortran, parallel programming can be achieved
using OpenMP.
http://en.wikipedia.org/wiki/Process_(computing)

88

CPT 411 MODULE 2

UNIT 6 EVALUATION OF PROGRAMS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content
 3.1 Program Evaluation
 3.2 Definition of Program Evaluation
 3.2.1 Purposes for Program Evaluation
 3.3 Barriers
 3.3.1 Overcoming Barriers
 3.4 Types of Evaluations
 3.4.1 Current Evaluation
 3.4.2 Formative Evaluation
 3.4.3 Process Evaluation
 3.4.4 Impact Evaluation
 3.4.5 Outcome Evaluation
 3.5 Performance or Program Monitoring
 3.6 Evaluation Standards and Designs
 3.7 Logic Models
 3.8 Communicating Evaluation Findings
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Program evaluation is a systematic method for collecting, analyzing, and
using information to answer questions about projects, policies and
programs, particularly about their effectiveness and efficiency. In both the
public and private sectors, stakeholders often want to know whether the
programs they are funding, implementing, voting for, receiving or
objecting to are producing the intended effect. While program evaluation
first focuses around this definition, important considerations often include
how much the program costs per participant, how the program could be
improved, whether the program is worthwhile, whether there are better
alternatives, if there are unintended outcomes, and whether the program
goals are appropriate and useful. Evaluators help to answer these questions,
but the best way to answer the questions is for the evaluation to be a joint
project between evaluators and stakeholders.

89

CPT 411 NET-CENTRIC COMPUTING

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will be able to:

Define the term, Program Evaluation
identify and explain 5 types of Program evaluation

Identify the barriers to Program evaluation and ways of
overcoming such

3.0 MAIN CONTENT

3.1 Programs Evaluation

Evaluation is the systematic application of scientific methods to assess
the design, implementation, improvement or outcomes of a program
(Rossi & Freeman, 1993; Short, Hennessy, & Campbell, 1996). The
term "program" may include any organized action such as media
campaigns, service provision, educational services, public policies,
research projects, etc. (Center for Disease Control and Prevention
[CDC], 1999). The purpose of Programming Evaluation includes:
Demonstrate program effectiveness to funders

Improve the implementation and effectiveness of programs
Better manage limited resources
Document program accomplishments
Justify current program funding

Support the need for increased levels of funding
Satisfy ethical responsibility to clients to demonstrate positive
and negative effects of program participation.
Document program development and activities to help ensure
successful replication

3.3 Barriers

Program evaluations require funding, time and technical skills:
requirements that are often perceived as diverting limited program
resources from clients. Program staff are often concerned that evaluation
activities will inhibit timely accessibility to services or compromise the
safety of clients. Evaluation can necessitate alliances between
historically separate community groups (e.g. academia, advocacy
groups, service providers. Mutual misperceptions regarding the goals
and process of evaluation can result in adverse attitudes.

90

CPT 411 MODULE 2

3.3.1 Overcoming Barriers

Collaboration is the key to successful program evaluation. In evaluation
terminology, stakeholders are defined as entities or individuals that are
affected by the program and its evaluation. Involvement of these
stakeholders is an integral part of program evaluation. Stakeholders
include but are not limited to program staff, program clients, decision
makers, and evaluators. A participatory approach to evaluation based on
respect for one another's roles and equal partnership in the process
overcomes barriers to a mutually beneficial evaluation. Identifying an
evaluator with the necessary technical skills as well as a collaborative
approach to the process is integral. Programs have several options for
identifying an evaluator. Health departments, other state agencies, local
universities, evaluation associations and other programs can provide
recommendations. Additionally, several companies and university
departments providing these services can be located on the internet.
Selecting an evaluator entails finding an individual who has an
understanding of the program and funding requirements for evaluations,
demonstrated experience, and knowledge of the issue that the program is
targeting.

3.4 Types of Evaluation

Various types of evaluation can be used to assess different aspects or
stages of program development. As terminology and definitions of
evaluation types are not uniform, an effort has been made to briefly
introduce a number of types here.

3.4.1 Context Evaluation

Investigating how the program operates or will operate in a particular
social, political, physical and economic environment. This type of
evaluation could include a community needs or organizational
assessment.

3.4.2 Formative Evaluation

Assessing needs that a new program should fulfill (Short, Hennessy, &
Campbell, 1996), examining the early stages of a program's
development (Rossi & Freeman, 1993), or testing a program on a small
scale before broad dissemination (Coyle, Boruch, & Turner, 1991).
Sample question: Who is the intended audience for the program?

91

CPT 411 NET-CENTRIC COMPUTING

3.4.3 Process Evaluation

Examining the implementation and operation of program components.
Sample question: Was the program administered as planned?

3.4.4 Impact Evaluation

Investigating the magnitude of both positive and negative changes
produced by a program (Rossi & Freeman, 1993). Some evaluators limit
these changes to those occurring immediately (Green & Kreuter, 1991).
Sample question: Did participant knowledge change after attending the
program?

3.4.5 Outcome Evaluation

Assessing the short and long-term results of a program. Sample question:
What are the long-term positive effects of program participation?

3.5 Performance or Program Monitoring

Similar to process evaluation, differing only by providing regular
updates of evaluation results to stakeholders rather than summarizing
results at the evaluation's conclusion (Rossi & Freeman, 1993; Burt,
Harrell, Newmark, Aron, & Jacobs, 1997).

3.6 Evaluation Standards and Designs

Evaluation should be incorporated during the initial stages of program
development. An initial step of the evaluation process is to describe the
program in detail. This collaborative activity can create a mutual
understanding of the program, the evaluation process, and program and
evaluation terminology. Developing a program description also helps
ensure that program activities and objectives are clearly defined and that
the objectives can be measured. In general, the evaluation should be
feasible, useful, culturally competent, ethical and accurate. Data should be
collected over time using multiple instruments that are valid, meaning they
measure what they are supposed to measure, and reliable, meaning they
produce similar results consistently. The use of qualitative as well as
quantitative data can provide a more comprehensive picture of the
program. Evaluations of programs aimed at violence prevention should
also be particularly sensitive to issues of safety and confidentiality.

Experimental designs are defined by the random assignment of
individuals to a group participating in the program or to a control group
not receiving the program. These ideal experimental conditions are not

92

CPT 411 MODULE 2

always practical or ethical in "real world" constraints of program
delivery. A possible solution to blending the need for a comparison
group with feasibility is the quasi-experimental design in which an
equivalent group (i.e. individuals receiving standard services) is
compared to the group participating in the target program. However, the
use of this design may introduce difficulties in attributing the causation
of effects to the target program. While non-experimental designs may be
easiest to implement in a program setting and provide a large quantity of
data, drawing conclusions of program effects are difficult.

3.7 Logic Models

Logic models are flowcharts that depict program components. These
models can include any number of program elements, showing the
development of a program from theory to activities and outcomes.
Infrastructure, inputs, processes, and outputs are often included. The
process of developing logic models can serve to clarify program elements
and expectations for the stakeholders. By depicting the sequence and logic
of inputs, processes and outputs, logic models can help ensure that the
necessary data are collected to make credible statements of causality.

3.8 Communicating Evaluation Findings

Preparation, effective communication and timeliness in order to ensure the
utility of evaluation findings. Questions that should be answered at the
evaluation's inception include: what will be communicated? to whom? by
whom? and how? The target audience must be identified and the report
written to address their needs including the use of non-technical language
and a user-friendly format (National Committee for Injury Prevention and
Control, 1989). Policy makers, current and potential funders, the media,
current and potential clients, and members of the community at large
should be considered as possible audiences. Evaluation reports describe the
process as well as findings based on the data

Discussion

How do you communicate Program evaluation findings.

4.0 SELF-ASSESSMENT EXERCISES

 What is Logic Models?
Answer:
Logic models are flowcharts that depict program components. These
models can include any number of program elements, showing the
development of a program from theory to activities and outcomes.
Infrastructure, inputs, processes, and outputs are often included. The

93

CPT 411 NET-CENTRIC COMPUTING

process of developing logic models can serve to clarify program elements
and expectations for the stakeholders. By depicting the sequence and logic
of inputs, processes and outputs, logic models can help ensure that the
necessary data are collected to make credible statements of causality.

 What is Context Evaluation?

Answer:
Investigating how the program operates or will operate in a particular
social, political, physical and economic environment. This type of
evaluation could include a community needs or organizational assessment

5.0 CONCLUSION

Program evaluation is a necessity although there are certain barriers to it
which could be surmounted by collaborative efforts from all the
stakeholders and appropriate evaluator.

6.0 SUMMARY

Program evaluation is a systematic method for collecting, analyzing, and
using information to answer questions about projects, policies and
programs, particularly about their effectiveness and efficiency. The
purpose of Programming Evaluation includes: Demonstrate program
effectiveness to funders, Improve the implementation and effectiveness
of programs, Better manage limited resources, Document program
accomplishments, Justify current program funding, Support the need for
increased levels of funding, Satisfy ethical responsibility to clients to
demonstrate positive and negative effects of program participation and
Document program development and activities to help ensure successful
replication. Evaluation should be incorporated during the initial stages
of program development. An initial step of the evaluation process is to
describe the program in detail. Logic models are flowcharts that depict
program components. These models can include any number of program
elements, showing the development of a program from theory to
activities and outcomes.

7.0 REFERENCES/FURTHER READING

Burt, M. R., Harrell, A. V., Newmark, L. C., Aron, L. Y., & Jacobs, L.

K. (1997). Evaluation guidebook: Projects funded by S.T.O.P.
formula grants under the Violence Against Women Act. The
Urban Institute. http://www.urban.org/crime/evalguide.html

94

CPT 411 MODULE 2

Centers for Disease Control and Prevention. (1992). Handbook for

evaluating HIV education. Division of Adolescent and School
Health, Atlanta.

CDC. Framework for program evaluation in public health. MMWR
Recommendations and Reports 1999;48(RR11):1-40.

Chalk, R., & King, P. A. (Eds.). (1998). Violence in Families: Assessing

prevention and treatment programs. Washington DC: National
Academy Press.

Coyle, S. L., Boruch, R. F., & Turner, C. F. (Eds.). (1991). Evaluating

AIDS prevention programs: Expanded edition. Washington DC:
National Academy Press.

Green, L.W., & Kreuter, M. W. (1991). Health promotion planning: An

educational and environmental approach (2nd ed.). Mountain
View, CA: Mayfield Publishing Company.

National Committee for Injury Prevention and Control. (1989). Injury

prevention: Meeting the challenge. American Journal of
Preventive Medicine, 5(Suppl. 3).

Rossi, P. H., & Freeman, H. E. (1993). Evaluation: A systematic

approach (5th ed.). Newbury Park, CA: Sage Publications, Inc.

Short, L., Hennessy, M., & Campbell, J. (1996). Tracking the work.

In Family violence: Building a coordinated community response:
A guide for communities.

Witwer, M. (Ed.) American Medical Association. Chapter 5.
W.K. Kellogg Foundation. W.K. Kellogg evaluation handbook.
http://www.wkkf.org/Publications/evalhdbk/default.htm
(http://www.wkkf.org/Publications/evalhdbk/default.htm).
https://en.wikipedia.org/wiki/Program_evaluation

95

CPT 411 MODULE 3

MODULE 3: DISTRIBUTED SYSTEMS

UNIT 1: INTRODUCTION TO DISTRIBUTED SYSTEMS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Distributed Systems
3.2 How a Distributed Systems Works
3.3 Key Characteristics of a Distributed Systems
3.4 Distributed Tracing
3.5 Benefits of Distributed Systems
3.6 Challenges of Distributed Systems
3.7 Risks of Distributed Systems

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Distributed systems are an important development for IT and computer
science as an increasing number of related jobs are so massive and
complex that it would be impossible for a single computer to handle
them alone. Distributed computing offers additional advantages over
traditional computing environments.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Explain the concept of Distributed Systems
Describe How a Distributed Systems work
List and explain the Key Characteristics of a Distributed Systems
Explain the term, Distributed Tracing
Mention 5 benefits of Distributed Systems
Challenges of Distributed Systems

Risks of Distributed Systems

96

CPT 411 NET-CENTRIC COMPUTING

3.0 MAIN CONTENT

3.1 Distributed Systems

A Distributed system is a computing environment in which various
components are spread across multiple computers (or other computing
devices) on a network. These devices split up the work, coordinating
their efforts to complete the job more efficiently than if a single device
had been responsible for the task. Distributed systems reduce the risks
involved with having a single point of failure, bolstering reliability and
fault tolerance. Modern distributed systems are generally designed to be
scalable in near real-time and additional computing resources can be
added on the fly to increasing performance and further reducing time to
completion.

Earlier, distributed computing was expensive, complex to configure and
difficult to manage

But, Software as a Service (SaaS) platforms has offered expanded
functionality, distributed computing has become more streamlined and
affordable for businesses, large and small, all types of computing jobs
be it database management, video games or Softwares cryptocurrency
systems, scientific simulations, blockchain technologies and AI
platforms all use Distributed Systems platforms.

3.2 How a distributed system works

Distributed systems have evolved over time but today’s most common
implementations are largely designed to operate via the internet and,
more specifically, the cloud

For Example:
 A distributed system begins with a task, such as rendering a video to

create a finished product ready for release.
 The web application, or distributed applications, managing this task

— like a video editor on a client computer:
 splits the job into pieces
 An algorithm gives one frame of the video to each of a dozen

different computers (or nodes) to complete the rendering
 Once the frame is complete, the managing application gives the node

a new frame to work on
 This process continues until the video is finished and all the pieces

are put back together

Distributed Systems turns a task that might have taken days for a single
computer to complete into one that is finished in a matter of minutes.

97

CPT 411 MODULE 3

Figure 3.1.1: Distributed Operating Systems

There are many models and architectures of distributed systems in use
today.

Client-server systems, the most traditional and simple type of distributed
system, involve a multitude of networked computers that interact with a
central server for data storage, processing or other common goal. Cell
phone networks are an advanced type of distributed system that share
workloads among handsets, switching systems and internet-based
devices. Peer-to-peer networks, in which workloads are distributed
among hundreds or thousands of computers all running the same
software, are another example of a distributed system architecture. The
most common forms of distributed systems in the enterprise today are
those that operate over the web, handing off workloads to dozens of
cloud-based virtual server instances that are created as needed, then
terminated when the task is complete.

3.3 Key Characteristics of a Distributed System

Distributed systems are commonly defined by the following key
characteristics and features:
Scalability: The ability to grow as the size of the workload

increases is an essential feature of distributed systems,
accomplished by adding additional processing units or nodes to
the network as needed.

 Concurrency: Distributed system components run
simultaneously. They are also characterized by the lack of a
“global clock,” when tasks occur out of sequence and at different
rates.

98

CPT 411 NET-CENTRIC COMPUTING

Availability/fault tolerance: If one node fails, the remaining
nodes can continue to operate without disrupting the overall
computation.
Transparency: An external programmer or end user sees a
distributed system as a single computational unit rather than as its
underlying parts, allowing users to interact with a single logical
device rather than being concerned with the system’s
architecture. Heterogeneity: In most distributed systems, the
nodes and components are often asynchronous, with different
hardware, middleware, software and operating systems. This
allows the distributed systems to be extended with the addition of
new components.
Replication: Distributed systems enable shared information and
messaging, ensuring consistency between redundant resources,
such as software or hardware components, improving fault
tolerance, reliability and accessibility.

3.4 Distributed Tracing

Distributed tracing, sometimes called distributed request tracing, is a
method for monitoring applications — typically those built on a
microservices architecture — which are commonly deployed on
distributed systems. Distributed tracing is essentially a form of
distributed computing in that it is commonly used to monitor the
operations of applications running on distributed systems.

In software development and operations, tracing is used to follow the
course of a transaction as it travels through an application — an online
credit card transaction as it winds its way from a customer’s initial
purchase to the verification and approval process to the completion of
the transaction, for example. A tracing system monitors this process step
by step, helping a developer to uncover bugs, bottlenecks, latency or
other problems with the application.

Distributed tracing is necessary because of the considerable complexity
of modern software architectures. A distributed tracing system is
designed to operate on a distributed services infrastructure, where it can
track multiple applications and processes simultaneously across
numerous concurrent nodes and computing environments. Without
distributed tracing, an application built on a microservices architecture
and running on a system as large and complex as a globally distributed
system environment would be impossible to monitor effectively.

99

CPT 411 MODULE 3

3.5 Benefits of Distributed Systems

Distributed systems offer a number of advantages over monolithic, or
single, systems, including:

Greater flexibility: It is easier to add computing power as the
need for services grows. In most cases today, you can add servers
to a distributed system on the fly.
Reliability: A well-designed distributed system can withstand
failures in one or more of its nodes without severely impacting
performance. In a monolithic system, the entire application goes
down if the server goes down.
Enhanced speed: Heavy traffic can bog down single servers
when traffic gets heavy, impacting performance for everyone.
The scalability of distributed databases and other distributed
systems makes them easier to maintain and also sustain high-
performance levels.
Geo-distribution: Distributed content delivery is both intuitive
for any internet user, and vital for global organizations.

3.6 What are some challenges of distributed systems?

Distributed systems are considerably more complex than monolithic
computing environments, and raise a number of challenges around
design, operations and maintenance. These include:

Increased opportunities for failure: The more systems added to
a computing environment, the more opportunity there is for
failure. If a system is not carefully designed and a single node
crashes, the entire system can go down. While distributed
systems are designed to be fault tolerant, that fault tolerance isn’t
automatic or foolproof.
Synchronization process challenges: Distributed systems work
without a global clock, requiring careful programming to ensure
that processes are properly synchronized to avoid transmission
delays that result in errors and data corruption. In a complex
system — such as a multiplayer video game — synchronization
can be challenging, especially on a public network that carries
data traffic.
Imperfect scalability: Doubling the number of nodes in a
distributed system doesn’t necessarily double performance.
Architecting an effective distributed system that maximizes
scalability is a complex undertaking that needs to take into
account load balancing, bandwidth management and other issues.
More complex security: Managing a large number of nodes in a
heterogeneous or globally distributed environment creates

100

CPT 411 NET-CENTRIC COMPUTING

numerous security challenges. A single weak link in a file system
or larger distributed system network can expose the entire system
to attack.
Increased complexity: Distributed systems are more complex to
design, manage and understand than traditional computing
environments.

3.7 The risks of distributed systems

The challenges of distributed systems as outlined above create a number
of correlating risks. These include:

Security: Distributed systems are as vulnerable to attack as any
other system, but their distributed nature creates a much larger
attack surface that exposes organizations to threats.
Risk of network failure: Distributed systems are beholden to
public networks in order to transmit and receive data. If one
segment of the internet becomes unavailable or overloaded,
distributed system performance may decline.
Governance and control issues: Distributed systems lack the
governability of monolithic, single-server-based systems,
creating auditing and adherence issues around global privacy
laws such as GDPR. Globally distributed environments can
impose barriers to providing certain levels of assurance and
impair visibility into where data resides.
Cost control: Unlike centralized systems, the scalability of
distributed systems allows administrators to easily add additional
capacity as needed, which can also increase costs. Pricing for
cloud-based distributed computing systems are based on usage
(such as the number of memory resources and CPU power
consumed over time). If demand suddenly spikes, organizations
can face a massive bill.

4.0 SELF-ASSESSMENT EXERCISES

 Define Distributed Systems

Answer:
A Distributed system is a computing environment in which various
components are spread across multiple computers (or other computing
devices) on a network. These devices split up the work, coordinating
their efforts to complete the job more efficiently than if a single device
had been responsible for the task

101

CPT 411 MODULE 3

 What are Benefits of Distributed Systems

Answer:
Distributed systems offer a number of advantages over monolithic, or
single, systems, including:

Greater flexibility: It is easier to add computing power as the
need for services grows. In most cases today, you can add servers
to a distributed system on the fly.
Reliability: A well-designed distributed system can withstand
failures in one or more of its nodes without severely impacting
performance. In a monolithic system, the entire application goes
down if the server goes down.
Enhanced speed: Heavy traffic can bog down single servers
when traffic gets heavy, impacting performance for everyone.
The scalability of distributed databases and other distributed
systems makes them easier to maintain and also sustain high-
performance levels.
Geo-distribution: Distributed content delivery is both intuitive
for any internet user, and vital for global organizations.

 Identify the risks of Distributed Systems

Answer:
The challenges of distributed systems as outlined above create a number
of correlating risks. These include:

Security: Distributed systems are as vulnerable to attack as any
other system, but their distributed nature creates a much larger
attack surface that exposes organizations to threats.
Risk of network failure: Distributed systems are beholden to
public networks in order to transmit and receive data. If one
segment of the internet becomes unavailable or overloaded,
distributed system performance may decline.
Governance and control issues: Distributed systems lack the
governability of monolithic, single-server-based systems,
creating auditing and adherence issues around global privacy
laws such as GDPR. Globally distributed environments can
impose barriers to providing certain levels of assurance and
impair visibility into where data resides.
Cost control: Unlike centralized systems, the scalability of
distributed systems allows administrators to easily add additional
capacity as needed, which can also increase costs. Pricing for
cloud-based distributed computing systems are based on usage
(such as the number of memory resources and CPU power
consumed over time). If demand suddenly spikes, organizations
can face a massive bill.

102

CPT 411 NET-CENTRIC COMPUTING

5.0 CONCLUSION

Distributed Systems is integral part of the world today because everything
in the world runs on inter-networking ranging from education, e-
commerce, entertainments, agriculture and even the kitchen.

6.0 SUMMARY

Distributed systems offer a number of advantages over monolithic, or
single, systems, including Greater flexibility, Reliability, Enhanced
speed and Geo-distribution. Distributed systems raise a number of
challenges around design, operations and maintenance. These include
Increased opportunities for failure, Synchronization process challenges,
Imperfect scalability, More complex security and Increased complexity.
The challenges of distributed systems as outlined above create a number
of correlating risks. These include Security, Risk of network failure,
Governance and control issues and Cost control.

7.0 REFERENCES/FURTHER READING

https://www.splunk.com/en_us/data-insider/what-are-
distributed-systems.html#elements-of-distributed-systems

103

CPT 411 MODULE 3

UNIT 2 SYSTEMS MODELS

CONTENTS

1.0 Introduction
1.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 A Systems
3.2 A Model and Systems Models
3.3 Systems Model Types

4.0 Self-Assessment Exercises
4.0 Conclusion
5.0 Summary
6.0 References/Further Reading

1.0 INTRODUCTION

Systems modeling is the interdisciplinary study of the use of models to
conceptualize and construct systems in business and IT development.
A common type of systems modeling is function modeling, with specific
techniques such as the Functional Flow Block Diagram and IDEF0.
These models can be extended using functional decomposition, and can
be linked to requirements models for further systems partition.
Contrasting the functional modeling, another type of systems modeling
is architectural modeling which uses the systems architecture to
conceptually model the structure, behavior, and more views of a system.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

Explain the terms, Systems and Models
Identify the Systems’ different perspective
Describe the 5 types of UML diagrams

3.1 A system is a simplified representation of reality. "System" is a
common word, often used with loose meaning. Whereas in the real world, a
"system" may seem at times an endless series of connected elements, we
refer here to a system as a series of selected, chosen elements with
specified boundaries and pre-determined time characteristics.

