
a
rc
h
it
ec

tu
re

c
o
m
p
u
te

r

Computer

Architecture

CPT 214CPT 214CPT 214

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA
CENTRE FOR OPEN DISTANCE AND e-LEARNINGCODeL

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA
NIGER STATE, NIGERIA

CENTRE FOR OPEN DISTANCE AND
e-LEARNING (CODeL)

B.TECH. COMPUTER SCIENCE PROGRAMME

COURSE TITLE

COMPUTER ARCHITECTURE

COURSE CODE

CPT 214

ii

COURSE CODE

CPT 214

COURSE UNIT

3

Course Coordinator
Bashir MOHAMMED (Ph.D.)

Department of Computer Science
Federal University of Technology (FUT) Minna

Minna, Niger State, Nigeria.

iii

Course Development Team

CPT 214: Computer Architecture

Subject Matter Experts John K. Alhassan (Ph.D.)

Department of Cyber Security

FUT Minna, Nigeria.

Course Coordinator Bashir MOHAMMED (Ph.D.)

Department of Computer Science

FUT Minna, Nigeria.

ODL Experts Amosa Isiaka GAMBARI (Ph.D.)

Nicholas E. ESEZOBOR

Instructional System Designers Oluwole Caleb FALODE (Ph.D.)

Bushrah Temitope OJOYE (Mrs.)

Language Editors Chinenye Priscilla UZOCHUKWU (Mrs.)

Mubarak Jamiu ALABEDE

Centre Director Abiodun Musa AIBINU (Ph.D.)

Centre for Open Distance & e-Learning

FUT Minna, Nigeria.

iv

CPT 214 Study Guide

Introduction

CPT 214 Computer Architecture is a 3- credit unit course for students studying towards

acquiring a Bachelor of Science in any field. The course is divided into 5 modules and 16 study

units. It will first introduce to digital logics. Then, memory system. Thereafter, interfacing and

communication is discussed. This is followed by an extensive discussion on the introduction

of networks, raid architectures, Data Path and control. And finally, instruction pipelining, riscs

and multiprocessors.

The course guide therefore gives you an overview of what CPT 214 is all about, the textbooks

and other materials to be referenced, what you expect to know in each unit, and how to work

through the course material.

Recommended Study Time

This course is a 3-credit unit course having 16 study units. You are therefore enjoined to spend

at least 2 hours in studying the content of each study unit.

What You Are About to Learn in This Course

The overall aim of this course, CPT 214 is to introduce you to computer architecture. At the

end of this course you would have learnt the:

i. basic computing programmes

ii. various components of digital logic

iii. memory system and how to effectively use storage system

iv. the usage of network for raid architectures and Data Path control

v. multiprocessors, riscs and instruction pipelining

Course Aims

This course aims to introduce students to the concept of computer architecture. It is expected

that the knowledge will enable the reader to effectively use computers in his/her profession.

Course Objectives

It is important to note that each unit has specific objectives. Students should study them

carefully before proceeding to subsequent units. Therefore, it may be useful to refer to these

objectives in the course of your study of the unit to assess your progress. You should always

look at the unit objectives after completing a unit. In this way, you can be sure that you have

done what is required of you by the end of the unit.

However, below are overall objectives of this course. On completing this course, you should

be able to:

i. Define computer architecture

v

ii. Explain digital logic

iii. Explain related technologies to memory system

iv. Describe the categories of computer hardware

v. Discuss interfacing and communication

vi. Explain the functions of networks and how it’s being used

vii. Describe how RISCs works

viii. Differentiate between cache memory and virtual memory

Working Through This Course

In order to have a thorough understanding of the course units, you will need to read and

understand the contents, practice the steps and implement the knowledge you’ve gained for

your department.

This course is designed to cover approximately sixteen weeks, and it will require your devoted

attention. You should do the exercises in the Tutor-Marked Assignments and submit to your

tutors.

Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

Study Units

There are 16 study units and 5 Modules in this course. They are:

Module One

Digital logic

Unit 1 Fundamental Building Blocks of Digital Logic

Unit 2 Programmable Logic Array (PLA)

Module Two

Memory System

Unit 1 Storage System and their Technologies

Unit 2 Data Compression and Data Integrity

Unit 3 Memory Hierarchy, Organisation and Operation

Unit 4 Cache memory and Virtual Memory

Module Three

Interfacing and Communication

Unit 1 Input/output Fundamentals

Unit 2 Handshaking

Unit 3 Data Buffer

Unit 4 External Storage

vi

Module Four

Introduction to Network, Raid Architectures, Data Path &

Control

Unit 1 Introduction to Network

Unit 2 Multimedia Support raid architecture

Unit 3 Data Path and Control Unit

Module Five

Instruction Pipelining, RISCS and Multiprocessors

Unit 1 Instruction pipelining

Unit 2
Introduction to reduced instruction set computers

(RISCS)

Unit 3 Introduction to multiprocessors

Recommended Texts

The following texts and Internet resource links will be of enormous benefit to you in learning

this course:

1. Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

2. Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text

in Computer Science, Springer Dordrecht Heidelberg London New York.

3. Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

4. Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

5. Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, 2006. ISBN: 0-123-70490-1.

6. Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

7. Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

8. Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

9. http://ece-www.colorado.edu/faculty/heuring.html

10. NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island, Lagos. First Printed 2008

11. Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

12. Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd Ed.) Prentice Hall

of India.

vii

13. http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

14. http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

15. http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

16. http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

17. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

Assignment File

The assignment file will be given to you in due course. In this file, you will find all the details of

the work you must submit to your tutor for marking. The marks you obtain for these

assignments will count towards the final mark for the course. Altogether, there are tutor

marked assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you with important dates for

completion of each tutor marked assignment. You should therefore endeavour to meet the

deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are tutor marked

assignments; and second, the written examination. Therefore, you are expected to take note

of the facts, information and problem solving gathered during the course. The tutor marked

assignments must be submitted to your tutor for formal assessment, in accordance to the

deadline given. The work submitted will count for 40% of your total course mark.

At the end of the course, you will need to sit for a final written examination. This examination

will account for 60% of your total score. You will be required to submit some assignments by

uploading them to CPT 214 page on the u-learn portal.

Tutor-Marked Assignment (TMA)

There are TMAs in this course. You need to submit all the TMAs. The best 10 will therefore

be counted. When you have completed each assignment, send them to your tutor as soon as

possible and make certain that it gets to your tutor on or before the stipulated deadline. If for

any reason you cannot complete your assignment on time, contact your tutor before the

assignment is due to discuss the possibility of extension. Extension will not be granted after

the deadline, unless on extraordinary cases.

Final Examination and Grading

The final examination for CPT 214 will last for a period of 3 hours and has a value of 60% of

the total course grade. The examination will consist of questions which reflect the self-

assessment questions and tutor marked assignments that you have previously encountered.

Furthermore, all areas of the course will be examined. It would be better to use the time

between finishing the last unit and sitting for the examination, to revise the entire course. You

viii

might find it useful to review your TMAs and comment on them before the examination. The

final examination covers information from all parts of the course.

Practical Strategies for Working Through This Course

1. Read the course guide thoroughly

2. Organize a study schedule. Refer to the course overview for more details. Note the time

you are expected to spend on each unit and how the assignment relates to the units.

Important details, e.g. details of your tutorials and the date of the first day of the semester

are available. You need to gather together all this information in one place such as a

diary, a wall chart calendar or an organizer. Whatever method you choose, you should

decide on and write in your own dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick to it.

The major reason that students fail is that they get behind with their course works. If you

get into difficulties with your schedule, please let your tutor know before it is too late for

help.

4. Turn to Unit 1 and read the introduction and the learning outcomes for the unit.

5. Assemble the study materials. Information about what you need for a unit is given in the

table of content at the beginning of each unit. You will almost always need both the study

unit you are working on and one of the materials recommended for further readings, on

your desk at the same time.

6. Work through the unit, the content of the unit itself has been arranged to provide a

sequence for you to follow. As you work through the unit, you will be encouraged to read

from your set books

7. Keep in mind that you will learn a lot by doing all your assignments carefully. They have

been designed to help you meet the objectives of the course and will help you pass the

examination.

8. Review the objectives of each study unit to confirm that you have achieved them. If you

are not certain about any of the objectives, review the study material and consult your

tutor.

9. When you are confident that you have achieved a unit’s objectives, you can start on the

next unit. Proceed unit by unit through the course and try to pace your study so that you

can keep yourself on schedule.

10. When you have submitted an assignment to your tutor for marking, do not wait for its

return before starting on the next unit. Keep to your schedule. When the assignment is

returned, pay particular attention to your tutor’s comments, both on the tutor marked

assignment form and also written on the assignment. Consult you tutor as soon as

possible if you have any questions or problems.

11. After completing the last unit, review the course and prepare yourself for the final

examination. Check that you have achieved the unit objectives (listed at the beginning of

each unit) and the course objectives (listed in this course guide).

ix

Tutors and Tutorials

There are few hours of tutorial provided in support of this course. You will be notified of the

dates, time and location together with the name and phone number of your tutor as soon as

you are allocated a tutorial group. Your tutor will mark and comment on your assignments,

keep a close watch on your progress and on any difficulties you might encounter and provide

assistance to you during the course. You must mail your tutor marked assignment to your tutor

well before the due date. At least two working days are required for this purpose. They will be

marked by your tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you need help.

The following might be circumstances in which you would find help necessary: contact your

tutor if:

• You do not understand any part of the study units or the assigned readings.

• You have difficulty with the self-test or exercise.

• You have questions or problems with an assignment, with your tutor’s comments on an

assignment or with the grading of an assignment.

You should endeavour to attend the tutorials. This is the only opportunity to have face to face

contact with your tutor and ask questions which are answered instantly. You can raise any

problem encountered in the course of your study. To gain the maximum benefit from the

course tutorials, have some questions handy before attending them. You will learn a lot from

participating actively in discussions.

GOODLUCK!

x

Table of Contents

Course Development Team……………………………………………………………………….iii

Study Guide…………………………………………………………………………………………….....……iv

Table of Content………………………………………………………………………………………………..x

Module One: Digital Logic……………………………………………………………...................1

 Unit 1: Fundamental Building Blocks of Digital Logic…………………………………….……2

 Unit 2: Programmable Logic Array (PLA)……………………………………………………..17

Module Two: Memory Systems………………………………………………………………… 26

 Unit 1: Storage Systems and their Technologies……………………………………………27

 Unit 2: Data Compression and Data Integrity………………………………………………..34

 Unit 3: Memory Hierarchy, Organisation and Operations……………………………..……42

 Unit 4: Cache Memory and Virtual Memory………………………………………………….49

Module Three: Interfacing and Communication…………………………………….….……..71

 Unit 1: Input/ Output Fundamentals…………………………………..………………….…...72

 Unit 2: Handshaking………………………………………………….………….……….….…90

 Unit 3: Data Buffer…………………………………………………………..……………...…..98

 Unit 4: External Storage……………………………………………………….……………..108

Module Four: Introduction to Networks, RAID Architectures, Data Path & Control….114

 Unit 1: Introduction to Networks……………………………………………….…………….115

 Unit 2: Multimedia Support RAID Architectures………………………………………...….128

 Unit 3: Data Path and Control Unit…………………………………………..………………139

Module Five: Instruction Pipelining, RISCs & Multiprocessors……………..………..….155

 Unit 1: Instruction Pipelining…………………………………………….…………………...156

 Unit 2: Introduction to Reduced Instruction Set Computers (RISCs)…………………....165

 Unit 3: Introduction to Multiprocessors………………………………………….…………..183

1

Module 1

Digital Logic

Unit 1: Fundamental Building Blocks of Digital Logic

Unit 2: Programmable Logic Array (PLA)

2

Unit 1

Fundamental Building Blocks of

Digital Logic
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Boolean Algebra

3.2 Logic Gates

3.3 Combination Circuits

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

3

1.0 Introduction

In this unit, you will learn digital logic. More so, you will briefly learn about the Boolean algebra,

which will be useful in the discussions on logic circuits. This unit also discuss on logic gates

and combination circuits.

2.0 Learning Outcome

By the end of this unit, you should be able to:

1. Define Boolean algebra

2. Explain logic gates

3. Describe combination circuits

3.0 Learning Content

3.1 Boolean Algebra

Boolean Algebra (or Boolean Logic) is a logical calculus of truth values, developed by

George Boole in the 1840s. It resembles the algebra of real numbers, but with the numeric

operations of multiplication xy, addition x + y, and negation −x replaced by the respective

logical operations of conjunction x∧y, disjunction x∨y, and negation ¬x.

The Boolean operations are these and all other operations that can be built from these, such

as x∧(y∨z). They turned out to coincide with the set of all operations on the set {0,1} that take

only finitely many arguments; there are 22n such operations when there are n arguments. Is

that clear.

Do you know that the laws of Boolean algebra can be defined axiomatically? As certain

equations called axioms together with their logical consequences called theorems, or

semantically as those equations that are true for every possible assignment of 0 or 1 to their

variables. Also, the axiomatic approach is sound and complete in the sense that it proves

respectively neither more nor fewer laws than the semantic approach.

You should also note that Boolean algebra is used for designing and analyzing digital circuits.

First, we will discuss the rules of Boolean algebra and thereafter we will be discussing how it

can be used in analyzing or designing digital circuits. Now answer the below question.

Self-Assessment Question

1. Boolean algebra was developed by ________.

Self-Assessment Answer

1. George Boole

Point 1:

Have at the back of your mind that a variable in Boolean algebra can take only two values

http://en.wikipedia.org/wiki/Truth_value
http://en.wikipedia.org/wiki/George_Boole
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Negation
http://en.wikipedia.org/wiki/Axiom_system
http://en.wikipedia.org/wiki/Logical_consequence
http://en.wikipedia.org/wiki/Semantically
http://en.wikipedia.org/wiki/Soundness_theorem
http://en.wikipedia.org/wiki/Complete_theory
http://en.wikipedia.org/wiki/George_Boole

4

1 (TRUE) or 0 (FALSE)

Point 2:

There are three basic operations in Boolean algebra, viz:

AND, OR and NOT

(These operators will be given in capitals in this module for differentiating them from normal

and, or, not, etc.) is that clear?

A AND B or A.B or AB

A OR B or A + B

NOT A or ¬A or A’ or Ᾱ

But how do the value of A AND B which changes with the values of A and B can be represented

in tabular form, which is referred to as the “truth table”. See the table below.

In addition, three more operators have been defined for Boolean algebra: Say the below aloud.

XOR (Exclusive OR), NOR (Not OR) and NAND (Not AND)

However, if you will be designing and analyzing a logical circuit, it is convenient to use AND,

NOT and OR operators. Because AND and OR obey many laws as of multiplicationion and

addition in the ordinary algebra of real numbers.

Example: Complete the truth table below:

A B A + B

0 0

0 1

1 0

1 1

Solution

Remember that A + B is the same as A OR B. Therefore, your answer should be;

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

5

Point 3:

The basic logical identities used in Boolean algebra are:

DeMorgan’s law is very useful in simplifying logical expressions. Having explained the Boolean

algebra, it is important you review it first before proceeding.

Boolean Function:

A Boolean function is defined as an algebraic expression formed with the binary variables, the

logic operation symbols, parenthesis, and equal to sign. For example,

F = A. B+C is a Boolean function.

So the value of Boolean Function F can be either 0 or 1.

A Boolean function can be broken into logic diagram and vice versa (we will discuss this in the

next section). Therefore, if we code the logic operations in Boolean algebraic form and simplify

this expression, we will design the simplified form of the logic circuits. Is that understood? Now

answer the questions below.

Self-Assessment Question

1. The three basic operations of Boolean algebra are ______.

Self-Assessment Answer

1. AND, OR, NOT

3.2 Logic Gates

What is a Logic Gate?

It is an idealized or physical device implementing a Boolean function. That is, it performs a

logical operation on one or more logic inputs and produces a single logic output. Depending

http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Logical_operation

6

on the context, the term may refer to an ideal logic gate, one that has for instance zero rise

time and unlimited fan-out. Or it may refer to a non-ideal physical device. Digital systems are

said to be constructed by using logic gates.

You should be aware that logic gate is an electronic circuit which produces a typical output

signal depending on its input signal. The output signal of a gate is a simple Boolean operation

of its input signal(s). Gates are the basic logic elements. These gates are the AND, OR, NOT,

NAND, NOR, EXOR and EXNOR gates. Remember your point 2? Any Boolean function can

be represented in the form of gates.

Now the basic operations are described below with the aid of truth tables.

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high.

A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes

omitted i.e. AB

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are

high. A plus (+) is used to show the OR operation.

The NOT gate is an electronic circuit that produces an inverted version of the input at its

output. It is also known as an inverter. Now pay attention! If your input variable is A, the

inverted output is known as NOT A. This is also shown as A', or A with a bar over the top, as

http://en.wikipedia.org/wiki/Rise_time
http://en.wikipedia.org/wiki/Rise_time
http://en.wikipedia.org/wiki/Fan-out

7

shown at the outputs. The diagrams below show two ways in which the NAND logic gate can

be configured to produce a NOT gate. It can also be done using NOR logic gates in the same

way.

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The outputs

of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a

small circle on the output. The small circle represents an inversion.

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of

all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a small

circle on the output. The small circle represents an inversion.

8

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its

two inputs are high. An encircled plus sign () is used to show the EOR operation.

The 'Exclusive-NOR' gate circuit does the opposite of the EOR gate. It will give a low output

if either, but not both of its two inputs are high. The symbol is an EXOR gate with a small

circle on the output. The small circle represents an inversion. The NAND and NOR gates are

called universal functions since with either one the AND and OR functions and NOT can be

generated.

Note:

A function in sum of products form can be implemented using NAND gates by replacing all

AND and OR gates by NAND gates. A function in product of sums form can be implemented

using NOR gates by replacing all AND and OR gates by NOR gates.

9

Other gate functions. Also note that a truth table with 'n' inputs has 2n rows. You can compare

the outputs of different gates.

The truth table of NAND and NOR can be made from NOT (A AND B) and NOT (A OR B)

respectively. Exclusive OR (XOR) is a special gate whose output is one only if the inputs are

not equal. The inverse of exclusive OR can be a comparator which will produce a one output

if two inputs are equal. Be aware that digital circuit use only one or two types of gates for

simplicity in fabrication purposes. Therefore, one must think in terms of functionally complete

sets of gates.

What does a functionally complete set imply? A set of gates by which any Boolean function

can be implemented is called a functionally complete set. The functionally compete sets are:

(AND, NOT), (NOR), (NAND), (OR< NOT) etc. Now do the exercise below.

Self-Assessment Questions(S)

1. What are logical gates?

2. List five logical gates you know.

10

Self-Assessment Answer(S)

1. A logic gate is an idealized or physical device implementing a Boolean function, that

is, it performs a logical operation on one or more logic inputs and produces a single

logic output.

2. AND, OR, NOR, EXOR, EXNOR

3.3 Combination Circuits

Do you know that combinational circuits are interconnected circuits of gates according to a

certain rule to produce an output depending on its input value? A well-formed combinational

circuit should not have feedback loops. A combinational circuit can be represented as a

network of gates and, can be expressed by a truth table or a Boolean expression.

The output of a combinational circuit is related to its input by a combinational function, which

is independent of time. Therefore, for an ideal combinational circuit, the output should change

according to changes in input. But in actual cases there is a slight delay. This delay is normally

proportional to the depth or number of levels, i.e the maximum number of gates lying on any

path from input to output.

For example, the depth of the combinational circuit in figure 1 is two

Example: Draw the logic gates for the function F = A.B + C

Solution:

The basic design issue related to combinational circuits is: the reduction/minimization of the

number of gates. The normal circuit constraints for combinational circuit design are:

The depth of the circuit should not exceed a specific level.

i. Number of input lines to a gate (fan in) and how many gates its output can be fed (fan

out) are constrained by the circuit power constraints.

Minimization of Gates

The simplification of the Boolean expression is very useful for combinational circuit designs.

The following three methods are used for this.

1. Algebraic simplification

Figure 1: A two level AND-OR combinational circuit

http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Logical_operation

11

2. Karnaugh maps

3. The Quine McCluskey method

But before defining any of the above stated methods let us discuss the forms of algebraic

expressions. An algebraic expression can exist in two forms:

1. Sum of products (SOP) e.g. (A.¬B) + (¬A. ¬B)

2. Product of sums (POS) e.g. (¬A +¬B).(A+B)

If a product of SOP expression contains every variable of that function either in true or

complement form, then it is defined as a minterm. This minterm will be true only for one

combination of input values of the variables. For example, in the SOP expression-

F (A, B, C) = (A.B.C) + (¬A. ¬B.C) + (A.B)

We have three product terms namely A.B.C, ¬A. ¬B.C and A.B. But only the first two of them

qualify to be a minterm, as the third one does not contain variable C or its complement. In

addition, the term A.B.C will be one only if A=1, B=1 and C=1 for any other combination of

values of A, B, C the minterm will have zero value. Similarly, the minterm ¬A. ¬B.C will have

value 1 only if ¬A = 1 i.e. A=0, ¬B=1 i.e. B=0 and C=1.For any other combination of values

the minterm will have a zero value. Ask your tutor for more explanation.

Also on the second note, a similar type of term used in POS form is called maxterm. And

maxterm is a term of POS expression, which contains all the variables of the function in true

or complemented form. For example,

F(A, B, C)=(A=B=C).(¬A+¬B+C) have two maxterms. A maxterm have a value 0 for only one

combination of input values. You’ll agree that maxterm A+B+C will be 0 value only for A=0,

B=0 and C=0. For all other combination of values of A, B, C it will have a value one.

Now let us come back to the problem of minimizing the number of gates.