A 'simple' system could for instance be a nearby coffee shop. This coffee
shop has customers who place orders and staff who process them. There
may be at times very few customers, whereas at others, the place is very
busy (say, because the coffee shop is just nearby the University, and has

104

CPT 411 NET-CENTRIC COMPUTING

free wi-fi, which the students use while enjoying a coffee and chat with
their friends). So, for the customers, and the staff too, time is not
neutral. It is then useful to look at our coffee-shop-system over a series
of sections of time (time steps) that make a day. Perhaps an appropriate
time step of one hour is adequate: it is more than enough to encapsulate
long hours when little really happens, but is just enough to capture
events at peak time. So much, though, may happen in one hour over a
cup of coffee, when the place is busy, people meet, many orders are
placed, many messages received. Perhaps, a time step of 30 minutes, or
even 15 minutes might then be better. So, although many near-empty
15-minute segments might be a waste of computing time, and lead to
outputs that may be boring for some parts of the day, these might ensure
that important events are not lost at peak time. Yet - so many things may
still happen over a period of 15 minutes. Might a time step of 5 minutes
be safer? This is obviously not an easy question.

At any rate, a decision must be made, and it is up to the modeler to make
it. Each system, such as the coffee-shop-system, has a time constant,
which we can simply define for the time being as the delay over which
the system may strongly change, or, in systems analysis phrasing: over
which the state of the system may change. One way to empirically
choose a time constant is based on experience and knowledge of the
system at hand. Note that in the coffee-shop-system, not all the elements
are enclosed within the coffee shop itself, which are important for the
coffee-shop-system: for instance, it has free wi-fi. We therefore can call
it a semi-open system. Biological systems, phytopathological systems in
particular, are semi-open: they receive and transmit information,
components, biomass, or energy from and to their environment.

3.2 A model & Systems Models

3.2.1 A model is a computer program that describes the mechanics of
the considered system. The encoding of a model can be made in many
ways.

3.2.2 Systems Models
A system is a set of elements that relate to each other in some manner.
The elements of a system can be objects, people, organizations,
processes, descriptions or even ideas. The relationships between these
elements can include different kinds of influence, flows of information,
resources, associations, temporal relationships, or origins.

Models of systems therefore try to capture these relationships in a way
that gives a perspective on how the system as a whole interacts.

105

CPT 411 MODULE 3

3.2.3 System modeling is the process of developing abstract models of a
system, with each model presenting a different view or perspective of that
system. It is about representing a system using some kind of graphical
notation, which is now almost always based on notations in the Unified
Modeling Language (UML). Models help the analyst to understand the
functionality of the system; they are used to communicate with customers.

3.2.4 Models’ Different perspectives:

An external perspective, where you model the context or
environment of the system.
An interaction perspective, where you model the interactions
between a system and its environment, or between the
components of a system.

A structural perspective, where you model the organization of a
system or the structure of the data that is processed by the system.

A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

3.2.5 UML diagrams

Five types of UML diagrams that are the most useful for system
modeling:

Activity diagrams, which show the activities involved in a
process or in data processing.
Use case diagrams, which show the interactions between a
system and its environment.
Sequence diagrams, which show interactions between actors and
the system and between system components.
Class diagrams, which show the object classes in the system and
the associations between these classes.
State diagrams, which show how the system reacts to internal
and external events.

Models of both new and existing system are used during requirements
engineering. Models of the existing systems help clarify what the
existing system does and can be used as a basis for discussing its
strengths and weaknesses. These then lead to requirements for the new
system. Models of the new system are used during requirements
engineering to help explain the proposed requirements to other system
stakeholders. Engineers use these models to discuss design proposals
and to document the system for implementation.

106

CPT 411 NET-CENTRIC COMPUTING

3.3 Systems Models Types

3.3.1 Context and process models

Context models are used to illustrate the operational context of a system
 they show what lies outside the system boundaries. Social and
organizational concerns may affect the decision on where to position
system boundaries. Architectural models show the system and its
relationship with other systems.

System boundaries are established to define what is inside and what is
outside the system. They show other systems that are used or depend on
the system being developed. The position of the system boundary has a
profound effect on the system requirements. Defining a system
boundary is a political judgment since there may be pressures to develop
system boundaries that increase/decrease the influence or workload of
different parts of an organization.

Context models simply show the other systems in the environment, not
how the system being developed is used in that environment. Process
models reveal how the system being developed is used in broader
business processes. UML activity diagrams may be used to define
business process models.

The example below shows a UML activity diagram describing the
process of involuntary detention and the role of MHC-PMS (mental
healthcare patient management system) in it.

Figure 3.2.1: UML activity diagram for involuntary detention and the
role of MHC-PMS

107

CPT 411 MODULE 3

3.3.2 Interaction models

Types of interactions that can be represented in a model:
Modeling user interaction is important as it helps to identify user

requirements.
 Modeling system-to-system interaction highlights the

communication problems that may arise.
Modeling component interaction helps us understand if a
proposed system structure is likely to deliver the required system
performance and dependability.

 Use cases were developed originally to support requirements

elicitation and now incorporated into the UML, . Each use case
represents a discrete task (figure 3.3.3) that involves external
interaction with a system. Actors in a use case may be people or
other systems. Use cases can be represented using a UML use
case diagram and in a more detailed textual/tabular format.

Figure 3.3.3: Simple Sample of Use-cases
Use case description in a tabular format:
Use case title Transfer data

 A receptionist may transfer data from the MHC-PMS to
 a general patient record database that is maintained by a

Description health authority. The information transferred may either
be updated personal information (address, phone

 number, etc.) or a summary of the patient's diagnosis
 and treatment.

Actor(s) Medical receptionist, patient records system (PRS)

 Patient data has been collected (personal information,
 treatment summary);
Preconditions The receptionist must have appropriate security
 permissions to access the patient information and the
 PRS.

Postconditions PRS has been updated

 1. Receptionist selects the "Transfer data" option from
Main success the menu.
scenario 2. PRS verifies the security credentials of the
 receptionist.

108

CPT 411 NET-CENTRIC COMPUTING

 3. Data is transferred.
 4. PRS has been updated.

 2a. The receptionist does not have the necessary security

Extensions credentials.
2a.1. An error message is displayed.

 2a.2. The receptionist backs out of the use case.

 UML sequence diagrams are used to model the interactions

between the actors and the objects within a system. A sequence
diagram shows (figure 3.3.4) the sequence of interactions that
take place during a particular use case or use case instance. The
objects and actors involved are listed along the top of the
diagram, with a dotted line drawn vertically from these.
Interactions between objects are indicated by annotated arrows.

Figure 3.3.4: UML sequence diagrams

3.3.3 Structural models
Structural models of software display the organization of a system in
terms of the components that make up that system and their relationships.
Structural models may be static models, which show the structure of the
system design, or dynamic models, which show the organization of the
system when it is executing. You create structural models of a system when
you are discussing and designing the system architecture.

109

CPT 411 MODULE 3

 UML class diagrams are used when developing an object-
oriented system model to show the classes in a system and the
associations between these classes as in figure 3.3.5. An object
class can be thought of as a general definition of one kind of
system object. An association is a link between classes that
indicates that there is some relationship between these classes.
When you are developing models during the early stages of the
software engineering process, objects represent something in the
real world, such as a patient, a prescription, doctor, etc.

Figure 3.3.5: UML Class Diagrams

 Generalization is an everyday technique (figure 3.3.6) that we use

to manage complexity. In modeling systems, it is often useful to
examine the classes in a system to see if there is scope for
generalization. In object-oriented languages, such as Java,
generalization is implemented using the class inheritance
mechanisms built into the language. In a generalization, the
attributes and operations associated with higher-level classes are
also associated with the lower-level

110

CPT 411 NET-CENTRIC COMPUTING

classes. The lower-level classes are subclasses inherit the
attributes and operations from their superclasses. These lower-
level classes then add more specific attributes and operations.

Figure 3.3.6: Generalization implemented using class inheritance
mechanisms
An aggregation model shows (figure 3.3.7) how classes that are
collections are composed of other classes. Aggregation models are
similar to the part-of relationship in semantic data models.

Figure 3.3.7: Aggregation Models

3.3.4 Behavioral models

Behavioral models are models of the dynamic behavior of a system as
it is executing. They show what happens or what is supposed to happen
when a system responds to a stimulus from its environment. Two types
of stimuli:
Some data arrives that has to be processed by the system

111

CPT 411 MODULE 3

Some event happens that triggers system processing. Events may
have associated data, although this is not always the case.

Many business systems are data-processing systems that are primarily
driven by data. They are controlled by the data input to the system, with
relatively little external event processing.

Data-driven models show the sequence of actions involved in
processing input data and generating an associated output. They are
particularly useful during the analysis of requirements as they can be
used to show end-to-end processing in a system.

Data-driven models can be created using UML activity diagrams:

Figure 3.3.8: Data-driven models using UML activity diagrams
Data-driven models can also be created using UML sequence diagrams:

Figure 3.3.9: Data-driven models using UML sequence diagrams

112

CPT 411 NET-CENTRIC COMPUTING

Real-time systems are often event-driven, with minimal data processing.
For example, a landline phone switching system responds to events such
as 'receiver off hook' by generating a dial tone.

Event-driven models shows how a system responds to external and
internal events. It is based on the assumption that a system has a finite
number of states and that events (stimuli) may cause a transition from one
state to another.
Event-driven models can be created using UML state diagrams:

Figure 3.3.10: Event-driven models using UML state diagrams

4.0 SELF-ASSESSMENT EXERCISES

 Define a Systems, Models and Systems models

Answer:
A system is a simplified representation of reality. "System" is a
common word, often used with loose meaning. Whereas in the real
world, a "system" may seem at times an endless series of connected
elements, we refer here to a system as (1) a series of selected, chosen
elements (this is a first simplification, and thus an implicit assumption),
with (2) specified boundaries (a second simplification and implicit
assumption), and (3) pre-determined time characteristics (with a third
simplification and implicit assumption).

A model is a computer program that describes the mechanics of the
considered system. The encoding of a model can be made in many
ways. Systems Models: A system is a set of elements that relate to each
other in some manner. The elements of a system can be objects, people,
organizations, processes, descriptions or even ideas. The relationships

113

CPT 411 MODULE 3

between these elements can include different kinds of influence, flows of
information, resources, associations, temporal relationships, or origins

 State and explain the 5 types of UML diagrams for system

modeling.
Answer:

Activity diagrams, which show the activities involved in a
process or in data processing.
Use case diagrams, which show the interactions between a
system and its environment.
Sequence diagrams, which show interactions between actors and
the system and between system components.
Class diagrams, which show the object classes in the system and
the associations between these classes.
State diagrams, which show how the system reacts to internal
and external events

 Identify the types of interactions that can be represented in a
model.
User interaction: Modeling user interaction is important as it
helps to identify user requirements.

 System-to-system interaction: Modeling system-to-system
interaction highlights the communication problems that may arise.
Component interaction: Modeling component interaction helps
us understand if a proposed system structure is likely to deliver
the required system performance and dependability.

5.0 CONCLUSION

Systems modeling is essential to be able to represent a real life entity. A
model enables stakeholders to experience or monitor the elements of a
systems and the relationships amongst them. In computing, it is
modeling that enables a systems analyst to isolate sub-systems by the
single task that each should perform.

6.0 SUMMARY

A system is a simplified representation of reality. A model is a computer
program that describes the mechanics of the considered system. The
encoding of a model can be made in many ways.

Systems Models: A system is a set of elements that relate to each other
in some manner. The elements of a system can be objects, people,
organizations, processes, descriptions or even ideas. Systems Models
types are Context and process models, Interaction models, Structural
models and Behavioral models.

114

CPT 411 NET-CENTRIC COMPUTING

7.0 REFERENCES/FURTHERREADING

https://en.wikipedia.org/wiki/Systemsmodeling

115

CPT 411 MODULE 3

UNIT 3 DISTRIBUTED OBJECTS

CONTENTS

2.0 Introduction
3.3 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Distributed Objects Introduction
3.2 Local Objects Vs. Distributed Objects
3.3 The Distributed Objects Paradigm
3.3 Distributed Objects
3.4 Distributed Objects Systems/ Protocols
3.5 Remote procedure Call & Remote Method Invocation

3.6.1 Remote procedure Call
3.6.2 Remote Procedure Call Model

3.7 Local Procedure Call and Remote Procedure Call
1.7.1 Remote Procedure Calls (RPC)

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

A distributed object is an object that can be accessed remotely. This
means that a distributed object can be used like a regular object, but
from anywhere on the network. An object is typically considered to
encapsulate data and behavior. The location of the distributed object is
not critical to the user of the object. A distributed object might provide
its user with a set of related capabilities. The application that provides a
set of capabilities is often referred to as a service. A Business Object
might be a local object or a distributed object. The term business object
refers to an object that performs a set of tasks associated with a
particular business process.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Explain the concept of Distributed Objects
Differentiate between the Local and Distributed objects
Identify and explain the distributed object paradigm mechanisms

116

CPT 411 NET-CENTRIC COMPUTING

3.1 Distributed Objects

The distributed object paradigm
It provides abstractions beyond those of the message-passing model. In
object-oriented programming, objects are used to represent an entity
significant to an application.

Each object encapsulates:

The state or data of the entity: in Java, such data is contained in
the instance variables of each object;
The operations of the entity, through which the state of the entity
can be accessed or updated.

3.2 Local Objects vs. Distributed Objects

Local objects are those whose methods can only be invoked by a
local process, a process that runs on the same computer on which
the object exists.
A distributed object is one whose methods can be invoked by a
remote process, a process running on a computer connected via
a network to the computer on which the object exists.

3.3 The Distributed Object Paradigm

In a distributed object paradigm, network resources are
represented by distributed objects.
To request service from a network resource, a process invokes
one of its operations or methods, passing data as parameters to
the method.
The method is executed on the remote host, and the response is
sent back to the requesting process as a return value.
Message-passing paradigm is data-oriented while Distributed
objects paradigm is action-oriented: the focus is on the
invocation of the operations, while the data passed takes on a
secondary role.

Although less intuitive to human-beings, the distributed-object
paradigm is more natural to object-oriented software development.

3.4 Distributed Objects

 distributed object is provided, or exported, by a process called the
object server. A facility, here called an object registry, must be present
in the system architecture for the distributed object to be registered. To
access a distributed object, a process –an object client –

117

CPT 411 MODULE 3

looks up the object registry for a reference to the object. This reference
is used by the object client to make calls to the methods.

Logically, the object client makes a call directly to a remote method. In
reality, the call is handled by a software component, called a client
proxy, which interacts which the software on the client host that
provides the runtime support for the distributed object system. The
runtime support is responsible for the inter-process communication
needed to transmit the call to the remote host, including the marshalling
of the argument data that needs to be transmitted to the remote object.
A similar architecture is required on the server side, runtime support for
the distributed object system handles the receiving of messages and the
un-marshalling of data, and forwards the call to a software component
called the server proxy. The server proxy interfaces with the distributed
object to invoke the method call locally, passing in the un-marshalled
data for the arguments. The method call results in the performance of
some tasks on the server host. The outcome of the execution of the
method, including the marshalled data for the return value, is forwarded
by the server proxy to the client proxy, via the runtime support and
network support on both sides.

3.5 Distributed Object Systems/Protocols

The distributed object paradigm has been widely adopted in distributed
applications, for which a large number of mechanisms based on the
paradigm are available. Among the most well-known of such
mechanisms are:
Java Remote Method Invocation (RMI),

The Common Object Request Broker Architecture (CORBA)
systems,
The Distributed Component Object Model (DCOM),
Mechanisms that support the Simple Object Access
Protocol (SOAP).

Of these, the most straightforward is the Java RMI.

3.6 Remote Procedure Call & Remote Method Invocation

3.6.1 Remote Procedure Calls (RPC)

Remote Method Invocation has its origin in a paradigm called Remote
Procedure Call
\

118

CPT 411 NET-CENTRIC COMPUTING

3.6.2 Remote procedure call model:

A procedure call is made by one process to another, with data passed as
arguments.
Upon receiving a call:
1. The actions encoded in the procedure are executed
2. The caller is notified of the completion of the call and
3. A return value, if any, is transmitted from the callee to the caller

3.7 Local Procedure Call and Remote Procedure Call

3.7.1 Remote Procedure Calls (RPC)

Since its introduction in the early 1980s, the Remote Procedure Call
model has been widely in use in network applications.

There are two prevalent APIs for this paradigm.

The Open Network Computing Remote Procedure Call, evolved
from the RPC API originated from Sun Microsystems in the early
1980s.
The other well-known API is the Open Group Distributed
Computing Environment (DCE) RPC.

Both APIs provide a tool, rpcgen, for transforming remote procedure
calls to local procedure calls to the stub.

4.0 SELF-ASSESSMENT EXERCISES

 Define Distributed Objects

Answer:
A distributed object is an object that can be accessed remotely. This
means that a distributed object can be used like a regular object, but
from anywhere on the network. An object is typically considered to
encapsulate data and behavior. The location of the distributed object is
not critical to the user of the object.

 A procedure call is made by one process to another, with data passed

as arguments. What are the three things that happen upon the
callee receiving a call:

Answer:
1 . The actions encoded in the procedure are executed
2 . The caller is notified of the completion of the call and
 A return value, if any, is transmitted from the callee to the caller

119

CPT 411 MODULE 3

 What are the prevalent Remote Procedure Calls (RPC)
APIs widely in use in network applications?

Answer:
There are two prevalent RPC APIs for this paradigm.

The Open Network Computing Remote Procedure Call, evolved
from the RPC API originated from Sun Microsystems in the early
1980s.
The other well-known API is the Open Group Distributed
Computing Environment (DCE) RPC.

5.0 CONCLUSION

In Object Oriented Programming, we deal with data and functions.
There exists communications amongst the objects through parameters
and every response is communicated back to the caller. This makes
modular programming easily implemented.

6.0 SUMMARY

A distributed object is an object that can be accessed remotely. A
distributed object is provided, or exported, by a process called the object
server. A facility, here called an object registry, must be present in the
system architecture for the distributed object to be registered. To access a
distributed object, a process –an object client – looks up the object registry
for a reference to the object. Among the most well-known distributed
object paradigm mechanisms are: Java Remote Method
Invocation (RMI), the Common Object Request Broker Architecture
(CORBA) systems, the Distributed Component Object Model (DCOM)
and mechanisms that support the Simple Object Access Protocol
(SOAP). There are two prevalent RPC APIs for this paradigm vis-à-vis
the Open Network Computing Remote Procedure Call, evolved from the
RPC API originated from Sun Microsystems in the early 1980s and the
Open Group Distributed Computing Environment (DCE) RPC.

7.0 REFERENCES/FURTHER READING

https://www4.cs.fau.de/~geier/corba-faq/why-distrib-objs.html

120

CPT 411 NET-CENTRIC COMPUTING

UNIT 4 REMOTE METHOD INVOCATION

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
 3.1 Java Remote Method Invocation
 3.1.1 Remote Method Invocation
 3.2 The Java RMI Architecture
 3.2.1 Object Registry
 3.3 The Interaction between the Stub and the Skeleton
 3.4 The Remote Interface
 3.4.1 A Sample Remote Interface
 3.5 The Server-Side Software
 3.6 The Remote Interface Implementation
 3.7 UML Diagram for the SomeImpl class
 3.7.1 Stub and Skeleton Generations
 3.7.2 The Stub File for the Object
 3.8 The Object Server
 3.9 The RMI Registry
 3.10 The Client-Side Software
 3.11 Looking up the Remote Object
 3.12 Invoking the Remote Method
4.0Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

In computing, the Java Remote Method Invocation (Java RMI) is a
Java API that performs remote method invocation, the object-oriented
equivalent of remote procedure calls (RPC), with support for direct
transfer of serialized Java classes and distributed garbage-collection.
The original implementation depends on Java Virtual Machine (JVM)
class-representation mechanisms and it thus only supports making calls
from one JVM to another. The protocol underlying this Java-only
implementation is known as Java Remote Method Protocol (JRMP). In
order to support code running in a non-JVM context, programmers later
developed a CORBA version.

Usage of the term RMI may denote solely the programming interface or
may signify both the API and JRMP, IIOP, or another implementation,
whereas the term RMI-IIOP (read: RMI over IIOP) specifically denotes

121

CPT 411 MODULE 3

the RMI interface delegating most of the functionality to the supporting
CORBA implementation.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Explain the concept of Remote Method Invocation

Explain the Interaction between the Stub and the Skeleton
Identify and explain the API for the Java RMI

Describe an Object Server and how it works

3.1 Java Remote Method Invocation

3.1.1 Remote Method Invocation

Remote Method Invocation (RMI) is an object-oriented implementation
of the Remote Procedure Call model. It is an API for Java programs
only. Using RMI, an object server exports a remote object and registers
it with a directory service. The object provides remote methods, which
can be invoked in client programs.

Syntactically:
 A remote object is declared with a remote interface, an extension

of the Java interface.
 The remote interface is implemented by the object server.
 An object client accesses the object by invoking the remote

methods associated with the objects using syntax provided for
remote method invocations.

3.2 The Java RMI Architecture

3.2.1 Object Registry

The RMI API allows a number of directory services to be used
for registering a distributed object.

A simple directory service called the RMI registry, rmiregistry,
which is provided with the Java Software Development Kit
The RMI Registry is a service whose server, when active, runs on
the object server’s host machine, by convention and by default
on the TCP port 1099.

122

CPT 411 NET-CENTRIC COMPUTING

3.1 The Interaction between the Stub and the Skeleton

A time-event diagram describing the interaction between the stub and
the skeleton:

The API for the Java RMI
The Remote Interface
The Server-side Software

The Remote Interface Implementation
Stub and Skeleton Generations

The Object Server
The Client-side Software

3.4 The Remote Interface

A Java interface is a class that serves as a template for other classes:

It contains declarations or signatures of methods whose
implementations are to be supplied by classes that implements
the interface.
A java remote interface is an interface that inherits from the Java
Remote class, which allows the interface to be implemented
using RMI syntax.
Other than the Remote extension and the Remote exception that
must be specified with each method signature, a remote interface
has the same syntax as a regular or local Java interface.

3.4.1 A sample remote Interface

 file: SomeInterface.java
 to be implemented by a Java RMI server class.

import java.rmi.*
public interface SomeInterface extends Remote {

 signature of first remote method
public String someMethod1()

throws java.rmi.RemoteException;
 signature of second remote method

public int someMethod2(float throws
java.rmi.RemoteException;

)

 signature of other remote methods may follow

} // end interface

123

CPT 411 MODULE 3

A sample remote interface
The java.rmi.Remote Exception must be listed in the throw clause of
each method signature.

This exception is raised when errors occur during the processing
of a remote method call, and the exception is required to be
caught in the method caller’s program.
Causes of such exceptions include exceptions that may occur
during inter-process communications, such as access failures and
connection failures, as well as problems unique to remote method
invocations, including errors resulting from the object, the stub,
or the skeleton not being found.

3.5 The Server-side Software

An object server is an object that provides the methods of and the
interface to a distributed object.
Each object server must

Implement each of the remote methods specified in the interface,
Register an object which contains the implementation with a
directory service.

It is recommended that the two parts be provided as separate classes.

3.5.3 The Remote Interface Implementation

A class which implements the remote interface should be
provided.