Algebraic Simplification

We have already discussed the algebraic simplification of a logical circuit. An algebraic

expression can exist in POS or SOP forms. Okay? The algebraic functions can appear in many

different forms. Although the process of simplification exists yet it is cumbersome because of

the absence of routes, which tell what rule to apply next. The Karnaugh map is a simple direct

approach of simplification of logical expressions.

Karnaugh Maps

The Karnaugh map is a convenient way of representing and simplifying Boolean functions of

4 to 6 variables. Karnaugh maps can also be used for designing the circuits in situations where

you can construct the truth table for an operation or a function. In other words, Karnaugh maps

can be used to construct a circuit when the input and output to that proposed circuit are

defined. For each output one Karnaugh map needs to be constructed. The stepwise procedure

for Karnaugh map is as follows:

Step 1

Create a simple map depending on the number of variables in the function. Figure 2 shows

the map of two, three and four variables. A map of 2 variables contains 4 value positions or

elements, while for 3 variables it has 23=8 elements; similarly, for 4 variables it is 24=16

12

elements and so on. Special care is taken to represent variables in the map. Value of only one

variable changes in two adjacent columns or rows.

The advantage of having a change in one variable is that two adjacent columns or rows

represent a true form or complement form of a single variable. For example, in Figure 2 the

columns which have positive A are adjacent to ¬A. Please note the adjacency of the corners.

The rightmost column can be considered to be adjacent to the first column; since they differ

only by one variable, therefore, they are adjacent. Similarly, the topmost and bottommost rows

are adjacent.

Figure 2: Maps of two, three and four variables and their adjacencies

Note the following:

1. Decimal equivalents of the cells are given for help in understanding where the

position of the respective decimal equivalent is. It is not the value filled in a square.

A square can contain one or nothing.

2. The 00, 01, 11 etc. written on the top implies the value of respective variables.

3. Wherever the value of a variable is zero it is said to represent its complement form.

4. The value of only one variable changes when we move from one row to the next row

or from one column to the next column.

Step 2:

The next step in the Karnaugh map is to map the truth table into the map. The mapping is

done by putting a 1 in the respective squares belonging to the 1 value in the truth table. This

mapped map is used to arrive at simplified Boolean expressions, which then can be used for

drawing up the optimal logical circuits. Step 2 will be clearer in the example.

13

Step 3:

Now create simple algebraic expressions from the Karnaugh map. These expressions are

created by using adjacency if we have two adjacent 1’s then the expressions for those can be

simplified together since they differ in only one variable. Similarly, we search for adjacent pairs

of four, eight, and so on. A 1 can appear in more than one adjacent pairs. You must find

adjacencies till all 1’s in the Karnaugh map are covered. The following example will clarify step

3.

Example 2: Now let us see how to use Karnaugh map simplification for finding the Boolean

function for the cases whose truth table is given as:

Another short representation of the truth table is Σ(0,1,2,6,8,9, 10) which indicate the decimal

equivalent for A, B, C, D values for which the output is one.

Figure 3: Karnaugh’s map of the truth table of example 2

Let us see the pairs which can be considered adjacent in the Karnaugh map here.

The pairs are

14

1. The four corners

2. The four 1’s as in top and bottom in columns 1 and 2

3. The two 1’s in the top two rows of the last column.

The expressions so obtained through the Karnaugh map are in the form of the sum of the

product form, i.e. it is expressed as a sum of the products of the variables. The expression is

one of the minimal solutions. This expression can be expressed in product of the sum form,

but for this, special methods need to be used.

Let us see how we can modify the Karnaugh map simplification to obtain the product of the

sum form. Suppose in the previous example instead of using 1’s we combine the adjacent

zero square then we will obtain the inverse function and on taking NOT of this function we will

get the product of sum form (the use of DeMorgan’s theorem will be required).

Another important aspect of this simple method of digital circuit design is DONOT care

conditions. These conditions further simplify the algebraic function. These conditions imply

that it does not matter whether the output produced is zero or 1 for a specific input. These

conditions can occur when the combination of the number of inputs are more than needed;

e.g., calculation through BCD where 4 bits are used to represent a decimal digit, which implies

we can represent 24 = 16 digits but since we have only 10 decimal digits, therefore, 6 of those

input combinations do not matter and thus, are a candidate for DONOT care condition.

15

What will happen if we have more than 4-6 variables? As the number of the variables increases

the Karnaugh map becomes more and more cumbersome (as the number of possible

combination of inputs keeps on increasing). A method was suggested to deal with the

increasing number of variables. This is a tabular approach and is known as the Quine-

Mckluskey method.

Know that this method is suitable for programming and hence provides a tool for automating

designs in the form of minimized Boolean expressions. The basic principle behind the Quine-

Mckluskey method is to remove the terms which are redundant and can be obtained by other

terms.

Self-Assessment Question

1. List three methods that have been used to minimize the use of Gates.

Self-Assessment Answer

The following three methods are used for this.

1. Algebraic simplification

2. Karnaugh maps

3. The Quine McCluskey method

4.0 Conclusion

In this unit, I want to believe you have learnt about the digital logic. You have also learnt about

the Boolean algebra, which is the basis for discussions on logic circuits. You also learnt in this

unit the logic gates and combination circuits.

5.0 Summary

We have discussed that Boolean algebra is an attempt to represent the true-false logic of

humans in mathematical form. George Boole proposed the principles of the Boolean algebra

in 1854, hence the name Boolean algebra. Do not forget that Boolean algebra is used for

designing and analyzing digital circuits. And its function is defined as an algebraic expression

formed with the binary variables, the logic operation symbols, parenthesis, and equal to sign.

More so, digital systems are said to be constructed by using logic gates. A logic gate is an

electronic circuit which produces a typical output signal depending on its input signal. Also,

combinational circuits are interconnected circuits of gates according to a certain rule to

produce an output depending on its input value.

And lastly, remember that well-formed combinational circuit should not have feedback loops.

A combinational circuit can be represented as a network of gates and, can be expressed by a

truth table or a Boolean expression.

16

 6.0 Tutor-Marked Assignment

1. Explain logic gates with AND gate and OR gate as examples?

2. Explain sum of products and product of sums?

7.0 References/Further Reading

1. Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

2. Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text

in Computer Science, Springer Dordrecht Heidelberg London New York.

3. Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

4. Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

5. Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, 2006. ISBN: 0-123-70490-1.

6. Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

7. Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test

Edition, August 1999. http://www.cs.rutgers.edu/~murdocca/

8. http://ece-www.colorado.edu/faculty/heuring.html

9. Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

10. NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island, Lagos. First Printed 2008

11. Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

12. Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall

of India.

13. http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

14. http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

15. http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

16. http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

17. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

17

Unit 2

Programmable Logic Array

(PLA)

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Programmable Logic Array

3.2 What Is a Flip-Flop?

3.3 Registers

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

18

1.0 Introduction

In this unit, what you will learn is about programmable logic array (PLA). One way to design a

combinational logic circuit is that you get gates and connect them with wires. One

disadvantage with this way of designing circuits is its lack of portability. You will also learn

about Programmable Logic Array (PLA), definition of a Flip-Flop, and registers.

2.0 Learning Outcome

By the end of this unit, you should be able to:

1. Explain programmable logic array (PLA)

2. Define a flip-flop

3. Describe registers

3.0 Learning Content

3.1 Programmable Logic Array

You should know that the individual gates are treated as basic building blocks from which

various logic functions can be derived before now. You have also learnt about the strategies

of minimization of number of gates in the previous unit. But with the advancement of

technology, the integration provided by integrated circuit technology has increased resulting

in the production of one to ten gates on a single chip (in Small Scale Integration (SSI)).

 The gate level designs are constructed at the gate level only. But if the design is to be done

using these SSI chips, the design consideration needs to be changed as a number of such

SSI chips may be used for developing a logic circuit. With MSI & VLSI we can put even more

gates on a chip and can also make gate interconnections on a chip. These integration and

connection bring the advantages of decreased cost, size, and increased speed.

Note that the basic drawback faced in such VLSI & MSI chips is that for each logic function

the layout of gates and interconnection need to be designed. The cost involved in making such

a custom chip design is quite high. This brings us to the concept of Programamble Logic Array

(PLA), a general-purpose chip that can be readily adopted for any specific purpose. The PLA

are designed for SOP form of Boolean function and consist of a regular arrangement of NOT,

AND & OR gates on a chip.

Each input to the chip is passed through a NOT gate, thus, the input and their complement

are available to each AND gate. The output of each AND gate is made available for each OR

gate. And the output of each OR gate is treated as chip output. By making appropriate

connections, any logic function can be implemented in these Programmable Logic Arrays.

Now take a close look at the below diagram.

19

The figure 1(a) shows a PLA of three inputs and two outputs. Please note the connectivity

points, as all these points can be connected if desired. Figure 1(b) shows an implementation

of logic function:

Please note the second function is a non-optimal function and can be simplified using Boolean

algebra.

Self-Assessment Question

1. What is a Programmable Logical Array?

Self-Assessment Answer

1. Programmable Logic Array (PLA) is a general-purpose chip that can be readily

adopted for any specific purpose.

3.2 What is a Flip-Flop?

A flip-flop is a binary cell, which can store a bit of information and which in itself is a step-to-

step circuit. But, how does it happen? A flip-flop maintains any one of the two stable states

that can be treated as zero or one depending on the presence and absence of output signals.

This state of a flip-flop can only change when a clock pulse has arrived. First see the basic

flip-flop or a latch that was a revolutionary step in computers. The basic latch presented here

is not in order. Let us see its logic diagram (Figure 2).

Figure 1: Programmable Logic Array

20

You can construct a flip-flop using two NAND or NOR gates; which contains a feedback loop.

The flip-flop you saw in the above figure has two inputs R (Reset) and S (set) and two outputs

Q and ¬Q. In a normal mode of operation both the flip-flop inputs are at zero i.e. S = 0 & R =

0. This means that the flip-flop can show two states: either the value Q is 1 (therefore ¬Q = 0).

we say the flip-flop is in set state or the value of Q is 0 (therefore ¬Q = 1) we call it a clear

state. Do you understand?

Now let’s take this example: Draw the truth table for A flip-flop NAND gate

Solution:

The first thing is to find the AND then the NOT as shown in the table below

I0 I1 NAND

0 0 1

0 1 1

1 0 1

1 1 0

Let us see how the S and R input can be used to set and clear the state of the flip-flop.

The first question you should ask yourself is, why in normal cases S and R are zero? The

reason is that this state does not cause any change in state. Suppose the flip-flop was in set

state i.e. Q = 1 and ¬Q = 0 and as S = 0 and R = 0, the output of ‘a’ NOR gate will be 1 since

both its input ¬Q and R are zero (refer to the truth table of 1 NOR gate in Figure 2) and ‘b’

NOR gate will show output as 0 as one of its input Q is 1. Similarly, if flip-flop was in clear state

then ¬Q = 1 and R = 0, therefore, output of ‘a’ gate will be 0 and ‘b’ gate 1. Thus, flip-flop

maintains a stable state at S = 0 and R = 0.

Now the flip-flop is taken to set state if the S input quickly goes to 1 and then goes back to 0.

R remains at zero during this time. What happens if, say initially, the flip-flop was in state 0 i.e.

the value of Q was 0. As soon as S becomes 1 the output of NOR gate ‘b’ goes to 0 i.e. ¬Q

becomes 0 and almost immediately Q becomes 1 as both the input (¬Q and R) to NOR gate

‘a’ become 0.

You see, change in the value of S back to 0 does not change the value of Q again as the input

to NOR gate ‘b’ now are Q = 1 and S = 0. As a result, the flip-flop stays in the set state even

after S returns to zero. If the flip-flop was in state 1 then, when S goes to 1 there is no change

in value of ¬Q as both the inputs to NOR gate ‘b’ are 1 at this time. Thus, ¬Q remains in state

0 or in other words flip-flop stays in the set state.

Figure 2: A Basic latch (S-R latch using NOR gates)

21

But R input goes to value 1 then flip-flop acquires the clear state. On changing for a short time,

the value of R to 1 the Q output changes to 0 irrespective of the state of flip-flop and as Q is 0

and S is 0 the ¬Q becomes 1. Even after R comes back to value 0, Q remains 0 i.e., flip flop

comes to the clear state.

 Now, anybody can ask you that what will happen when both S and R go to 1 at the same

time. Well, you should be able to say that this is the situation which may create a set or clear

state depending on which of the S and R stays longer in zero state. But meanwhile both of

them are 1 and the value of Q and ¬Q becomes 1 which implies that both Q and its

complement are one, an impossible situation. Therefore, the transition of both S and R to 1 at

the same time is an undesirable condition for this basic latch. Let us try to construct a

synchronous R-S flip-flop form the basic latch. The clock pulse will be used to synchronize the

flip-flop. (What is a clock pulse?).

Self-Assessment Question

1. What is a Flip Flop?

Self-Assessment Answer

1. A flip-flop is a binary cell, which can store a bit of information and which in itself is a

sequential circuit.

3.2.1 D Flip-Flop

D flip-flop is a special type of flip-flop in the sense that it represents the currently applied input

as the state of the flip-flop. Thus, in effect it can store 1 bit of data information and is sometimes

referred to as Data flip-flop. Please note that the state of the flip-flop changes for the applied

input. It does not have a condition where the state does not change as the case in RS flip-flop,

the state of R-S flip-flop does not change when S = 0 and R = 0.

If we do not want a particular input state to change, then either the clock is to be disabled

during that period or a feedback of the output can be embedded with the input D. Do not forget

that D flip-flop is also referred to as Delay flip-flop because it delays the 0 or 1 applied to its

input by a single clock pulse.

22

3.2.2 J K flip-flop

The basic drawback with the R S flip-flop is that one set of input conditions are not utilized and

this can be used with a little change in the circuit. In this flip-flop, the last combination is used

to complement the state of the flip-flop. After discussing some of the simple sequential circuits,

that is flip-flop, let us discuss some of the complex sequential circuits, which can be developed

using simple gates, and flip-flops.

Self-Assessment Question

1. List two (2) types of Flip-Flops you know.

Figure 3: Other flip-flops

23

Self-Assessment Answer

1. D-Flip-Flop and JK Flip-Flop

3.3 Registers

A register is a binary function which holds the binary information in digital form. Thus, a register

consists of a group of binary storage cells. A register consists of one and more flip-flops

depending on the number of bits to be stored in a word. A separate flip-flop is used for storing

a bit of a word. In addition to storage, registers are normally coupled with combinational gates

enabling certain data processing tasks.

Thus, a register in a broad sense consists of the flip-flop that stores binary information and

gates, which controls when and how information is transferred to the register. Normally in a

register you will notice that independent data lines are provided for each flip-flop, enabling the

transfer of data to and from all flip-flops to the register simultaneously.

I want you to know that this mode of operation is called Parallel Input-Output. Since the stored

information in a set of flip-flops is treated as a single entity, common control signals such as

clock, preset and clear can be used for all the flip-flops of the register. Registers can be

constructed from any type of flip-flop. These flip-flops in integrated circuit registers are usually

constructed internally using two separate flip-flop circuits. The normally used special kind of

arrangement is termed the master slave flip-flop. This type of flip-flop helps in having a stable

state at the output. It consists of a master flip-flop and a slave flip-flop.

Note: You can construct master-slave flip-flop with D flip-flop (Figure 4) or R-S flip-flop in the

same manner.

Now, let us analyze this flip-flop.

1. When the clock pulse is 0 the master is disabled but the slave becomes active and its

output Q and ¬Q becomes equal to Y and ¬Y respectively. Why? Well, the possible

combination of the value of Y and ¬Y are either Y = 1 which means ¬Y = 0; or Y = 0 which

implies ¬Y = 1. Let us see the characteristic table for these two inputs for the J-K flip-flop.

The SLAVE flip-flop,

Thus, it can have value either J=1 and K=0 which will set the flip-flop that is Q=1 and ¬Q=0;

or J=0, K=1 which will clear the flip-flop. Therefore, Q is same as Y.

Figure 4: Masters-slave flip-flop using J-K flip-flop

24

2. When inputs are applied at J and K and the clock pulse becomes 1, only the master gets

activated, resulting in intermediate output Y go to state 0 or 1 depending on the input and

previous state. Please note that during this time the slave is still maintaining its previous

state. As the clock pulse become 0, the master becomes inactive and the slave acquires

the same state as the master.

But why do we acquire this master-slave combination? There is a major reason for this

master-slave form. Consider a situation where the output of a flip-flop is going to input of

other flip-flops. Here, the assumption is that the clock pulse inputs of all flip-flops are

synchronized and occur at the same time.

The change of state of the master occurs when the clock pulse goes to 1, but during that

time the output of the slave still has not changed, thus the state of the flip-flops in the

system can be changed simultaneously during the same clock pulse even though outputs

of flipflops are connected to the inputs of flip-flops. In other words, there are no restrictions

on feedback from the register’s outputs to its inputs.

Self-Assessment Questions

1. What is the mode of operation of a register?

Self-Assessment Answer(s)

1. Parallel Input-Output.

4.0 Conclusion

In this unit, you have learned about the programmable logic array (PLA). You have also learnt

about definition of a Flip-Flop and registers.

5.0 Summary

The individual gates are treated as basic building blocks from which various logic functions

can be derived before now. You have also learnt about the strategies of minimization of

number of gates. But with the advancement of technology the integration provided by

integrated circuit technology has increased resulting in the production of one to ten gates on

a single chip (in Small Scale Integration (SSI)).

A flip-flop is a binary cell, which can store a bit of information and which in itself is a sequential

circuit. But, how does it do it? A flip-flop maintains any one of the two stable states that can

be treated as zero or one depending on the presence and absence of output signals. The state

of a flip-flop can only change when a clock pulse has arrived. D flip-flop is a special type of

flip-flop in the sense that it represents the currently applied input as the state of the flip-flop.

Thus, in effect it can store 1 bit of data information and is sometimes referred to as Data flip-

flop. A register is a binary function which holds the binary information in digital form. Thus, a

register consists of a group of binary storage cells. A register consists of one and more flip-

flops depending on the number of bits to be stored in a word.

25

6.0 Tutor-Marked Assignment

1. With the aid of a diagram describe a flip-flop?

2. Define a register?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993).Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). Introduction To Computer Organisation. CIT 246 Course Material, National

Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way, Victoria

Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993).Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

26

Module 2

Memory Systems

Unit 1: Storage Systems and Their Technology

Unit 2: Data Compression and Data Integrity

Unit 3: Memory Hierarchy, Organization and Operations

Unit 4: Cache Memories and Virtual Memory

27

Unit 1

Storage Systems and Their
Technologies

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Computer Data Storage

3.2 Fundamental Storage Technologies

3.3 Related Technologies

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

28

1.0 Introduction

In this unit, what you will learn borders on storage systems and their technologies. Computer

data storage, often called storage or memory. It is a technology consisting of computer

components and recording media used to retain digital data. It is also a core function and

fundamental component of computers. Yes, you will also learn in this unit about fundamental

storage technologies and related technologies.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Define computer data storage

ii. Explain semiconductor

iii. Describe magnetic storage

iv. Explain optical storage

v. Explain related technologies

3.0 Learning Content

3.1 Computer Data Storage

Put at the back of your mind that computer data storage often called storage or memory is a

technology consisting of computer components and recording media used to retain digital

data. As said earlier, it is a core function and fundamental component of computers. In

present-day usage, memory is usually semiconductor storage read-write random-access

memory, typically DRAM (Dynamic-RAM) or other forms of fast but temporary storage.

Storage consists of storage devices and their media not directly accessible by the CPU,

(secondary or tertiary storage), typically hard disk drives, optical disc drives, and other devices

slower than RAM but are non-volatile (retaining contents when powered down). Historically,

memory has been called core, main memory, real storage or internal memory while storage

devices have been referred to as secondary storage, external memory or auxiliary/peripheral

storage.

The distinctions are fundamental to the architecture of computers. The distinctions also reflect

an important and significant technical difference between memory and mass storage devices,

which has been blurred by the historical usage of the term storage. Nevertheless, this article

uses the traditional nomenclature. Many different forms of storage, based on various natural

occurrences, have been invented.

So far, no practical universal storage medium exists, and all forms of storage have some

drawbacks. Therefore, a computer system usually contains several kinds of storage, each with

an individual purpose. You may have heard that the modern digital computer represents data

using the binary numeral system. Text, numbers, pictures, audio, and nearly any other form

of information can be converted into a string of bits, or binary digits, each of which has a value

of 1 or 0.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Secondary_storage
http://en.wikipedia.org/wiki/Tertiary_storage
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Optical_disc
http://en.wikipedia.org/wiki/Non-volatile_memory
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Bit

29

However, the most common unit of storage is the byte, equal to 8 bits. A piece of information

can be handled by any computer or device whose storage space is large enough to

accommodate the binary representation of the piece of information, or simply data. For

example, the complete works of Shakespeare, about 1250 pages in print, can be stored in

about five megabytes (forty million bits) with one byte per character.

Self-Assessment Question

1. What is Computer Data Storage?

Self-Assessment Answer

1. Computer data storage often called storage or memory is a technology consisting of

computer components and recording media used to retain digital data

3.2 Fundamental Storage Technologies

Let me say that as of 2011[update], the most commonly used data storage technologies are

semiconductor, magnetic, and optical, while paper still sees some limited usage. Media is a

common name for what actually holds the data in the storage device. Some other fundamental

storage technologies have also been used in the past or are proposed for development.

Semiconductor

Do you know that a semiconductor memory uses semiconductor-based integrated circuits to

store information? A semiconductor memory chip may contain millions of tiny transistors or

capacitors. Both volatile and non-volatile forms of semiconductor memory exist. In modern

computers, primary storage almost exclusively consists of dynamic volatile semiconductor

memory or dynamic random access memory.

Since the turn of the century, a type of non-volatile semiconductor memory known as flash

memory has steadily gained share as off-line storage for home computers. Non-volatile

semiconductor memory is also used for secondary storage in various advanced electronic

devices and specialized computers.

I want you to know that as early as 2006, notebook and desktop computer manufacturers

started using flash-based solid-state drives (SSDs) as default configuration options for the

secondary storage either in addition to or instead of the more traditional HDD.

Magnetic Storage

Magnetic storage uses different patterns of magnetization on a magnetically coated surface

to store information. Its storage is non-volatile. The information is accessed using one or more

read/write heads which may contain one or more recording transducers. A read/write head

only covers a part of the surface so that the head or medium or both must be moved relative

to another in order to access data. In modern computers, magnetic storage will take these

forms:

1. Magnetic disk

Floppy disk, used for off-line storage

http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Complete_works_of_Shakespeare
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/w/index.php?title=Computer_data_storage&action=edit
http://en.wikipedia.org/wiki/Semiconductor_memory
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Dynamic_random_access_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Desktop_computer
http://en.wikipedia.org/wiki/Solid-state_drive
http://en.wikipedia.org/wiki/Magnetic_storage
http://en.wikipedia.org/wiki/Magnetization
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Floppy_disk

30

Hard disk drive, used for secondary storage

2 Magnetic tape, used for tertiary and off-line storage

Know that in early computers, magnetic storage was also used as:

1. Primary storage in a form of magnetic memory, or core memory, core rope memory,

thin-film memory and/or twist or memory.

2. Tertiary (e.g. NCR CRAM) or off line storage in the form of magnetic cards.

3. Magnetic tape was then often used for secondary storage.

Optical Storage

Optical storage, the typical optical disc, stores information in deformities on the surface of a

circular disc and reads this information by illuminating the surface with a laser diode and

observing the reflection. Optical disc storage is non-volatile. The deformities may be

permanent (read only media), formed once (write once media) or reversible (recordable or

read/write media). The following forms are currently in common use:

1. CD, CD-ROM, DVD, BD-ROM: Read only storage, used for mass distribution of digital

information (music, video, computer programs)

2. CD-R, DVD-R, DVD+R, BD-R: Write once storage, used for tertiary and off-line storage

3. CD-RW, DVD-RW, DVD+RW, DVD-RAM, BD-RE: Slow write, fast read storage, used

for tertiary and off-line storage

4. Ultra-Density Optical or UDO is similar in capacity to BD-R or BD-RE and is slow write,

fast read storage used for tertiary and off-line storage.

Example:

If I ask you what forms is the magnetic storage in modern computers?

Answer:

 All I want to see is in modern computers, magnetic storage will take these forms:

1. Magnetic disk

o Floppy disk, used for off-line storage

o Hard disk drive, used for secondary storage

2. Magnetic tape, used for tertiary and off-line storage

Magneto-optical disc storage is optical disc storage where the magnetic state on a

ferromagnetic surface stores information. The information is read optically and written by

combining magnetic and optical methods. Magneto-optical disc storage is non-volatile,

sequential access, slow write, fast read storage used for tertiary and off-line storage. 3D

optical data storage has also been proposed.

Self-Assessment Question(s)

1. List three computer storage technologies you know.

http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Magnetic_tape_data_storage
http://en.wikipedia.org/wiki/Drum_memory
http://en.wikipedia.org/wiki/Magnetic_core_memory
http://en.wikipedia.org/wiki/Core_rope_memory
http://en.wikipedia.org/wiki/Thin-film_memory
http://en.wikipedia.org/wiki/Twistor_memory
http://en.wikipedia.org/wiki/NCR_CRAM
http://en.wikipedia.org/wiki/Optical_storage
http://en.wikipedia.org/wiki/Optical_disc
http://en.wikipedia.org/wiki/Laser_diode
http://en.wikipedia.org/wiki/Compact_Disc
http://en.wikipedia.org/wiki/CD-ROM
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/Blu-ray_Disc
http://en.wikipedia.org/wiki/CD-R
http://en.wikipedia.org/wiki/DVD-R
http://en.wikipedia.org/wiki/DVD%2BR
http://en.wikipedia.org/wiki/Blu-ray_Disc_recordable
http://en.wikipedia.org/wiki/CD-RW
http://en.wikipedia.org/wiki/DVD-RW
http://en.wikipedia.org/wiki/DVD%2BRW
http://en.wikipedia.org/wiki/DVD-RAM
http://en.wikipedia.org/wiki/Blu-ray_Disc_recordable
http://en.wikipedia.org/wiki/Ultra_Density_Optical
http://en.wikipedia.org/wiki/Blu-ray_Disc_recordable
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Magnetic_tape_data_storage
http://en.wikipedia.org/wiki/Magneto-optical_drive
http://en.wikipedia.org/wiki/Ferromagnetism
http://en.wikipedia.org/wiki/3D_optical_data_storage
http://en.wikipedia.org/wiki/3D_optical_data_storage

31

Self-Assessment Answer

1. Semiconductor, Magnetic Storage, Optical Storage

3.3 Related Technologies

Network Connectivity

You will also learn that a secondary or tertiary storage may connect to a computer utilizing

computer networks. This concept does not pertain to the primary storage, which is shared

between multiple processors in a much lesser degree.

1. Direct-attached storage (DAS) is a traditional mass storage that does not use any network.

This is still a most popular approach. This retronym was coined recently, together with

NAS and SAN.

2. Network-attached storage (NAS) is mass storage attached to a computer which another

computer can access at file level over a local area network, a private wide area network,

or in the case of online file storage, over the Internet. NAS is commonly associated with

the NFS and CIFS/SMB protocols.

3. Storage area network (SAN) is a specialized network that provides other computers with

storage capacity. The crucial difference between NAS and SAN is the former presents and

manages file systems to client computers, whilst the latter provides access at block-

addressing (raw) level, leaving it to attaching systems to manage data or file systems

within the provided capacity. SAN is commonly associated with Fibre Channel networks.

Robotic Storage

Large quantities of individual magnetic tapes, and optical or magneto-optical discs may be

stored in robotic tertiary storage devices. In tape storage field they are known as tape libraries,

and in optical storage field optical jukeboxes, or optical disk libraries per analogy. Smallest

forms of either technology containing just one drive device are referred to as autoloaders or

auto-changers.

Robotic-access storage devices may have a number of slots, each holding individual media,

and usually one or more picking robots that traverse the slots and load media to built-in drives.

The arrangement of the slots and picking devices affects performance. Important

characteristics of such storage are possible expansion options: adding slots, modules, drives,

robots. Tape libraries may have from 10 to more than 100,000 slots, and provide terabytes or

petabytes of near-line information. Optical jukeboxes are somewhat smaller solutions, up to

1,000 slots.

Robotic storage is used for backups, and for high-capacity archives in imaging, medical, and

video industries. Hierarchical storage management is a most known archiving strategy of

automatically migrating long-unused files from fast hard disk storage to libraries or jukeboxes.

If the files are needed, they are retrieved back to disk.

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Direct-attached_storage
http://en.wikipedia.org/wiki/Retronym
http://en.wikipedia.org/wiki/Network-attached_storage
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Wide_area_network
http://en.wikipedia.org/wiki/File_hosting_service
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Network_File_System_(protocol)
http://en.wikipedia.org/wiki/Server_Message_Block
http://en.wikipedia.org/wiki/Storage_area_network
http://en.wikipedia.org/wiki/Fibre_Channel
http://en.wikipedia.org/wiki/Tape_library
http://en.wikipedia.org/wiki/Optical_jukebox
http://en.wikipedia.org/wiki/Autoloader_(data_storage_device)
http://en.wikipedia.org/wiki/Autochanger
http://en.wikipedia.org/wiki/Terabyte
http://en.wikipedia.org/wiki/Petabyte
http://en.wikipedia.org/wiki/Backup
http://en.wikipedia.org/wiki/Hierarchical_storage_management

32

4.0 Conclusion

In this unit, you have learned about the storage systems and their technologies. You have also

learnt about computer data storage, often called storage or memory, fundamental storage

technologies and related technologies.

5.0 Summary

Computer data storage often called storage or memory is a technology consisting of computer

components and recording media used to retain digital data. It is a core function and

fundamental component of computers. As of 2011, the most commonly used data storage

technologies are semiconductor, magnetic, and optical, while paper still sees some limited

usage.

Media is a common Semiconductor memory uses semiconductor-based integrated circuits to

store information. A semiconductor memory chip may contain millions of tiny transistors or

capacitors. Both volatile and non-volatile forms of semiconductor memory exist. Magnetic

storage uses different patterns of magnetization on a magnetically coated surface to store

information. Magnetic storage is non-volatile.

The information is accessed using one or more read/write heads which may contain one or

more recording transducers. Optical storage, the typical optical disc, stores information in

deformities on the surface of a circular disc and reads this information by illuminating the

surface with a laser diode and observing the reflection. Optical disc storage is non-volatile. A

secondary or tertiary storage may connect to a computer utilizing computer networks.

This concept does not pertain to the primary storage, which is shared between multiple

processors in a much lesser degree. Large quantities of individual magnetic tapes, and optical

or magneto-optical discs may be stored in robotic tertiary storage devices.

6.0 Tutor-Marked Assignment

i. Explain how a modern digital computer presents data?

ii. Describe magnetic storage with their forms?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Semiconductor_memory
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Magnetic_storage
http://en.wikipedia.org/wiki/Magnetic_storage
http://en.wikipedia.org/wiki/Magnetization
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Optical_storage
http://en.wikipedia.org/wiki/Optical_disc
http://en.wikipedia.org/wiki/Laser_diode
http://en.wikipedia.org/wiki/Computer_network

33

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). Introduction to Computer Organisation. CIT 246 Course Material, National

Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way, Victoria

Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

34

Unit 2

Data Compression and
Data Integrity

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 What Is Data Compression?

3.2 Lossless Data Compression

3.3 Lossy Data Compression

3.4 Data Integrity – Error Checking

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

35

1.0 Introduction

In this unit what you will learn borders on data compression and data integrity. In computer

science and information theory, data compression, source coding, or bit-rate reduction

involves encoding information using fewer bits than the original representation. You will also

learn about lossless data compression, lossy data compression and data integrity- error

checking.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i. Explain data compression

ii. Describe lossless data compression

iii. Explain lossy data compression

iv. Explain data integrity – error checking

3.0 Learning Content

3.1 What is Data Compression?

In computer science and information theory, data compression, source coding, or bit-rate

reduction involves encoding information using fewer bits than the original representation. So

compression can be either lossy or lossless. You should know that lossless compression

reduces bits by identifying and eliminating statistical redundancy. No information is lost in

lossless compression. Lossy compression reduces bits by identifying marginally important

information and removing it.

The process of reducing the size of a data file is popularly referred to as data compression,

although it’s formal name is source coding (coding done at the source of the data, before it is

stored or transmitted). Compression is useful because it helps reduce resources usage, such

as data storage space or transmission capacity. Because compressed data must be

decompressed to be used, this extra processing imposes computational or other costs through

decompression, this situation is far from being a free lunch.

Data compression is subject to a space-time complexity trade-off. For instance, a compression

scheme for video may require expensive hardware for the video to be decompressed fast

enough to be viewed as it is being decompressed, and the option to decompress the video in

full before watching it may be inconvenient or require additional storage.

The design of data compression schemes involve trade-offs among various factors, including

the degree of compression, the amount of distortion introduced (e.g., when using lossy data

compression), and the computational resources required to compress and uncompress the

data.

New alternatives to traditional 'sample-sense-compress' systems (which sample a full

resolution then compress), provide efficient resource usage based on principles of

compressed sensing. Compressed sensing techniques circumvent the need for data-

compression by sampling off a cleverly selected basis.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/TANSTAAFL
http://en.wikipedia.org/wiki/Time/space_complexity
http://en.wikipedia.org/wiki/Electronic_hardware
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Compressed_sensing

36

Self-Assessment Question

1. Compression can be ______ or ______.

Self-Assessment Answer

1. Lossy and Lossless

3.2 Lossless Data Compression

Lossless data compression algorithms usually exploit statistical redundancy to represent data

more concisely without losing information. Lossless compression is possible because most

real-world data has statistical redundancy. For example, an image may have areas of colour

that do not change over several pixels; instead of coding "red pixel, red pixel ...” the data may

be encoded as "279 red pixels".

This is a simple example of run-length encoding; there are many schemes to reduce size by

eliminating redundancy. The Lempel–Ziv (LZ) compression methods are among the most

popular algorithms for lossless storage. DEFLATE is a variation on LZ which is optimized for

decompression speed and compression ratio, but compression can be slow. DEFLATE is used

in PKZIP, gzip and PNG. LZW (Lempel–Ziv–Welch) is used in GIF images.

Also noteworthy are the LZR (LZ–Renau) methods, which serve as the basis of the Zip

method. LZ methods use a table-based compression model where table entries are

substituted for repeated strings of data. For most LZ methods, this table is generated

dynamically from earlier data in the input. The table itself is often Huffman encoded (e.g. SHRI,

LZX). A current LZ-based coding scheme that performs well is LZX, used in Microsoft's CAB

format.

The very best modern lossless compressors use probabilistic models, such as prediction by

partial matching. The Burrows–Wheeler transform can also be viewed as an indirect form of

statistical modelling.

The class of grammar-based codes are recently noticed because they can extremely

compress highly repetitive text, for instance, biological data collection of same or related

species, huge versioned document collection, internet archives, etc. The basic task of

grammar-based codes is constructing a context-free grammar deriving a single string.

Sequitur and Re-Pair are practical grammar compression algorithms for which public codes

are available.

In a further refinement of these techniques, statistical predictions can be coupled to an

algorithm called arithmetic coding. Arithmetic coding, invented by Jorma Rissanen, and turned

into a practical method by Witten, Neal, and Cleary, achieves superior compression to the

better-known Huffman algorithm, and lends itself especially well to adaptive data compression

tasks where the predictions are strongly context-dependent. Arithmetic coding is used in the

bilevel image-compression standard JBIG, and the document-compression standard DjVu.

The text entry system, Dasher, is an inverse-arithmetic-coder.

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv
http://en.wikipedia.org/wiki/DEFLATE_(algorithm)
http://en.wikipedia.org/wiki/PKZIP
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/w/index.php?title=LZR_(algorithm)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/LZX_(algorithm)
http://en.wikipedia.org/wiki/Cabinet_(file_format)
http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Grammar-based_codes
http://en.wikipedia.org/wiki/Sequitur_algorithm
http://en.wikipedia.org/w/index.php?title=Re-Pair&action=edit&redlink=1
http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/Jorma_Rissanen
http://en.wikipedia.org/wiki/JBIG
http://en.wikipedia.org/wiki/DjVu
http://en.wikipedia.org/wiki/Dasher

37

Self-Assessment Question(s)

1. Lossless data compression algorithms usually exploit __________ to represent data

more concisely without losing information.

Self-Assessment Answer

1. Statistical redundancy

3.3 Lossy Data Compression

Lossy data compression is contrasted with lossless data compression. In these schemes,

some loss of information is acceptable. Depending upon the application, detail can be dropped

from the data to save storage space. Generally, lossy data compression schemes are guided

by research on how people perceive the data in question.

For example, the human eye is more sensitive to subtle variations in luminance than it is to

variations in color. JPEG image compression works in part by "rounding off" less-important

visual information. There is a corresponding trade-off between information lost and the size

reduction. A number of popular compression formats exploit these perceptual differences,

including those used in music files, images, and video.

Another improvement is lossy image compression can be used in digital cameras, to increase

storage capacities with minimal degradation of picture quality. Similarly, DVDs use the lossy

MPEG-2 Video codec for video compression. In lossy audio compression, methods of

psychoacoustics are used to remove non-audible (or less audible) components of the signal.

Compression of human speech is often performed with even more specialized techniques, so

that "speech compression" or "voice coding" is sometimes distinguished as a separate

discipline from "audio compression". Different audio and speech compression standards are

listed under audio codecs. Voice compression is used in Internet telephony for example, while

audio compression is used for CD ripping and is decoded by audio players.

Self-Assessment Question

1. In Lossy Data Compression, some level of data loss is acceptable. (True/False)

Self-Assessment Answer

1. True

3.4 Data Integrity - Error Checking

Be aware that, ensuring the integrity of data stored in memory is an important aspect of

memory design. Two primary means of accomplishing this are parity and error correction

code (ECC).

Historically, parity has been the most commonly used data integrity method. Parity can detect

- but not correct - single-bit errors. Error Correction Code (ECC) is a more comprehensive

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Luminance
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Trade-off
http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/Video_codec
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Audio_signal_processing
http://en.wikipedia.org/wiki/Speech_encoding
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Internet_telephony

38

method of data integrity checking that can detect and correct single-bit errors. Fewer and fewer

PC manufacturers are supporting data integrity checking in their designs. This is due to a

couple of factors. First, by eliminating support for parity memory, which is more expensive

than standard memory, manufacturers can lower the price of their computers. Fortunately, this

trend is complemented by the second factor: that is, the increased quality of memory

components available from certain manufacturers and, as a result, the relative infrequency of

memory errors.

The type of data integrity checking depends on how your computer system will be used. If the

computer is to play a critical role - as a server, for example - then a computer that supports

data integrity checking is an ideal choice. In general:

1. Most computers designed for use as high-end servers support ECC memory.

2. Most low-cost computers designed for use at home or for small businesses support

non-parity memory.

Self-Assessment Question

1. The means of ensuring the integrity of stored data are primarily group into ______.

Self-Assessment Answer

1. Parity and Error Correction Code (ECC)

Parity

Try to understand that when parity is in use on a computer system, one parity bit is stored in

DRAM along with every 8 bits (1 byte) of data. The two types of parity protocol exist - odd

parity and even parity – and function in similar ways. With normal parity, when 8 bits of data

are written to DRAM, a corresponding parity bit is written at the same time.

The value of the parity bit (either a 1 or 0) is determined at the time the byte is written to

DRAM, based on an odd or even quantity of 1s. Some manufacturers use a less expensive

"fake parity" chip. This chip simply generates a 1 or a 0 at the time the data is being sent to

the CPU in order to accommodate the memory controller. (For example, if the computer uses

odd parity, the fake parity chip will generate a 1 when a byte of data containing an even number

of 1s is sent to the CPU.

If the byte contains an odd number of 1s, the fake parity chip will generate a 0.) The issue

here is that the fake parity chip sends an "OK" signal no matter what. This way, it "fools" a

computer that's expecting the parity bit into thinking that parity checking is actually taking place

when it is not. The bottom line: fake parity cannot detect an invalid data bit.

This table shows how odd parity and even parity work. The processes are identical but with

opposite attributes.

39

 ODD PARITY EVEN PARITY

Step 1

The parity bit will be forced to 1 (or turned "on")

if its corresponding byte of data contains an

even number of 1's.

If the byte contains an odd number of 1's, the

parity bit is forced to 0 (or turned "off ").

The parity bit is forced to 0 if the byte

contains an even number of 1's.

The parity bit is forced to 1 if its

corresponding byte of data contains

an odd number of 1's.

Step 2
The parity bit and the corresponding 8 bits of

data are written to DRAM.
(Same as for odd parity)

Step 3

Just before the data is sent to the CPU, it is

intercepted by the parity circuit.

If the parity circuit sees an odd number of 1's,

the data is considered valid. The parity bit is

stripped from the data and the 8 data bits are

passed on to the CPU.

If the parity circuit detects an even number of

1's, the data is considered invalid and a parity

error is generated.

(Same as for odd parity)

Data is considered valid if the parity

circuit detects an even number of

1's.

Data is invalid if the parity circuit

detects an odd number of 1's.

Parity does have its limitations. For example, parity can detect errors but cannot make

corrections. This is because the parity technology can't determine which of the 8 data bits are

invalid. Furthermore, if multiple bits are invalid, the parity circuit will not detect the problem if

the data matches the odd or even parity condition that the parity circuit is checking for. For

example, if a valid 0 becomes an invalid 1 and a valid 1 becomes an invalid 0, the two defective

bits cancel each other out and the parity circuit misses the resulting errors. Fortunately, the

chances of this happening are extremely remote.

Self-Assessment Question

1. What are the two types of Parity Check you know?

Self-Assessment Answer

1. Even and Odd Parity.

Error Correction Code (ECC)

Error Correction Code is the data integrity checking method used primarily in high-end PCs

and file servers. The important difference between ECC and parity is that ECC is capable of

detecting and correcting 1-bit errors. With ECC, 1-bit error correction usually takes place

without the user even knowing an error has occurred. Depending on the type of memory

controller the computer uses, ECC can also detect rare 2-, 3-, or 4-bit memory errors.

While ECC can detect these multiple-bit errors, you should know that they cannot correct

them. However, there are some more complex forms of ECC that can correct multiple bit

40

errors. Using a special mathematical sequence, algorithm, and working in conjunction with the

memory controller, the ECC circuit appends ECC bits to the data bits, which are stored

together in memory.

When the CPU requests data from memory, the memory controller decodes the ECC bits and

determines if one or more of the data bits are corrupted. If there's a single-bit error, the ECC

circuit corrects the bit. In the rare case of a multiple-bit error, the ECC circuit reports a parity

error.

Self-Assessment Question

1. ECC can correct ___ bit(s) in error.

Self-Assessment Answer

1. One

4.0 Conclusion

What you have learnt in this unit is on data compression and data integrity. You have also

learnt about lossless data compression, lossy data compression and data integrity- error

checking.

5.0 Summary

In computer science and information theory, data compression, source coding, or bit-rate

reduction involves encoding information using fewer bits than the original representation.