The syntax is similar to a class that implements a local interface.

124

CPT 411 NET-CENTRIC COMPUTING

import java.rmi.*;
import java.rmi.server.*;

/**
 This class implements the remote interface
SomeInterface. */

public class SomeImpl extends UnicastRemoteObject

implements SomeInterface {
public SomeImpl() throws RemoteException

{ super();
}
public String someMethod1() throws RemoteException

{ // code to be supplied
}
public int someMethod2() throws RemoteException {

// code to be supplied
}

} // end class

3.7 UML diagram for the SomeImpl class

3.7.1 Stub and Skeleton Generations

In RMI, each distributed object requires a proxy each for the
object server and the object client, known as the object’s skeleton
and stub, respectively.
These proxies are generated from the implementation of a remote
interface using a tool provided with the Java SDK:

the RMI compiler rmic.
o rmic <class name of the remote interface implementation>

For example:

ormic SomeImpl
As a result of the compilation, two proxy files will be generated,
each prefixed with the implementation class name:

SomeImpl_skel.class
SomeImpl_stub.class.

125

CPT 411 MODULE 3

3.7.2 The stub file for the object

The stub file for the object, as well as the remote interface file,
must be shared with each object client – these file are required for
the client program to compile.

A copy of each file may be provided to the object client by hand.
In addition, the Java RMI has a feature called “stub downloading”
which allows a stub file to be obtained by a client dynamically.

3.8 The Object Server

The object server class is a class whose code instantiates and
exports an object of the remote interface implementation.

A template for the object server class.

import java.rmi.*;
……
public class SomeServer {

public static void main(String args[]) {
try{

 code for port number value to be supplied
SomeImpl exportedObj = new SomeImpl();
startRegistry(RMIPortNum);
 register the object under the name “some”

registryURL = "rmi://localhost:" + portNum +

"/some";
Naming.rebind(registryURL, exportedObj);
System.out.println("Some Server ready.");

}// end try
} // end main

 This method starts a RMI registry on the local host, if it
 does not already exists at the specified port number.
private static void startRegistry(int RMIPortNum)

throws
RemoteException{ try {
Registry registry=

LocateRegistry.getRegistry(RMIPortNu m);
registry.list();

 The above call will throw an exception
// if the registry does not already exist

}
catch (RemoteException ex) {
// No valid registry at that port.

126

CPT 411 NET-CENTRIC COMPUTING

 System.out.println(
 "RMI registry cannot be located at port "
 + RMIPortNum);

Registry registry= LocateRegistry.createRegistry(RMIPor
tNum);

System.out.println(
"RMI registry created at port " + RMIPortNum);

}
} // end startRegistry

In our object server template, the code for exporting an object is
as follows:

 register the object under the name “some”
registryURL = "rmi://localhost:" + portNum + "/some";
Naming.rebind(registryURL, exportedObj);

The Naming class provides methods for storing and obtaining
references from the registry.
oIn particular, the rebind method allow an object reference to be

stored in the registry with a URL in the form of: rmi://<host name>:<port number>/<reference name>

oThe rebind method will overwrite any reference in the
registry bound with the given reference name.

o If the overwriting is not desirable, there is also a bind
method.

 The host name should be the name of the server, or simply
“localhost”.

 The reference name is a name of your choice, and should
be unique in the registry.

When an object server is executed, the exporting of the
distributed object causes the server process to begin to listen and
wait for clients to connect and request the service of the object.
An RMI object server is a concurrent server: each request from
an object client is serviced using a separate thread of the server.
Note that if a client process invokes multiple remote method
calls, these calls will be executed concurrently unless provisions
are made in the client process to synchronize the calls.

127

CPT 411 MODULE 3

3.9 The RMI Registry

A server exports an object by registering it by a symbolic name
with a server known as the RMI registry.

// Create an object of the Interface

SomeInterfacel obj = new SomeInterface(“Server1”);

 Register the object; rebind will overwirte existing
 registration by same name – bind() will not.

Naming.rebind(“Server1”, obj);

A server, called the RMI Registry, is required to run on the host
of the server which exports remote objects.
The RMIRegistry is a server located at port 1099 by
default It can be invoked dynamically in the server class:

import java.rmi.registry.LocateRegistry;

…
LocateRegistry.createRegistry (1099);…

Alternatively, an RMI registry can be activated by hand using the
rmiregistry utility :
rmiregistry <port number>
where the port number is a TCP port number.

If no port number is specified, port number 1099 is assumed.
The registry will run continuously until it is shut down (via
CTRL-C, for example)

3.10 The Client-side Software

The program for the client class is like any other Java
class. The syntax needed for RMI involves
olocating the RMI Registry in the server host, and
olooking up the remote reference for the server object; the

reference can then be cast to the remote interface class and
the remote methods invoked.

import java.rmi.*;

128

CPT 411 NET-CENTRIC COMPUTING

….
public class SomeClient {

public static void main(String args[]) {
try {

String registryURL =
"rmi://localhost:" + portNum + "/some";

SomeInterface h =
(SomeInterface)Naming.lookup(registryURL);
 invoke the remote method(s)
String message = h.method1();
System.out.println(message);
 method2 can be invoked

similarly } // end try
catch (Exception e) {

System.out.println("Exception in SomeClient: " + e);
}

} //end main
 Definition for other methods of the class, if any.

}//end class

3.11 Looking up the remote object

The lookup method of the Naming class is used to retrieve the
object reference, if any, previously stored in the registry by the
object server.
Note that the retrieved reference must be cast to the remote
interface (not its implementation) class.

String registryURL =

"rmi://localhost:" + portNum + "/some";
SomeInterface h =

(SomeInterface)Naming.lookup(registryURL);

3.12 Invoking the Remote Method

The remote interface reference can be used to invoke any of the
methods in the remote interface, as in the example:
String message = h.method1();
System.out.println(message);
Note that the syntax for the invocation of the remote methods is
the same as for local methods.
It is a common mistake to cast the object retrieved from the registry
to the interface implementation class or the server object class.

129

CPT 411 MODULE 3

Instead it should be cast as the interface class.

5.0 CONCLUSION

Clearly, an object reference cannot refer to an object on another virtual
machine so the invoker of a remote method does not have an actual
reference to the remote object. When we define a remote server in Java,
the definition must be written as a remote interface and a separate
implementation class. A stub object on the client’s machine implements
the remote interface and acts as a proxy for the remote object (the term
“stub” comes from CORBA). Clients use the remote interface (not the
implementation class) as the type of remote object references, and the
client’s remote interface reference refers to the stub. When the client
sends a message in the remote interface, the receiver is actually the stub,
which communicates with the remote object via TCP/IP.

6.0 SUMMARY

Remote Method Invocation (RMI) is an object-oriented implementation
of the Remote Procedure Call model. It is an API for Java programs
only. The RMI API allows a number of directory services to be used for
registering a distributed object. A simple directory service called the
RMI registry, rmiregistry, which is provided with the Java Software
Development Kit. The RMI Registry is a service whose server, when
active, runs on the object server’s host machine, by convention and by
default on the TCP port 1099. An object server is an object that provides
the methods of and the interface to a distributed object which must
implement each of the remote methods specified in the interface and
register an object which contains the implementation with a directory
service. It is recommended that the two parts be provided as separate
classes.

7.0 REFERENCES/FURTHER READING

https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://www.cs.uic.edu/~troy/fall04/cs441/drake/rmi.html

130

CPT 411 NET-CENTRIC COMPUTING

UNIT 5 USING UML FOR COMPONENT-BASED

DESIGNS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
 3.1 UML component Diagrams
 3.2 Component Diagram at a Glance
 3.3 Basic Concepts of Component Diagram
 3.4 Interface
 3.4.1 Provided Interface
 3.4.2 Required Interface
 3.5 Subsystems
 3.6 Port
 3.7 Relationships
 3.8 Modelling Source Code
 3.9 Modelling an Executable Release
 3.10 Modelling a Physical Database
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Component-based software development (CBD) is a potential
breakthrough for software engineering. Unified Modeling Language
(UML) can potentially facilitate CBD design and modeling. Although
many research projects concentrate on the conceptual interrelation of
UML and CBD, few incorporate actual component frameworks into the
discussion, which is critical for real-world software system design and
modeling

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

Explain basic concepts of UML component diagrams
identify the UML diagram types

Differentiate between Provided Interface and Required Interface

131

CPT 411 MODULE 3

3.1 UML Component Diagrams

UML Component diagrams are used in modelling the physical aspects
of object-oriented systems that are used for visualizing, specifying, and
documenting component-based systems and also for constructing
executable systems through forward and reverse engineering.
Component diagrams are essentially class diagrams that focus on a
system's components that often used to model the static implementation
view of a system.

Figure 1: UML Diagram for Systems Designs

3.2 Component Diagram at a Glance

A component diagram breaks down the actual system under
development into various high levels of functionality. Each component
is responsible for one clear aim within the entire system and only
interacts with other essential elements on a need-to-know basis.

Figure 2: Component Diagram

132

CPT 411 NET-CENTRIC COMPUTING

The example above shows the internal components of a larger
component:

The data (account and inspection ID) flows into the component
via the port on the right-hand side and is converted into a format
the internal components can use. The interfaces on the right are
known as required interfaces, which represents the services the
component needed in order to carry out its duty.
The data then passes to and through several other components via
various connections before it is output at the ports on the left.
Those interfaces on the left are known as provided interface,
which represents the services to deliver by the exhibiting
component.
It is important to note that the internal components are
surrounded by a large 'box' which can be the overall system itself
(in which case there would not be a component symbol in the top
right corner) or a subsystem or component of the overall system
(in this case the 'box' is a component itself).

3.3 Basic Concepts of Component Diagram

A component represents a modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its environment.
In UML 2, a component is drawn as a rectangle with optional
compartments stacked vertically. A high-level, abstracted view of a
component in UML 2 can be modeled as:
 A rectangle with the component's name
 A rectangle with the component icon
 A rectangle with the stereotype text and/or icon

Figure 3: A high-level, abstracted view of a component

3.4 Interface

In the example below shows two type of component interfaces:

3.4.1 Provided Interface symbols with a complete circle at their end
represent an interface that the component provides - this "lollipop"
symbol is shorthand for a realization relationship of an interface
classifier.

3.4.2 Required Interface symbols with only a half circle at their end
(a.k.a. sockets) represent an interface that the component requires (in
both cases, the interface's name is placed near the interface symbol
itself).

133

CPT 411 MODULE 3

Figure 4: Component Diagram Example - Using Interface (Order
System)

3.5 Subsystems

The subsystem classifier is a specialized version of a component
classifier. Because of this, the subsystem notation element inherits all
the same rules as the component notation element. The only difference
is that a subsystem notation element has the keyword of subsystem
instead of component.

Figure 5: A Sub-system

134

CPT 411 NET-CENTRIC COMPUTING

3.6 Port

Ports are represented using a square along the edge of the system or a
component. A port is often used to help expose required and provided
interfaces of a component.

Figure 6: A Port

3.7 Relationships

Graphically, a component diagram is a collection of vertices and arcs
and commonly contain components, interfaces and dependency,
aggregation, constraint, generalization, association, and realization
relationships. It may also contain notes and constraints.

 Relationships Notation
 Association:
 An Association specifies a semantic
 relationship that can occur between typed
 instances.
 It has at least two ends represented by
 properties, each of which is connected to the
 type of the end. More than one end of the
 association may have the same type.

 Composition:
Composite aggregation is a strong form

of aggregation that requires a part instance be
included in at most one composite at a time.

If a composite is deleted, all of its parts
are normally deleted with it.

135

CPT 411 MODULE 3

Aggregation
A kind of association that has one of its

end marked shared as kind of aggregation,
meaning that it has a shared aggregation.

Constraint
A condition or restriction expressed in

natural language text or in a machine readable
language for the purpose of declaring some of
the semantics of an element.

Dependency
A dependency is a relationship that

signifies that a single or a set of model
elements requires other model elements for
their specification or implementation.

This means that the complete semantics
of the depending elements is either
semantically or structurally dependent on the
definition of the supplier element(s).

Links:

A generalization is a taxonomic
relationship between a more general classifier
and a more specific classifier.

Each instance of the specific classifier is
also an indirect instance of the general
classifier.

Thus, the specific classifier inherits the
features of the more general classifier.

3.8 Modelling Source Code

Either by forward or reverse engineering, identify the set of
source code files of interest and model them as components
stereotyped as files.
For larger systems, use packages to show groups of source code
files.
Consider exposing a tagged value indicating such information as the
version number of the source code file, its author, and the date it
was last changed. Use tools to manage the value of this tag.
Model the compilation dependencies among these files using
dependencies. Again, use tools to help generate and manage these
dependencies.

136

CPT 411 NET-CENTRIC COMPUTING

Figure 7: Component Diagram Example - C++ Code with versioning

3.9 Modelling an Executable Release

Identify the set of components you'd like to model. Typically,
this will involve some or all the components that live on one
node, or the distribution of these sets of components across all the
nodes in the system.
Consider the stereotype of each component in this set. For most
systems, you'll find a small number of different kinds of
components (such as executables, libraries, tables, files, and
documents). You can use the UML's extensibility mechanisms to
provide visual cues (clues) for these stereotypes.
For each component in this set, consider its relationship to its
neighbors. Most often, this will involve interfaces that are
exported (realized) by certain components and then imported
(used) by others. If you want to expose the seams in your system,
model these interfaces explicitly. If you want your model at a
higher level of abstraction, elide these relationships by showing
only dependencies among the components.

137

CPT 411 MODULE 3

3.10 Modelling a Physical Database

Identify the classes in your model that represent your logical
database schema.
Select a strategy for mapping these classes to tables. You will
also want to consider the physical distribution of your databases.
Your mapping strategy will be affected by the location in which
you want your data to live on your deployed system.
To visualize, specify, construct, and document your mapping,
create a component diagram that contains components
stereotyped as tables.
Where possible, use tools to help you transform your logical
design into a physical design.

5.0 CONCLUSION

UML Component diagrams are used in modelling the physical aspects
of object-oriented systems that are used for visualizing, specifying, and
documenting component-based systems and also for constructing
executable systems through forward and reverse engineering.

6.0 SUMMARY

UML Component diagrams are used in modelling the physical aspects
of object-oriented systems that are used for visualizing, specifying, and
documenting component-based systems and also for constructing

138

CPT 411 NET-CENTRIC COMPUTING

executable systems through forward and reverse engineering. A port is
often used to help expose required and provided interfaces of a
component. Ports are represented using a square along the edge of the
system or a component. Graphically, a component diagram is a
collection of vertices and arcs and commonly contain components,
interfaces and dependency, aggregation, constraint, generalization,
association, and realization relationships. It may also contain notes and
constraints.

There are two type of component interfaces vis-à-vis, Provided
Interface and Required Interface. Provided Interface symbols with a
complete circle at their end represent an interface that the component
provides - this "lollipop" symbol is shorthand for a realization
relationship of an interface classifier. Required Interface symbols with
only a half circle at their end (a.k.a. sockets) represent an interface that
the component requires (in both cases, the interface's name is placed
near the interface symbol itself). UML Component diagrams are used in
modelling the physical aspects of object-oriented systems that are used
for visualizing, specifying, and documenting component-based systems
and also for constructing executable systems through forward and
reverse engineering.

7.0 REFERENCES/FURTHER READING

What is Component Diagram? (visual-paradigm.com)
https://www.semanticscholar.org/paper/Component-
Based-Development-Using-UML-Zhao-
Siau/509ddc5799765c0c4d71e621768e9d1d48f92dfe

139

CPT 411 MODULE 4

MODULE 4: DISTRIBUTED TRANSACTIONS

UNIT 1 DISTRIBUTED TRANSACTIONS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0Main content

3.1 Distributed Transactions
3.2 Two Types of Permissible Operations in Distributed

 Transactions
 3.2.1 DML and DDL Transactions
 3.2.2 Transactions Control Statements

3.3 Session Trees for Distributed Transactions
3.4 Node Rules

 3.4.1 Clients
 3.4.2 Database Servers
 3.4.3 Local Coordinators
 3.4.4 Global Coordinators
 3.4.5 Commit Point Site

3.5 How a Distributed Transactions Commits
3.6 Commit Point Strength
3.7 Two-Phase Commit Mechanism

 3.7.1 Prepare Phase
 3.7.2 Steps in the Prepare Phase
 3.7.3 Commit Phase
 3.7.3.1 Steps in the Commit Phase

3.8 Guaranteeing Global Database Consistency
3.9 Forget Phase
3.10 In-Doubt Transactions

 3.10.1 Automatic Resolution of In-Doubt Transactions
3.11 Failure During the Prepare Phase
3.12 Failure During the Commit Phase
3.13 Manual Resolution of In-Doubt Transactions
3.14 Relevance of Systems Change Numbers for In-Doubt

Transactions
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

140

CPT 411 NET-CENTRIC COMPUTING

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

explain the concept of Distributed Transactions

identify the two types of permissible operations in Distributed
Transactions

state the steps in the Prepare and the Commit phase

Introduction to Module

A distributed transaction is a database transaction in which two or more
network hosts are involved. Usually, hosts provide transactional
resources, while the transaction manager is responsible for creating and
managing a global transaction that encompasses all operations against such
resources. Distributed transactions, as any other transactions, must
have all four ACID (atomicity, consistency, isolation, durability)
properties, where atomicity guarantees all-or-nothing outcomes for the
unit of work (operations bundle).
Open Group, a vendor consortium, proposed the X/Open Distributed
Transaction Processing (DTP) Model (X/Open XA), which became a de
facto standard for behavior of transaction model components.
Databases are common transactional resources and, often, transactions
span a couple of such databases. In this case, a distributed transaction
can be seen as a database transaction that must be synchronized (or
provide ACID properties) among multiple participating databases which
are distributed among different physical locations.

1.0 INTRODUCTION

A distributed transaction is a type of transaction with two or more engaged
network hosts. Generally, hosts provide resources, and a transaction
manager is responsible for developing and handling the transaction. Like
any other transaction, a distributed transaction should include all four
ACID properties (atomicity, consistency, isolation, durability). Given the
nature of the work, atomicity is important to ensure an all-or-nothing
outcome for the operations bundle (unit of work).

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

Explain the term Distributed Transactions

Identify and explain the two types of Permissible Operations in
Distributed Transactions.

141

CPT 411 MODULE 4

3.0 MAIN CONTENT

3.1 Distributed Transactions

A distributed transaction includes one or more statements that,
individually or as a group, update data on two or more distinct nodes of
a distributed database.

Figure 4.1.1: Sample Database on a Distributed Systems

The following distributed transaction executed by scott updates the local
sales database, the remote hq database, and the remote maint database:

UPDATE scott.dept@hq.us.acme.com
SET loc = 'REDWOOD SHORES'
WHERE deptno = 10;

UPDATE scott.emp
SET deptno = 11
WHERE deptno = 10;

UPDATE scott.bldg@maint.us.acme.com
SET room = 1225
WHERE room = 1163;

COMMIT;

142

CPT 411 NET-CENTRIC COMPUTING

3.2 Two Types of Permissible Operations in Distributed

Transactions:

DML and DDL Transactions
Transaction Control Statements

3.2.1 DML and DDL Transactions

The following are the DML and DDL operations supported in a
distributed transaction:

CREATE TABLE AS SELECT
DELETE
INSERT (default and direct load)
LOCK TABLE
SELECT
SELECT FOR UPDATE

You can execute DML and DDL statements in parallel,
and INSERT direct load statements serially, but note the following
restrictions:
All remote operations must be SELECT statements.
These statements must not be clauses in another distributed

transaction.
 If the table referenced in the table_expression_clause of an

INSERT, UPDATE, or DELETE statement is remote, then
execution is serial rather than parallel.
You cannot perform remote operations after issuing parallel
DML/DDL or direct load INSERT.

If the transaction begins using XA or OCI, it executes serially.
No loopback operations can be performed on the transaction
originating the parallel operation. For example, you cannot
reference a remote object that is actually a synonym for a local
object.
If you perform a distributed operation other than a SELECT in
the transaction, no DML is parallelized.

3.2.2 Transaction Control Statements

The following are the supported transaction control statements:

COMMIT
ROLLBACK
SAVEPOINT

143

CPT 411 MODULE 4

3.3 Session Trees for Distributed Transactions

As the statements in a distributed transaction are issued, the database
defines a session tree of all nodes participating in the transaction. A
session tree is a hierarchical model that describes the relationships
among sessions and their roles.

Figure 4.1.2: Example of a Session Tree

All nodes participating in the session tree of a distributed transaction
assume one or more of the following roles:

3.4 Node Roles

Roles Description
Client A node that references information in a database

 belonging to a
 different node
Database server A node that receives a request for information from

 another node
Global The node that originates the distributed transaction
coordinator
Local coordinator A node that is forced to reference data on other

 nodes to complete its part of the transaction
Commit point site The node that commits or rolls back the transaction

 as instructed by the global

The role a node plays in a distributed transaction is determined by:
Whether the transaction is local or remote
The commit point strength of the node ("Commit Point Site")

Whether all requested data is available at a node, or whether
other nodes need to be referenced to complete the transaction

144

CPT 411 NET-CENTRIC COMPUTING

Whether the node is read-only

3.4.1 Clients

A node acts as a client when it references information from a database on
another node. The referenced node is a database server. In Figure 2, the
node sales is a client of the nodes that host the warehouse and finance
databases.

3.4.2 Database Servers

A database server is a node that hosts a database from which a client
requests data.

In Figure 2, an application at the sales node initiates a distributed
transaction that accesses data from the warehouse and finance nodes.

Therefore, sales.acme.com has the role of client node,
and warehouse and finance are both database servers. In this
example, sales is a database server and a client because the application
also modifies data in the sales database.

3.4.3 Local Coordinators

A node that must reference data on other nodes to complete its part in
the distributed transaction is called a local coordinator. In Figure 2, sales
is a local coordinator because it coordinates the nodes it directly
references: warehouse and finance. The node sales also happens to be
the global coordinator because it coordinates all the nodes involved in
the transaction.
A local coordinator is responsible for coordinating the transaction
among the nodes it communicates directly with by:

Receiving and relaying transaction status information to and from
those nodes

Passing queries to those nodes
Receiving queries from those nodes and passing them on to other
nodes

Returning the results of queries to the nodes that initiated them

3.4.4 Global Coordinator

The node where the distributed transaction originates is called the global
coordinator. The database application issuing the distributed transaction
is directly connected to the node acting as the global coordinator. For
example, in Figure 2, the transaction issued at the node sales references
information from the database servers warehouse and finance.

145

CPT 411 MODULE 4

Therefore, sales.acme.com is the global coordinator of this distributed
transaction.
The global coordinator becomes the parent or root of the session tree.
The global coordinator performs the following operations during a
distributed transaction:

Sends all of the distributed transaction SQL statements, remote
procedure calls, and so forth to the directly referenced nodes, thus
forming the session tree
Instructs all directly referenced nodes other than the commit
point site to prepare the transaction
Instructs the commit point site to initiate the global commit of the
transaction if all nodes prepare successfully
Instructs all nodes to initiate a global rollback of the transaction if
there is an abort response

3.4.5 Commit Point Site

The job of the commit point site is to initiate a commit or roll back
operation as instructed by the global coordinator. The system
administrator always designates one node to be the commit point site in
the session tree by assigning all nodes a commit point strength. The
node selected as commit point site should be the node that stores the
most critical data.