Compression can be either lossy or lossless. Lossless compression reduces bits by identifying

and eliminating statistical redundancy. No information is lost in lossless compression. Lossy

compression reduces bits by identifying marginally important information and removing it.

Ensuring the integrity of data stored in memory is an important aspect of memory design. Two

primary means of accomplishing this are parity and error correction code (ECC). Historically,

parity has been the most commonly used data integrity method. Parity can detect - but not

correct - single-bit errors. Error Correction Code (ECC) is a more comprehensive method of

data integrity checking that can detect and correct single-bit errors.

When parity is in use on a computer system, one parity bit is stored in DRAM along with every

8 bits (1 byte) of data. The two types of parity protocol - odd parity and even parity - function

in similar ways. Error Correction Code is the data integrity checking method used primarily in

high-end PCs and file servers. The important difference between ECC and parity is that ECC

is capable of detecting and correcting 1-bit errors.

 6.0 Tutor-Marked Assignment

1. Explain parity in data integrity?

2. What do you understand by lossy data compression?

3. Explain data compression and its usefulness in computer science?

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Redundancy_(information_theory)

41

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_umg_05_005

42

Unit 3

Memory Hierarchy,
Organization and Operations

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Memory Hierarchy

3.1.1 Internal Processor Memories

3.1.2 Primary Memory or Main Memory

3.1.3 Secondary Memory/Auxiliary Memory/Backing Store

3.2 Characteristics Terms for Various Memory Devices

3.3 Memory Interleaving

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

43

1.0 Introduction

In this unit what you will learn concerns memory hierarchy, organization and operations.

Memory in a computer system is required for storage and subsequent retrieval of the

instructions and data. A computer system uses variety of devices for storing these instructions

and data which are required for its operations. Normally we classify the

information to be stored on computer in two basic categories:

Data and the Instructions. “The storage devices along with the algorithm or information on how

to control and manage these storage devices constitute the memory system of a computer.

“A memory system is a very simple system yet it exhibits a wide range of

technology and types.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i. Explain memory hierarchy

ii. Describe characteristics terms for various memory devices

iii. Explain memory interleaving

3.0 Learning Content

3.1 Memory Hierarchy

A typical memory hierarchy starts with a small, expensive, and relatively fast unit, called the

cache. Followed by a larger, less expensive, and relatively slow main memory unit. Cache and

main memory are built using solid-state semiconductor material (typically CMOS transistors).

It is customary to call the fast memory level the primary memory. The solid-state memory is

followed by larger, less expensive, and far slower magnetic memories that consist typically of

the (hard) disk and the tape.

It is customary to call the disk the secondary memory, while the tape is conventionally called

the tertiary memory. The objective behind designing a memory hierarchy is to have a memory

system that performs as if it consists entirely of the fastest unit and whose cost is dominated

by the cost of the slowest unit.

Figure 1: Typical Memory Hierarchy

44

Self-Assessment Question

1. Why is the memory hierarchy employed in memory architecture?

Self-Assessment Answer

1. The objective behind designing a memory hierarchy is to have a memory system that

performs as if it consists entirely of the fastest unit and whose cost is dominated by the

cost of the slowest unit

Thus, a memory system can be considered to consist of three group of memories. These are:

3.1.1 Internal Processor Memories

These consist of the small set of high speed registers which are internal to a processor and

are used as temporary locations where actual processing is done.

3.1.2 Primary Memory or Main Memory

It is a large memory which is fast but not as fast as internal processor memory. This

memory is accessed directly by the processor. It is mainly based on integrated circuits (IC).

3.1.3 Secondary Memory/Auxiliary Memory/Backing Store:

Auxiliary memory in fact is much larger in size than main memory but is slower than main

memory. It normally stores system programs (programs which are used by system

to perform various operational functions), other instructions, programs and data files.

Secondary memory can also be used as an overflow memory in case the main memory

capacity has been exceeded.

Secondary memories cannot be accessed directly by a processor. First the information

of these memories is transferred to the main memory and then the information can be

accessed as the information of main memory. There is another kind of memory which is

increasingly being used in modern computers, this is called Cache memory. It is logically

positioned between the internal memory (registers) and main memory. It stores or catches

some of the content of the main memory which is currently in use of the processor. We will

discuss about this memory in greater details in a subsequent section of this unit.

Self-Assessment Question

1. List the three groups of memories that constitute a memory system.

Self-Assessment Answer

1. Internal Processor Memory, Primary (Main) Memory, Secondary Memory.

3.2 Characteristics Terms for Various Memory Devices

The memory hierarchy can be characterized by a number of parameters. Among these

parameters are the access type, capacity, cycle time, latency, bandwidth, and cost.

45

The term access: refers to the action that physically takes place during a read or writes

operation.

The capacity: of a memory level is usually measured in bytes.

The cycle time: is defined as the time elapsed from the start of a read operation to the start

of a subsequent read.

The latency: is defined as the time interval between the request for information and the access

to the first bit of that information.

The bandwidth: provides a measure of the number of bits per second that can be accessed.

The cost: of a memory level is usually specified as dollars per megabytes. Figure 1 depicts a

typical memory hierarchy. Table 1 provides typical values of the memory hierarchy

parameters.

The term random access: refers to the fact that any access to any memory location takes

the same fixed amount of time regardless of the actual memory location and/or the sequence

of accesses that takes place. For example, if a write operation to memory location 100 takes

15 ns and if this operation is followed by a read operation to memory location 3000, then the

latter operation will also take 15 ns.

This is to be compared to sequential access in which if access to location 100 takes 500 ns,

and if a consecutive access to location 101 takes 505 ns, then it is expected that an access

to location 300 may take 1500 ns. This is because the memory has to cycle through locations

100 to 300, with each location requiring 5 ns.

The effectiveness of a memory hierarchy depends on the principle of moving information into

the fast memory infrequently and accessing it many times before replacing it with new

information. This principle is possible due to a phenomenon called locality of reference; that

is, within a given period of time, programs tend to reference a relatively confined area of

memory repeatedly. There exist two forms of locality: spatial and temporal locality.

Example:

Give any example of volatile memory in computer?

Answer:

Random Access Memory (RAM)

Table 1: Memory Hierarchy Parameters

46

3.3 Memory Interleaving

One possible technique that you will use to increase the bandwidth is memory interleaving. To

achieve best results, we can assume that the block brought from the main memory to the

cache, upon a cache miss, consists of elements that are stored in different memory modules,

that is, whereby consecutive memory addresses are stored in successive memory modules.

Figure 2 illustrates the simple case of a main memory consisting of eight memory modules.

 It is assumed in this case that the block consists of 8 bytes. Having introduced the basic idea

leading to the use of a cache memory, we would like to assess the impact of temporal and

spatial locality on the performance of the memory hierarchy. In order to make such an

assessment, we will limit our deliberation to the simple case of a hierarchy consisting only of

two levels, that is, the cache and the main memory.

We assume that the main memory access time is tm and the cache access time is tc. We will

measure the impact of locality in terms of the average access time, defined as the average

time required to access an element (a word) requested by the processor in such a two-level

hierarchy.

Self-Assessment Question

1. The effectiveness of a memory hierarchy depends on the principle of moving

information into the fast memory infrequently and accessing it many times before

replacing it with new information. True/False?

Self-Assessment Answer

1. True

4.0 Conclusion

What you have learnt in this unit is on memory hierarchy, organization and operations. Also,

you have learnt about memory hierarchy, internal processor memories, primary memory or

main memory, secondary memory/auxiliary memory/backing Store, characteristics terms for

various memory devices and memory interleaving.

Figure 2: Memory interleaving using eight modules

47

5.0 Summary

A typical memory hierarchy starts with a small, expensive, and relatively fast unit, called the

cache, followed by a larger, less expensive, and relatively slow main memory unit.

Cache and main memory are built using solid-state semiconductor material (typically CMOS

transistors). It is customary to call the fast memory level the primary memory. The memory

hierarchy can be characterized by a number of parameters.

Among these parameters are the access type, capacity, cycle time, latency, bandwidth, and

cost. One possible technique that is used to increase the bandwidth is memory interleaving.

To achieve best results, we can assume that the block brought from the main memory to the

cache, upon a cache miss, consists of elements that are stored in different memory modules,

that is, whereby consecutive memory addresses are stored in successive memory modules.

 6.0 Tutor-Marked Assignment

1. Explain memory hierarchy with the aid of diagram?

2. Explain the characteristics terms for various memory devices?

7.0 References/Further Reading

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. (2002): Drowsy Caches:

Simple Techniques for Reducing Leakage Power. In International Symposium on

Computer Architecture. (ISCA), 148–157

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A.(2006). Computer Architecture: A Quantitative Approach,

Morgan Kaufmann. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993).Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

Murdocca M. J. and Heuring, V. P. (1999). Principles of Computer Architecture. (Class test

edition). Prentice Hall.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

48

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_umg_05_005

49

Unit 4

Cache Memory and Virtual
Memory

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Cache Memory

3.1.1 Associative Mapped Cache

3.1.2 Direct Mapped Cache

3.1.3 Set Associative Mapped Cache

3.1.4 Cache Performance

3.1.5 Hit Ratios and Effective Access Times

3.2 Virtual Memory

3.2.1 Overlays

3.2.2 Paging

3.2.3 Segmentation

3.2.4 Fragmentation

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

50

1.0 Introduction

In this unit what you will learn concerns cache memory and virtual memory. Cache memories

are small fast memories placed between the processor and the main memory. Caches are

faster than main memory, the caches although are fast yet are very expensive

memories and are used in only small sizes.

The virtual memory is a memory management technique which does splitting of a program

into number of pieces as well as swapping. The basic idea behind virtual memory is that the

combined size of the program, data and stack may exceed the amount of physical

memory.

2.0 Learning Outcome

At the end of this unit, you should be able to:

i. Explain cache memory

ii. Describe associative mapped cache

iii. Explain direct mapped cache

iv. Explain set associative mapped cache

v. Describe cache performance

vi. Explain hit ratios and effective access times

vii. Describe virtual memory

viii. Explain overlays

ix. Explain paging

x. Describe segmentation

xi. Explain fragmentation

3.0 Learning Content

3.1 Cache Memory

When a program executes on a computer, most of the memory references are made to a small

number of locations. Typically, 90% of the execution time of a program is spent in just 10% of

the code. This property is known as the locality principle. When a program references a

memory location, it is likely to reference that same memory location again soon, which is

known as temporal locality.

Similarly, as you will learn, there is spatial locality, in which a memory location that is near a

recently referenced location is more likely to be referenced than a memory location that is

farther away. Temporal locality arises because programs spend much of their time in repetition

or in recursion, and thus the same section of code is visited an unduly large number of times.

Spatial locality arises because data tends to be stored in contiguous locations. Although 10%

of the code accounts for the bulk of memory references, accesses within the 10% tend to be

51

clustered. Thus, for a given interval of time, most of memory accesses come from an even

smaller set of locations than 10% of a program’s size. Memory access is generally slow when

compared with the speed of the central processing unit (CPU), and so the memory poses a

significant bottleneck in computer performance.

Since most memory references come from a small set of locations, the locality principle can

be exploited in order to improve performance. A small but fast cache memory, in which the

contents of the most commonly accessed locations are maintained, can be placed between

the main memory and the CPU. When a program executes, the cache memory is searched

first, and the referenced word is accessed in the cache if the word is present.

If the referenced word is not in the cache, then a free location is created in the cache and the

referenced word is brought into the cache from the main memory. The word is then accessed

in the cache. Although this process takes longer than accessing main memory directly, the

overall performance can be improved if a high proportion of memory accesses are satisfied

by the cache.

Modern memory systems may have several levels of cache, referred to as Level 1 (L1), Level

2 (L2), and even, in some cases, Level 3 (L3). In most instances the L1 cache is implemented

right on the CPU chip. Both the Intel Pentium and the IBM-Motorola PowerPC G3 processors

have 32 Kbytes of L1 cache on the CPU chip. A cache memory is faster than main memory

for a number of reasons.

Faster electronics can be used, which also results in a greater expense in terms of money,

size, and power requirements. Since the cache is small, this increase in cost is relatively small.

A cache memory has fewer locations than a main memory, and as a result it has a shallow

decoding tree, which reduces the access time. The cache is placed both physically closer and

logically closer to the CPU than the main memory, and this placement avoids communication

delays over a shared bus. A typical situation is shown in Figure 7-12. A simple computer

without a cache memory is shown in the left side of the figure.

This cache-less computer contains a CPU that has a clock speed of 400 MHz, but

communicates over a 66 MHz bus to a main memory that supports a lower clock speed of 10

MHz. A few bus cycles are normally needed to synchronize the CPU with the bus, and thus

the difference in speed between main memory and the CPU can be as large as a factor of ten

or more.

52

A cache memory can be positioned closer to the CPU as shown in the right side of Figure 7-

12, so that the CPU sees fast accesses over a 400 MHz direct path to the cache.

Self-Assessment Question

1. What is the Memory Locality Principle?

Self-Assessment Answer

1. When a program executes on a computer, most of the memory references are made

to a small number of locations. Typically, 90% of the execution time of a program is

spent in just 10% of the code. This property is known as the locality principle.

3.1.1 Associative Mapped Cache

A number of hardware schemes have been developed for translating main memory addresses

to cache memory addresses. The user does not need to know about the address translation,

which has the advantage that cache memory enhancements can be introduced into a

computer without a corresponding need for modifying application software. The choice of

cache mapping scheme affects cost and performance, and there is no single best method that

is appropriate for all situations. In this section, an associative mapping scheme is studied.

Figure 7-13 shows an associative map

Mapping scheme for a 232 word memory space that is divided into 227 blocks of 25 = 32 words

per block. The main memory is not physically partitioned in this way, but this is the view of

main memory that the cache sees. Cache blocks, or cache lines, as they are also known,

typically range in size from 8 to 64 bytes. Data is moved in and out of the cache a line at a

time using memory interleaving (discussed earlier).

However, the cache for this example consists of 214 slots into which main memory blocks are

placed. There are more main memory blocks than there are cache slots, and any one of the

227 main memory blocks can be mapped into each cache slot (with only one block placed in a

53

slot at a time). To keep track of which one of the 227 possible blocks is in each slot, you need

to know that a 27-bit tag field is added to each slot which holds an identifier in the range from

0 to 227 – 1.

The tag field is the most significant 27 bits of the 32-bit memory address presented to the

cache. All the tags are stored in a special tag memory where they can be searched in parallel.

Whenever a new block is stored in the cache, its tag is stored in the corresponding tag memory

location.

When you first load a program into main memory, the cache is cleared, and so while a program

is executing, a valid bit is needed to indicate whether or not the slot holds a block that belongs

to the program being executed. There is also a dirty bit that keeps track of whether or not a

block has been modified while it is in the cache. A slot that is modified must be written back to

the main memory before the slot is reused for another block.

A referenced location that is found in the cache results in a hit, otherwise, the result is a miss.

When a program is initially loaded into memory, the valid bits are all set to 0. The first

instruction that is executed in the program will therefore cause a miss, since none of the

program is in the cache at this point. The block that causes the miss is located in the main

memory and is loaded into the cache.

In an associative mapped cache, each main memory block can be mapped to any slot. The

mapping from main memory blocks to cache slots is performed by partitioning an address into

fields for the tag and the word (also known as the “byte” field) as shown below:

When a reference is made to a main memory address, the cache hardware intercepts the

reference and searches the cache tag memory to see if the requested block is in the cache.

For each slot, if the valid bit is 1, then the tag field of the referenced address is compared with

the tag field of the slot. All of the tags are searched in parallel, using an associative memory

(which is something different than an associative mapping scheme.)

If any tag in the cache tag memory matches the tag field of the memory reference, then the

word is taken from the position in the slot specified by the word field. If the referenced word is

not found in the cache, then the main memory block that contains the word is brought into the

cache and the referenced word is then taken from the cache. The tag, valid, and dirty fields

are updated, and the program resumes execution.

Replacement Policies in Associative Mapped Caches

When a new block needs to be placed in an associative mapped cache, an available slot must

be identified. If there are unused slots, such as when a program begins execution, then the

first slot with a valid bit of 0 can simply be used. When all of the valid bits for all cache slots

are 1, however, then one of the active slots must be freed for the new block.

Four replacement policies that are commonly used are: least recently used (LRU), first-in

first-out (FIFO), least frequently used (LFU), and random. A fifth policy that is used for

analysis purposes only, is optimal. For the LRU policy, a time stamp is added to each slot,

which is updated when any slot is accessed.

54

When a slot must be freed for a new block, the contents of the least recently used slot, as

identified by the age of the corresponding time stamp, are discarded and the new block is

written to that slot. The LFU policy works similarly, except that only one slot is updated at a

time by incrementing a frequency counter that is attached to each slot. When a slot is needed

for a new block, the least frequently used slot is freed.

The FIFO policy replaces slots in round-robin fashion, one after the next in the order of their

physical locations in the cache. The random replacement policy simply chooses a slot at

random. The optimal replacement policy is not practical, but is used for comparison purposes

to determine how effective other replacement policies are to the best possible.

That is, the optimal replacement policy is determined only after a program has already

executed, and so it is of little help to a running program. Studies have shown that the LFU

policy is only slightly better than the random policy. The LRU policy can be implemented

efficiently, and is sometimes preferred over the others for that reason.

Advantages and Disadvantages of the Associative Mapped Cache

The associative mapped cache has the advantage that any main memory block can be placed

into any cache slot. This means that regardless of how irregular the data and program

references are, if a slot is available for the block, it can be stored in the cache. This results in

considerable hardware overhead needed for cache bookkeeping.

Each slot must have a 27-bit tag that identifies its location in main memory, and each tag must

be searched in parallel. This means that in the example above the tag memory must be 27 x

214 bits in size, and as described above, there must be a mechanism for searching the tag

memory in parallel.

Memories that can be searched for their contents, in parallel, are referred to as associative,

or content-addressable memories. By restricting where each main memory block can be

placed in the cache, we can eliminate the need for an associative memory. This kind of cache

is referred to as a direct mapped cache, which is discussed in the next section.

Self-Assessment Question

1. What are the four replacement policies in Associative Mapped Caches?

Self-Assessment Answer

1. Least recently used (LRU), first-in first-out (FIFO), least frequently used (LFU), and

random.

3.1.2 Direct Mapped Cache

Figure 7-14 shows a direct mapping scheme for a 232 word memory. As before, the memory

is divided into 227 blocks of 25 = 32 words per block, and the cache consists of 214 slots. There

are more main memory blocks than there are cache slots, and a total of 227/214 = 213 main

memory blocks can be mapped onto each cache slot. In order to keep track of which of the

213 possible blocks is in each slot, a 13-bit tag field is added to each slot which holds an

identifier in the range from 0 to 213 – 1.

55

This scheme is called “direct mapping” because each cache slot corresponds to an explicit set

of main memory blocks. For a direct mapped cache, each main memory block can be mapped

to only one slot, but each slot can receive more than one block. The mapping from main

memory blocks to cache slots is performed by partitioning an address into fields for the tag,

the slot, and the word as shown below:

The 32-bit main memory address is partitioned into a 13-bit tag field, followed by a 14-bit slot

field, followed by a five-bit word field. When a reference is made to a main memory address,

the slot field identifies in which of the 214 slots the block will be found if it is in the cache. If the

valid bit is 1, then the tag field of the referenced address is compared with the tag field of the

slot.

If the tag fields are the same, then the word is taken from the position in the slot specified by

the word field. If the valid bit is 1 but the tag fields are not the same, then the slot is written

back to main memory if the dirty bit is set, and the corresponding main memory block is then

read into the slot. For a program that has just started execution, the valid bit will be 0, and so

the block is simply written to the slot. The valid bit for the block is then set to 1, and the program

resumes execution.

Advantages and Disadvantages of the Direct Mapped Cache

The direct mapped cache is a relatively simple scheme to implement. The tag memory in the

example above is only 13 x 214 bits in size, less than half of the associative mapped cache.

Furthermore, there is no need for an associative search, since the slot field of the main

memory address from the CPU is used to “direct” the comparison to the single slot where the

block will be if it is indeed in the cache.

This simplicity comes at a cost. Consider what happens when a program references locations

that are 219 words apart, which is the size of the cache. This pattern can arise naturally if a

matrix is stored in memory by rows and is accessed by columns. Every memory reference will

result in a miss, which will cause an entire block to be read into the cache even though only a

single word is used.

56

Worse still, only a small fraction of the available cache memory will actually be used. Now it

may seem that any programmer who writes a program this way deserves the resulting poor

performance, but in fact, fast matrix calculations use power-of-two dimensions (which allows

shift operations to replace costly multiplications and divisions for array indexing), and so the

worst-case scenario of accessing memory locations that are 219 addresses apart is not all that

unlikely.

To avoid this situation without paying the high implementation price of a fully associative cache

memory, the set associative mapping scheme can be used, which combines aspects of both

direct mapping and associative mapping. Set associative mapping, which is also known as

set-direct mapping, is described in the next section.

Self-Assessment Question

1. What is the advantage of Direct Mapped Cache?

Self-Assessment Answer

1. Simplicity in implementation

3.1.3 Set Associative Mapped Cache

The set associative mapping scheme combines the simplicity of direct mapping with the

flexibility of associative mapping. Set associative mapping is more practical than fully

associative mapping because the associative portion is limited to just a few slots that make

up a set, as illustrated in Figure 7-15. For this example,

two blocks make up a set, and so it is a two-way set associative cache. If there are four blocks

per set, then it is a four-way set associative cache. Since there are 214 slots in the cache, there

57

are 214/2 = 213 sets. When an address is mapped to a set, the direct mapping scheme is used,

and then associative mapping is used within a set.