Figure 4.1.3: Commit Point Site

The commit point site is distinct from all other nodes involved in a
distributed transaction in these ways:

The commit point site never enters the prepared state.
Consequently, if the commit point site stores the most critical data,

146

CPT 411 NET-CENTRIC COMPUTING

this data never remains in-doubt, even if a failure occurs. In
failure situations, failed nodes remain in a prepared state, holding
necessary locks on data until in-doubt transactions are resolved.
The commit point site commits before the other nodes involved
in the transaction. In effect, the outcome of a distributed
transaction at the commit point site determines whether the
transaction at all nodes is committed or rolled back: the other
nodes follow the lead of the commit point site. The global
coordinator ensures that all nodes complete the transaction in the
same manner as the commit point site.

3.5 How a Distributed Transaction Commits

 distributed transaction is considered committed after all non-commit-
point sites are prepared, and the transaction has been actually committed
at the commit point site. The redo log at the commit point site is updated
as soon as the distributed transaction is committed at this node.
Because the commit point log contains a record of the commit, the
transaction is considered committed even though some participating
nodes may still be only in the prepared state and the transaction not yet
actually committed at these nodes. In the same way, a distributed
transaction is considered not committed if the commit has not been
logged at the commit point site.

3.6 Commit Point Strength

Every database server must be assigned a commit point strength. If a
database server is referenced in a distributed transaction, the value of its
commit point strength determines which role it plays in the two-phase
commit. Specifically, the commit point strength determines whether a
given node is the commit point site in the distributed transaction and
thus commits before all of the other nodes. This value is specified using
the initialization parameter COMMIT_POINT_STRENGTH. This
section explains how the database determines the commit point site.
The commit point site, which is determined at the beginning of the
prepare phase, is selected only from the nodes participating in the
transaction. The following sequence of events occurs:
 Of the nodes directly referenced by the global coordinator, the

database selects the node with the highest commit point strength
as the commit point site.

 The initially-selected node determines if any of the nodes from
which it has to obtain information for this transaction has a
higher commit point strength.

 Either the node with the highest commit point strength directly
referenced in the transaction or one of its servers with a higher
commit point strength becomes the commit point site. After the

147

CPT 411 MODULE 4

final commit point site has been determined, the global coordinator
sends prepare responses to all nodes participating in the transaction

Figure 4.1.4: Commit Point Strengths and Determination of the Commit
Point Site

The following conditions apply when determining the commit point site:

A read-only node cannot be the commit point site.
If multiple nodes directly referenced by the global coordinator
have the same commit point strength, then the database
designates one of these as the commit point site.
If a distributed transaction ends with a rollback, then the prepare
and commit phases are not needed. Consequently, the database
never determines a commit point site. Instead, the global
coordinator sends a ROLLBACK statement to all nodes and ends
the processing of the distributed transaction.

As Figure 4 illustrates, the commit point site and the global coordinator can
be different nodes of the session tree. The commit point strength of each
node is communicated to the coordinators when the initial connections are
made. The coordinators retain the commit point strengths of each node they
are in direct communication with so that commit point sites can be
efficiently selected during two-phase commits. Therefore, it is not
necessary for the commit point strength to be exchanged between a
coordinator and a node each time a commit occurs.

3.7 Two-Phase Commit Mechanism

Unlike a transaction on a local database, a distributed transaction involves
altering data on multiple databases. Consequently, distributed transaction
148

CPT 411 NET-CENTRIC COMPUTING

processing is more complicated, because the database must coordinate
the committing or rolling back of the changes in a transaction as a self-
contained unit. In other words, the entire transaction commits, or the
entire transaction rolls back.

The database ensures the integrity of data in a distributed transaction
using the two-phase commit mechanism.

In the prepare phase, the initiating node in the transaction asks the
other participating nodes to promise to commit or roll back the
transaction. During the commit phase, the initiating node asks all
participating nodes to commit the transaction.

If this outcome is not possible, then all nodes are asked to roll back. All
participating nodes in a distributed transaction should perform the same
action: they should either all commit or all perform a rollback of the
transaction. The database automatically controls and monitors the
commit or rollback of a distributed transaction and maintains the
integrity of the global database (the collection of databases
participating in the transaction) using the two-phase commit mechanism.
This mechanism is completely transparent, requiring no programming
on the part of the user or application developer.

The commit mechanism has the following distinct phases, which the
database performs automatically whenever a user commits a distributed
transaction:

Phase Description
Prepare The initiating node, called the global coordinator, asks
phase participating nodes other than the commit point site to

 promise to commit or roll back the transaction, even if
 there is a failure. If any node cannot prepare, the
 transaction is rolled back.
Commit If all participants respond to the coordinator that they are
phase prepared, then the coordinator asks the commit point site

 to commit. After it commits, the coordinator asks all
 other nodes to commit the transaction
Forget phase The global coordinator forgets about the transaction

3.7.1 Prepare Phase

The first phase in committing a distributed transaction is the prepare
phase. In this phase, the database does not actually commit or roll back
the transaction. Instead, all nodes referenced in a distributed transaction
(except the commit point site, described in the "Commit Point Site") are
told to prepare to commit. By preparing, a node:

149

CPT 411 MODULE 4

Records information in the redo logs so that it can subsequently
either commit or roll back the transaction, regardless of
intervening failures
Places a distributed lock on modified tables, which prevents reads

When a node responds to the global coordinator that it is prepared to
commit, the prepared node promises to either commit or roll back the
transaction later, but does not make a unilateral decision on whether to
commit or roll back the transaction. The promise means that if an
instance failure occurs at this point, the node can use the redo records in
the online log to recover the database back to the prepare phase.

Note:
Queries that start after a node has prepared cannot access the associated
locked data until all phases complete. The time is insignificant unless a
failure occurs.

3.7.1.1 Types of Responses in the Prepare Phase

When a node is told to prepare, it can respond in the following ways:
Response Meaning
Prepared Data on the node has been modified by a statement in the

 distributed transaction, and the node has successfully
 prepared
Read- No data on the node has been, or can be, modified (only
only queried), so no preparation is necessary
Abort The node cannot successfully prepare.

Prepared Response
When a node has successfully prepared, it issues a prepared message.
The message indicates that the node has records of the changes in the
online log, so it is prepared either to commit or perform a rollback. The
message also guarantees that locks held for the transaction can survive a
failure.

Read-Only Response
When a node is asked to prepare, and the SQL statements affecting the
database do not change any data on the node, the node responds with a
read-only message. The message indicates that the node will not
participate in the commit phase

150

CPT 411 NET-CENTRIC COMPUTING

There are three cases in which all or part of a distributed transaction is
read-only:

Case Condition Consequence
Partially Any of the following occurs: The read-only nodes
read-only Only queries are recognize their status

 issued at one or more nodes. when asked to prepare.
 No data is changed. They give their local
 Changes rolled back due to coordinators a read-only
 triggers firing or constraint response. Thus, the
 violations. commit phase completes
 faster because the
 database eliminates read-
 only nodes from
 subsequent
Completely All of following occur: All nodes recognize that
read-only No data changes. they are read-only during
with Transaction is not started prepare phase, so no
prepare with SET TRANSACTION commit phase is required.
phase READ ONLY statement The global coordinator,

 not knowing whether all
 nodes are read-only, must
 still perform the prepare
 phase.
Completely All of following occur: Only queries are allowed
read-only No data changes. in the transaction, so
without Transaction is started global coordinator does
two-phase with SET TRANSACTION not have to perform two-
commit READ ONLY statement. phase commit. Changes

 by other transactions do
 not degrade global
 transaction-level read
 consistency because of
 global SCN coordination

Note that if a distributed transaction is set to read-only, then it does not
use undo segments. If many users connect to the database and their
transactions are not set to READ ONLY, then they allocate undo space
even if they are only performing queries.

Abort Response
When a node cannot successfully prepare, it performs the following
actions:
 Releases resources currently held by the transaction and rolls back

the local portion of the transaction.

151

CPT 411 MODULE 4

 Responds to the node that referenced it in the distributed
transaction with an abort message.

These actions then propagate to the other nodes involved in the
distributed transaction so that they can roll back the transaction and
guarantee the integrity of the data in the global database. This response
enforces the primary rule of a distributed transaction: all nodes involved
in the transaction either all commit or all roll back the transaction at the
same logical time.

3.7.2 Steps in the Prepare Phase

To complete the prepare phase, each node excluding the commit point
site performs the following steps:
 The node requests that its descendants, that is, the nodes

subsequently referenced, prepare to commit.
 The node checks to see whether the transaction changes data on

itself or its descendants. If there is no change to the data, then the
node skips the remaining steps and returns a read-only response

 The node allocates the resources it needs to commit the
transaction if data is changed.

 The node saves redo records corresponding to changes made by
the transaction to its redo log.

 The node guarantees that locks held for the transaction are able to
survive a failure.

 The node responds to the initiating node with a prepared response
or, if its attempt or the attempt of one of its descendants to
prepare was unsuccessful, with an abort response.

These actions guarantee that the node can subsequently commit or roll
back the transaction on the node. The prepared nodes then wait until a
COMMIT or ROLLBACK request is received from the global
coordinator.

After the nodes are prepared, the distributed transaction is said to be in-
doubt. It retains in-doubt status until all changes are either committed or
rolled back.

3.7.3 Commit Phase

The second phase in committing a distributed transaction is the commit
phase. Before this phase occurs, all nodes other than the commit point
site referenced in the distributed transaction have guaranteed that they
are prepared, that is, they have the necessary resources to commit the
transaction.

152

CPT 411 NET-CENTRIC COMPUTING

3.7.3.1 Steps in the Commit Phase

The commit phase consists of the following steps:

 The global coordinator instructs the commit point site to commit.
 The commit point site commits.
 The commit point site informs the global coordinator that it has

committed.
 The global and local coordinators send a message to all nodes

instructing them to commit the transaction.
 At each node, the database commits the local portion of the

distributed transaction and releases locks.
 At each node, the database records an additional redo entry in the

local redo log, indicating that the transaction has committed.
 The participating nodes notify the global coordinator that they have

committed.

When the commit phase is complete, the data on all nodes of the
distributed system is consistent.
Guaranteeing Global Database Consistency

Each committed transaction has an associated system change number
(SCN) to uniquely identify the changes made by the SQL statements
within that transaction. The SCN functions as an internal timestamp that
uniquely identifies a committed version of the database.

In a distributed system, the SCNs of communicating nodes are
coordinated when all of the following actions occur:

A connection occurs using the path described by one or more
database links

A distributed SQL statement executes
A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a
distributed system ensures global read-consistency at both the statement
and transaction level. If necessary, global time-based recovery can also
be completed.

During the prepare phase, the database determines the highest SCN at
all nodes involved in the transaction. The transaction then commits with
the high SCN at the commit point site. The commit SCN is then sent to
all prepared nodes with the commit decision.

153

CPT 411 MODULE 4

3.8 Guaranteeing Global Database Consistency

Each committed transaction has an associated system change number
(SCN) to uniquely identify the changes made by the SQL statements
within that transaction. The SCN functions as an internal timestamp that
uniquely identifies a committed version of the database.
In a distributed system, the SCNs of communicating nodes are
coordinated when all of the following actions occur:

A connection occurs using the path described by one or more
database links

A distributed SQL statement executes
A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a
distributed system ensures global read-consistency at both the statement
and transaction level. If necessary, global time-based recovery can also
be completed.

During the prepare phase, the database determines the highest SCN at
all nodes involved in the transaction. The transaction then commits with
the high SCN at the commit point site. The commit SCN is then sent to
all prepared nodes with the commit decision.

3.9 Forget Phase

After the participating nodes notify the commit point site that they have
committed, the commit point site can forget about the transaction. The
following steps occur:
 After receiving notice from the global coordinator that all nodes

have committed, the commit point site erases status information
about this transaction.

 The commit point site informs the global coordinator that it has
erased the status information.

 The global coordinator erases its own information about the
transaction.

3.10 In-Doubt Transactions

The two-phase commit mechanism ensures that all nodes either commit
or perform a rollback together. What happens if any of the three phases
fails because of a system or network error? The transaction becomes in-
doubt.
Distributed transactions can become in-doubt in the following ways:
A server machine running Oracle Database software crashes

A network connection between two or more Oracle Databases
involved in distributed processing is disconnected

154

CPT 411 NET-CENTRIC COMPUTING

An unhandled software error occurs

The RECO process automatically resolves in-doubt transactions when
the machine, network, or software problem is resolved. Until RECO can
resolve the transaction, the data is locked for both reads and writes. The
database blocks reads because it cannot determine which version of the
data to display for a query.

3.10.1 Automatic Resolution of In-Doubt Transactions

In the majority of cases, the database resolves the in-doubt transaction
automatically. Assume that there are two nodes, local and remote, in the
following scenarios. The local node is the commit point site. User scott
connects to local and executes and commits a distributed transaction
that updates local and remote.

3.11 Failure During the Prepare Phase

Figure 5 illustrates the sequence of events when there is a failure during
the prepare phase of a distributed transaction:

Figure 4.1.1: Failure During Prepare Phase

The following steps occur:
 User SCOTT connects to Local and executes a distributed

transaction.
 The global coordinator, which in this example is also the commit

point site, requests all databases other than the commit point site
to promise to commit or roll back when told to do so.

 The remote database crashes before issuing the prepare response
back to local.

 The transaction is ultimately rolled back on each database by the
RECO process when the remote site is restored.

155

CPT 411 MODULE 4

3.12 Failure During the Commit Phase

Figure 6 illustrates the sequence of events when there is a failure during
the commit phase of a distributed transaction:

Figure 4.1.6: Failure During the Commit Phase

The following steps occur:
 User Scott connects to local and executes a distributed transaction.
 The global coordinator, which in this case is also the commit point

site, requests all databases other than the commit point site to
promise to commit or roll back when told to do so.

3. The commit point site receives a prepared message from remote
saying that it will commit.

 The commit point site commits the transaction locally, then sends
a commit message to remote asking it to commit.

 The remote database receives the commit message, but cannot
respond because of a network failure.

 The transaction is ultimately committed on the remote database
by the RECO process after the network is restored.

3.13 Manual Resolution of In-Doubt Transactions

You should only need to resolve an in-doubt transaction in the following
cases:

The in-doubt transaction has locks on critical data or undo
segments.
The cause of the machine, network, or software failure cannot be
repaired quickly.

Resolution of in-doubt transactions can be complicated. The procedure
requires that you do the following:

Identify the transaction identification number for the in-doubt
transaction.

156

CPT 411 NET-CENTRIC COMPUTING

Query
the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS views to
determine whether the databases involved in the transaction have
committed.
 If necessary, force a commit using the COMMIT FORCE

statement or a rollback using the ROLLBACK FORCE
statement.

3.14 Relevance of System Change Numbers for In-Doubt
Transactions

A system change number (SCN) is an internal timestamp for a
committed version of the database. The Oracle Database server uses the
SCN clock value to guarantee transaction consistency. For example,
when a user commits a transaction, the database records an SCN for this
commit in the redo log.
The database uses SCNs to coordinate distributed transactions among
different databases. For example, the database uses SCNs in the
following way:
 An application establishes a connection using a database link.
 The distributed transaction commits with the highest global SCN

among all the databases involved.
 The commit global SCN is sent to all databases involved in the

transaction.

SCNs are important for distributed transactions because they function as
a synchronized commit timestamp of a transaction, even if the
transaction fails. If a transaction becomes in-doubt, an administrator can
use this SCN to coordinate changes made to the global database. The
global SCN for the transaction commit can also be used to identify the
transaction later, for example, in distributed recovery.

Discussion
How do you manually resolve an In-Doubt Transactions? Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

 Explain the sequence of events when there is a failure during the

commit phase of a distributed transaction
Answer
The following steps occur:
 User Scott connects to local and executes a distributed transaction.
 The global coordinator, which in this case is also the commit point

site, requests all databases other than the commit point site to
promise to commit or roll back when told to do so.

157

CPT 411 MODULE 4

(iii) The commit point site receives a prepared message
from remote saying that it will commit.

 The commit point site commits the transaction locally, then sends
a commit message to remote asking it to commit.

 The remote database receives the commit message, but cannot
respond because of a network failure.

 The transaction is ultimately committed on the remote database
by the RECO process after the network is restored.

 In what ways can the Distributed transactions become in-doubt ?

Answer:
A server machine running Oracle Database software crashes

A network connection between two or more Oracle Databases
involved in distributed processing is disconnected

An unhandled software error occurs

5.0 CONCLUSION

Databases are standard transactional resources, and transactions usually
extend to a small number of such databases. In such cases, a distributed
transaction may be viewed as a database transaction that should be
synchronized between various participating databases allocated between
various physical locations. The isolation property presents a unique
obstacle for multi-database transactions.

For distributed transactions, each computer features a local transaction
manager. If the transaction works at several computers, the transaction
managers communicate with various other transaction managers by
means of superior or subordinate relationships, which are accurate only
for a specific transaction.

6.0 SUMMARY

A distributed transaction includes one or more statements that,
individually or as a group, update data on two or more distinct nodes of a
distributed database. Two Types of Permissible Operations in Distributed
Transactions are DML and DDL Transactions & Transaction Control
Statements. The database ensures the integrity of data in a distributed
transaction using the two-phase commit mechanism: the prepare phase and
the commit phase. Distributed transactions can become in-doubt in the
following ways: either a server machine running Oracle Database software
crashes, a network connection between two or more Oracle Databases
involved in distributed processing is disconnected or an unhandled
software error occurs. When a node cannot successfully prepare, it
performs the following actions:
158

CPT 411 NET-CENTRIC COMPUTING

 Releases resources currently held by the transaction and rolls back

the local portion of the transaction.
 Responds to the node that referenced it in the distributed transaction

with an abort message.

7.0 REFERENCES/FURTHER READING

https://en.wikipedia.org/wiki/Distributed_transaction
https://www.techopedia.com/definition/29166/distributed-transaction

159

CPT 411 MODULE 4

UNIT 2 FLAT AND NESTED DISTRIBUTED
TRANSACTIONS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Flat & Nested Distributed Transactions
3.2 Transactions Commands
3.3 Roles for Running a Transactions Successfully
3.4 Flat & Nested Distributed Transactions

3.4.1 Flat Transactions
3.4.1.1 Limitations of a Flat Transactions

3.4.2 Nested Transactions
3.4.2.1 Advantage

3.5 Role
4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Transactions are inevitable in the smooth running of 21st century
business life. Almost all daily activities run on network transactions.
Applications run processes that have one or more threads that need to be
synchronized, in a multithreading environments, enables a concurrency.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, the student will able to:

Differentiate between the Flat and Nested Transactions
State the advantage of Nested over Flat transactions

Learn from existing scenarios of cybercrimes in India

3.0 MAIN CONTENT

3.1 Flat & Nested Distributed Transactions

A transaction is a series of object operations that must be done in an
ACID-compliant manner. ACID connotes:
Atomicity – The transaction is completed entirely or not at all.

160

CPT 411 NET-CENTRIC COMPUTING

Consistency – It is a term that refers to the transition from one
consistent state to another.
Isolation – It is carried out separately from other transactions.
Durability – Once completed, it is long lasting.

3.2 Transactions Commands:

Begin – initiate a new transaction.
Commit – End a transaction and the changes made during the
transaction are saved. Also, it allows other transactions to see the
modifications you’ve made.
Abort – End a transaction and all changes made during the
transaction will be undone.

3.3 Roles for Running a Transaction Successfully:

Client – The transactions are issued by the clients.
Coordinator – The execution of the entire transaction is
controlled by it (handles Begin, commit & abort).
Server – Every component that accesses or modifies a resource is
subject to transaction control. The coordinator must be known by
the transactional server. The transactional server registers its
participation in a transaction with the coordinator.

A flat or nested transaction that accesses objects handled by different
servers is referred to as a distributed transaction. When a distributed
transaction reaches its end, in order to maintain the atomicity property
of the transaction, it is mandatory that all of the servers involved in the
transaction either commit the transaction or abort it.
To do this, one of the servers takes on the job of coordinator, which
entails ensuring that the same outcome is achieved across all servers.
The method by which the coordinator accomplishes this is determined
by the protocol selected. The most widely used protocol is the ‘two-
phase commit protocol.’ This protocol enables the servers to
communicate with one another in order to come to a joint decision on
whether to commit or abort the complete transaction.

3.4 Flat & Nested Distributed Transactions

If a client transaction calls actions on multiple servers, it is said to be
distributed. Distributed transactions can be structured in two different
ways:
 Flat transactions
 Nested transactions

161

CPT 411 MODULE 4

3.4.1 Flat Transactions:

A flat transaction has a single initiating point (Begin) and a single end
point (Commit or abort). They are usually very simple and are generally
used for short activities rather than larger ones. A client makes requests
to multiple servers in a flat transaction. Transaction T, for example, is a
flat transaction that performs operations on objects in servers X, Y, and
Z.

Before moving on to the next request, a flat client transaction completes
the previous one. As a result, each transaction visits the server object in
order. A transaction can only wait for one object at a time when servers
utilize locking.

Figure 4.2.1: Flat Transactions

3.4.1.1 Limitations of a Flat Transaction:

All work is lost in the event of a crash.
Only one DBMS may be used at a time.
No partial rollback is possible.

3.4.2 Nested Transactions

A transaction that includes other transactions within its initiating point
and at the end point are known as nested transactions. So the nesting of
the transactions is done in a transaction. The nested transactions here are
called sub-transactions. The top-level transaction in a nested transaction

162

CPT 411 NET-CENTRIC COMPUTING

can open sub-transactions, and each sub-transaction can open more sub-
transactions down to any depth of nesting. A client’s transaction T
opens up two sub-transactions, T1 and T2, which access objects on
servers X and Y, as shown in the figure 4.2.2 below. T1.1, T1.2, T2.1,
and T2.2, which access the objects on the servers M, N and P are opened
by the sub-transactions T1 and T2.

Figure 4.2.2: Nested Transactions

Concurrent Execution of the Sub-transactions is done which are at the
same level – in the nested transaction strategy. Here, in the above
diagram, T1 and T2 invoke objects on different servers and hence they
can run in parallel and are therefore concurrent. T1.1, T1.2, T2.1, and
T2.2 are four sub-transactions. These sub-transactions can also run in
parallel.
Consider a distributed transaction (T) in which a customer transfers:
$105 from account A to account C and
Subsequently, $205 from account B to account D.

It can be viewed/ thought of as:
Transaction T:
Start
Transfer $105 from A to C:
Deduct $105 from A (withdraw from A) & Add $105 to C (deposit to C)
Transfer $205 from B to D:
Deduct $205 from B (withdraw from B) & Add $205 to D (deposit to
D) End
Assuming that:
 Account A is on server X
 Account B is on server Y, and

163

CPT 411 MODULE 4

 Accounts C and D are on server Z.

The transaction T involves four requests – 2 for deposits and 2 for
withdrawals. Now they can be treated as sub-transactions (T1, T2, T3,
T4) of the transaction T.

As shown in the figure 4.2.3 below, transaction T is designed as a set of
four nested transactions: T1, T2, T3 and T4.

3.4.2.1 Advantage of Nested Transactions:

The performance is higher than a single transaction in which four
operations are invoked one after the other in sequence.

Figure 4.2.2: Nested Transactions

So, the Transaction T may be divided into sub-transactions as:
//Start the Transaction
T = open transaction
//T1
openSubtransaction

a.withdraw(105);
//T2
openSubtransaction

b.withdraw(205);
//T3
openSubtransaction

c.deposit(105);
//T4
openSubtransaction

d.deposit(205);
//End the transaction
close Transaction

164

CPT 411 NET-CENTRIC COMPUTING

3.5 Role of coordinator

When the Distributed Transaction commits, the servers that are involved
in the transaction execution, for proper coordination, must be able to
communicate with one another.

When a client initiates a transaction, an “openTransaction” request is
sent to any coordinator server. The contacted coordinator carries out the
“openTransaction” and returns the transaction identifier to the client.
Distributed transaction identifiers must be unique within the distributed
system. A simple way is to generate a TID contains two parts – the
‘server identifier” (example :IP address) of the server that created it and
a number unique to the server.

The coordinator who initiated the transaction becomes the distributed
transaction’s coordinator and has the responsibility of either aborting it
or committing it.

Every server that manages an object accessed by a transaction is a
participant in the transaction & provides an object we call the
participant. The participants are responsible for working together with
the coordinator to complete the commit process.

The coordinator every time, records the new participant in the participants
list. Each participant knows the coordinator & the coordinator knows all
the participants. This enables them to collect the information that will be
needed at the time of commit and hence work in coordination.

Discussion
Discuss Roles for Running a Transaction Successfully.

4.0 SELF-ASSESSMENT/EXERCISES

 Explain the role of a Corrdinator

Answer:
When the Distributed Transaction commits, the servers that are involved
in the transaction execution, for proper coordination, must be able to
communicate with one another.

When a client initiates a transaction, an “openTransaction” request is
sent to any coordinator server. The contacted coordinator carries out the
“openTransaction” and returns the transaction identifier to the client.

165

CPT 411 MODULE 4

 Explain Flat Transactions with the aid of a diagram

Answer:
A flat transaction has a single initiating point (Begin) and a single end
point (Commit or abort). They are usually very simple and are generally
used for short activities rather than larger ones. A client makes requests
to multiple servers in a flat transaction. Transaction T, for example, is a
flat transaction that performs operations on objects in servers X, Y, and
Z.

Before moving on to the next request, a flat client transaction completes
the previous one. As a result, each transaction visits the server object in
order. A transaction can only wait for one object at a time when servers
utilize locking.

Figure 4.2.1: Flat Transactions

5.0 CONCLUSION

A flat transaction has a single initiating point (Begin) and a single end
point (Commit or abort). They are usually very simple and are generally
used for short activities rather than larger ones. The performance of
Nested Transactions is higher than a single transaction in which four
operations are invoked one after the other in sequence

6.0 SUMMARY

A transaction is a series of object operations that must be done in an ACID
(Atomicity, Consistency, Consistency and Isolation) -compliant manner.

166

CPT 411 NET-CENTRIC COMPUTING

Transactions Commands include Begin, Commit and Abort. Roles for
Running a Transaction Successfully include Client, Coordinator and
Server. Limitations of a Flat Transaction are that, all work is lost in the
event of a crash, only one DBMS may be used at a time and that no partial
rollback is possible. Nested Transactions is a transaction that includes other
transactions within its initiating point and at the end point. The
performance is higher in nested transactions than in a single transaction.

7.0 REFERENCES/FURTHER READING

Flat & Nested Distributed Transactions - GeeksforGeeks

167

CPT 411 MODULE 4

UNIT 3 CONCURRENCY

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Concurrency
3.2 Two Models for Concurrent Programming

3.2.1 Shared Memory
3.2.2 Message Passing

3.3 Processes, Threads & Time-Slicing
3.3.1 Process
3.3.2 Thread
3.3.3 Time Slicing

3.4 Shared Memory Example
3.4.1 Interleaving
3.4.2 Race Condition
3.4.3 Reordering

3.5 Message Passing Example
3.6 Concurrent is Hard to Test and Debug

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Cybercrime is "international" that there are ‘no cyber-borders between
countries’ The complexity in types and forms of cybercrime increases
the difficulty to fight back, fighting cybercrime calls for international
cooperation . Various organizations and governments have already made
joint efforts in establishing global standards of legislation and law
enforcement both on a regional and on an international scale.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

Explain the concepts, Concurrency, shared memory
Identify and explain two models for concurrent programming

Describe the following terms: interleaving, reordering,
concurrency, race condition and time-slicing.

168

CPT 411 NET-CENTRIC COMPUTING

3.0 MAIN CONTENT

3.1 Concurrency

Concurrency means multiple computations are happening at the same
time. Concurrency is everywhere in modern programming, whether we
like it or not:

Multiple computers in a network
Multiple applications running on one computer
Multiple processors in a computer (today, often multiple
processor cores on a single chip)

In fact, concurrency is essential in modern programming:
Web sites must handle multiple simultaneous users.

Mobile apps need to do some of their processing on servers (“in
the cloud”).
Graphical user interfaces almost always require background work
that does not interrupt the user. For example, Eclipse compiles
your Java code while you’re still editing it.

Being able to program with concurrency will still be important in the
future. Processor clock speeds are no longer increasing. Instead, we are
getting more cores with each new generation of chips. So in the future,
in order to get a computation to run faster, we’ll have to split up a
computation into concurrent pieces.

3.2 Two Models for Concurrent Programming

There are two common models for concurrent programming:

Shared memory and
Message passing.

Figure 4.3.1: Shared Memory

169

CPT 411 MODULE 4

3.2.1 Shared memory

In the shared memory model of concurrency, concurrent modules
interact by reading and writing shared objects in memory. Other
examples of the shared-memory model:

A and B might be two processors (or processor cores) in the same
computer, sharing the same physical memory.
A and B might be two programs running on the same computer,
sharing a common filesystem with files they can read and write.
A and B might be two threads in the same Java program (we will
explain what a thread is below), sharing the same Java objects.

Figure 3.3.2: An example of shared memory

3.2.2 Message Passing

In the message-passing model, concurrent modules interact by sending
messages to each other through a communication channel. Modules
send off messages, and incoming messages to each module are queued
up for handling. Examples include:

A and B might be two computers in a network, communicating
by network connections.
A and B might be a web browser and a web server – A opens a
connection to B, asks for a web page, and B sends the web page
data back to A.

A and B might be an instant messaging client and server.
A and B might be two programs running on the same computer
whose input and output have been connected by a pipe, like ls |
grep typed into a command prompt.

3.3 Processes, Threads, Time-slicing

The message-passing and shared-memory models are about how
concurrent modules communicate. The concurrent modules
themselves come in two different kinds: processes and threads.

3.3.1 Process

A process is an instance of a running program that is isolated from

other processes on the same machine. In particular, it has its own
private section of the machine’s memory.

170

CPT 411 NET-CENTRIC COMPUTING

The process abstraction is a virtual computer. It makes the program
feel like it has the entire machine to itself – like a fresh computer
has been created, with fresh memory, just to run that program.

Just like computers connected across a network, processes normally
share no memory between them. A process can’t access another
process’s memory or objects at all. Sharing memory between
processes is possible on most operating system, but it needs special
effort. By contrast, a new process is automatically ready for
message passing, because it is created with standard input
 output streams, which are the System out and System.in
streams you’ve used in Java.

3.3.2 Thread

A thread is a locus of control inside a running program. Think of it as a
place in the program that is being run, plus the stack of method calls that
led to that place to which it will be necessary to return through.

Just as a process represents a virtual computer, the thread
abstraction represents a virtual processor. Making a new thread
simulates making a fresh processor inside the virtual computer
represented by the process. This new virtual processor runs the
same program and shares the same memory as other threads in
process.
Threads are automatically ready for shared memory, because
threads share all the memory in the process. It needs special
effort to get “thread-local” memory that’s private to a single
thread. It’s also necessary to set up message-passing explicitly,
by creating and using queue data structures. We will talk about
how to do that in a future reading.

Figure 4.3.3: Many Concurrent Threads, One or Two Processors

3.3.3 Time Slicing

When there are more threads than processors, concurrency is
simulated by time slicing, which means that the processor

switches between threads. The figure on the right, above, shows
171

CPT 411 MODULE 4

how three threads T1, T2, and T3 might be time-sliced on a machine
that has only two actual processors. In the figure 2, time proceeds
downward, so at first one processor is running thread T1 and the
other is running thread T2, and then the second processor switches
to run thread T3. Thread T2 simply pauses, until its next time slice
on the same processor or another processor.
On most systems, time slicing happens unpredictably and non-
deterministically, meaning that a thread may be paused or
resumed at any time.

3.4 Shared Memory Example

Let’s look at an example of a shared memory system. The point of this
example is to show that concurrent programming is hard, because it can
have subtle bugs.

Figure 4.3.4: Shared memory system showing that concurrent programming is hard

Imagine that a bank has cash machines that use a shared memory model,
so all the cash machines can read and write the same account objects in
memory. To illustrate what can go wrong, let’s simplify the bank down
to a single account, with a dollar balance stored in the balance variable,
and two operations deposit and withdraw that simply add or remove a
dollar:

 suppose all the cash machines share a single bank account
private static int balance = 0;

private static void deposit() {

balance = balance + 1;
}
private static void withdraw() {

balance = balance - 1;
}

172

CPT 411 NET-CENTRIC COMPUTING

Customers use the cash machines to do transactions like this:
deposit(); // put a dollar in
withdraw(); // take it back out

In this simple example, every transaction is just a one dollar deposit
followed by a one-dollar withdrawal, so it should leave the balance in
the account unchanged. Throughout the day, each cash machine in our
network is processing a sequence of deposit/withdraw transactions.

 each ATM does a bunch of transactions that
 modify balance, but leave it unchanged afterward
private static void cashMachine() {

for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i)
{ deposit(); // put a dollar in
withdraw(); // take it back out

}
}

So at the end of the day, regardless of how many cash machines were
running, or how many transactions we processed, we should expect the
account balance to still be 0.

But if we run this code, we discover frequently that the balance at the
end of the day is not 0. If more than one cashMachine() call is running
at the same time – say, on separate processors in the same computer –
then balance may not be zero at the end of the day.

3.4.1 Interleaving

Here is one thing that can happen. Suppose two cash machines, A and B,
are both working on a deposit at the same time. Here is how the deposit()
step typically breaks down into low-level processor instructions:
get balance (balance=0)
add 1
write back the result (balance=1)

When A and B are running concurrently, these low-level instructions
interleave with each other (some might even be simultaneous in some
sense, but let’s just worry about interleaving for now):
A get balance (balance=0)
A add 1
A write back the result (balance=1)

173

CPT 411 MODULE 4

B get balance (balance=1)
B add 1
B write back the result (balance=2)

This interleaving is fine – we end up with balance 2, so both A and B
successfully put in a dollar. But what if the interleaving looked like this:
A get balance (balance=0)

B get balance (balance=0)
A add 1

B add 1
A write back the result (balance=1)

B write back the result (balance=1)

The balance is now 1 – A’s dollar was lost! A and B both read the
balance at the same time, computed separate final balances, and then
raced to store back the new balance – which failed to take the other’s
deposit into account.

3.4.2 Race Condition

A race condition means that the correctness of the program (the
satisfaction of postconditions and invariants) depends on the relative
timing of events in concurrent computations A and B. When this
happens, we say “A is in a race with B.”

Some interleavings of events may be OK, in the sense that they are
consistent with what a single, nonconcurrent process would produce, but
other interleavings produce wrong answers – violating postconditions or
invariants.

All these versions of the bank-account code exhibit the same race
condition:

// version 1
private static void deposit() {

balance = balance + 1;
}
private static void withdraw() {

balance = balance - 1;
}
// version 2
private static void deposit() {

balance += 1;
}

174

CPT 411 NET-CENTRIC COMPUTING

private static void withdraw() {

balance -= 1;
}
// version 3
private static void deposit() {

++balance;
}
private static void withdraw() {

--balance;
}

You cannot tell just from looking at Java code how the processor is going
to execute it. You can’t tell what the indivisible operations – the atomic
operations – will be. It isn’t atomic just because it’s one line of Java. It
doesn’t touch balance only once just because the balance identifier occurs
only once in the line. The Java compiler, and in fact the processor itself,
makes no commitments about what low-level operations it will generate
from your code. In fact, a typical modern Java compiler produces exactly
the same code for all three of these versions!

The key lesson is that you cannot tell by looking at an expression
whether it will be safe from race conditions.

3.4.3 Reordering

The race condition on the bank account balance can be explained in
terms of different interleavings of sequential operations on different
processors. But in fact, when you are using multiple variables and
multiple processors, you cannot even count on changes to those
variables appearing in the same order.
Here’s an example:
private boolean ready = false;
private int answer = 0;

 computeAnswer runs in one thread
private void computeAnswer() {

answer = 42;
ready = true;

}

 useAnswer runs in a different thread
private void useAnswer() {

while (!ready) {
Thread.yield();

175

CPT 411 MODULE 4

}
if (answer == 0) throw new RuntimeException("answer wasn't

ready!");
}

We have two methods that are being run in different threads.
computeAnswer does a long calculation, finally coming up with the
answer 42, which it puts in the answer variable. Then it sets the ready
variable to true, in order to signal to the method running in the other
thread, useAnswer, that the answer is ready for it to use. Looking at
the code, answer is set before ready is set, so once useAnswer sees
ready as true, then it seems reasonable that it can assume that the
answer will be 42 but quite not true.

The problem is that modern compilers and processors do a lot of things to
make the code fast. One of those things is making temporary copies of
variables like answer and ready in faster storage (registers or caches on a
processor), and working with them temporarily before eventually storing
them back to their official location in memory. The storeback may occur in
a different order than the variables were manipulated in your code. Here is
what might be going on under the covers (but expressed in Java syntax to
make it clear). The processor is effectively creating two temporary
variables, tmpr and tmpa, to manipulate the fields ready and answer:
private void computeAnswer() {

boolean tmpr = ready;
int tmpa = answer;

tmpa = 42;
tmpr = true;

ready = tmpr;

 <-- what happens if useAnswer() interleaves here?
 ready is set, but answer isn't.

answer = tmpa;
}

3.5 Message Passing Example

176

CPT 411 NET-CENTRIC COMPUTING

Figure 4.3.5: A message passing example
Now let us look at the message-passing approach to our bank account
example.

Now not only are the cash machine modules, but the accounts are
modules, too. Modules interact by sending messages to each other.
Incoming requests are placed in a queue to be handled one at a time. The
sender does not stop working while waiting for an answer to its request.
It handles more requests from its own queue. The reply to its request
eventually comes back as another message.

Unfortunately, message passing does not eliminate the possibility of race
conditions. Suppose each account supports get-balance and withdraw
operations, with corresponding messages. Two users, at cash machine
A and B, are both trying to withdraw a dollar from the same account.
They check the balance first to make sure they never withdraw more
than the account holds, because overdrafts trigger big bank penalties:

get-balance
if balance >= 1 then withdraw 1

The problem is again interleaving, but this time interleaving of the
messages sent to the bank account, rather than
the instructions executed by A and B. If the account starts with a dollar
in it, then what interleaving of messages will fool A and B into thinking
they can both withdraw a dollar, thereby overdrawing the account?
One lesson here is that you need to carefully choose the operations of a
message-passing model. withdraw-if-sufficient-funds would be a
better operation than just withdraw.

3.6 Concurrency is Hard to Test and Debug

If we have not persuaded you that concurrency is tricky, here is the
worst of it. It is very hard to discover race conditions using testing. And
even once a test has found a bug, it may be very hard to localize it to the
part of the program causing it.

Concurrency bugs exhibit very poor reproducibility. It is hard to make
them happen the same way twice. Interleaving of instructions or
messages depends on the relative timing of events that are strongly
influenced by the environment. Delays can be caused by other running
programs, other network traffic, operating system scheduling decisions,
variations in processor clock speed, etc. Each time you run a program
containing a race condition, you may get different behavior.

177

CPT 411 MODULE 4

These kinds of bugs are heisenbugs, which are nondeterministic and
hard to reproduce, as opposed to a “bohrbug”, which shows up
repeatedly whenever you look at it. Almost all bugs in sequential
programming are bohrbugs.

A heisenbug may even disappear when you try to look at it with println
or debugger! The reason is that printing and debugging are so much
slower than other operations, often 100-1000x slower, that they
dramatically change the timing of operations, and the interleaving. So
inserting a simple print statement into the cashMachine():
private static void cashMachine() {

for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i)
{ deposit(); // put a dollar in
withdraw(); // take it back out
System.out.println(balance); // makes the bug disappear!

}
}

…and suddenly the balance is always 0, as desired, and the bug appears
to disappear. But it is only masked, not truly fixed. A change in timing
somewhere else in the program may suddenly make the bug come back.
Concurrency is hard to get right. Part of the point of this reading is to
scare you a bit. Over the next several readings, we’ll see principled
ways to design concurrent programs so that they are safer from these
kinds of bugs.

Discussion
What are heisenbugs and bohrbug bugs. Discuss.

5.0 CONCLUSION

When there are more threads than processors, concurrency is simulated
by time slicing, which means that the processor switches between
threads. Multithreading abounds in all enterprise developments.

6.0 SUMMARY

Concurrency means multiple computations are happening at the same time.
Concurrency is everywhere in modern programming. In the shared memory
model of concurrency, concurrent modules interact by reading and writing
shared objects in memory. In the message-passing model, concurrent
modules interact by sending messages to each other through a
communication channel. A race condition means that the correctness of
the program (the satisfaction of postconditions and invariants) depends on
the relative timing of events in concurrent computations A and B.
Concurrency bugs exhibit very poor reproducibility. It is hard to make
178

CPT 411 NET-CENTRIC COMPUTING

them happen the same way twice. Interleaving of instructions or
messages depends on the relative timing of events that are strongly
influenced by the environment.

7.0 REFERENCES/FURTHER READING

Concepts: Concurrency (uhcl.edu)
Processes and Threads (The Java™ Tutorials > Essential Java Classes >
Concurrency) (oracle.com)

179

CPT 411 MODULE 4

UNIT 4 CHARACTERISTICS OF SERVICE ORIENTED
ARCHITECTURE

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Service-Oriented Architecture (SOA)
3.1.1 A Service

3.2 An Example: SOA Apps Provide a Cohesive Platform for
Overstock.com (a large Online Retailer)

3.3 The 6 Defining Concepts of SOA
3.4 Understanding SOA: The Transportation Analogy

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Service-oriented architecture (SOA) is a software development model
that allows services to communicate across different platforms and
languages to form applications. In SOA, a service is a self-contained
unit of software designed to complete a specific task. Service-oriented
architecture allows various services to communicate using a loose
coupling system to either pass data or coordinate an activity.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

state the characteristics of Service Oriented Architecture (SOA).
identify the 6 Defining Concepts of SOA.

employ the understanding of SOA to solve future problems.

3.0 MAIN CONTENT

3.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture, can be defined as "services" that provide
a platform by which disparate systems can communicate with each
other. These services are essentially groups of software components that
help a company seamlessly carry out important business processes. SOA

180

CPT 411 NET-CENTRIC COMPUTING

implementation makes interoperability between heterogeneous
applications and technologies possible.
The rise of SOA technology and integration in recent years is placing it
as one of the most important applications for communicating between
different systems — or in this context, services.

3.1.1 A Service

Services represent building blocks that allow users to organize
information in ways that are familiar to them. These building blocks
combine information about users and their behavior in a seamless
fashion to present a relatively simple interface.

A service is commonly characterized by these four properties:
 It logically represents a business activity with a specified outcome.
 It is self-contained
 It is a black box for its consumers
 It may consist of other underlying services
T
o further simplify this concept, an SOA service is the mechanism that
satisfies a customer’s wants or needs through a negotiated contract.
Therefore, SOA is a collection of different services.

To better understand what service-oriented architecture is all about,
consider this quote from industry expert David Sprott:

3.2 An Example: SOA Apps Provide a Cohesive Platform for

Overstock.com (a large Online Retailer)

Communication of services can involve something as simple as passing
data, or it can involve a coordination of an activity between two or more
different SOA services.

One way to illustrate the SOA method is by taking a look at a large
online retailer like Overstock.com.

In order for Overstock customers to make a transaction, different
programs must work together seamlessly. The various steps in the
ordering process can involve various programs developed at different
times, each using their own unique platforms and technologies.
For instance, there might be one program that tracks inventory, which is
different than the interface (i.e. the Internet) the customer uses to shop.
Then, there is likely an entirely different program for their shopping cart
and another for processing payment.

181

CPT 411 MODULE 4

SOA services tie all of these various programs together so that an online
shopper can quickly find out if what they are looking for is in stock and
get it shipped to their doorstep with just a few clicks of their mouse.
3.3 The 6 Defining Concepts of SOA

In October of 2009, a manifesto was created about service-oriented
architecture. This manifesto states that there are six core values of SOA:
 Business value is more important than technical strategy.

 Strategic goals are more valuable than project-specific benefits.
 Intrinsic interoperability is greater than custom integration.
 Shared services over specific-purpose implementations.
 Flexibility is given more importance than optimization.
 Evolutionary refinement is more important than pursuit of initial

perfection.

3.4 Understanding SOA: The Transportation Analogy

Another way to think about SOA is through the analogy of
transportation. Imagine that you have to travel from your home in
Ibadan to a business conference or trade show in Kano. What are the
various steps you might take to get there?

First, you will have to drive to the airport, then take a shuttle to the
airport terminal. Next, you will board the plane for Kano. After landing,
you take another shuttle from the gate to the main terminal, where you
have to flag down a taxi or call an Uber to drive you to your hotel.
When it is time for the conference to start, you walk to the nearest train
stop, hop on, and ride it to the conference center.

All of these various transportation methods worked together to
accomplish your end goal of attending the conference — your car, the
shuttle bus, airplane, train, and even walking. There were many
individual “steps” you had to take to arrive at your final destination on
time, and there were likely other ways you could have gone about it.

For instance, instead of driving to the airport, you could have walked to
a train station or bus stop and gotten to the airport this way. Or you
could have driven completely across the country, thus eliminating your
need for any other type of transportation altogether.
However, by combining numerous transportation methods you were
able to get to the conference faster and probably cheaper than if you had
driven the whole way.

In this analogy of SOA, the various modes of transportation can be viewed
as the different “services” used to reach an end goal. Just like the cars,
182

CPT 411 NET-CENTRIC COMPUTING

bus, train, and plane all worked together to help you accomplish your
goal of attending the conference, combining different units of software
applications (services) can help business achieve new milestones in the
most efficient manner.

Discussion

What is Service Oriented Architetcure?

4.0 SELF-ASSESSMENT/EXERCISES

 Define Services

Answer:
Services represent building blocks that allow users to organize
information in ways that are familiar to them. These building blocks
combine information about users and their behavior in a seamless
fashion to present a relatively simple interface.

 What are the four properties a service is commonly characterized by:
Answer:
 It logically represents a business activity with a specified outcome.
 It is self-contained
 It is a black box for its consumers
 It may consist of other underlying services
 Explain the concept of SOA using another analogy aside of the

Transportation Analogy.