The format for an address has 13 bits in the set field, which identifies the set in which the

addressed word will be found if it is in the cache. There are five bits for the word field as before

and there is a 14-bit tag field that together make up the remaining 32 bits of the address as

shown below:

As an example of how the set associative cache views a main memory address, consider

again the address (A035F014)16. The leftmost 14 bits form the tag field, followed by 13 bits

for the set field, followed by five bits for the word field as shown below:

As before, the partitioning of the address field is known only to the cache, and the rest of the

computer is oblivious to any address translation. Advantages and Disadvantages of the Set

Associative Mapped Cache In the example above, the tag memory increases only slightly from

the direct mapping example, to 13 x214 bits, and only two tags need to be searched for each

memory reference. The set associative cache is almost universally used in today’s

microprocessors.

Self-Assessment Question

1. The set associative mapping scheme combines the simplicity of ___with the flexibility

of __.

Self-Assessment Answer

1. Direct mapping, Associative mapping

3.1.4 Cache Performance

Notice that we can readily replace the cache direct mapping hardware with associative or set

associative mapping hardware, without making any other changes to the computer or the

software. Only the runtime performance will change between methods. Runtime performance

is the purpose behind using a cache memory, and there are a number of issues that need to

be addressed as to what triggers a word or block to be moved between the cache and the

main memory.

Cache read and write policies are summarized in Figure 7-16. The policies depend upon

whether or not the requested word is in the cache. If a cache read operation is taking place,

and the referenced data is in the cache, then there is a “cache hit” and the referenced data is

immediately forwarded to the CPU. When a cache miss occurs, then the entire block that

contains the referenced word is read into the cache.

58

In some cache organizations, the word that causes the miss is immediately forwarded to the

CPU as soon as it is read into the cache, rather than waiting for the remainder of the cache

slot to be filled, which is known as a load-through operation. For a non-interleaved main

memory, if the word occurs in the last position of the block, then no performance gain is

realized since the entire slot is brought in before load-through can take place. For an

interleaved main memory, the order of accesses can be organized so that a load-through

operation will always result in a performance gain.

For write operations, if the word is in the cache, then there may be two copies of the word,

one in the cache, and one in main memory. If both are updated simultaneously, this is referred

to as write-through. If the write is deferred until the cache line is flushed from the cache, this

is referred to as write-back.

Even if the data item is not in the cache when the write occurs, there is the choice of bringing

the block containing the word into the cache and then updating it, known as write-allocate, or

to update it in main memory without involving the cache, known as write-no-allocate. Some

computers have separate caches for instructions and data, which is a variation of a

configuration known as the Harvard architecture (also known as a split cache), in which

instructions and data are stored in separate sections of memory.

Since instruction slots can never be dirty (unless we write self-modifying code, which is rare

these days), an instruction cache is simpler than a data cache. In support of this configuration,

observations have shown that most of the memory traffic moves away from main memory

rather than toward it.

Statistically, there is only one write to memory for every four read operations from memory.

One reason for this is that instructions in an executing program are only read from the main

memory, and are never written to the memory except by the system loader. Another reason is

59

that operations on data typically involve reading two operands and storing a single result,

which means there are two read operations for every write operation.

A cache that only handles reads, while sending writes directly to main memory can thus also

be effective, although not necessarily as effective as a fully functional cache. As to which

cache read and write policies are best, there is no simple answer. The organization of a cache

is optimized for each computer architecture and the mix of programs that the computer

executes. Cache organization and cache sizes are normally determined by the results of

simulation runs that expose the nature of memory traffic.

Self-Assessment Question

1. The main reason behind using Cache memory is to improve runtime performance.

True/False.

Self-Assessment Answer

1. True

3.1.5 Hit Ratios and Effective Access Times

Two measures that characterize the performance of a cache memory are the hit ratio and the

effective access time. The hit ratio is computed by dividing the number of times referenced

words are found in the cache by the total number of memory references. The effective access

time is computed by dividing the total time spent accessing memory (summing the main

memory and cache access times) by the total number of memory references. The

corresponding equations are given below:

Consider computing the hit ratio and the effective access time for a program running on a

computer that has a direct mapped cache with four 16-word slots. The layout of the cache and

the main memory are shown in Figure 7-17. The cache access time is 80 ns, and the time for

transferring a main memory block to the cache is 2500 ns.

Assume that load-through is used in this architecture and that the cache is initially empty. A

sample program executes from memory locations 48 – 95, and then loops 10 times from 15 –

31 before halting. We record the events as the program executes as shown in Figure 7-18.

Since the memory is initially empty, the first instruction that executes causes a miss.

A miss thus occurs at location 48, which causes main memory block #3 to be read into cache

slot #3. This first memory access takes 2500 ns to complete. Load-through is used for this

example, and so the word that causes the miss at location 48 is passed directly to the CPU

while the rest of the block is loaded into the cache.

60

Although the hit ratio is 97.6%, the effective access time for this example is almost 75% longer

than the cache access time. This is due to the large amount of time spent in accessing a block

from main memory.

Self-Assessment Question

1. What are the two measures that characterize cache memory performance?

61

Self-Assessment Answer

1. Hit ratio and the effective access time.

3.2 Virtual Memory

Despite the enormous advancements in creating ever larger memories in smaller areas,

computer memory is still like closet space, in the sense that we can never have enough of it.

An economical method of extending the apparent size of the main memory is to augment it

with disk space, which is one aspect of virtual memory that we cover in this section.

Disk storage appears near the bottom of the memory hierarchy, with a lower cost per bit than

main memory, and so it is reasonable to use disk storage to hold the portions of a program or

data sets that do not entirely fit into the main memory.

In a different aspect of virtual memory, complex address mapping schemes are supported,

which give greater flexibility in how the memory is used. We explore these aspects of virtual

memory below.

3.2.1 Overlays

An early approach of using disk storage to augment the main memory made use of overlays,

in which an executing program overwrites its own code with other code as needed. In this

scenario, the programmer has the responsibility of managing memory usage. Figure 7-20

shows an example in which a program contains a main routine and three subroutines A, B,

and C.

The physical memory is smaller than the size of the program, but is larger than any single

routine. A strategy for managing memory using overlays is to modify the program so that it

keeps track of which subroutines are in memory, and reads in subroutine code as needed.

Typically, the main routine serves as the driver and manages the bulk of the bookkeeping.

The driver stays in memory while other routines are brought in and out.

Figure 7-20 shows a partition graph that is created for the example program. The partition

graph identifies which routines can overlay others based on which subroutines call others.

62

For this example, the main routine is always present, and supervises which subset of

subroutines are in memory. Subroutines B and C are kept in the same partition in this example

because B Calls C, but subroutine A is in its own partition because only the main routine calls

A. Partition #0 can thus overlay partition #1, and partition #1 can overlay partition #0.

Although this method will work well in a variety of situations, a cleaner solution might be to let

an operating system manage the overlays. When more than one program is loaded into

memory, however, then the routines that manage the overlays cannot operate without

interacting with the operating system in order to find out which portions of memory are

available.

This scenario introduces a great deal of complexity into managing the overlay process since

there is a heavy interaction between the operating system and each program. An alternative

method that can be managed by the operating system alone is called paging, which is

described in the next section.

Self-Assessment Question

1. An early approach of using disk storage to augment the main memory made use

of______,

Self-Assessment Answer

1. Overlays

3.2.2 Paging

Paging is a form of automatic overlaying that is managed by the operating system. The

address space is partitioned into equal sized blocks, called pages. Pages are normally an

integral power of two in size such as 210 = 1024 bytes. Paging makes the physical memory

appear larger than it truly is by mapping the physical memory address space to some portion

of the virtual memory address space, which is normally stored on a disk.

An illustration of a virtual memory mapping scheme is shown in Figure 7-21. Eight virtual

pages are mapped to four physical page frames.

63

An implementation of virtual memory must handle references that are made outside of the

portion of virtual space that is mapped to physical space. The following sequence of events is

typical when a referenced virtual location is not in physical memory, which is referred to as a

Page fault:

1. A page frame is identified to be overwritten. The contents of the page frame are written

to secondary memory if changes were made to it, so that the changes are recorded

before the page frame is overwritten.

2. The virtual page that we want to access is located in secondary memory and is written

into physical memory, in the page frame located in (1) above.

3. The page table (see below) is updated to map the new section of virtual memory onto

the physical memory.

4. Execution continues.

For the virtual memory shown in Figure 7-21, there are 213 = 8192 virtual locations and so an

executing program must generate 13-bit addresses, which are interpreted as a 3-bit page

number and a 10-bit offset within the page. Given the 3-bit page number, we need to find out

where the page is: it is either in one of the four page frames, or it is in secondary memory.

In order to keep track of which pages are in physical memory, a page table is maintained, as

illustrated in Figure 7-22, which corresponds to the mapping shown in Figure 7-21.

The page table has as many entries as there are virtual pages. The present bit indicates

whether or not the corresponding page is in physical memory. The disk address field is a

pointer to the location that the corresponding page can be found on a disk unit. The operating

system normally manages the disk accesses, and so the page table only needs to maintain

the disk addresses that the operating system assigns to blocks when the system starts up.

The disk addresses normally do not change during the course of computation. The page frame

field indicates which physical page frame holds a virtual page, if the page is in physical

memory. For pages that are not in physical memory, the page frame fields are invalid, and so

they are marked with “xx” in Figure 7-22.

In order to translate a virtual address to a physical address, we take two-page frame bits from

the page table and append them to the left of the 10-bit offset, which produces the physical

64

address for the referenced word. Consider the situation shown in Figure 7-23, in which a

reference is made to virtual address 1001101000101. The three leftmost bits of the virtual

address (100) identify the page.

The bit pattern that appears in the page frame field (11) is appended to the left of the 10-bit

offset (1101000101), and the resulting address (111101000101) indicates which physical

memory address holds the referenced word. It may take a relatively long period of time for a

program to be loaded into memory.

The entire program may never be executed, and so the time required to load the program from

a disk into the memory can be reduced by loading only the portion of the program that is

needed for a given interval of time. The demand paging scheme does not load a page into

memory until there is a page fault.

After a program has been running for a while, only the pages being used will be in physical

memory (this is referred to as the working set), so demand paging does not have a significant

impact on long running programs. Consider again the memory mapping shown in Figure 7-21.

The size of the virtual address space is 213 words, and the physical address space is 212 words.

There are eight pages that each contain 210 words. Assume that the memory is initially empty,

and that demand paging is used for a program that executes from memory locations 1030 to

5300. The execution sequence will make accesses to pages 1, 2, 3, 4, and 5, in that order.

The page replacement policy is FIFO. Figure 7-24 shows the configuration of the page table

as execution proceeds. The first access to memory will cause a page fault on virtual address

1030, which is in page #1. The page is brought into physical memory, and the valid bit and

page frame field are updated in the page table.

65

Execution continues, until page #5 must be brought in, which forces out page #1 due to the

FIFO page replacement policy. The final configuration of the page table in Figure 7-24 is

shown after location 5300 is accessed.

3.2.3 Segmentation

Virtual memory as we have discussed it up to this point is one-dimensional in the sense that

addresses grow either up or down. Segmentation divides the address space into segments,

which may be of arbitrary size. Each segment is its own one-dimensional address space. This

allows tables, stacks, and other data structures to be maintained as logical entities that grow

without bumping into each other.

Segmentation allows for protection, so that a segment may be specified as “read only” to

prevent changes, or “execute only” to prevent unauthorized copying. This also protects users

from trying to write data into instruction areas. When segmentation is used with virtual

memory, the size of each segment’s address space can be very large, and so the physical

memory devoted to each segment is not committed until needed.

Figure 7-25 illustrates a segmented memory. The executable code for a word pro

66

Processing program is loaded into Segment #0. This segment is marked as “execute only”

and is thus protected from writing. Segment #1 is used for the data space for user #0, and is

marked as “read/write” for user #0, so that no other user can have access to this area.

Segment #2 is used for the data space for user #1, and is marked as “read/write” for user #1.

The same word processor can be used by both user #0 and user #1, in which case the code

in segment #0 is shared, but each user has a separate data segment. Segmentation is not the

same thing as paging. With paging, the user does not see the automatic overlaying. With

segmentation, the user is aware of where segment boundaries are.

The operating system manages protection and mapping, and so an ordinary user does not

normally need to deal with bookkeeping, but a more sophisticated user such as a computer

programmer may see the segmentation frequently when array pointers are pushed past

segment boundaries in errant programs. In order to specify an address in a segmented

memory, the user’s program must specify a segment number and an address within the

segment. The operating system then translates the user’s segmented address to a physical

address.

Self-Assessment Questions

1. What is Segmentation?

Self-Assessment Answer

1. Division of the address space into segments.

3.2.4 Fragmentation

When a computer is “booted up,” it goes through an initialization sequence that loads the

operating system into memory. A portion of the address space may be reserved for I/O

devices, and the remainder of the address space is then available for use by the operating

system.

67

This remaining portion of the address space may be only partially filled with physical memory:

the rest comprises a “Dead Zone” which must never be accessed since there is no hardware

that responds to the Dead Zone addresses.

Figure 7-26a shows the state of a memory just after the initialization sequence.

The “Free Area” is a section of memory that is available to the operating system for loading

and executing programs. During the course of operation, programs of various sizes will be

loaded into memory and executed. When a program finishes execution, the memory space

that is assigned to that program is released to the operating system.

As programs are loaded and executed, the Free Area becomes subdivided into a collection of

small areas, none of which may be large enough to hold a program that would fit unless some

or all of the free areas are combined into a single large area. This is a problem known as

fragmentation, and is encountered with segmentation, because the segments must ultimately

be mapped within a single linear address space.

Figure 7-26b illustrates the fragmentation problem. When the operating system needs to find

a free area that is large enough to hold a program, it will rarely find an exact match. The free

area will generally be larger than the program, which has the effect of subdividing the free

areas more finely as programs are mismatched with free areas. One method of assigning

programs to free areas is called first fit, in which the free areas are scanned until a large

enough area is found that will satisfy the program. Another method is called best fit, in which

the free area is used that wastes the least amount of space.

While best fit makes better use of memory than first fit, it requires more time because all of

the free areas must be scanned. Regardless of which algorithm is used, the process of

assigning programs or data to free areas tends to produce smaller free areas (Knuth, 1974).

This makes it more difficult to find a single contiguous free area that is large enough to satisfy

the needs of the operating system.

68

An approach that helps to solve this problem coalesces adjacent free areas into a single larger

free area. In Figure 7-26b, the two adjacent free areas are combined into a single free area,

as illustrated in Figure 7-26c.

Self-Assessment Question

1. What are the two methods used for assigning programs to free memory areas?

Self-Assessment Answer

1. First fit and Best fit.

4.0 Conclusion

What you have learnt in this unit is on cache memory and virtual memories. Also, you have

learnt about associative mapped cache, direct mapped cache, set associative mapped cache,

cache performance, hit ratios and effective access times. You also learnt about overlays,

paging, segmentation and fragmentation.

5.0 Summary

When a program executes on a computer, most of the memory references are made to a small

number of locations. Typically, 90% of the execution time of a program is spent in just 10% of

the code. This property is known as the locality principle. When a program references a

memory location, it is likely to reference that same memory location again soon, which is

known as temporal locality.

Similarly, there is spatial locality, in which a memory location that is near a recently

referenced location is more likely to be referenced than a memory location that is farther away.

Temporal locality arises because programs spend much of their time in iteration or in

recursion, and thus the same section of code is visited a disproportionately large number of

times.

Spatial locality arises because data tends to be stored in contiguous locations. Although 10%

of the code accounts for the bulk of memory references, accesses within the 10% tend to be

clustered.

The set associative mapping scheme combines the simplicity of direct mapping with the

flexibility of associative mapping.

Set associative mapping is more practical than fully associative mapping because the

associative portion is limited to just a few slots that make up a set. Two measures that

characterize the performance of a cache memory are the hit ratio and the effective access

time.

The hit ratio is computed by dividing the number of times referenced words are found in the

cache by the total number of memory references. The effective access time is computed by

dividing the total time spent accessing memory (summing the main memory and cache access

times) by the total number of memory references.

69

Despite the enormous advancements in creating ever larger memories in smaller areas,

computer memory is still like closet space, in the sense that we can never have enough of it.

An economical method of extending the apparent size of the main memory is to augment it

with disk space, which is one aspect of virtual memory that we cover in this section.

Disk storage appears near the bottom of the memory hierarchy, with a lower cost per bit than

main memory, and so it is reasonable to use disk storage to hold the portions of a program or

data sets that do not entirely fit into the main memory.

 6.0 Tutor-Marked Assignment

1. Differentiate between the locality principle, temporal locality and spatial locality?

2. Describe replacement policies in associative mapped caches?

3. What are the advantages and disadvantages of the associative mapped cache?

7.0 References/Further Reading

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. (2002): Drowsy Caches:

Simple Techniques for Reducing Leakage Power. In International Symposium on

Computer Architecture. (ISCA), 148–157

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D. A. (2006). Computer Architecture: A Quantitative Approach,

Morgan Kaufmann. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

Murdocca M. J. and Heuring, V. P. (1999). Principles of Computer Architecture. (Class test

edition). Prentice Hall.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

70

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_umg_05_005

71

Module 3

Interfacing and
Communication

Unit 1: Input/Output Fundamentals

Unit 2: Handshaking

Unit 3: Data Buffer

Unit 4: External Storage

72

Unit 1

Input/output Fundamentals
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Basic Concept of Input/output

3.2 Programmed I/O

3.3 Interrupt-Driven I/O

3.4 Direct Memory Access (DMA)

3.5 Buses

3.5.1 Synchronous Buses

3.5.2 Asynchronous Buses

3.5.3 Bus Arbitration

3.6 Input–Output Interfaces

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

73

1.0 Introduction

In this unit, what you will learn borders on input/output fundamentals. A computer interacts

with the external environment via the input-output (I/O) devices attached to it. Input device is

used for providing data and instructions to the computer. After processing the input data,

computer provides output to the user via the output device. The I/O devices that are attached,

externally, to the computer machine are also called peripheral devices. Different kinds of input

and output devices are used for different kinds of input and output requirements. In this unit,

you will learn about how input devices and output devices functions.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Explain the basic concepts of Input/output

ii. Describe programmed I/O

iii. Explain interrupt-driven I/O

iv. Describe direct memory access (DMA)

v. Explain buses

vi. Describe input-output interfaces

3.0 Learning Content

3.1 Basic Concept of Input/output

We are here concerned with the way the processor and the I/O devices exchange data. There

exists a big difference in the rate at which a processor can process information and those of

input and output devices. One simple way to accommodate this speed difference is to have

the input device, for example, a keyboard, deposit the character struck by the user in a register

(input register), which indicates the availability of that character to the processor.

When the input character has been taken by the processor, this will be indicated to the input

device in order to proceed and input the next character, and so on. Similarly, when the

processor has a character to output (display), it deposits it in a specific register dedicated for

communication with the graphic display (output register).

Moreso, when the character has been taken by the graphic display, this will be indicated to

the processor such that it can proceed and output the next character, and so on. This simple

way of communication between the processor and I/O devices, called I/O protocol, requires

the availability of the input and output registers. In a typical computer system, there is a

number of input registers, each belonging to a specific input device. There is also a number

of output registers each belonging to a specific output device.

74

In addition, a mechanism according to which the processor can address those input and output

registers must be adopted. More than one arrangement exists to satisfy the abovementioned

requirements. Among these, two particular methods are explained below. In the first

arrangement, I/O devices are assigned particular addresses, isolated from the address space

assigned to the memory.

The execution of an input instruction at an input device address will cause the character stored

in the input register of that device to be transferred to a specific register in the CPU. Similarly,

the execution of an output instruction at an output device address will cause the character

stored in a specific register in the CPU to be transferred to the output register of that output

device.

This arrangement, called shared I/O, is shown schematically in Figure 8.2. In this case, the

address and data lines from the CPU can be shared between the memory and the I/O devices.

A separate control line will have to be used. This is because of the need for executing input

and output instructions. In a typical computer system, there exists more than one input and

more than one output device.

Therefore, be aware that there is a need to have address decoder circuitry for device

identification. There is also a need for status registers for each input and output device. The

status of an input device, whether it is ready to send data to the processor, should be stored

in the status register of that device. Similarly, the status of an output device, whether it is ready

to receive data from the processor, should be stored in the status register of that device. Input

(output) registers, status registers, and address decoder circuitry represent the main

components of an I/O interface (module).

75

The main advantage of the shared I/O arrangement is the separation between the memory

address space and that of the I/O devices. Its main disadvantage is the need to have special

input and output instructions in the processor instruction set. The shared I/O arrangement is

mostly adopted by Intel.

The second possible I/O arrangement is to deal with input and output registers as if they are

regular memory locations. In this case, a read operation from the address corresponding to

the input register of an input device, for example, Read Device 6, is equivalent to performing

an input operation from the input register in Device #6. Similarly, a write operation to the

address corresponding to the output register of an output device, for example, Write Device

9, is equivalent to performing an output operation into the output register in Device #9.

This arrangement is called memory-mapped I/O. It is shown in Figure 8.3. The main advantage

of the memory-mapped I/O is the use of the read and write instructions of the processor to

perform the input and output operations, respectively. It eliminates the need for introducing

special I/O instructions.

The main disadvantage of the memory-mapped I/O is the need to reserve a certain part of the

memory address space for addressing I/O devices, that is, a reduction in the available memory

address space. The memory-mapped I/O has been mostly adopted by Motorola.

Self-Assessment Question

1. The Input Register is used to accommodate the difference in speed between the

processor and input/output devices. True or False?

Self-Assessment Answer

1. True

3.2 Programmed I/O

In this section, we present the main hardware components required for communications

between the processor and I/O devices.