5.0 CONCLUSION

In life we realize our different goals via combination of methods.
Applying this principle in deploying solutions and even researches
enables novelty and the benefits are much more than losses.

6.0 SUMMARY

Service-Oriented Architecture (SOA), can be defined as "services" that
provide a platform by which disparate systems can communicate with
each other. A Service represents the building blocks that allow users to
organize information in ways that are familiar to them. A service is
commonly characterized by these four properties: It logically represents
a business activity with a specified outcome, it is self-contained, It is a
black box for its consumers and It may consist of other underlying
services.

183

CPT 411 MODULE 5

MODULE 5 MOBILE & CLOUD COMPUTING

UNIT 1 INTRODUCTION TO MOBILE & CLOUD
COMPUTING

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Mobile and Cloud Computing
3.2 Cloud Computing
3.3 Capabilities of Cloud Computing
3.4 Categories of Cloud Computing Models

3.4.1 Software as a Service (SaaS)
3.4.2 Platform as a Service (PaaS)
3.4.3 Infrastructure as a Service (IaaS)

3.5 Mobile Cloud Computing (MCC)
3.5.1 Advantage of Mobile & Cloud Computing
3.5.2 Disadvantages of Mobile & Cloud Computing

3.6 Mobile & Cloud Computing Security Concerns
3.7 The Top Threats in the Usage of Mobile & Cloud

Computing
3.7.1 Data Loss
3.7.2 Untrusted Service Providers
3.7.3 Insecure API

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

Introduction to Module
Mobile cloud computing (MCC) is the method of using cloud technology
to deliver mobile apps. Complex mobile apps today perform tasks such as
authentication, location-aware functions, and providing targeted content
and communication for end users. Hence, they require extensive
computational resources such as data storage capacity, memory, and
processing power. Mobile cloud computing takes the pressure off mobile
devices by harnessing the power of cloud infrastructure. Developers build
and update rich mobile apps using cloud services and then deploy them for
remote access from any device. These cloud-based mobile apps use cloud
technology to store and process data so that the app is usable on all types of
old and new mobile devices.
Unit 1: Introduction to Mobile & Cloud Computing
Unit 2: Technologies for Wireless Communications

184

CPT 411 NET-CENTRIC COMPUTING

Unit 3: Wireless Cellular Systems
Unit 4: Characteristics of Service Oriented Architecture

1.0 INTRODUCTION

Cloud Computing seems to be the most promising technology of the
century we are living. It provides a new manner of sharing distributed
resources and services that may be part of different organizations,
geographycally located in different places and different time zones.
Mobile Cloud Computing offers partially the same functionality, with
the only additional requirement that, at least, some of the devices are
mobile. In this paper, we will try to provide a detailed explanation of
Mobile Cloud Computing concept by providing different examples,
figures, accessibility, pros and cons and comparison.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

Explain the concept of Cloud computing and its capabilities
Identify and explain the categories of Cloud computing
Highlight and explain the top threats in the usage of Mobile and
Cloud Computing

3.0 MAIN CONTENT

3.1 Mobile & Cloud Computing

3.2 Cloud Computing

Cloud Computing is the delivery of the computing services, such as
servers, databases, storage and networking – over the Internet. These
services, usually are offered by so called Cloud Providers, that usually
charge based on usage.

Nowadays, everyone that is using a device connected to Internet, might
be user of cloud services, even though we might not be aware of it.
Almost every online service, including email, document editors or
entertaining apps, might be running using cloud services.

185

CPT 411 MODULE 5

Figure 15: Cloud Computing

3.3 Capabilities of Cloud Computing

Generally, these are a few of the capabilities of Cloud Computing:

Create new apps and services
Store, back up and recover data
Deliver software
Analyse data for pattern recognition
Streaming.

Besides the capabilities that Cloud Computing provides, there are also a
lot of benefits that it can offer.

Cost – using cloud services lowers the costs that organizations
need to spend for buying hardware and software tools for setting
up the infrastructure for its needs.
Speed – when the organization needs more resources, provisioning
additional resources in cloud services can be done in minutes.
Scaling – the ability to scale elastically on demand using cloud
services appears as their main and most common use case –
processing power, storage, bandwidth and whatever the demand
is, in less than a minute.

Depending on the type of service a Service Providers provides, there are
several categories of Cloud Computing models, as listed:

3.4 Categories of Cloud Computing models

3.4.1 Software as a Service (SaaS)

The providers that provide this model of Cloud Computing solutions
usually provide a web-based application where the users of the service
can operate. In this model, the consumer does not have any control over
186

CPT 411 NET-CENTRIC COMPUTING

the infrastructure in which the service is running, including the network,
servers, storage or operating system. It removes the need that several
organizations or companies will have to install and run their applications
or services on their data centers or company computers. By this, the
organizations save a lot of financial resources by saving money on the
hardware they would need to run the application, the rent of space where
the data center would be located on, or even software license for
operating systems and depending software.

3.4.2 Platform as a Service (PaaS)

Platform as a Service is another Cloud Computing model in which the
third-party provider provides the necessary hardware and software tools
– usually required for development or research – over the Internet. In other
words, all the programming languages, libraries, services and other
programming tools provided by the provider are deployed in the cloud
infrastructure that the provider provides. Similar as in the previous model,
SaaS, the end user does not have any control nor have to manage any part
of the infrastructure, such as network, operating systems and storage.

3.4.3 Infrastructure as a Service (IaaS)

According to most of the information provided by different surveys,
IaaS is the most common cloud-based model provided by the service
providers. IaaS refers to the service providers who provide processing
capability, storage, network and other fundamental computing
resources, to the consumer who wants to run any type of software.
Usually these services are made possible by using virtual machines as
instances. Xen, Oracle VirtualBox, KVM or Hyper-V are typical
examples of providers that offer great possibilities to run these VMs.

3.5 Mobile Cloud Computing (MCC)

In the consumer space, mobility players such as Apple, Google, and
Microsoft all offer variants of cloud-based apps and private storage.
However, the line between the individual and the professional is
increasingly being blurred. Allowing employees access to company
resources using private devices makes them expect access to your CRM
system on their iPad, with (near) real-time business intelligence reports
delivered by the touch of a finger while sharing analysis with their
teams on the collaboration platform.

Most of the companies tend to move their apps and services in the cloud.
Every company’s mission is to grow and evolve. Considering this case,
organizations face trouble with new coming employees, which bring their
own devices, services and apps. This means that, it requires more efforts

187

CPT 411 MODULE 5

and time to integrate the data to the corporate cloud, in order to ensure
support and control over usage of the same. When we add the complex
format of making sure that corporate services are up to date, all this
process becomes a mess and quite often it becomes a challenging task
for the responsible employees.

3.5.1 Advantages of Mobile & Cloud Computing

Mobile Cloud Computing offers a bunch of advantages while using
cloud services. Following are listed some of the most important ones:

Flexibility – one of key advantages while using MCC is that the
cloud information can be used anywhere, everywhere; all you
need is a mobile device of any kind, which is paired or
configured with the organization cloud platform.
Real time available data – accessing the data in real time is no
longer a challenge while you are out of the office.
No upfront payments – last, but not least – payments. Commonly,
cloud applications does not require payment without using it. It is
mostly the case pay-for-use, which helps in growing the adoption
of the model.

3.5.2 Disadvantages of Mobile & Cloud Computing (MCC)

Whenever there are advantages on any issue, it is sure there would be
the disadvantages as well. The following are some listed and most
important disadvantages of Mobile and Cloud Computing.

Security – a major concern with Cloud Computing is the security
and data integration. When mobile is the subject, the attention must
be two times higher: unprotected information can be easily sniffed.

Internet connection – considering the flexibility of MCC,
allowing the users to access the data from anywhere, requires
Internet connection. Making sure that, when accessing data, the
user have access to strong and stable Internet connection, often
can cause headache, especially in non-metropolitan areas.
Performance – considering smaller size and lower hardware
performance, it is understandable that the performance with MCC
will be in a much lower level.

3.6 Mobile Cloud Computing Security Concerns

One of the most significant concerns of Cloud Computing in general and
Mobile and Cloud Computing particularly, is data security.
Mobile devices are at the top of the list of the most significant security
risks. Confidentiality, integrity and authenticity of information are the
most particular threat. Confidentiality is considered a risk when

188

CPT 411 NET-CENTRIC COMPUTING

unauthorized parties manage to intercept data transmission. Allowing such
a thing, risks the integrity of the data. The authenticity is risked when these
unauthorized parties can use the devices to trigger transactions.
The latest trends of using mobile devices is by using free applications,
which can be infected by malicious software. Using open channels over
network threatens confidential information. Thus, these applications are
often updated or upgraded, trying to provide as much security as possible.

3.7 The Top Threats in the usage of Mobile and Cloud

Computing

3.7.1 Data Loss

Using Cloud Computing is more like outsourcing the data to the service
provider.

This means increasing the risk of exposing important data which were
not issues in traditional computing. Since more of the service providers
provide shared resources, it is more likely for the transactions to crash
and data to be lost. Recently, there has been a lot of unintentional
deletion of data by the providers. Also, a bad line code can mess up
access keys, and the data is lost.

The following solutions can lower the risk:
 Encryption of data while transmission;
 Using access control tools
 Time-to-time back up

3.7.2 Untrusted service providers

Known as malicious insiders, they are the people who have access and
authorization to manage data in the care of the service providers,
offering cloud services. These people can either be working for other
companies or they do it for their personal intentions.

3.7.3 Insecure API

Usually, the communication between a client (in this case, a mobile
device which is handled by the company’s employee) and the server
(which is somewhere in the cloud) is done by an Application
Programming Interface. In order to keep data integration and security in
a higher level, the company providing the API should secure the
communication channels and the information transmitted. Avoiding
insecure APIs can be achieved by using the following techniques:

189

CPT 411 MODULE 5

Applying authentication and access control tools on data
transmission channels
Implementing the proper security model according to service
provider’s security protocols

Discussion
What are the advantages and disadvantages of Mobile and cloud
computing?

4.0 Self-Assessment/Exercises
 Give and explain 3 top threats in the usage of Mobile and Cloud
Computing.
Answer
 Data Loss
Using Cloud Computing is more like outsourcing the data to the service
provider.
This means increasing the risk of exposing important data which were
not issues in traditional computing. Since more of the service providers
provide shared resources, it is more likely for the transactions to crash
and data to be lost. Recently, there has been a lot of unintentional
deletion of data by the providers. Also, a bad line code can mess up
access keys, and the data is lost.
The following solutions can lower the risk:
 Encryption of data while transmission;
 Using access control tools
 Time-to-time back up
 Untrusted service providers
Known as malicious insiders, they are the people who have access and
authorization to manage data in the care of the service providers,
offering cloud services. These people can either be working for other
companies or they do it for their personal intentions.
 Insecure API
Usually, the communication between a client (in this case, a mobile
device which is handled by the company’s employee) and the server
(which is somewhere in the cloud) is done by an Application
Programming Interface. In order to keep data integration and security in
a higher level, the company providing the API should secure the
communication channels and the information transmitted. Avoiding
insecure APIs can be achieved by using the following techniques:

Applying authentication and access control tools on data
transmission channels

Implementing the proper security model according to service
provider’s security protocols
 Whenever there are advantages on any issue, it is sure there
would be the disadvantages as well. Produce the disadvantages of
Mobile and Cloud computing

CPT 411 NET-CENTRIC COMPUTING

The following are some listed and most important disadvantages of
Mobile and Cloud Computing.

Security – a major concern with Cloud Computing is the security
and data integration. When mobile is the subject, the attention must be
two times higher: unprotected information can be easily sniffed.

Internet connection – considering the flexibility of MCC,
allowing the users to access the data from anywhere, requires Internet
connection. Making sure that, when accessing data, the user have access
to strong and stable Internet connection, often can cause headache,
especially in non-metropolitan areas.

Performance – considering smaller size and lower hardware
performance, it is understandable that the performance with MCC will
be in a much lower level.

5.0 CONCLUSION

Nowadays, Cloud Computing is moving in big strides towards
becoming the most popular and the used technology, either in the
organizational context, or personal domaina. Considering the fact that
mobile technology provides flexibility, compactness and portability, the
big players in the IT industry are really focused on generating, as
optimal as possible, solutions that will drive mobile devices.

6.0 SUMMARY

Cloud Computing is the delivery of the computing services, such as
servers, databases, storage and networking – over the Internet.
Generally, these are a few of the capabilities of Cloud Computing:
Create new apps and services, Store, back up and recover data, Deliver
software, Analyse data for pattern recognition and Streaming. The
following are some listed and most important disadvantages of Mobile
and Cloud Computing: Security, Internet connection and Performance.
The Top Threats in the usage of Mobile and Cloud Computing are Data
Loss, Untrusted service providers and Insecure API.

7.0 REFERENCES/FURTHER READING

Lofstad, S.: Trends in Cloud Computing: The Impact of Mobile Devices.

Director of Data Center Technologies at Oracle Insight. 2013.
http://www.oracle.com/us/corporate/profit/archives/opinion/011813-
slofstad-1899122.html

191

CPT 411 MODULE 5

Bahtovski, A., Gusev, M.: Cloud Computing in Mobile Technologies.
The 9th Conference for Informatics and Information Technology
(CIIT 2012).

Shanklin, M.: Mobile Cloud Computing (A survey paper written under

the guidance of Prof.

Raj Jain). https://www.cse.wustl.edu/~jain/cse574-10/ftp/cloud/
 Wikipedia: Cloud Computing.
https://en.wikipedia.org/wiki/Cloud_computing

Microsoft Azure: What is cloud computing? A beginner’s guide.
https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/

Rouse, M.: Definition: Software as a Service (SaaS). May, 2016.
http://searchcloudcomputing.techtarget.com/definition/Software-as-a-

Service

Rouse. M: Definitaion: Platform as a Service (PaaS). September, 2017.
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-

Service-PaaS

Mobile Cloud Computing – Pros and Cons. December, 2014.
https://www.getcloudservices.com/blog/mobile-cloud-computing-pros-
and-cons/

Kleiner, C., Disterer, G.: Ensuring mobile device security and

compliance at the workplace. Conference on Enterprice
Information Systems, HCist 2015, October 7-9, 2015.

Aldossary, S., Allen, W: Data Security, Privacy, Availability and

Integrity in Cloud Computing: Issues and Current Solutions.
International Journal of Advanced Computer Science and
Applications, Vol. 7, No. 4, 2016.

192

CPT 411 NET-CENTRIC COMPUTING

UNIT 2 TECHNOLOGIES FOR WIRELESS

COMMUNICATIONS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

 3.1 Technologies for Wireless Communications
 3.1.1 Radio
 3.1.2 Cellular
 3.1.3 Satellite
 3.1.4 Wi-fi
 3.2 Pros & Cons of Microwave Internet Service
 3.2.1 Pros-Lower Initials Costs
 3.2.2 Cons-Interference
 3.2.3 Pro-mobility
 3.2.4 Cons-Shared Bandwidth
 3.3 Different Types of Roles
 3.3.1 AM and FM
 3.3.2 Shortwave Radio
 3.3.3 Satellite Radio
 3.3.4 Ham Radio
 3.3.5 Walkie-Talkie

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Wireless communication technology defines any method of
communication possible without a direct physical connection between
the two parties, largely describing systems based on radio waves. The
first wireless communication systems came into use at the end of the
19th century, and the technology has matured significantly over the
intervening years. Today, many types of devices use wireless
communication technology, allowing users to remain in contact even in
remote areas.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, the student will able to:

identify and describe some technologies for Wireless
Communication

193

CPT 411 MODULE 5

explain the Pros & Cons of Microwave Internet
Service identify and explain the types of radios

3.0 MAIN CONTENT

3.1 Technologies for Wireless Communication

3.1.1 Radio

Open radio communication was one of the first wireless technologies to
find widespread use, and it still serves a purpose today. Portable
multichannel radios allow users to communicate over short distances,
while citizen's band and maritime radios provide communication
services for truckers and sailors. Ham radio enthusiasts share
information and serve as emergency communication aids during
disasters with their powerful amateur broadcasting equipment, and can
even communicate digital data over the radio spectrum.

3.1.2 Cellular

Cellular networks use encrypted radio links, modulated to allow many
different users to communicate across a single frequency band. Because
individual handsets lack significant broadcasting power, the system relies
on a network of cellular towers, capable of triangulating the source of any
signal and handing reception duties off to the most suitable antenna. Data
transmission over cellular networks is possible, with at least, modern 3G
systems capable of speeds approaching that of wired DSL or cable
connections. Cellular providers typically meter their service, charging
customers by the minute for voice and by the megabyte for data.

3.1.3 Satellite

Satellite communication is another wireless technology that has found
widespread use in specialized situations. These devices communicate
directly with orbiting satellites via a radio signal, allowing users to stay
connected virtually anywhere on Earth. Portable satellite phones and
modems feature more powerful broadcast and reception hardware than
cellular devices due to the increased range, and are correspondingly
more expensive. For semi-permanent or permanent installations, such as
outfitting a ship for satellite communication, a more traditional
communication system may link to a single satellite uplink, allowing
multiple users to share the same broadcast equipment.

3.1.4 Wi-Fi

194

CPT 411 NET-CENTRIC COMPUTING

Wi-Fi is a form of low-power wireless communication used by
computers and hand-held electronic devices. In a Wi-Fi setup, a wireless
router serves as the communication hub, linking portable devices to a
wired internet connection. These networks are extremely limited in
range due to the low power of the transmissions, allowing users to
connect only within close proximity to a router or signal repeater. Wi-Fi
is common in home networking applications, allowing users to link
devices without running lengths of cable, and in commercial
applications where a business may provide wireless Internet access to
their customers. Wi-Fi networks may be free to use, or their owners may
secure them with passwords and access restrictions.

3.2 Pros & Cons of Microwave Internet Service

Microwave radio transmission has been used for wireless data
transmission since before the terms wireless broadband or WiFi came
into common usage. It was primarily used by businesses to connect
separate office buildings or locations. Transmission was limited by
slower data speeds, line-of-sight connections and bandwidth issues. The
development of WiMAX -- Worldwide Interoperability for Microwave
Access -- technology has improved upon these shortcomings.

3.2.1 Pro -- Lower Initial Costs

The costs of installing a microwave tower are significantly less than
those of installing traditional buried cable systems, such as DSL or
cable. WiMAX technology has a greater range than traditional WiFi and
is not limited to line-of sight access, providing for a larger potential
customer base per tower. WiMAX operates on frequencies both licensed
and non-licensed. The system is governed by IEEE 802.16 standards,
which provides a feasible economic model and regulated environment
for wireless carriers.

3.2.2 Con -- Interference

Radio frequency (RF) transmissions can be adversely affected by
weather conditions and terrain. Temperature, humidity, precipitation and
wind can all cause interference with RF communications. Topographical
features like hills and valleys can reflect or block signals. The density
and height of nearby trees will also affect reception. Lakes, rivers and
other water formations are extremely reflective surfaces in regards to
radio transmissions. Large buildings can also create a "shadow" which
leaves a dead spot directly behind the structure. These obstacles
necessitate proper layout and planning of the wireless networks to
minimize signal degradation.

195

CPT 411 MODULE 5

3.2.3 Pro -- Mobility

WiMAX was the first of the Fourth Generation, 4G, wireless
technologies. Fixed networks can provide service within a 30 mile area.
As long as a customer is within that range they are able to access the
service. Mobile networks have a range of about 2.5 miles, providing
even greater flexibility and availability of connection.

3.2.4 Con -- Shared Bandwidth

All connections within range of a tower share the same bandwidth.
WiMAX offers speeds up to 70Mbps, but this is attainable only in ideal
conditions and with a single user. Connection speeds are significantly
reduced as more and more users connect to the network. Slower speeds
also result from being farther from the tower.

3.3 Different Types of Radios

Radio communication, first developed at the turn of the 20th century,
remains a significant part of the technology landscape despite decades
of innovation and scientific breakthroughs. Radios work by transmitting
and receiving electromagnetic waves that move invisibly at the speed of
light, carrying music and speech in a coded form that depends on the
type of radio used. Over the decades, radio has evolved into many
different types, each of which fulfills different needs.

3.3.1 AM and FM

Amplitude modulation, or AM radio, is one of the oldest forms of
wireless broadcasting. With AM, an audio signal rapidly modifies the
strength of radio waves in a process called modulation; an AM receiver
decodes the modulation back into sound. With the introduction of the
transistor in the 1960s, pocket-sized AM radios became a reality for the
first time. Although AM's coding scheme is simple, its sound quality is
only fair, and it is vulnerable to electrical noise. FM, which was
developed in the 1930s, relies on the modulation of the radio signal's
frequency and not its strength. The higher radio frequencies used for FM
as well as the modulation scheme give it much better sound quality with
less noise than AM.

196

CPT 411 NET-CENTRIC COMPUTING

3.3.2 Shortwave Radio

Shortwave radio lies in a range of frequencies from 1.7 to 30 megahertz,
just above the AM radio band in the U.S. Because of the way its
frequencies interact with the Earth's ionosphere, shortwave broadcasts
can travel thousands of miles -- under some circumstances, listeners can
tune in anywhere on Earth. Government and commercial stations
broadcast on shortwave frequencies to provide news, information and
other content. For example, the U.S. government runs WWV, a station
that gives accurate time information, at 2.5, 5, 10, 15 and 20 MHz.

3.3.3 Satellite Radio

One of the newest forms of broadcasting, satellite radio is a commercial,
subscription-based service that uses a network of satellites to transmit
signals over wide areas. Unlike traditional AM and FM broadcasts,
satellite radio is digitally encoded, requiring a special receiver. Even
with the receiver, you cannot tune in unless you have a paid
subscription; a computer chip in the receiver locks out any channels not
paid for. Advantages of satellite radio include good sound quality,
nationwide coverage and access to material that sidesteps the Federal
Communications Commission's ban on profanity.

3.3.4 Ham Radio

An amateur or "ham" radio operator broadcasts and receives signals
over a restricted set of frequencies set aside by the FCC; ham radio
requires special training, licensing and equipment. As with shortwave,
ham radio broadcasts can travel thousands of miles depending on the
time of day and other conditions. For many, ham radio serves as an
interesting and entertaining hobby, as operators learn practical radio
skills and form friendships with operators in other countries. In times of
natural disaster, local communications may be knocked out; ham
operators are known to step in to pass along life-saving information.

3.3.5 Walkie-Talkie

A walkie-talkie is a portable, handheld device that sends and receives
radio signals, usually within a range of about a mile. Walkie-talkies are
used by two or more people to communicate in situations where cell
phone service is poor or unavailable, such as in remote locations or in
buildings. Because walkie-talkies have low power and short range, you
don't need a special license to operate them; they interfere little with
other radio signals

197

CPT 411 MODULE 5

Discussion
Discuss any two radio types.