76

The way according to which such communications take place (protocol) is also indicated. This

protocol has to be programmed in the form of routines that run under the control of the CPU.

Consider, for example, an input operation from Device 6 (could be the keyboard) in the case

of shared I/O arrangement. Let us also assume that there are eight different I/O devices

connected to the processor in this case (see Fig. 8.4). The following protocol steps (program)

have to be followed:

1 The processor executes an input instruction from device 6, for example, INPUT 6.

The effect of executing this instruction is to send the device number to the address

decoder circuitry in each input device in order to identify the specific input device to

be involved. In this case, the output of the decoder in Device #6 will be enabled, while

the outputs of all other decoders will be disabled.

2 The buffers (in the figure we assumed that there are eight such buffers) holding the

data in the specified input device (Device #6) will be enabled by the output of the

address decoder circuitry.

3 The data output of the enabled buffers will be available on the data bus.

The instruction decoding will gate the data available on the data bus into the input of a

particular register in the CPU, normally the accumulator. Output operations can be performed

in a way similar to the input operation explained above. The only difference will be the direction

of data transfer, which will be from a specific CPU register to the output register in the specified

output device.

I/O operations performed in this manner are called programmed I/O. They are performed

under the CPU control. A complete instruction fetch, decode, and execute cycle will have to

77

be executed for every input and every output operation. Programmed I/O is useful in cases

whereby one character at a time is to be transferred, for example, keyboard and character

mode printers. Although simple, programmed I/O is slow.

One point that was overlooked in the above description of the programmed I/O is how to

handle the substantial speed difference between I/O devices and the processor. A mechanism

should be adopted in order to ensure that a character sent to the output register of an output

device, such as a screen, is not overwritten by the processor (due to the processor’s high

speed) before it is displayed and that a character available in the input register of a keyboard

is read only once by the processor.

This brings up the issue of the status of the input and output devices. A mechanism that can

be implemented requires the availability of a Status Bit (Bin) in the interface of each input

device and Status Bit (Bin) in the interface of each output device. Whenever an input device

such as a keyboard has a character available in its input register, it indicates that by setting

Bin = 1.

A program in the processor can be used to continuously monitor Bin. When the program sees

that Bin = 1, it will interpret that to mean a character is available in the input register of that

device. Reading such character will require executing the protocol explained above.

Whenever the character is read, then the program can reset Bin = 0, thus avoiding multiple

read of the same character.

In a similar manner, the processor can deposit a character in the output register of an output

device such as a screen only when Bout = 0. It is only after the screen has displayed the

character that it sets Bout = 1, indicating to the program that monitors Bout that the screen is

ready to receive the next character. The process of checking the status of I/O devices in order

to determine their readiness for receiving and/or sending characters, is called software I/O

polling. A hardware I/O polling scheme is shown in Figure 8.5.

In the figure, each of the N I/O devices has access to the interrupt line INR. Upon recognizing

the arrival of a request (called Interrupt Request) on INR, the processor polls the devices to

determine the requesting device. This is done through thedLog2Nepolling lines.

The priority of the requesting device will determine the order in which addresses are put on

the polling lines. The address of the highest priority device is put first, followed by the next

priority, and so on until the least priority device. In addition to the I/O polling, two other

78

mechanisms can be used to carry out I/O operations. These are interrupt-driven I/O and direct

memory access (DMA). These are discussed in the next two sections.

Self-Assessment Question

1. How is the speed difference between the I/O devices and the processor handled?

Self-Assessment Answer

1. The availability of a Status bit in the interface of each input device and likewise in

output devices is used to ensure that data is not lost because of the difference in speed.

Whenever a device has a character available, it sets its Bin =1. A program running on

the processor can then be used to monitoring the status of the Bin.

3.3 Interrupt-Driven I/O

It is often necessary that we have the normal flow of a program interrupted, for example, to

react to abnormal events, such as power failure. An interrupt can also be used to acknowledge

the completion of a particular course of action, such as a printer indicating to the computer

that it has completed printing the character(s) in its input register and that it is ready to receive

other character(s).

An interrupt can also be used in time-sharing systems to allocate CPU time among different

programs. The instruction sets of modern CPUs often include instruction(s) that mimic the

actions of the hardware interrupts. When the CPU is interrupted, it is required to discontinue

its current activity, attend to the interrupting condition (serve the interrupt), and then resume

its activity from wherever it stopped.

Discontinuity of the processor’s current activity requires finishing executing the current

instruction, saving the processor status (mostly in the form of pushing register values onto a

stack), and transferring control (jump) to what is called the interrupt service routine (ISR). The

service offered to an interrupt will depend on the source of the interrupt.

For example, if the interrupt is due to power failure, then the action taken will be to save the

values of all processor registers and pointers such that resumption of correct operation can

be guaranteed upon power return. In the case of an I/O interrupt, serving an interrupt means

to perform the required data transfer.

Upon finishing serving an interrupt, the processor should restore the original status by popping

the relevant values from the stack. Once the processor returns to the normal state, it can

enable sources of interrupt again. One important point that was overlooked in the above

scenario is the issue of serving multiple interrupts, for example, the occurrence of yet another

interrupt while the processor is currently serving an interrupt.

Response to the new interrupt will depend upon the priority of the newly arrived interrupt with

respect to that of the interrupt being currently served. If the newly arrived interrupt has priority

less than or equal to that of the currently served one, then it can wait until the processor

finishes serving the current interrupt.

If, on the other hand, the newly arrived interrupt has priority higher than that of the currently

served interrupt, for example, power failure interrupt occurring while serving an I/O interrupt,

79

then the processor will have to push its status onto the stack and serve the higher priority

interrupt. Correct handling of multiple interrupts in terms of storing and restoring the correct

processor status is guaranteed due to the way the push and pop operations are performed.

For example, to serve the first interrupt, STATUS 1 will be pushed onto the stack. Upon

receiving the second interrupt, STATUS 2 will be pushed onto the stack. Upon serving the

second interrupt, STATUS 2 will be popped out of the stack and upon serving the first interrupt,

STATUS 1 will be popped out of the stack. It is possible to have the interrupting device identify

itself to the processor by sending a code following the interrupt request. The code sent by a

given I/O device can represent its I/O address or the memory address location of the start of

the ISR for that device. This scheme is called vectored interrupt.

Self-Assessment Question

1. What is the relevance of Interrupt in a Program execution?

Self-Assessment Answer

1. It can be used to make the processor to attend to any urgent activities while postponing

any current ongoing activities until the urgency has been taken care of.

3.4 Direct Memory Access (DMA)

The main idea of direct memory access (DMA) is to enable peripheral devices to cut out the

“middle man” role of the CPU in data transfer. It allows peripheral devices to transfer data

directly from and to memory without the intervention of the CPU. Having peripheral devices

access memory directly would allow the CPU to do other work, which would lead to improved

performance, especially in the cases of large transfers.

The DMA controller is a piece of hardware that controls one or more peripheral devices. It

allows devices to transfer data to or from the system’s memory without the help of the

processor. In a typical DMA transfer, some event notifies the DMA controller that data needs

to be transferred to or from memory.

Both the DMA and CPU use memory bus and only one or the other can use the memory at

the same time. The DMA controller then sends a request to the CPU asking its permission to

use the bus. The CPU returns an acknowledgment to the DMA controller granting it bus

access. The DMA can now take control of the bus to independently conduct memory transfer.

When the transfer is complete the DMA surrenders its control of the bus to the CPU.

Processors that support DMA provide one or more input signals that the bus requester can

assert to gain control of the bus and one or more output signals that the CPU asserts to

indicate it has relinquished the bus. Figure 8.10 shows how the DMA controller shares the

CPU’s memory bus.

80

Direct memory access controllers require initialization by the CPU. Typical setup parameters

include the address of the source area, the address of the destination area, the length of the

block, and whether the DMA controller should generate a processor interrupt once the block

transfer is complete. A DMA controller has an address register, a word-count register, and a

control register.

The address register contains an address that specifies the memory location of the data to be

transferred. It is typically possible to have the DMA controller automatically increment the

address register after each word transfer, so that the next transfer will be from the next memory

location. The word count register holds the number of words to be transferred. The word count

is decremented by one after each word transfer.

The control register specifies the transfer mode. Direct memory access data transfer can be

performed in burst mode or single cycle mode. In burst mode, the DMA controller keeps control

of the bus until all the data has been transferred to (from) memory from (to) the peripheral

device.

This mode of transfer is needed for fast devices where data transfer cannot be stopped until

the entire transfer is done. In single-cycle mode (cycle stealing), the DMA controller

relinquishes the bus after each transfer of one data word. This minimizes

the amount of time that the DMA controller keeps the CPU from controlling the bus, but it

requires that the bus request/acknowledge sequence be performed for every single transfer.

If care is not taken, this overhead can result in a degradation of the performance. The single-

cycle mode is preferred if the system cannot tolerate more than a few cycles of added interrupt

latency or if the peripheral devices can buffer very large amounts of data, causing the DMA

controller to tie up the bus for an excessive amount of time.

The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in memory, and reducing the count of words to

be moved).

3. When word count reaches zero, the DMA informs the CPU of the termination by means

of an interrupt.

4. The CPU regains access to the memory bus.

81

A DMA controller may have multiple channels. Each channel has associated with it an address

register and a count-register. To initiate a data transfer, the device driver sets up the DMA

channel’s address and count registers together with the direction of the data transfer, read or

write. While the transfer is taking place, the CPU is free to do other things. When the transfer

is complete, the CPU is interrupted.

Direct memory access channels cannot be shared between device drivers. A device driver

must be able to determine which DMA channel to use. Some devices have a fixed DMA

channel, while others are more flexible, where the device driver can simply pick a free DMA

channel to use.

Linux tracks the usage of the DMA channels using a vector of dma_chan data structures (one

per DMA channel). The dma_chan data structure contains just two fields, a pointer to a string

describing the owner of the DMA channel and a flag indicating if the DMA channel is allocated

or not.

3.5 Buses

A bus in computer terminology represents a physical connection used to carry a signal from

one point to another. The signal carried by a bus may represent address, data, control signal,

or power. Typically, a bus consists of a number of connections running together. Each

connection is called a bus line. A bus line is normally identified by a number.

Related groups of bus lines are usually identified by a name. For example, the group of bus

lines 1 to 16 in a given computer system may be used to carry the address of memory

locations, and therefore are identified as address lines. Depending on the signal carried, there

exist at least four types of buses: address, data, control, and power buses.

Data buses carry data, control buses carry control signals, and power buses carry the power-

supply/ground voltage. The size (number of lines) of the address, data, and control bus varies

from one system to another. Consider, for example, the bus connecting a CPU and memory

in a given system, called the CPU bus. The size of the memory in that system is 512M-word

and each word is 32 bits. In such system, the size of the address bus should be log2(512 x

220) = 29 lines, the size of the data bus should be 32 lines, and at least one control line (R/W)

should exist in that system.

In addition to carrying control signals, a control bus can carry timing signals. These are signals

used to determine the exact timing for data transfer to and from a bus; that is, they determine

when a given computer system component, such as the processor, memory, or I/O devices,

can place data on the bus and when they can receive data from the bus.

A bus can be synchronous if data transfer over the bus is controlled by a bus clock. The clock

acts as the timing reference for all bus signals. A bus is asynchronous if data transfer over the

bus is based on the availability of the data and not on a clock signal. Data is transferred over

an asynchronous bus using a technique called handshaking.

The operations of synchronous and asynchronous buses are explained below.

To understand the difference between synchronous and asynchronous, let us consider the

case when a master such as a CPU or DMA is the source of data to be transferred to a slave

such as an I/O device. The following is a sequence of events involving the master and slave:

1. Master: send request to use the bus

82

2. Master: request is granted and bus is allocated to master

3. Master: place address/data on bus

4. Slave: slave is selected

5. Master: signal data transfer

6. Slave: take data

7. Master: free the bus

Self-Assessment Question

1. What is the main idea behind the use of Direct Memory Access?

Self-Assessment Answer

1. The main idea of direct memory access (DMA) is to enable peripheral devices to cut

out the “middle man” role of the CPU in data transfer. It allows peripheral devices to

transfer data directly from and to memory without the intervention of the CPU.

3.5.1 Synchronous Buses

In synchronous buses, you’ll learn that the steps of data transfer take place at fixed clock

cycles. Everything is synchronized to bus clock and clock signals are made available to both

master and slave. The bus clock is a square wave signal. A cycle starts at one rising edge of

the clock and ends at the next rising edge, which is the beginning of the next cycle.

A transfer may take multiple bus cycles depending on the speed parameters of the bus and

the two ends of the transfer. One scenario would be that on the first clock cycle, the master

puts an address on the address bus, puts data on the data bus, and asserts the appropriate

control lines.

Slave recognizes its address on the address bus on the first cycle and reads the new value

from the bus in the second cycle. Synchronous buses are simple and easily implemented.

However, when you’re connecting devices with varying speeds to a synchronous bus, the

slowest device will determine the speed of the bus. Also, the synchronous bus length could

be limited to avoid clock-skewing problems.

3.5.2 Asynchronous Buses

There are no fixed clock cycles in asynchronous buses. Handshaking is used instead.

Figure 8.11 shows the handshaking protocol. The master asserts the data-ready line (point 1

in the figure) until it sees a data-accept signal.

83

When the slave sees a data ready signal, it will assert the data-accept line (point 2 in the

figure). The rising of the data-accept line will trigger the falling of the data-ready line and the

removal of data from the bus. The falling of the data-ready line (point 3 in the figure) will trigger

the falling of the data-accept line (point 4 in the figure).

This handshaking, which is called fully interlocked, is then repeated, until the data is

completely transferred. Asynchronous bus is appropriate for different speed devices.

Self-Assessment Question

1. Differentiate between Synchronous and Asynchronous Bus

Self-Assessment Answer

1. In Synchronous Bus, everything is synchronized to Bus clock and signal. In

Asynchronous Bus, handshake.

3.5.3 Bus Arbitration

Why bus arbitration?

Bus arbitration is needed to resolve conflicts when two or more devices want to become the

bus master at the same time. In short, arbitration is the process of selecting the next bus

master from among multiple candidates. Then, conflicts can be resolved based on fairness or

priority in a centralized or distributed mechanisms.

Centralized Arbitration in centralized arbitration schemes, is a single arbiter used in selecting

the next master. A simple form of centralized arbitration uses a bus request line, a bus grant

line, and a bus busy line. Each of these lines is shared by potential masters, which are daisy-

chained in a cascade. Figure 8.12 shows this simple centralized arbitration scheme.

In the figure, each of the potential masters can submit a bus request at any time. A fixed

priority is set among the masters from left to right. When a bus request is received at the

central bus arbiter, it issues a bus grant by asserting the bus grant line. When the potential

master that is closest to the arbiter (potential master 1) sees the bus grant signal, it checks to

see if it had made a bus request.

If yes, it takes over the bus and stops propagation of the bus grant signal any further. If it has

not made a request, it will simple turn the bus grant signal to the next master to the right

(potential master 2), and so on. When the transaction is complete, the busy line is deasserted.

Instead of using shared request and grant lines, multiple bus request and bus grant lines can

be used.

84

In one scheme, each master will have its own independent request and grant line as shown

in Figure 8.13. The central arbiter can employ any priority based or fairness-based tiebreaker.

Another scheme allows the masters to have multiple priority levels. For each priority level,

there is a bus request and a bus grant line. Within each priority level, daisy chain is used. In

this scheme, each device is attached to the daisy chain of one priority level.

In addition, if the arbiter receives multiple bus requests from different levels, it grants the bus

to the level with the highest priority. Daisy chaining is used among the devices of that level.

Figure 8.14 shows an example of four devices included in two priority levels. Potential master

1 and potential master 3 are daisy-chained in level 1 and potential master 2 and potential

master 4 are daisy-chained in level 2.

On the second note, decentralized Arbitration In decentralized arbitration schemes, priority-

based arbitration is usually used in a distributed fashion. Each potential master has a unique

arbitration number, which is used in resolving conflicts when multiple requests are submitted.

Hope it’s clear? For example, a conflict can always be resolved in favor of the device with the

highest arbitration number. The question now is how to determine which device has the

highest arbitration number? One method is that a requesting device would make its unique

arbitration number available to all other devices. Each device compares that number with its

own arbitration number. The device with the smaller number is always dismissed. Eventually,

the requester with the highest arbitration number will survive and be granted bus access.

85

3.6 Input–Output Interfaces

What is an interface?

An interface is a data path between two separate devices in a computer system. Interface to

buses can be classified based on the number of bits that are transmitted at a given time to

serial versus parallel ports. In a serial port, only 1 bit of data is transferred at a time. Mice and

modems are usually connected to serial ports.

Example: What are some of the input and output devices?

Answer: Some of input devices are Keyboards, Mouse, scanners, mice, joysticks and digital

cameras. Some of output devices are monitors (screen), printers, speakers,

On a second note, a parallel port allows more than 1 bit of data to be processed at once.

Printers are the most common peripheral devices connected to parallel ports. Table 8.4 shows

a summary of the variety of buses and interfaces used in personal computers.

Self-Assessment Question

1. When two or more devices want to become the bus master at the same time, what is

used to handle this?

Self-Assessment Answer

1. Bus arbitration

86

87

4.0 Conclusion

In this unit, you have learned about the Input/output fundamentals. You have also learnt about

the programmed I/O, Interrupt-Driven I/O, Direct Memory Access (DMA), Buses and Input–

Output Interfaces.

5.0 Summary

When the input character has been taken by the processor, this will be indicated to the input

device in order to proceed and input the next character, and so on. Similarly, when the

processor has a character to output (display), it deposits it in a specific register dedicated for

communication with the graphic display (output register).

When the character has been taken by the graphic display, this will be indicated to the

processor such that it can proceed and output the next character, and so on. This simple way

of communication between the processor and I/O devices, called I/O protocol, requires the

availability of the input and output registers. In a typical computer system, there is a number

of input registers, each belonging to a specific input device. The way according to which such

communications take place (protocol) is also indicated.

88

This protocol has to be programmed in the form of routines that run under the control of the

CPU. It is often necessary to have the normal flow of a program interrupted, for example, to

react to abnormal events, such as power failure. An interrupt can also be used to acknowledge

the completion of a particular course of action, such as a printer indicating to the computer

that it has completed printing the character(s) in its input register and that it is ready to receive

other character(s).

An interrupt can also be used in time-sharing systems to allocate CPU time among different

programs. The main idea of direct memory access (DMA) is to enable peripheral devices to

cut out the “middle man” role of the CPU in data transfer. It allows peripheral devices to transfer

data directly from and to memory without the intervention of the CPU.

Having peripheral devices access memory directly would allow the CPU to do other work,

which would lead to improved performance, especially in the cases of large transfers. The

DMA controller is a piece of hardware that controls one or more peripheral devices. It allows

devices to transfer data to or from the system’s memory without the help of the processor.

A bus in computer terminology represents a physical connection used to carry a signal from

one point to another. The signal carried by a bus may represent address, data, control signal,

or power. Typically, a bus consists of a number of connections running together. Each

connection is called a bus line. A bus line is normally identified by a number. Related groups

of bus lines are usually identified by a name.

Bus arbitration is needed to resolve conflicts when two or more devices want to become the

bus master at the same time. In short, arbitration is the process of selecting the next bus

master from among multiple candidates. Conflicts can be resolved based on fairness or priority

in a centralized or distributed mechanisms. Arbitration In centralized arbitration schemes, a

single arbiter is used to select the next master.

An interface is a data path between two separate devices in a computer system. Interface to

buses can be classified based on the number of bits that are transmitted at a given time to

serial versus parallel ports. In a serial port, only 1 bit of data is transferred at a time. Mice and

modems are usually connected to serial ports.

6.0 Tutor-Marked Assignment

1. Explain the sequence of events involving the master and slave in a case when a master

such as a CPU or DMA is the source of data to be transferred to a slave such as an I/O

device?

2. Summarize the steps for Direct Memory Access (DMA) operations and sketch the diagram

of DMA controller shares the CPU’s memory bus?

3. Explain asynchronous buses?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

89

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). Introduction to Computer Organisation. CIT 246 Course Material, National

Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way, Victoria Island,

Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

90

Unit 2

Handshaking
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Handshaking

3.2 Examples of Handshaking

3.2.1 Common Types of Handshakes

3.2.2 Simple TLS handshake

3.2.3 Client-authenticated TLS handshake

3.2.4 Resumed TLS handshake

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

91

1.0 Introduction

In this unit, what you will learn concerns handshaking. Handshaking is an automated process

of negotiation that dynamically sets parameters of a communications channel established

between two entities before normal communication over the channel begins. You will also

learn about simple TLS handshake, Client-authenticated TLS handshake and Resumed TLS

handshake.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Explain handshaking

ii. Describe simple Transport Layer Security (TLS) handshake

iii. Explain Client-authenticated TLS handshake

iv. Describe Resumed TLS handshake

3.0 Learning Content

3.1 Handshaking

In information technology, telecommunications, and related fields, you will find out that

handshaking is an automated process of negotiation that dynamically sets parameters of a

communications channel established between two entities before normal communication over

the channel begins. Handshaking follows the physical establishment of the channel and

precedes normal information transfer.

However, it is usually a process that takes place when a computer is about to communicate

with a foreign device to establish rules for communication. When a computer communicates

with another device like a modem, printer, or network server, it needs to handshake with it to

establish a connection.

You can also use handshaking to negotiate parameters that are acceptable to equipment and

systems at both ends of the communication channel, including, but not limited to, information

transfer rate, coding alphabet, parity, interrupt procedure, and other protocol or hardware

features. Handshaking is technique of communication between two entities. A simple

handshaking protocol might only involve the receiver sending a message meaning "I received

your last message and I am ready for you to send me another one."

You will notice later that a more complex handshaking protocol might allow the sender to ask

the receiver if he is ready to receive or for the receiver to reply with a negative

acknowledgement meaning "I did not receive your last message correctly, please resend it"

(e.g. if the data was corrupted en route).

So handshaking makes it possible to connect relatively heterogeneous systems or equipment

over a communication channel without the need for human intervention to set parameters.

One classic example of handshaking is that of modem, which typically negotiate

communication parameters for a brief period when a connection is first established, and

92

thereafter use those parameters to provide optimal information transfer over the channel as a

function of its quality and capacity.

The "squealing" (which is actually a sound that changes in pitch 100 times every second)

noises made by some modems with speaker output immediately after a connection is

established are in fact the sounds of modems at both ends engaging in a handshaking

procedure; once the procedure is completed, the speaker might be silenced, depending on

the settings of operating system or the application controlling the modem.

Self-Assessment Question

1. What is Handshaking?

Self-Assessment Answer

1. Handshaking is an automated process of negotiation that dynamically sets parameters

of a communications channel established between two entities before normal

communication over the channel begins.

3.2 Examples of Handshaking

The TLS Handshake Protocol is used to negotiate the secure attributes of a session.

3.2.1 Common Types of Handshakes

Three Way Handshake

Establishing a normal TCP connection requires three separate steps:

1. The first host (Alice) sends the second host (Bob) a "synchronize" (SYN) message,

which Bob receives.

2. Bob replies with a synchronize-acknowledgment (SYN-ACK) message, which Alice

receives.

3. Alice replies with an acknowledgment message, which Bob receives, and doesn't need

to reply to.

In this setup, the synchronize messages act as service requests from one server to

the other, while the acknowledgment messages return to the requesting server to let it

know the message was received.

3.2.2 Simple TLS handshake

A simple connection example follows, illustrating a handshake where the server (but not the

client) is authenticated by its certificate:

1. Negotiation phase:

i. A client sends a ClientHello message specifying the highest TLS protocol version

it supports, a random number, a list of suggested CipherSuites and suggested

compression methods. If the client is attempting to perform a resumed handshake,

it may send a session ID.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment
http://en.wikipedia.org/wiki/CipherSuite

93

ii. The server responds with a ServerHello message, containing the chosen protocol

version, a random number, CipherSuite and compression method from the

choices offered by the client. To confirm or allow resumed handshakes the server

may send a session ID. The chosen protocol version should be the highest that

both the client and server support. For example, if the client supports TLS1.1 and

the server supports TLS1.2, TLS1.1 should be selected; SSL 3.0 should not be

selected.

iii. The server sends its Certificate message (depending on the selected cipher

suite, this may be omitted by the server).

iv. The server sends a ServerHelloDone message, indicating it is done with

handshake negotiation.

v. The client responds with a ClientKeyExchange message, which may contain a

PreMasterSecret, public key, or nothing. (Again, this depends on the selected

cipher.) This PreMasterSecret is encrypted using the public key of the server

certificate.

vi. The client and server then use the random numbers and PreMasterSecret to

compute a common secret, called the "master secret". All other key data for this

connection is derived from this master secret (and the client- and server-

generated random values), which is passed through a carefully designed

pseudorandom function.

2. The client now sends a ChangeCipherSpec record, essentially telling the server,

"Everything I tell you from now on will be authenticated (and encrypted if encryption

parameters were present in the server certificate)." The ChangeCipherSpec is itself a

record-level protocol with content type of 20.

i. Finally, the client sends an authenticated and encrypted Finished message,

containing a hash and MAC over the previous handshake messages.

ii. The server will attempt to decrypt the client's Finished message and verify the

hash and MAC. If the decryption or verification fails, the handshake is considered

to have failed and the connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you

from now on will be authenticated (and encrypted, if encryption was negotiated)."

i. The server sends its authenticated and encrypted Finished message.

ii. The client performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the application

protocol is enabled, with content type of 23. Application messages exchanged between

client and server will also be authenticated and optionally encrypted exactly like in their

finished message. Otherwise, the content type will return 25 and the client will not

authenticate.

3.2.3 Client-authenticated TLS handshake

The following full example shows a client being authenticated (in addition to the server like

above) via TLS using certificates exchanged between both peers.

http://en.wikipedia.org/wiki/Pseudorandomness

94

1. Negotiation Phase:

i. A client sends a ClientHello message specifying the highest TLS protocol version

it supports, a random number, a list of suggested cipher suites and compression

methods.

ii. The server responds with a ServerHello message, containing the chosen protocol

version, a random number, cipher suite and compression method from the choices

offered by the client. The server may also send a session id as part of the message

to perform a resumed handshake.

iii. The server sends its Certificate message (depending on the selected cipher

suite, this may be omitted by the server).[31]

iv. The server requests a certificate from the client, so that the connection can be

mutually authenticated, using a CertificateRequest message.

v. The server sends a ServerHelloDone message, indicating it is done with

handshake negotiation.

vi. The client responds with a Certificate message, which contains the client's

certificate.

vii. The client sends a ClientKeyExchange message, which may contain a

PreMasterSecret, public key, or nothing. (Again, this depends on the selected

cipher.) This PreMasterSecret is encrypted using the public key of the server

certificate.

viii. The client sends a CertificateVerify message, which is a signature over the

previous handshake messages using the client's certificate's private key. This

signature can be verified by using the client's certificate's public key. This lets the

server know that the client has access to the private key of the certificate and thus

owns the certificate.

ix. The client and server then use the random numbers and PreMasterSecret to

compute a common secret, called the "master secret". All other key data for this

connection is derived from this master secret (and the client- and server-

generated random values), which is passed through a carefully designed

pseudorandom function.

2. The client now sends a ChangeCipherSpec record, essentially telling the server,

"Everything I tell you from now on will be authenticated (and encrypted if encryption

was negotiated). " The ChangeCipherSpec is itself a record-level protocol and has

type 20 and not 22.

i. Finally, the client sends an encrypted Finished message, containing a hash and

MAC over the previous handshake messages.

ii. The server will attempt to decrypt the client's Finished message and verify the

hash and MAC. If the decryption or verification fails, the handshake is considered

to have failed and the connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you

from now on will be authenticated (and encrypted if encryption was negotiated). "

http://en.wikipedia.org/wiki/Transport_Layer_Security#cite_note-openpgp-30

95

i. The server sends its own encrypted Finished message.

ii. The client performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the application

protocol is enabled, with content type of 23. Application messages exchanged

between client and server will also be encrypted exactly like in their Finished message.

The application will never again return TLS encryption information without a type 32

apology.

3.2.4 Resumed TLS handshake

You’ll agree with me that public key operations (e. g., RSA) are relatively expensive in terms

of computational power. TLS provides a secure shortcut in the handshake mechanism to avoid

these operations. In an ordinary full handshake, the server sends a session id as part of the

ServerHello message. The client associates this session id with the server's IP address and

TCP port, so that when the client connects again to that server, it can use the session id to

shortcut the handshake.

 In the server, the session id maps to the cryptographic parameters previously negotiated,

specifically the "master secret". Both sides must have the same "master secret" or the

resumed handshake will fail (this prevents an eavesdropper from using a session id). The

random data in the ClientHello and ServerHello messages virtually guarantee that the

generated connection keys will be different than in the previous connection. In the RFCs, this

type of handshake is called an abbreviated handshake. It is also described in the literature as

a restart handshake. Is that clear!

1. Negotiation phase:

i. A client sends a ClientHello message specifying the highest TLS protocol version

it supports, a random number, a list of suggested cipher suites and compression

methods. Included in the message is the session id from the previous TLS

connection.

ii. The server responds with a ServerHello message, containing the chosen protocol

version, a random number, cipher suite and compression method from the choices

offered by the client. If the server recognizes the session id sent by the client, it

responds with the same session id. The client uses this to recognize that a

resumed handshake is being performed. If the server does not recognize the

session id sent by the client, it sends a different value for its session id. This tells

the client that a resumed handshake will not be performed. At this point, both the

client and server have the "master secret" and random data to generate the key

data to be used for this connection.

2. The server now sends a ChangeCipherSpec record, essentially telling the client,

"Everything I tell you from now on will be encrypted. " The ChangeCipherSpec is itself

a record-level protocol and has type 20 and not 22.

i. Finally, the server sends an encrypted Finished message, containing a hash and

MAC over the previous handshake messages.

96

ii. The client will attempt to decrypt the server's Finished message and verify the

hash and MAC. If the decryption or verification fails, the handshake is considered

to have failed and the connection should be torn down.

3. Finally, the client sends a ChangeCipherSpec, telling the server, "Everything I tell you

from now on will be encrypted.”

i. The client sends its own encrypted Finished message.

ii. The server performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the application

protocol is enabled, with content type of 23. Application messages exchanged

between client and server will also be encrypted exactly like in their Finished message.

Apart from the performance benefit, resumed sessions can also be used for single sign-on as

it is guaranteed that both the original session as well as any resumed session originate from

the same client. This is of particular importance for the FTP over TLS/SSL protocol which would

otherwise suffer from a man in the middle attack in which an attacker could intercept the

contents of the secondary data connections

Self-Assessment Question

1. Give 3 types of handshake.

Self-Assessment Answer

1. Simple TLS handshake

2. Client-automated TLS handshake

3. Resumed TLS handshake

4.0 Conclusion

In this unit, you have learned about handshaking. You have also learnt about simple TLS

handshake, Client-authenticated TLS handshake and Resumed TLS handshake.

5.0 Summary

In information technology, telecommunications, and related fields, handshaking is an

automated process of negotiation that dynamically sets parameters of a communications

channel established between two entities before normal communication over the channel

begins. Handshaking follows the physical establishment of the channel and precedes normal

information transfer.

Establishing a normal TCP connection requires three separate steps: (1) The first host (Alice)

sends the second host (Bob) a "synchronize" (SYN) message, which Bob receives. (2) Bob

replies with a synchronize-acknowledgment (SYN-ACK) message, which Alice receives. (3)

Alice replies with an acknowledgment message, which Bob receives, and doesn't need to reply

to. Public key operations (e. g., RSA) are relatively expensive in terms of computational power.

TLS provides a secure shortcut in the handshake mechanism to avoid these operations.

http://en.wikipedia.org/wiki/FTPS
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment

97

6.0 Tutor-Marked Assignment

1. Describe the three-way handshaking?

2. Explain Simple TLS handshake?

3. What do you understand by handshaking and its possibilities?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing
Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in
Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple
Techniques for Reducing Leakage Power. In International Symposium on Computer
Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill
International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993).Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,
August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and
Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published
simultaneously in Canada.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course
Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,
Victoria Island, Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan
International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of
India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html. Retrieved 2012-
05-17.

https://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf. Retrieved
2012-05-17.

http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf

98

Unit 3

Data Buffer
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Handshaking

3.2 Examples of Handshaking

3.1 Data Buffer

3.2 Brief History of Data Buffer

3.3 Applications of Buffers

3.4 Telecommunication Buffer

3.5 Buffer versus Cache

3.6 Multiple Buffering

3.6.1 Description of Multiple Buffering

3.6.2 Double buffering Petri net

3.6.3 Double buffering in computer graphics

3.6.4 Page flipping

3.6.5 Triple buffering

3.6.6 Quad buffering

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

99

1.0 Introduction

In this unit, what you will learn borders on data buffer. A buffer is a region of a physical memory

storage used to temporarily hold data while it is being moved from one place to another. You

will also learn about brief history of data buffer, applications of buffers, telecommunication

buffer, and buffer versus cache and multiple buffering.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Explain data buffer

ii. Describe bbriefly history of data buffer

iii. State applications of buffers

iv. Describe telecommunication buffer

v. Explain buffer versus cache

vi. Describe multiple buffering

3.0 Learning Content

3.1 Data Buffer

In computer science, a buffer is a region of a physical memory storage used to temporarily

hold data, while it is being moved from one place to another. Normally, a data is stored in a

buffer as it is retrieved from an input device (such as a mouse) or just before it is sent to an

output device (such as speakers). However, a buffer may be used when moving data between

processes within a computer.

The above is comparable to buffers in telecommunication. You can implement a buffers into

a fixed memory location in hardware - or by using a virtual data buffer in software, pointing at

a location in the physical memory. In all cases, the data stored in a data buffer are stored on

a physical storage medium. Majority of buffers are implemented in software, which typically

use the faster RAM to store temporary data, due to the much faster access time compared

with hard disk drives.

We use Buffers typically when there is a difference between the rate at which data is received

and the rate at which it can be processed, or in the case that these rates are variable. For

example in a printer spooler or in online video streaming. A buffer often adjusts timing by

implementing a queue (or FIFO) algorithm in memory, at the same time writing data into the

queue at one rate and reading it at another rate.

Self-Assessment Question

1. Define Buffer

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Computer_data_storage
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/RAM
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Spooler
http://en.wikipedia.org/wiki/Video_hosting_service
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/FIFO

100

Self-Assessment Answer

1. A buffer is a region of a physical memory storage used to temporarily hold data while

it is being moved from one place to another.

3.2 Brief History of Data

In 1952, the image processing pioneer Russel A. Kirsch first mention about a print buffer as

an Out scriber devised for the SEAC computer. One of the most serious problems in the design

of automatic digital computers is that of getting the calculated results out of the machine

quickly enough to avoid delaying the further progress of the calculations. In many of the

problems to which a general-purpose computer is applied the amount of output data is

relatively big —so big that serious inefficiency would result from forcing the computer to wait

for these data to be typed on existing printing devices.

This difficulty has been solved in the SEAC by providing magnetic recording devices as output

units. These devices are able to receive information from the machine at rates up to 100 times

as fast as an electric typewriter can be operated. Thus, better efficiency is achieved in

recording the output data; transcription can be made later from the magnetic recording device

to a printing device without tying up the main computer.

3.3 Applications of Buffers

We use buffers as in conjunction with I/O to hardware, such as disk drives, sending or

receiving data to or from a network, or playing sound on a speaker. A line to a rollercoaster in

an amusement park shares many similarities. People who ride the coaster come in at an

unknown and often variable pace, but the roller coaster will be able to load people in bursts

(as a coaster arrives and is loaded).

The queue area acts as a buffer: a temporary space where those wishing to ride wait until the

ride is available. Buffers are usually used in a FIFO (first in, first out) method, outputting data

in the order it arrived.

3.4 Telecommunication Buffer

A buffer routine or storage medium used in telecommunications compensates for a difference

in rate of flow of data, or time of occurrence of events, when transferring data from one device

to another.

You should be aware that buffers are used for many purposes, such as

1. Interconnecting two digital circuits operating at different rates,

2. Holding data for use at a later time,

3. Allowing timing corrections to be made on a data stream

4. Collecting binary data bits into groups that can then be operated on as a unit,

5. Delaying the transit time of a signal in order to allow other operations to occur.

101

3.5 Buffer versus Cache

We may notice that a cache often also acts as a buffer, and vice versa. However, cache

operates on the ground that the same data will be read from it multiple times. Written data will

soon be read, or that there is a good chance of multiple reads or writes to combine and form

a single larger block. Its sole purpose is to reduce accesses to the underlying slower storage.

Cache is also usually an abstraction layer that is designed to be invisible.

A 'Disk Cache' or 'File Cache' keeps statistics on the data contained within it and commits data

within a time-out period in write-back modes. A buffer does none of this.

A buffer is primarily used for input, output, and sometimes very temporary storage of data that

is either en-route between other media or data that may be modified in a non-sequential

manner before it is written (or read) in a sequential manner.

Good examples include:

1. The BUFFERS command/statement in CONFIG.SYS of DOS.

2. The buffer between a serial port (UART) and a MODEM. The COM port speed may be

38400 bit/s while the MODEM may only have a 14400 bit/s carrier.

3. The integrated buffer on a Hard Disk Drive, Printer or other piece of hardware.

4. The Frame buffer on a video card.

3.6 Multiple Buffering

In computer science, multiple buffering is the use of more than one buffer to hold a block of

data, so that a "reader" will see a complete (though perhaps old) version of the data, rather

than a partially updated version of the data being created by a “writer”. It also is used to avoid

the need to use Dual-ported RAM when the readers and writers are different devices.

3.6.1 Description of Multiple Buffering

The easiest way to explain how multiple buffering works is to tell you a real world example. It

is a nice sunny day and you have decided to get the paddling pool out, only you cannot find

your garden hose. You'll have to fill the pool with buckets. So you fill one bucket (or buffer)

from the tap, turn the tap off, walk over to the pool, pour the water in, walk back to the tap to

repeat the exercise. This is analogous to single buffering.

The tap has to be turned off while you "process" the bucket of water. Now consider how you

would do it if you had two buckets. You would fill the first bucket and then swap the second in

under the running tap. You then have the length of time it takes for the second bucket to fill in

order to empty the first into the paddling pool.

When you return you can simply swap the buckets so that the first is now filling again, during

which time you can empty the second into the pool. This can be repeated until the pool is full.

It is clear to see that this technique will fill the pool far faster as there is much less time spent

waiting, doing nothing, while buckets fill. This is analogous to double buffering. The tap can

be on all the time and does not have to wait while the processing is done.

102

If you employed another person to carry a bucket to the pool while one is being filled and

another emptied, then this would be analogous to triple buffering. If this step took long enough

you could employ even more buckets, so that the tap is continuously running filling buckets.

In computer science the situation of having a running tap that cannot be, or should not be,

turned off is common (such as a stream of audio). Also, computers typically prefer to deal with

chunks of data rather than streams. In such situations double buffering is often employed.

Figure 1: Sets 1, 2 and 3 represent the operation of single, double and triple buffering,

respectively, with vertical synchronization (vsync) enabled. In each graph, time flows from left

to right. Set 4 shows what happens when a frame (B, in this case) takes longer than normal

to draw. In this case, a frame update is missed. In time-sensitive implementations such as

video playback, the whole frame may be dropped. With triple buffering in set 5, drawing of

frame B can start without having to wait for frame A to be copied to video memory, reducing

the chance of a delayed frame missing its vertical retrace.

The easiest way to explain how multiple buffering works is to take a real world example. It is

a nice sunny day and you have decided to get the paddling pool out, only you cannot find your

http://en.wikipedia.org/wiki/File:Comparison_double_triple_buffering.svg

103

garden hose. You'll have to fill the pool with buckets. So you fill one bucket (or buffer) from the

tap, turn the tap off, walk over to the pool, pour the water in, walk back to the tap to repeat the

exercise.

This is analogous to single buffering. The tap has to be turned off while you "process" the

bucket of water. Now consider how you would do it if you had two buckets. You would fill the

first bucket and then swap the second in under the running tap. You then have the length of

time it takes for the second bucket to fill in order to empty the first into the paddling pool.

When you return, you can simply swap the buckets so that the first is now filling again, during

which time you can empty the second into the pool. This can be repeated until the pool is full.

It is clear to see that this technique will fill the pool far faster as there is much less time spent

waiting, doing nothing, while buckets fill.

This is analogous to double buffering. The tap can be on all the time and does not have to

wait while the processing is done. If you employed another person to carry a bucket to the

pool while one is being filled and another emptied, then this would be analogous to triple

buffering. If this step took long enough you could employ even more buckets, so that the tap

is continuously running filling buckets.

In computer science the situation of having a running tap that cannot be, or should not be,

turned off is common (such as a stream of audio). Also, computers typically prefer to deal with

chunks of data rather than streams. In such situations double buffering is often employed.

3.6.2 Double Buffering Petri Net

The Petri net in the illustration below shows how double buffering works. Transitions W1 and

W2 represent writing to buffer 1 and 2 respectively while R1 and R2 represent reading from

buffer 1 and 2 respectively. At the beginning only the transition W1 is enabled. After W1 fires,

R1 and W2 are both enabled and can proceed in parallel.

When they finish, R2 and W1 proceed in parallel and so on. So after the initial transient where

W1 fires alone, this system is periodic and the transitions are enabled always in pair (R1 with

W2 and R2 with W1 respectively).

Figure 2: Double Buffering Petri Net

http://en.wikipedia.org/wiki/File:Double_Buffering_Petri_Net.png

104

3.6.3 Double Buffering in Computer Graphics

In computer graphics, double buffering is a technique for drawing graphics that shows no (or

less) flicker, tearing, and other artifacts. It is difficult for a program to draw a display so that

pixels do not change more than once. For instance, to update a page of text it is much easier

to clear the entire page and then draw the letters than to somehow erase all the pixels that

are not in both the old and new letters.

However, this intermediate image is seen by the user as flickering. In addition, computer

monitors constantly redraw the visible video page (at around 60 times a second), so even a

perfect update may be visible momentarily as a horizontal divider between the "new" image

and the un-redrawn "old" image, known as tearing. A software implementation of double

buffering has all drawing operations store their results in some region of system RAM; any

such region is often called a "back buffer".

When all drawing operations are considered complete, the whole region (or only the changed

portion) is copied into the video RAM (the "front buffer"); this copying is usually synchronized

with the monitor's raster beam in order to avoid tearing. Double buffering necessarily requires

more video memory and CPU time than single buffering because of the video memory

allocated for the back buffer, the time for the copy operation, and the time waiting for

synchronization.

Compositing window manager often combine the "copying" operation with "compositing" used

to position windows, transform them with scale or warping effects, and make portions

transparent. Thus the "front buffer" may contain only the composite image seen on the screen,

while there is a different "back buffer" for every window containing the non-composited image

of the entire window contents.

3.6.4 Page Flipping

In the page-flip method (sometimes called ping-pong buffering), instead of copying the data,

both buffers are capable of being displayed (both are in VRAM). At any one time, one buffer

is actively being displayed by the monitor, while the other, background buffer is being drawn.