4.0 SELF-ASSESSMENT/EXERCISES

 Describe the Wi-Fi technologies

Answer:
Wi-Fi is a form of low-power wireless communication used by computers
and hand-held electronic devices. In a Wi-Fi setup, a wireless router
serves as the communication hub, linking portable devices to a wired
internet connection. These networks are extremely limited in range due to
the low power of the transmissions, allowing users to connect only within
close proximity to a router or signal repeater. Wi-Fi is common in home
networking applications, allowing users to link devices without running
lengths of cable, and in commercial applications where a business may
provide wireless Internet access to their customers. Wi-Fi networks may
be free to use, or their owners may secure them with passwords and access
restrictions

 Explain Satellite as a technology for wireless communication
Satellite communication is another wireless technology that has found
widespread use in specialized situations. These devices communicate
directly with orbiting satellites via a radio signal, allowing users to stay
connected virtually anywhere on Earth. Portable satellite phones and
modems feature more powerful broadcast and reception hardware than
cellular devices due to the increased range, and are correspondingly
more expensive. For semi-permanent or permanent installations, such as
outfitting a ship for satellite communication, a more traditional
communication system may link to a single satellite uplink, allowing
multiple users to share the same broadcast equipment.

5.0 CONCLUSION

Wireless communication as technology has come to live with us. Its
capability rest most in mobility. It is more comfortable as enables the
user to work untethered. Its disadvantage stems from instability as it
could be interfered with anytime which does not augur well with
mission critical systems.

6.0 SUMMARY

Wireless communication technology defines any method of communication
possible without a direct physical connection between the two parties,
largely describing systems based on radio waves. Different
198

CPT 411 NET-CENTRIC COMPUTING

Types of Radios are AM and FM, Shortwave Radio, Satellite Radio,
Ham Radio and Walkie-Talkie. Technologies for Wireless
Communication are Radio, Cellular, Satellite and Wi-Fi.

199

CPT 411 MODULE 5

UNIT 3 WIRELESS CELLULAR SYSTEMS

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 Wireless Cellular Systems
3.1.1 Cellular Concepts
3.1.2 Frequency Reuse

3.1.2.1 Interference and Reuse
3.1.3 Multiple Access

3.1.3.1 FDMA
3.1.3.2 TDMA
3.1.3.3 CDMA

3.1.4 Systems Capacity
3.1.4.1 Channel Capacity
3.1.4.2 Cellular Capacity

3.1.4.2.1 Cellular analog Capacity
3.1.4.2.2 TDMA/ EDMA Capacity
3.1.4.2.3 CDMA Capacity

3.1.5 Modulation and Coding
3.1.5.1 Modulations

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

Wireless communications are especially useful for mobile applications,
so wireless systems are often designed to cover large areas by splitting
them into many smaller cells. This cellular approach introduces many
difficulties such as how to avoid interference, or how to hand-over from
one cell to another, while maintaining good service quality. Coverage,
capacity, interference, and spectrum reuse are important concerns of
cellular systems; this chapter reviews these aspects as well as the
technologies, tools, and standards used to optimize them.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

Explain some concepts on Wireless Cellular
Systems Explain the term, Frequency re-use

200

CPT 411 NET-CENTRIC COMPUTING

Identify and explain the techniques for multiple devices to access
the wireless system.

3.0 MAIN CONTENT

3.1 Wireless Cellular Systems

3.1.1 Cellular Concepts

Providing wireless service over wide areas requires different schemes to
efficiently use spectrum in different locations while avoiding
interference.

3.1.2 Frequency Reuse

Covering a large geographic area with limited amount of spectrum leads
to the reuse of the same frequency in multiple locations; this leads to co-
channel interference considerations, meaning interference from different
areas (or cells) that use the same frequency channel. Co-channel
interference considerations are usually approached by considering the
following parameters:

St: total number of RF channels available (given the amount of
spectrum and channel width dictated by technology standard),
S0: number of channels per cell, which reflects system capacity at
a given location,
K: the reuse factor, the number of cells that is repeated to provide
coverage over a large area.

The three quantities are linked by the straightforward relation:

 … equation 5.3.1

The reuse factor K is therefore an important parameter for capacity. The
lowest reuse factor (K = 1) maximizes capacity; but this has to be
balanced with interference considerations: indeed a higher reuse factor
(K = 3, 4, 7, or higher) provides more distance between cells using the
same frequency, which lowers interferences.

3.1.2.1 Interference and Reuse

Spectrum reuse causes interference; quantifying them require us to
consider how a signal propagates from one cell to another. Assume a
propagation model using a power path loss exponent n, that is a model
where power decays in 1⁄Rn (R being the distance separating transmit
station from receiver). This means that the ratio of received power to

201

CPT 411 MODULE 5

transmit power may be expressed as Pr ⁄Pt = A⁄Rn, (equation 5.3.2)
where A is some constant.

Figure 5.3.1: Frequency reuse patterns

Figure 5.3.1: Frequency reuse patterns K =3, 4, and 7, on hexagonal
cells. Bold contour shows the pattern of cells repeated to provide wide
area coverage. D shows the shortest distance between cells reusing the
same frequency.

With this model, signal to interference ratios are estimated as

… equation 5.3.3
Where i0 is the number of co-channel cells nearest to the cell (called first
tier or tier one); that number increases with K. And Di is the distance to
the tier-one cells reusing the same frequency (as shown in figure 5.3.1).
In the case of hexagonal cell approximation the expression simplifies to
equation 5.3.1:

 … equation 5.3.4
n values vary typically between 2 and 4 with the types of terrain. We
will also see that specific wireless technologies require a certain signal
to noise and interference ratio (mostly based on data rates); so equation
(5.3.1) leads to a minimal acceptable value for K.

3.1.3 Multiple Access

A major requirement of cellular networks is to provide an efficient
technique for multiple devices to access the wireless system. These
techniques include:

202

CPT 411 NET-CENTRIC COMPUTING

 FDMA:
Frequency Division Multiple Access, perhaps the most straightforward,
in which every user device uses its own frequency channel. This method
was used in the first generation analog systems.

 TDMA:
Time Division Multiple Access, in which a radio channel is divided in
time slots, and use devices use their allocated time slots. In fact TDMA
systems are often hybrid FDMA as well as multiple channels are used,
most 2G systems were TDMA.

 CDMA:
Code Division Multiple Access, in which orthogonal (or pseudo
orthogonal) codes are used to differentiate user devices. CDMA is very
spectrum efficient, and was used by 3G standards. There are several
approaches to achieve CDMA, such as frequency hooping (FH-CDMA)
or direct spreading (DS-CDMA).

These are the main multiple access techniques, but subtle extensions and
combinations can be devised to obtain more efficient schemes.

3.1.4 System Capacity

Wireless communications deal with at least two main concerns:
coverage and capacity.

 Channel Capacity
One fundamental concept of information theory is one of channel
capacity, or how much information can be transmitted in a
communication channel. In the 1940’s Claude Shannon invented formal
characterization of information theory and derived the well-known
Shanon’s capacity theorem. That theorem applies to wireless
communications.
The Shannon capacity equation gives an upper bound for the capacity in
a non-faded channel with added white Gaussian noise:

 … equation 5.3.5

Where C= capacity (bits/s), W=bandwidth (Hz), S⁄N= signal to noise
(and interference) ratio.

That capacity equation assumes one transmitter and one receiver, though
multiple antennas can be used in diversity scheme on the receiving side.
The equation singles out two fundamentally important aspects:
bandwidth and SNR.

203

CPT 411 MODULE 5

Bandwidth reflects how much spectrum a wireless system uses, and
explains why the spectrum considerations are so important: they have a
direct impact on system capacity. SNR of course reflects the quality of
the propagation channel, and will be dealt with in numerous ways:
modulation, coding, error correction, and important design choices such
as cell sizes and reuse patterns.

 Cellular Capacity
Practical capacity of many wireless systems are far from the Shannon’s
limit (although recent standards are coming close to it); and practical
capacity is heavily dependent on implementation and standard choices.
Digital standards deal in their own way with how to deploy and
optimize capacity. Most systems are limited by channel width, time
slots, and voice coding characteristics. CDMA systems are interference
limited, and have tradeoffs between capacity, coverage, and other
performance metrics (such as dropped call rates or voice quality).

 Cellular Analog Capacity:
Fairly straight forward, every voice channel uses a 30 kHz frequency
channel, these frequencies may be reused according to a reuse pattern,
the system is FDMA. The overall capacity simply comes from the total
amount of spectrum, the channel width and the reuse pattern.

 TDMA/FDMA Capacity:
In digital FDMA systems, capacity improvements mainly come from the
voice coding and elaborate schemes (such as frequency hopping) to
decrease reuse factor. The frequency reuse factor hides a lot of
complexity; its value depends greatly on the signal to interference levels
acceptable to a given cellular system. TDMA systems combine multiple
time slots per channels.

 CDMA Capacity:
A usual capacity equation for CDMA systems may be fairly easily
derived as follows (for the reverse link): first examine a base station
with N mobiles, its noise and interference power spectral density dues to
all mobiles in that same cell is ISC = (N-1)Sα, where S is the received
power density for each mobile, and α is the voice activity factor. Other
cell interferences IOC are estimated by a reuse fraction β of the same cell
interference level, such that IOC = βISC; (usual values of β are around
1⁄2). The total noise and interference at the base is therefore Nt = ISC(1 +
β). Next assume the mobile signal power density received at the base
station is S = REb⁄W. Eliminating ISC, we derive:

…equation 5.3.6
Where:

204

CPT 411 NET-CENTRIC COMPUTING

W is the channel bandwidth (in Hz),
R is the user data bit rate (symbol rate in symbol per second),

Eb⁄Nt is the ratio of energy per bit by total noise (usually given in
dB Eb⁄Nt ≈ 7dB),

α is the voice activity factor (for the reverse link), typically 0.5,
and β is the interference reuse fraction, typically around 0.5, and

represents the ratio of interference level from the cell in
consideration by interferences due to other cells. (The number 1 + β

is sometimes called reuse factor, and 1⁄(1 + β) reuse efficiency)

This simple equation (5.3.6) gives us a number of voice channels in a
CDMA frequency channel.

We can already see some hints of CDMA optimization and investigate
certain possible improvement for a 3G system. In particular: improving
α can be achieved with dim and burst capabilities, β with interference
mitigation and antenna downtilt considerations, R with vocoder rate, W
with wider band CDMA, Eb⁄Nt with better coding and interference
mitigation techniques.

Some aspects however are omitted in this equation and are required to
quantify other capacity improvements mainly those due to power
control, and softer/soft handoff algorithms.

Of course other limitations come into play for wireless systems, such as
base station (and mobile) sensitivity, which may be incorporated into
similar formulas; and further considerations come into play such as:
forward power limitations, channel element blocking, backhaul
capacity, mobility, and handoff.

3.1.5 Modulation and Coding

Modulation techniques are a necessary part of any wireless system,
without them, no useful information can be transmitted. Coding
techniques are almost as important, and combine two important aspects:
first to transmit information efficiently, and second to deal with error
correction (to avoid retransmissions).

Modulation
A continuous wave signal (at a carrier frequency fc) in itself encodes and
transmits no information. The bits of information are encoded in the
variations of that signal (in phase, amplitude, or a combination thereof).
These variations cause the occupied spectrum to increase, thus
occupying a bandwidth around fc; and the optimal use of that bandwidth
is an important part of a wireless system. Various modulation schemes
and coding schemes are used to maximize the use of that spectrum for

205

CPT 411 MODULE 5

different applications (voice or high speed data), and in various
conditions of noise, interference, and RF channel resources in general.

Classic modulation techniques are well covered in several texts, and
we simply recall here a few important aspects of digital modulations
(that will be important in link budgets). The main digital modulations
used in modern wireless systems are outlined in table 5.3.1.

Table 5.3.1: The main Digital Modulations in Modern Wireless Systems
Modulation Bits encoded by: Example
Amplitude Shift Discrete amplitude levels On/off keying
Keying
Frequency Shift Multiple discrete
Keying frequencies
Phase Shift Keying Multiple discrete phases BPSK, QPSK, 8-

 PSK
Quadrature Both phase and amplitude 16, 64, 256 QAM
Ampl. Mod.

Discussion
Provide the bits they are encoded in and example of the main digital
modulations used in modern wireless systems.

5.0 CONCLUSION

Providing wireless service over wide areas requires different schemes to
efficiently use spectrum in different locations while avoiding
interference.

6.0 SUMMARY

Covering a large geographic area with limited amount of spectrum leads
to the reuse of the same frequency in multiple locations; this leads to co-
channel interference considerations, meaning interference from different
areas (or cells) that use the same frequency channel. Spectrum reuse
causes interference; quantifying them require us to consider how a
signal propagates from one cell to another. A major requirement of
cellular networks is to provide an efficient technique for multiple
devices to access the wireless system. These techniques include FDMA,
TDMA and CDMA. Wireless communications deal with at least two
main concerns: coverage and capacity. The capacities are Channel
Capacity and Cellular Capacity. Modulation techniques are a necessary
part of any wireless system, without them, no useful information can be
transmitted. Coding techniques are almost as important, and combine
two important aspects: first to transmit information efficiently, and
second to deal with error correction (to avoid retransmissions).
206

CPT 411 NET-CENTRIC COMPUTING

7.0 REFERENCES/FURTHER READING

Contents (colorado.edu)
https://www.tutorialspoint.com/wireless_communication/wireless_com
munication_cellular_networks.htm
https://www.javatpoint.com/cellular-system-infrastructure

207

CPT 411 MODULE 5

UNIT 4 OVERVIEW OF WIRELESS LAN, IEEE 802.11,
PERSONAL AREA NETWORK, BLUETOOTH

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

 3.1 Introduction to Wireless Local Area Network (WLAN)
 3.2 WLANs and Access Points
 3.3 Emerging WLANs and the Ubiquity of WLANs
 3.3 How a WLAN works
 3.4 Configuration of WLAN
 3.5 How roaming works on a WLAN
 3.6 WLAN architecture
 3.7 Benefits of a WLAN
 3.8 IEEE 802.11 Standard
 3.9 Bluetooth Technology

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

A wireless local area network (WLAN) is a wireless distribution method
for two or more devices. WLANs use high-frequency radio waves and
often include an access point to the Internet. A WLAN allows users to
move around the coverage area, often a home or small office, while
maintaining a network connection.
A WLAN is sometimes called a local area wireless network (LAWN).

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Describe WLAN, IEEE 802.11 standard and Bluetooth
technology.

Explain the WLAN Architecture.
Identify and explain the configurations of WLAN

208

CPT 411 NET-CENTRIC COMPUTING

3.0 MAIN CONTENT

3.1 Wireless Local Area Network (WLAN)

A wireless local-area network (WLAN) is a group of colocated computers
or other devices that form a network based on radio transmissions rather
than wired connections. A Wi-Fi network is a type of WLAN.

Although some may use the terms “Wi-Fi” and “WLAN”
interchangeably but they are not the same. A “Wi-Fi connection” refers
to a given wireless connection that a device uses, the WLAN is the
network itself. “Wi-Fi” is a superset of the IEEE 802.11 standard and is
sometimes used interchangeably with that standard. However, not every
Wi-Fi device actually receives Wi-Fi Alliance certification, although
Wi-Fi is used by more than 700 million people through about 750,000
Internet connection hot spots. The hot spots themselves also constitute
WLANs, of a particular kind.

3.1.1 WLANs and Access Points

Every component that connects to a WLAN is considered a station, and
falls into one of two categories: access points (APs) and clients.

Access points or APs transmit and receive radio frequency
signals with devices that are able to receive transmitted signals;
they normally function as routers.
Clients, on the other hand, may include a variety of devices, such
as desktop computers, workstations, laptop computers, IP phones
and other cell phones and smartphone devices.

All stations able to communicate with each other are called basic service
sets (BSSs), of which there are two types: independent and
infrastructure. Independent BSSs (IBSS) exist when two clients
communicate without using APs, but cannot connect to any other BSS.
Such WLANs are called a peer-to-peer or an ad-hoc WLANs. The
second BSS is called an infrastructure BSS. It may communicate with
other stations but only in other BSSs and it must use APs.

3.1.2 Emerging WLANs and its Ubiquity

In the early 1990s, WLANs were very expensive, and were only used
when wired connections were strategically impossible.

By the late 1990s, most WLAN solutions and proprietary protocols were
replaced by IEEE 802.11 standards in various versions (versions "a"
through "n"). WLAN prices also began to decrease significantly.

209

CPT 411 MODULE 5

As technology progressed, WLANs became easier and easier to set up
and administrate.

That led to the emergence of the ISP WLAN, where so many small local
home networks are mostly coordinated by the Internet Service Provider,
and not engineered by the end-user on-site.

In these types of ISP WLAN setups, the ISP’s modem is the access
point. It's also the router. All that the consumer has to do is plug in the
router, use provided security passwords, and connect home devices to
the home WLAN.

You could call this “wireless local area network as a service” (WLANaaS)
or refer to a “plug-and-play” or abstracted wireless local area network
model. In any case, it’s ultimately very convenient for the household.
Although ISPs don't usually advertise their products as home LANs,
that’s what they are. Some types of ISP services talk about using the
modem as a “gateway” to the Internet, which implies that your WLAN
is on the other side of that gateway.

Users of home WLANs are more frequently connecting devices such as
phones, televisions, computers and printers to evolved WLAN systems
where the ISP will offer some type of dashboard visualization for the
WLAN in question.

There's also been some innovation toward peer-to-peer WLANs that
work without a defined access point. In other words, all of the devices
are independently operated to network together. This challenges the
traditional idea that the WLAN was made of access points and clients,
as discussed above. At the same time, in the client/server architecture,
where a similar approach is used to engineer Internet services, peer-to-
peer systems are also challenging that traditional build as well. As the
IoT paves the way for advanced connectivity, the WLAN provides that
“sub-network” and the convenience of local Wi-Fi operation.

3.1.4 How a WLAN works

Like broadcast media, a WLAN transmits information over radio waves.
Data is sent in packets. The packets contain layers with labels and
instructions that, along with the unique MAC (Media Access Control)
addresses assigned to endpoints, enable routing to intended locations.

3.1.5 Configuration of WLAN

A WLAN can be configured in one of two ways:

210

CPT 411 NET-CENTRIC COMPUTING

 Infrastructure

A home or office Wi-Fi network is an example of a WLAN set up in
infrastructure mode. The endpoints are all connected and communicate
with each other through a base station, which may also provide internet
access.

A basic infrastructure WLAN can be set up with just a few parts: a
wireless router, which acts as the base station, and endpoints, which can
be computers, mobile devices, printers, and other devices. In most cases,
the wireless router is also the internet connection.

 Ad hoc
In this setup, a WLAN connects endpoints such as computer
workstations and mobile devices without the use of a base station. Use
of Wi-Fi Direct technology is common for an ad hoc wireless network.
An ad hoc WLAN is easy to set up and can provide basic peer-to-peer
(P2P) communication. An ad hoc WLAN requires only two or more
endpoints with built-in radio transmission, such as computers or mobile
devices. After adjusting network settings for ad hoc mode, one user
initiates the network and becomes visible to the others.

3.1.6 How Roaming works on a WLAN

For any sized network, access points can extend the area of access. Wi-
Fi standards are designed to allow a non-stationary user's connection to
jump from one access point to another, though some users and
applications may experience brief dropouts. Even with non-overlapping
access points, a user's connection is simply paused until connection with
the next access point. Additional access points can be wired or wireless.
When access points overlap, they can be configured to help optimize the
network by sharing and managing loads.

3.1.7 WLAN Architecture

 Stations
Stations are components that connect wirelessly to networks. They are
either access points or endpoints, each identified with a unique network
address.

 Basic Service Set (BSS)
A BSS is a group of stations that connects to the network. In ad hoc
networks, the group of stations is called an Independent BSS (IBSS). A
set of connected BSSs, as in a network with multiple access points, is
called an Extended Service Set (ESS).

211

CPT 411 MODULE 5

 Distribution system
The distribution system connects access points in an ESS. The
connections can be wired or wireless. A wireless distribution system
(WDS) can use mesh or its own WDS protocol. Fixed wireless is a
specialized form of radio transmission for connecting a geographically
distant access point.

 Access point
The access point is the base station that serves as a hub to which other
stations connect. The "access" is that of the stations to the network, but
it may also mean internet access, since many routers double as internet
modems. In an ESS, access points may be connected with Ethernet
cables or wirelessly.

 Bridge
The bridge is used to connect a WLAN to a LAN or to an access point.

 Endpoint
The endpoint is any end-user station, such as a computer, mobile device,
printer, or Internet of Things (IoT) device.

3.1.8 Benefits of a WLAN

 Extended reach: WLANs enable computing to happen anywhere,

even when carrying high data loads and advanced web
applications.

 Device flexibility: A WLAN supports use of a wide range of
devices, such as computers, phones, tablets, gaming systems, and
IoT devices.

 Easier installation and management: A WLAN requires less
physical equipment than a wired network, which saves money,
reduces installation time, and takes up less of a footprint in office
settings.

 Scalability: A WLAN is easy to scale. Adding users is as simple
as assigning login credentials.

 Network management: Nearly all management of a WLAN can be
handled virtually. A single software interface can provide visibility,
manage users, monitor network health, and collect data.

3.2 IEEE 802.11 Standard

IEEE 802.11 is the set of technical guidelines for implementing Wi-Fi.
Selling products under this trademark is overseen by an industry trade
association by the name of the Wi-Fi Alliance.

212

CPT 411 NET-CENTRIC COMPUTING

IEEE 802.11 has its roots from a 1985 decision by the U.S. Federal
Commission for Communication that opened up the ISM band for
unlicensed use. The standard was formally released in 1997. That
original standard was called IEEE 802.11-1997 and is now obsolete.
It's common to hear people refer to "802.11 standards" or the "802.11
family of standards." However, to be more precise, there is only one
standard (IEEE 802.11-2007) but many amendments. Commonly known
amendments include 802.11a, 802.11b, 802.11g, and 802.11n.

3.3 Bluetooth Technology

Bluetooth is a short-range wireless communication technology that
allows devices such as mobile phones, computers, and peripherals to
transmit data or voice wirelessly over a short distance. The purpose of
Bluetooth is to replace the cables that normally connect devices, while
still keeping the communications between them secure.

The "Bluetooth" name is taken from a 10th-century Danish king named
Harald Bluetooth, who was said to unite disparate, warring regional
factions. Like its namesake, Bluetooth technology brings together a
broad range of devices across many different industries through a
unifying communication standard.

Developed in 1994, Bluetooth was intended as a wireless replacement
for cables. It uses the same 2.4GHz frequency as some other wireless
technologies in the home or office, such as cordless phones and WiFi
routers. It creates a 10-meter (33-foot) radius wireless network, called a
personal area network (PAN) or piconet, which can network between
two and eight devices. This short-range network allows you to send a
page to your printer in another room, for example, without having to run
an unsightly cable.

Bluetooth uses less power and costs less to implement than Wi -Fi. Its
lower power also makes it far less prone to suffering from or causing
interference with other wireless devices in the same 2.4GHz radio band.
Bluetooth range and transmission speeds are typically lower than Wi-Fi
(the wireless local area network that you may have in your home).
Bluetooth v3.0 + HS i.e Bluetooth high-speed technology devices, can
deliver up to 24 Mbps of data, which is faster than the 802.11b WiFi
standard, but slower than wireless-a or wireless-g standards. As
technology has evolved, however, Bluetooth speeds have increased.
The Bluetooth 4.0 specification was officially adopted on July 6, 2010.
Bluetooth version 4.0 features include low energy consumption, low
cost, multivendor interoperability, and enhanced range.

213

CPT 411 MODULE 5

The hallmark feature enhancement to the Bluetooth 4.0 spec is its lower
power requirements; devices using Bluetooth v4.0 are optimized for low
battery operation and can run off of small coin-cell batteries, opening up
new opportunities for wireless technology. Instead of fearing that
leaving Bluetooth on will drain your cell phone's battery, for example,
you can leave a Bluetooth v4.0 mobile phone connected all the time to
your other Bluetooth accessories.

3.3.1 Connecting With Bluetooth

Many mobile devices have Bluetooth radios embedded in them. PCs and
some other devices that do not have built-in radios can be Bluetooth-
enabled by adding a Bluetooth dongle, for example.
The process of connecting two Bluetooth devices is called "pairing."
Generally, devices broadcast their presence to one another, and the user
selects the Bluetooth device they want to connect to when its name or
ID appears on their device. As Bluetooth-enabled devices proliferate, it
becomes important that you know when and to which device you're
connecting, so there may be a code to enter that helps ensure you're
connecting to the correct device.

This pairing process can vary depending on the devices involved. For
example, connecting a Bluetooth device to your iPad can involve
different steps from those to pair a Bluetooth device to your car.

3.3.2 Bluetooth Limitations

There are some downsides to Bluetooth. The first is that it can be a drain
on battery power for mobile wireless devices like smartphones, though
as the technology (and battery technology) has improved, this problem
is less significant than it used to be.

Also, the range is fairly limited, usually extending only about 30 feet,
and as with all wireless technologies, obstacles such as walls, floors, or
ceilings can reduce this range further.
The pairing process may also be difficult, often depending on the
devices involved, the manufacturers, and other factors that all can result
in frustration when attempting to connect.

3.3.3 Security and Bluetooth

Bluetooth is considered a reasonably secure wireless technology when
used with precautions. Connections are encrypted, preventing casual
eavesdropping from other devices nearby. Bluetooth devices also shift
radio frequencies often while paired, which prevents an easy invasion.

214

CPT 411 NET-CENTRIC COMPUTING

Devices also offer a variety of settings that allow the user to limit
Bluetooth connections. The device-level security of "trusting" a
Bluetooth device restricts connections to only that specific device. With
service-level security settings, you can also restrict the kinds of
activities your device is permitted to engage in while on a Bluetooth
connection. As with any wireless technology, however, there is always
some security risk involved. Hackers have devised a variety of
malicious attacks that use Bluetooth networking. For example,
"bluesnarfing" refers to a hacker gaining authorized access to
information on a device through Bluetooth; "bluebugging" is when an
attacker takes over your mobile phone and all its functions.

For the average person, Bluetooth doesn't present a grave security risk
when used with safety in mind (e.g., not connecting to unknown
Bluetooth devices). For maximum security, while in public and not
using Bluetooth, you can disable it completely.

3.4 Personal Area Network (PAN)

A personal area network (PAN) is the interconnection of information
technology devices within the range of an individual person, typically
within a range of 10 meters. For example, a person traveling with a
laptop, a personal digital assistant (PDA), and a portable printer could
interconnect them without having to plug anything in, using some form
of wireless technology. Typically, this kind of personal area network
could also be interconnected without wires to the Internet or other
networks.

Conceptually, the difference between a PAN and a wireless LAN is that
the former tends to be centered around one person while the latter is a
local area network (LAN) that is connected without wires and serving
multiple users.

In another usage, a personal area network (PAN) is a technology that
could enable wearable computer devices to communicate with other
nearby computers and exchange digital information using the electrical
conductivity of the human body as a data network. For example, two
people each wearing business card-size transmitters and receivers
conceivably could exchange information by shaking hands. The
transference of data through intra-body contact, such as handshakes, is
known as linkup.

The human body's natural salinity makes it a good conductor of
electricity. An electric field passes tiny currents, known as Pico amps,
through the body when the two people shake hands. The handshake
completes an electric circuit and each person's data, such as e-mail

215

CPT 411 MODULE 5

addresses and phone numbers, are transferred to the other person's
laptop computer or a similar device. A person's clothing also could act
as a mechanism for transferring this data.

The concept of a PAN first was developed by Thomas Zimmerman and
other researchers at M.I.T.'s Media Lab and later supported by IBM's
Almaden research lab. In a research paper, Zimmerman explains why
the concept might be useful:

As electronic devices become smaller, lower in power requirements, and
less expensive, we have begun to adorn our bodies with personal
information and communication appliances. Such devices include
cellular phones, personal digital assistants (PDAs), pocket video games,
and pagers. Currently there is no method for these devices to share data.
Networking these devices can reduce functional I/O redundancies and
allow new conveniences and services.

Discussion
Bluetooth is secure. Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

 Identify and explain the benefits of a WLAN

Answer
 Extended reach: WLANs enable computing to happen anywhere,

even when carrying high data loads and advanced web
applications.

 Device flexibility: A WLAN supports use of a wide range of
devices, such as computers, phones, tablets, gaming systems, and
IoT devices.

 Easier installation and management: A WLAN requires less
physical equipment than a wired network, which saves money,
reduces installation time, and takes up less of a footprint in office
settings.

 Scalability: A WLAN is easy to scale. Adding users is as simple
as assigning login credentials.

 Network management: Nearly all management of a WLAN can be
handled virtually. A single software interface can provide visibility,
manage users, monitor network health, and collect data.

 A WLAN can be configured in one of two ways. Itemize and

explain each of the ways.

216

CPT 411 NET-CENTRIC COMPUTING

Answer:
 Infrastructure
A home or office Wi-Fi network is an example of a WLAN set up in
infrastructure mode. The endpoints are all connected and communicate
with each other through a base station, which may also provide internet
access.

A basic infrastructure WLAN can be set up with just a few parts: a
wireless router, which acts as the base station, and endpoints, which can
be computers, mobile devices, printers, and other devices. In most cases,
the wireless router is also the internet connection.

 Ad hoc
In this setup, a WLAN connects endpoints such as computer
workstations and mobile devices without the use of a base station. Use
of Wi-Fi Direct technology is common for an ad hoc wireless network.
An ad hoc WLAN is easy to set up and can provide basic peer-to-peer
(P2P) communication. An ad hoc WLAN requires only two or more
endpoints with built-in radio transmission, such as computers or mobile
devices. After adjusting network settings for ad hoc mode, one user
initiates the network and becomes visible to the others.

5.0 CONCLUSION

Wireless LANs provide high speed data communication in small areas
such as building or an office. WLANs allow users to move around in a
confined area while they are still connected to the network. In some
instances wireless LAN technology is used to save costs and avoid
laying cable, while in other cases, it is the only option for providing
high-speed internet access to the public. Whatever the reason, wireless
solutions are popping up everywhere.

6.0 SUMMARY

A wireless local-area network (WLAN) is a group of colocated computers
or other devices that form a network based on radio transmissions rather
than wired connections. A Wi-Fi network is a type of WLAN. A WLAN
can be configured in one of two ways vis-à-vis as Infrastructure or Ad hoc.
WLAN Architecture can take the form of a Station, Basic Service Set
(BSS), Distribution system, Access point, Bridge and Endpoint. Many
mobile devices have Bluetooth radios embedded in them. There are some
downsides to Bluetooth such as being a drain on battery power for mobile
wireless devices like smartphones, the range is fairly limited, obstacles
such as walls, floors, or ceilings can reduce this range further

217

CPT 411 MODULE 5

and the pairing process may also be difficult, often depending on the
devices involved, the manufacturers, and other factors.
A Personal Area Network (PAN) is the interconnection of information
technology devices within the range of an individual person, typically
within a range of 10 meters. For example, a person traveling with a
laptop, a personal digital assistant (PDA), and a portable printer could
interconnect them without having to plug anything in, using some form
of wireless technology.

7.0 REFERENCES/FURTHER READING

https://www.google.com/search?q=bluetooth&oq=bluetooth&aqs=chro
me..69i57j0l5.5255j0j4&sourceid=chrome&ie=UTF-8
https://www.techopedia.com/definition/5107/wireless-local-area-
network-wlan
https://www.cisco.com/c/en/us/products/wireless/wireless-lan.html#~q-a
https://www.javatpoint.com/wireless-lan-introduction

218

CPT 411 NET-CENTRIC COMPUTING

UNIT 5 HIGH SPEED WIRELESS NETWORK:

HIPERLAN

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main content

3.1 High Performance Local Area Network (HIPERLAN)
3.2 How HIPERLAN works
3.3 HIPERLAN Protocol Family
3.4 Phases of the HIPERLAN1
3.5 Wireless Asynchronous Mode (WATM)

4.0 Self-Assessment Exercises
5.0 Conclusion
6.0 Summary
7.0 References/Further Reading

1.0 INTRODUCTION

High Performance Radio Local Area Network (HiperLAN) is one of the
wireless networking protocols in Europe. It is an alternative to the
Institute of Electrical and Electronics Engineers (IEEE) 802.11
standards. The HiperLAN standard was created by the European
Telecommunications Standards Institute (ETSI). The original goal of the
HiperLAN standard was to create a protocol that featured a higher data
transfer rate than the 802.11 standard.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

Describe High Performance LAN.
Explain the HIPERLAN Features.

Identify and explain the Protocol Family

3.0 MAIN CONTENT

3.1 HIPERLAN stands for high performance local area network. It is a
wireless standard derived from traditional LAN environments and can
support multimedia and asynchronous data effectively at high data rates of
23.5 Mbps. It is primarily a European standard alternative for the IEEE
802.11 standards and was published in 1996. It is defined by the European
Telecommunications Standards Institute (ETSI). It does not necessarily

219

CPT 411 MODULE 5

require any type of access point infrastructure for its operation, although
a LAN extension via access points can be implemented.

3.2 How HIPERLAN Works

Radio waves are used instead of a cable as a transmission medium to
connect stations. Either, the radio transceiver is mounted to the movable
station as an add-on and no base station has to be installed separately, or
a base station is needed in addition per room. The stations may be
moved during operation-pauses or even become mobile. The maximum
data rate for the user depends on the distance of the communicating
stations. With short distance(<50 m) and asynchronous transmission a
data rate of 20 Mbit/s is achieved, with up to 800 m distance a data rate
of 1 Mbit/s are provided. For connection-oriented services, e.g. video-
telephony, at least 64 kbit/s are offered.

HIPERLAN uses cellular-based data networks to connect to an ATM
backbone. The main idea behind HIPERLAN is to provide an
infrastructure or ad-hoc wireless with low mobility and a small radius.
HIPERLAN supports isochronous traffic with low latency.

3.3 HIPERLAN Protocol Family

The HiperLAN standard family has four different versions. The key
feature of all four networks is their integration of time-sensitive data
transfer services. Over time, names have changed and the former
HIPERLANs 2, 3, and 4 are now called HiperLAN2, HIPERACCESS,
and HIPERLINK.

Figure 5.5.1: HIPERLAN Protocol Family

220

CPT 411 NET-CENTRIC COMPUTING

3.3.1. HIPERLAN 1

Planning for the first version of the standard, called HiperLAN/1, started
1991, when planning of 802.11 was already going on. The goal of the
HiperLAN was the high data rate, higher than 802.11. The standard was
approved in 1996. The functional specification is EN300652, the rest is
in ETS300836.

The standard covers the Physical layer and the Media Access Control
part of the Data link layer like 802.11. There is a new sub layer called
Channel Access and Control sub layer (CAC). This sub layer deals with
the access requests to the channels. The accomplishing of the request is
dependent on the usage of the channel and the priority of the request.

CAC layer provides hierarchical independence with Elimination-Yield
Non-Preemptive Multiple Access mechanism (EY-NPMA). EY-NPMA
codes priority choices and other functions into one variable length radio
pulse preceding the packet data. EY-NPMA enables the network to
function with few collisions even though there would be a large number
of users. Multimedia applications work in HiperLAN because of EY-
NPMA priority mechanism. MAC layer defines protocols for routing,
security and power saving and provides naturally data transfer to the
upper layers.

On the physical layer FSK and GMSK modulations are used in
HiperLAN/1. HiperLAN features:
range 50 m
slow mobility (1.4 m/s)

supports asynchronous and synchronous traffic
sound 32 kbit/s, 10 ns latency
video 2 Mbit/s, 100 ns latency
data 10 Mbit/s

HiperLAN does not conflict with microwave and other kitchen
appliances, which are on 2.4 GHz.

Elimination-Yield Non-preemptive Priority Multiple Access (EY-
NPMA)

EY-NPMA is a contention based protocol that has been standardized
under ETSI‘s HIPERLAN, a standard for wireless LANs. Unlike other
contention based protocols, EY-NPMA provides excellent support for
different classes of traffic regarding quality of service and demonstrates
very low collision rates.

221

CPT 411 MODULE 5

EY-NPMA is the medium access mechanism used by HIPERLAN Type
1. It uses active signaling.
Active signaling takes advantage of the fact that the current wireless
technology enables us to have a slot time very much smaller than the
average packet size. Each node that wants to access the medium
transmits a non-data preamble pattern consisting of slots. This pattern is
made up of alternating idle and busy periods of different lengths
(measured in slots). Conflict resolution and collision detection is done
during this preamble. The main rule is that if a node detects a signal
during one of its listening periods in its pattern, it aborts and defers until
the next cycle. Otherwise, the node transmits its packet at the end of the
pattern transmission.

With EYNPMA, each station may attempt to access the channel when a
condition out of a group of three is met. The three conditions are:
 Channel free condition
 Synchronized channel condition
 Hidden elimination condition
 The channel free condition occurs when the channel remains idle

for at least a predefined time interval. A station willing to
transmit senses the channel for this time interval, the station
extends its period of sensing by a random number of slots
(backoff). If the channel is still sensed as idle during the backoff
period, the station commences transmitting. In both modes of
operation unicast transmissions must get positively
acknowledged or else the transmission is declared erroneous.
Multicast and broadcast packets are not acknowledged.

 The synchronized channel condition occurs when the channel is
idle in the channel synchronization interval, which starts
immediately after the end of the previous channel access cycle.

3.4 Phases of the HIPERLAN1 EY-NPMA Access Scheme

The synchronized channel access cycle consists of three distinct phases:
 Prioritization
In prioritization, EY-NPMA recognizes five distinct priorities from 0 to
4, with 0 being the highest priority. The cycle begins with each station
having data to transmit sensing the channel for as many slots as the
priority of the packet in its buffer. All stations that successfully sense
the channel as idle for the whole interval proceed to the next phase, the
elimination phase.
 Contention (Elimination and Yield) Transmission
During the elimination phase, each station transmits an energy burst of
random length. These bursts ensure that only the stations having the
highest priority data at a time proceed to the elimination phase. The length
of the energy burst is a multiple of slots up to a predefined maximum. As

222

CPT 411 NET-CENTRIC COMPUTING

soon as a station finishes bursting, it immediately senses the channel. If
the channel is sensed as idle, the station proceeds to the next phase.
Otherwise, it leaves the cycle.
 During the yield phase, the station that survived the two previous
ones, back off for a random number of slots. The station that backs off
for the shortest interval eventually gets access of the channel for data
transmission. All other station sense the beginning of the transmission
and refrain from transmitting.

Important features of the EY-NPMA

No preemption by frames with higher priority after the priority
resolution possible.

Hierarchical independence of performance.
Fair contention resolution of frames with the same priority

3.5 Wireless Asynchronous Transfer Mode (WATM)

The concept of WATM was first proposed in 1992 as pointed out in and
now it is actively considered as a potential framework for next-
generation wireless communication networks capable of supporting
integrated, quality-of-service (QoS) based multimedia services. The
strength of wireless ATM technology is said to be its ability to provide
support for different protocols, such as ISDN1 and Internet protocols.
As the volume of wireless traffic is increasing, so is the role of QoS
support, which will become very important when multiple services are
multiplexed into the same radio access technology. As QoS support is a
fundamental property of ATM technology, WATM promises a solution
for this requirement. ATM is a very complex system and modifications
for wireless communication and mobility management is going to make
it more difficult.

Need for WATM
The area of wireless transmission systems has been increasing rapidly.
Mobility raises a new set of questions, techniques, and solutions. This
growth will occur in an environment characterized by rapid
development of end-user applications and services towards the Internet
and broadband multimedia delivery over the evolving fixed-wired
infrastructure. Therefore, new developments of wireless networks are
needed to enable wireless technologies to interwork with existing wired
networks. Therefore, in order for ATM to be successful, it must offer a
wireless extension. Otherwise it cannot participate in the rapidly
growing field of mobile communications.

As ATM networks scale well from local area networks (LANs) to wide
area networks (WANs), and there is a need for mobility in local and wide
area applications, a mobile extension of ATM is required in order to have

223

CPT 411 MODULE 5

wireless access in local and wide environments. Many other wireless
technologies, such as EEE 802.11, typically only offer best-effort services
or to some extent, time-bounded services. However, these services do not
provide as many QoS parameters as ATM networks do. WATM could
offer QoS for adequate support of multimedia data streams.

 Reference Model

Figure 5.5.2: WATM Reference Model

The WATM system reference model, proposed by ATM Forum
Wireless ATM (WATM) group, specifies the signaling interfaces among
the mobile terminal, wireless terminal adapter, wireless radio port,
mobile ATM switch and non-mobile ATM switch.

It also specifies the user and control planes protocol layering architecture.
This model is commonly advocated by many communication companies,
such as NEC, Motorola, NTT, Nokia, Symbionics, and ORL.

Components of WATM
The major components of a Wireless ATM system are:
 WATM terminal
 WATM terminal adapter
 WATM radio port
 mobile ATM switch
 standard ATM network and
 ATM host.

The system reference model consists of a radio access segment and a
fixed network segment. The fixed network is defined by "M (mobile
ATM)" UNI and NNI interfaces while the wireless segment is defined
by "R (Radio)" radio access layer (RAL) interface.

224

CPT 411 NET-CENTRIC COMPUTING

The "W" UNI is concerned with handover signaling, location
management, wireless link and QoS control. The "R" RAL governs the
signaling exchange between the WATM terminal adapter and the mobile
base station. Hence, it concerns channel access, datalink control, meta-
signaling, etc. The "M" NNI governs the signaling exchange between
the WATM base station and a mobile capable ATM switch. It is also
concerned with mobility-related signaling between the mobile capable
ATM switches

b) The Broadband Radio Access Networks (BRAN)
The broadband radio access networks (BRAN), which have been
standardized by the European Telecommunications Standards Institute
(ETSI), could have been an RAL for WATM. The main motivation
behind BRAN is the deregulation and privatization of the
telecommunication sector in Europe. The primary market for BRAN
includes private customers and small to medium-sized companies with
Internet applications, multi-media conferencing, and virtual private
networks. The BRAN standard and IEEE 802.16 have similar goals.
BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission
range of 50 m–5 km. Standardization efforts are coordinated with the
ATM Forum, the IETF, other groups from ETSI, the IEEE etc. BRAN
has specified four different network types:
 HIPERLAN 1: This high-speed WLAN supports mobility at data

rates above 20 Mbit/s. Range is 50 m, connections are multi-
point-to-multi-point using ad-hoc or infrastructure networks

 HIPERLAN/2: This technology can be used for wireless access to
ATM or IP networks and supports up to 25 Mbit/s user data rate
in a point-to-multi- point configuration.

 HIPERACCESS: This technology could be used to cover the ‗last
mile to a customer via a fixed radio link, so could be an
alternative to cable modems or xDSL technologies.

 HIPERLINK: To connect different HIPERLAN access points
or HIPERACCESS nodes with a high-speed link, HIPERLINK
technology can be chosen.

As an access network, BRAN technology is independent from the protocols
of the fixed network. BRAN can be used for ATM and TCP/IP networks as
illustrated in Figure 5.5.3. Based on possibly different physical layers, the
DLC layer of BRAN offers a common interface to higher layers. To cover
special characteristics of wireless links and to adapt directly to different
higher layer network technologies, BRAN provides a network convergence
sub layer. This is the layer which can be used by a wireless ATM network,
Ethernet, Fire wire, or an IP network. In the case of BRAN as the RAL for
WATM, the core ATM network would use services of the BRAN network
convergence sub layer.

225

CPT 411 MODULE 5

Figure 5.5.3: Layered Model of RAN Wireless Access Network

Discussion
BRAN has specified four different network types. Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

 The major components of a Wireless ATM system are:
Answer:
a) WATM terminal
b) WATM terminal adapter
c) WATM radio port
d) mobile ATM switch
e) standard ATM network
and f) ATM host.
 Describe the Broadband Radio Access Networks (BRAN)
Answer:
The broadband radio access networks (BRAN), which have been
standardized by the European Telecommunications Standards Institute
(ETSI), could have been an RAL for WATM. The main motivation
behind BRAN is the deregulation and privatization of the
telecommunication sector in Europe. The primary market for BRAN
includes private customers and small to medium-sized companies with
Internet applications, multi-media conferencing, and virtual private
networks. The BRAN standard and IEEE 802.16 have similar goals.
BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission
range of 50 m–5 km. Standardization efforts are coordinated with the
ATM Forum, the IETF, other groups from ETSI, the IEEE etc.

226

CPT 411 NET-CENTRIC COMPUTING

5.0 CONCLUSION

At high data transmission rates, the packet transmission time of a local
area network (LAN) could become comparable to or less than the
medium propagation delay. The performance of many LAN schemes
degrades rapidly when the packet transmission time becomes small
comparative to the medium propagation delay.

6.0 SUMMARY

HIPERLAN stands for high performance local area network. It is a
wireless standard derived from traditional LAN environments and can
support multimedia and asynchronous data effectively at high data rates
of 23.5 Mbps. HIPERLAN works using Radio waves instead of a cable
as a transmission medium to connect stations. HiperLAN features are
range 50 m, slow mobility (1.4 m/s), it supports asynchronous and
synchronous traffic, sound 32 kbit/s, 10 ns latency, video 2 Mbit/s, 100
ns latency, data 10 Mbit/s and HiperLAN does not conflict with
microwave and other kitchen appliances, which are on 2.4 GHz.
The concept of WATM was first proposed in 1992 as pointed out in and
now it is actively considered as a potential framework for next-
generation wireless communication networks capable of supporting
integrated, quality-of-service (QoS) based multimedia services. The
major components of a Wireless ATM system are: WATM terminal,
WATM terminal adapter, WATM radio port, mobile ATM switch,
standard ATM network and ATM host.

The broadband radio access networks (BRAN), which have been
standardized by the European Telecommunications Standards Institute
(ETSI), could have been an RAL for WATM. The main motivation
behind BRAN is the deregulation and privatization of the
telecommunication sector in Europe. The primary market for BRAN
includes private customers and small to medium-sized companies with
Internet applications, multi-media conferencing, and virtual private
networks. The BRAN standard and IEEE 802.16 have similar goals.
BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission
range of 50 m–5 km. Standardization efforts are coordinated with the
ATM Forum, the IETF, other groups from ETSI, the IEEE etc.

BRAN has specified four different network types: HIPERLAN 1,
HIPERLAN/2, HIPERACCESS and HIPERLINK

227

CPT 411 MODULE 5

7.0 REFERENCES/FURTHER READING

https://dl.acm.org/doi/10.1145/103724.103726
https://cmd.inp.nsk.su/old/cmd2/manuals/networking/perfomance/ch01/
ch01.htm

228