When drawing is complete, the roles of the two are switched. The page-flip is typically

accomplished by modifying the value of a pointer to the beginning of the display data in the

video memory.

The page-flip is much faster than copying the data and can guarantee that tearing will not be

seen as long as the pages are switched over during the monitor's vertical blanking interval --

the blank period when no video data is being drawn. The currently active and visible buffer is

called the front buffer, while the background page is called the "back buffer".

3.6.5 Triple Buffering

In computer graphics, triple buffering is similar to double buffering but provides a speed

improvement. In double buffering the program must wait until the finished drawing is copied

or swapped before starting the next drawing. This waiting period could be several milliseconds

during which neither buffer can be touched. In triple buffering the program has two back buffers

and can immediately start drawing in the one that is not involved in such copying.

The third buffer, the front buffer, is read by the graphics card to display the image on the

monitor. Once the monitor has been drawn, the front buffer is flipped with (or copied from) the

105

back buffer holding the last complete screen. Since one of the back buffers is always complete,

the graphics card never has to wait for the software to complete.

Consequently, the software and the graphics card are completely independent, and can run

at their own pace. Finally, the displayed image was started without waiting for synchronization

and thus with minimum lag. Due to the software algorithm not having to poll the graphics

hardware for monitor refresh events, the algorithm is free to run as fast as possible. This can

mean that several drawings that are never displayed are written to the back buffers.

This is not the only method of triple buffering available, but is the most prevalent on the PC

architecture where the speed of the target machine is highly variable.

Another method of triple buffering involves synchronizing with the monitor frame rate. Drawing

is not done if both back buffers contain finished images that have not been displayed yet.

This avoids wasting CPU drawing undisplayed images and also results in a more constant

frame rate (smoother movement of moving objects), but with increased latency. This is the

case when using triple buffering in DirectX, where a chain of 3 buffers are rendered and always

displayed.

Triple buffering implies three buffers, but the method can be extended to as many buffers as

is practical for the application. Usually, there is no advantage to using more than three buffers.

3.6.6 Quad Buffering

The term "Quad buffering" is used in stereoscopic implementations, and means the use of

double buffering for each of the left and right eye images, thus four buffers total. The command

to swap or copy the buffer typically applies to both pairs at once. If triple buffering was used,

then there would be six buffers.

The term double buffering is used for copying data between two buffers for direct memory

access (DMA) transfers, not for enhancing performance, but to meet specific addressing

requirements of a device (esp. 32-bit devices on systems with wider addressing provided via

Physical Address Extension).

Microsoft Windows device drivers are particularly noteworthy as a place where such double

buffering is likely to be used. On a Linux or BSD system these are called bounce buffers

because data must "bounce" via these buffers for input or output.

Double buffering is also used as a technique to facilitate interlacing or de-interlacing of video

signals.

Self-Assessment Question

1. Quad Buffering makes use of four Double Buffering. True of False?

Self-Assessment Answer

1. False

106

4.0 Conclusion

In this unit, you have learned about data buffer. You have also learnt about brief history of

data buffer, applications of buffers, telecommunication buffer, and buffer versus cache and

multiple buffering.

5.0 Summary

In computer science, a buffer is a region of a physical memory storage used to temporarily

hold data while it is being moved from one place to another. Typically, the data is stored in a

buffer as it is retrieved from an input device (such as a mouse) or just before it is sent to an

output device (such as speakers). An early mention of a print buffer is the Out scriber devised

by image processing pioneer Russel A. Kirsch for the SEAC computer in 1952.

One of the most serious Buffers are often used in conjunction with I/O to hardware, such as

disk drives, sending or receiving data to or from a network, or playing sound on a speaker. A

buffer routine or storage medium used in telecommunications compensates for a difference in

rate of flow of data, or time of occurrence of events, when transferring data from one device

to another.

A cache often also acts as a buffer, and vice versa. However, cache operates on the premise

that the same data will be read from it multiple times, that written data will soon be read, or

that there is a good chance of multiple reads or writes to combine to form a single larger block.

A buffer is primarily used for input, output, and sometimes very temporary storage of data that

is either enroute between other media or data that may be modified in a non-sequential

manner before it is written (or read) in a sequential manner. In computer science, multiple

buffering is the use of more than one buffer to hold a block of data, so that a "reader" will see

a complete (though perhaps old) version of the data, rather than a partially updated version of

the data being created by a “writer”. It also is used to avoid the need to use Dual-ported RAM

when the readers and writers are different devices.

6.0 Tutor-Marked Assignment

1. Explain telecommunication buffer?

2. Explain the differences between buffer and cache with typical examples?

3. What do you understand by multiple buffering?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Input_device

107

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html. Retrieved 2012-

05-17.

https://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf. Retrieved

2012-05-17.

http://www.anandtech.com/video/showdoc.aspx?i=3591&p=1. Retrieved 2009-07-16.

http://www.anandtech.com/video/showdoc.aspx?i=3591&p=1. Retrieved 2009-07-16.

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEdrv.mspx#E2D. Retrieved

2008-04-07.

http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html

108

Unit 4

External Storage
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 External Storage

3.2 Advantages of external storage

3.3 Types of external storage

3.3.1 Magnetic storage

3.3.2 Optical storage

3.3.2.1 CD

3.3.2.2 DVD

3.4 Solid state storage

3.4.1 Advantages of flash memory

3.4.2 Disadvantages of flash memory

3.4.3 Flash memory devices

3.5 Other devices

3.6 Data organization

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

109

1.0 Introduction

In this unit, what you will learn borders on external storage. Computers have the capability to

store your information in a variety of different ways. All of these different ways require a specific

storage device. More than likely, you have used a variety of different storage devices on your

computer. You just may not have realized it at the time. Storage by way of zip drives and

floppy discs is now a thing of the past. There are many new solutions for computer users to

store large amounts of data.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Explain external storage

ii. Outline the advantages of external storage

iii. Describe the types of external storage

iv. Explain solid state storage

v. Describe other devices

vi. Explain data organization

3.0 Learning Content

3.1 External Storage

In computer, external storage comprises devices that temporarily store information for

transporting from computer to computer. Such devices are not permanently fixed inside a

computer. Semiconductor memories are not sufficient to provide the whole storage capacity

required in computers. The major limitation in using semiconductor memories is the cost per

bit of the stored information. So to fulfill the large storage requirements of computers, magnetic

disks, optical disks are generally used.

3.1.1 Advantages of External Storage

1. External storage devices provide additional storage other than that available in computer.

2. Data can be transported easily from one place to another.

3. It is useful to store software and data that is not needed frequently.

4. External storage also works as data backup.

5. This back up may prove useful at times such as fire or theft because important data is

not lost.

3.2 Types of External Storage

110

3.2.1 Magnetic storage

i. Cassette tape

ii. Floppy disk

3.2.2 Optical storage

Optical media are the media that use laser light technology for data storage and retrieval.

Optical Storage Devices

Compact Disk (CD)

CD stands for compact disk. The speed is much less than a hard disk. The storage capacity

is 700 MB. Types of CDs include:

i. CD-ROM: It is compact disk read only memory. It can be read only.

ii. CD-Recordable: It was invented in 1990s. Using CD-R it is possible to write data once

on a disk. These are write once read many disks.

iii. CD-Rewritable: There is a limit on how many times a CD-RW can be written. Presently

this limit is 1000 times. CD-RW drives are compatible with CD-ROM and CD-R.

Digital Versatile Disk (DVD)

DVD stands for digital versatile disk. Its speed is much faster than CD but not as fast as hard

disk. The standard DVD-5 technology has a storage capacity of 4.7 GB. The storage capacity

changes with the standard used. Its storage capacity (4.7 GB) is much higher than a CD (700

MB). It is achieved by a number of design changes.

Self-Assessment Question

1. Give 2 types of External Storage

Self-Assessment Answer

1. Magnetic Storage, Optical Storage

3.2.3 Solid State Storage

Flash memory is a solid state memory. It was invented in 1980s by Toshiba. A flash memory

is a particular type of EEPROM (Electrically Erasable Programmable Read Only Memory). It

is a no-volatile memory. It retains the stored information without requiring a power source. It

is called as solid state memory because it has got on moving parts Flash memory is different

from the regular EEPROM.

In case of EEPROM data are erased one byte at a time which makes it extremely slower. On

the other hand, data stored in flash memory can be erased in blocks. That’s why it gets a

name “flash memory” because the chip is organized in such a way that a block of memory

cells can be erased at a single time or “flash”.

http://en.wikipedia.org/wiki/Cassette_tape
http://en.wikipedia.org/wiki/Floppy_disk

111

Advantages of Flash Memory

i. It has got no moving parts. So it is durable and less susceptible to mechanical

damages.

ii. It is small in size and light in weight. Hence it is extensively used in portable devices.

iii. Flash memory transfers data at a faster rate.

iv. As erasing of information in blocks is possible, flash memories are useful in devices

where frequent updating of data is required

Disadvantages of Flash Memory

i. The cost of flash memory is high as compared to hard disk. Memory card (for example,

CompactFlash) with a 192MB capacity typically costs more than a hard drive with a

capacity of 40 GB.

ii. The storage capacity of a flash memory is far less than a hard disk.

3.2.4 Flash Memory Devices

1. Memory card: Memory cards are flash memory storage media used to store digital

information in many electronics products. The types of memory cards include

CompactFlash, PCMCIA, secure digital card, multimedia card, memory stick etc.

2. Memory stick: Sony introduced memory stick standard in 1998. Memory stick is an

integrated circuit designed to serve as a storage and transfer medium for digital data. It

can store data in various form as text, graphics, digital images etc. transfer of data is

possible between devices having memory stick slots. Memory sticks are available in

various storage sizes ranging from 4MB to 512MB. The dimensions of a memory stick are

50mm long, 21.5mm wide and 2.8mm thick (in case of pro format). The transfer speed of

memory stick is 160 Mbit/s.

Self-Assessment Question

1. When was flash memory invented?

Self-Assessment Answer

1. It was invented in 1980s by Toshiba

3.3 Other devices

Other external storage devices include:

1. Punched cards

2. Zip disks

3. Microforms

4. Memory spot chips

Compare external storage which need not have a permanent connection to a computer:

112

External hard disk drives: External hard drives are exactly the same as internal drives, with

one exception. Rather than being enclosed inside your computer, external hard drives have

their own separate casing and sit externally to your computer. External hard drives can

connect to your computer in a variety of ways. Some common connection types are: USB 2.0,

ESATA, Firewire 400 and Firewire 800. External hard drives measure capacity in gigabytes

and have different speeds as well.

3.4 Data Organization

1. Tracks - the organization of data on the platter in a concentric set of rings, each track is

the same width as the head.

2. Data are transferred to and from a disk in blocks

3. Sectors - data are stored in these block-size regions that maybe either fixed or variable

length.

4. Adjacent tracks or sectors are separated by gaps

5. Density - bits per inch, increases from outer track to inner track

6. Clusters - groups of sectors that use to store a file

7. Cylinders - tracks in the same position of each side in multiple platter

4.0 Conclusion

In this unit, you have learned about external storage. You have also learnt about the

advantages of external storage, different types of external storage, solid state storage, and

other devices and data organization.

5.0 Summary

In computing external storage comprise devices that temporarily store information for

transporting from computer to computer. Such devices are not permanently fixed inside a

computer. Semiconductor memories are not sufficient to provide the whole storage capacity

required in computers. External storage devices provide additional storage other than that

available in computer.

Some of the advantages of external storage are; Data can be transported easily from one

place to another; It is useful to store software and data that is not needed frequently. Optical

media are the media that use laser light technology for data storage and retrieval. CD stands

for compact disk. The speed is much less than a hard disk. The storage capacity is 700 MB.

Types of CDs include: DVD stands for digital versatile disk.

Its speed is much faster than CD but not as fast as hard disk. The standard DVD-5 technology

has a storage capacity of 4.7 GB. The Flash memory is a solid state memory. It was invented

in 1980s by Toshiba. A flash memory is a particular type of EEPROM (Electrically Erasable

Programmable Read Only Memory). It is a no-volatile memory. Other external storage devices

include: punched cards; Zip disks.

113

6.0 Tutor-Marked Assignment

1. Storage of information is very important in computing, briefly describe the external

storage in computing?

2. What are the merits of the external storage devices in computing?

3. Explain the different modes of data organization in external storage devices?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Mano, M. Morris, (1993).Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION . CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.ehow.com/about_5402387_different-storage-devices

computers.html#ixzz24plKwJ8K

114

Module 4

Introduction to Networks,
RAID Architectures, Data

Path & Control Unit
Unit 1: Introduction to Networks

Unit 2: Multimedia Support RAID Architectures

Unit 3: Data Path and Control Unit

115

Unit 1

Introduction to Networks
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 What is a Network?

3.1.1 Why networking?

3.2 Types of Networks

3.2.1 Point to Point

3.3 Local Area Network (LAN)

3.4 Metropolitan Area Network (MAN)

3.5 Wide Area Network (WAN)

3.6 Value added Network (VAN)

3.6.1 Value-Added networks (VAN)

3.6.2 Transaction Delivery Networks (TDN)

3.6.3 Internetworks

3.7 Network Topology

3.7.1 Bus Topology:

3.7.2 Ring Topology

3.7.3 Star Topology

3.7.4 Mesh Topology

3.7.5 Hybrid Topology

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

116

1.0 Introduction

In this unit, what you will learn rotates on computer networks. Networking not only enables

sharing information and resources among the users but also distributed processing. There are

five types of network. Point-point, LAN, MAN, WAN and VAN. The network topology defines

how the devices (computers, printers...etc.) are connected and how the data flows from one

device to another. They are broadly categorized as bus, ring, star, mesh and hybrid. The

details are in this unit.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Define Computer Network

ii. Describe the Types of Networks

iii. Explain Network Topology

iv. Describe Hybrid Topology

3.0 Learning Content
.

3.1 What is a Network?

A network is a set of equipment (often referred as data terminal equipment / DTE, or simply

terminals or nodes) connected by a communication channel, which can be either

guided/unguided media. DTE equipment can be a computer, printer or any device capable of

sending and/or receiving data generated by other nodes on the network.

3.1.1 Why Networking?

1. Sharing of hardware: Computer hardware resources, Disks, Printers.

2. Sharing of software: Multiple single user licenses are more expensive than multi-user

3. License: Easy maintenance of software

4. Sharing of information: Several individuals can interact with each other; Working in

groups can be formed

5. Communication: e-mail; internet telephony; audio conferencing; video conferencing

6. Scalability: Individual subsystems can be created and combine it into a main system to

enhance the overall performance.

7. Distributed systems: Networked environment of computers can distribute the work load

among themselves keeping transparency to the end user

Self-Assessment Question

1. What is a Network?

117

Self-Assessment Answer

1. A network is a set of equipment (often referred as data terminal equipment / DTE, or

simply terminals or nodes) connected by a communication channel, which can be

either guided/unguided media.

3.2 Types of networks

The various types of network include the following;

3.2.1 Point to Point

As shown in Figure 2.2.1, a communication system used to interconnect two computers. The

computers output electrical signals directly through the serial port. The data can be passed

directly through the communication medium to the other computer if the distance is small (less

than 100 meters).

Figure 2.2.1 shows a communication system in which two PCs communicate with each other

over a existing say local telephone exchange (PABX) network. In this system, we introduced

device called DTE data terminal equipment. The example here for DTE is modem (modulator

demodulator) connected at both ends.

The PCs send digital signals, which the modem converts into analog signals and transmits

through the medium (copper wires). At the receiving end, the modem converts the incoming

analog signal into digital form and passes it on to the PC.

3.3 Local Area Network (LAN)

A LAN is a local area network that is a small collection of computers in a small geographic

area of less than couple of kilometers and is very fast in data transfer. Depending on

technology implementation, a LAN can be as simple as two PCs and a printer got connected

in a small office. It can even extend throughout an organization and include multimedia (text,

voice, video) data transfers. The LANs may be configured in many ways. The peer-to-peer

118

configuration is the simplest form. In this configuration computers are connected together to

share their recourses among themselves. In such configurations it is very difficult impose

security features.

On the other hand, LANs can also be architecture in a client server model with full control over

security and protection. Today Ethernet is a dominant LAN technology.

Client/server describes the relationship between two computer programs in which one

program, the client, makes a service request from another program, the server, which fulfills

the request.

Although the client/server idea can be used by programs within a single computer, it is a more

important idea in a network. In a network, the client/server model provides a convenient way

to interconnect programs that are distributed efficiently across different locations. Computer

transactions using the client/server model are very common. For example, to check your bank

account from your computer, a client program in your computer forwards your request to a

server program at the bank.

That program may in turn forward the request to its own client program that sends a request

to a database server at another bank computer to retrieve your account balance. The balance

is returned back to the bank data client, which in turn serves it back to the client in your

personal computer, which displays the information for you.

The client/server model has become one of the central ideas of network computing. Most

business applications being written today use the client/server model. So does the Internet's

main program, TCP/IP. In marketing, the term has been used to distinguish distributed

computing by smaller dispersed computers from the "monolithic" centralized computing of

mainframe computers.

But this distinction has largely disappeared as mainframes and their applications have also

turned to the client/server model and become part of network computing. In the usual

client/server model, one server, sometimes called a daemon, is activated and awaits client

requests.

Typically, multiple client programs share the services of a common server program. Both client

programs and server programs are often part of a larger program or application. Relative to

the Internet, your Web browser is a client program that requests services (the sending of Web

pages or files) from a Web server (which technically is called a Hypertext Transport Protocol

or HTTP server) in another computer somewhere on the Internet.

119

Similarly, your computer with TCP/IP installed allows you to make client requests for files from

File Transfer Protocol (FTP) servers in other computers on the Internet. Other program

relationship models included master/slave, with one program being in charge of all other

programs, and peer-to-peer, with either of two programs able to initiate a transaction.

A typical LAN in a corporate office links a group of related computers, workstations. One of

the best computers may be given a large capacity disk drive and made as server and

remaining computers as clients.

Self-Assessment Question

1. What is the full meaning of LAN?

Self-Assessment Answer

1. Local Area Network

3.4 Metropolitan Area Network (MAN)

The metropolitan area network is designed to cover an entire city. It can be a single network

such as cable TV or a number of LANs connected together within a city to form a MAN.

Privately laid cables or public leased lines may be used to form such network. For instance a

business organization may choose MAN to inter connect all its branch offices within the city.

120

Self-Assessment Question

1. What is the Full meaning of MAN?

Self-Assessment Answer

1. Metropolitan Area Network

3.5 Wide Area Network (WAN)

A WAN is a data communications network that covers a relatively broad geographic area,

often a country or continent. It contains a collection of machines intended for running user

programs. These machines are called hosts. The hosts are connected by subnet. The purpose

of subnet is to carry messages from hosts to hosts.

The subnet includes transmission facilities, switching elements and routers provided by

common agencies, such as telephone companies. Now a days routers with satellite links are

also becoming part of the WAN subnet. All these machines provide long distance transmission

of data, voice, image and video information.

Unlike LAN which depend on their own hardware for transmission, WANs may utilize public,

leased, or private communication devices when it come across and therefore span an

unlimited number of kilometers. A network device called a router connects LANs to a WAN.

121

Self-Assessment Question

1. What is the full meaning of WAN?

Self-Assessment Answer

1. Wide Area Network

3.6 Value added Network (VAN)

3.6.1 Value-added networks (VAN)

VAN are communications networks are supplied and managed by third-party companies that

facilitate electronic data interchange, Web services and transaction delivery by providing extra

networking services. A value-added network (VAN) is a private network provider (sometimes

called a turnkey communication line) that is hired by a company to facilitate electronic data

interchange (EDI) or provide other network services.

 Let me tell you something, before the arrival of the World Wide Web, some companies hired

value-added networks to move data from their company to other companies. So with the arrival

of the World Wide Web, many companies found it more cost-efficient to move their data over

the Internet instead of paying the minimum monthly fees and per-character charges found in

typical VAN contracts.

In response, contemporary value-added network providers now focus on offering EDI

translation, encryption, secure email, management reporting, and other extra services for their

customers. Value-added networks got their first real foothold in the business world in the area

of electronic data interchange (EDI).

VANs were deployed to help trading and supply chain partners automate many business-to-

business communications and thereby reduce the number of paper transfers needed, cut

costs and speed up a wide range of tasks and processes, from inventory and order

management to payment. In today's world, e-commerce is increasingly based on XML, though

EDI remains an important part of business and still relies on value-added networks. But other

types of VANs have begun to appear, including Web services networks and transaction

delivery networks.

122

3.6.2 Transaction Delivery Networks (TDN)

The newest evolution of VANs, which first appeared in 2000, are the transaction delivery

networks (TDN) that provide services for secure end-to-end management of electronic

transactions. Also called transaction processing networks or Internet utility platforms, TDNs

can guarantee delivery of messages in addition to providing high security and availability,

network performance monitoring and centralized directory management.

TDNs typically use a store-and-forward messaging architecture that's designed to adapt

readily to a wide range of disparate systems and support any kind of transaction. Most TDNs

offer secure encryption using a public-key infrastructure and certificate authorization for

trading partners.

3.6.3 Internetworks

Internetwork or simply the internets are those when two or more networks are get connected.

Individual networks are combined through the use of routers. Lowercase internet should not

be confused with the worldwide Internet.

Self-Assessment Question

1. What is Value Added Network?

Self-Assessment Answer

1. VAN are communications networks supplied and managed by third-party companies

that facilitate electronic data interchange, Web services and transaction delivery by

providing extra networking services.

3.7 Network Topology

The topology defines how the devices (computers, printers...etc.) are connected and how the

data flows from one device to another. There are two conventions while representing the

topologies. The physical topology defines how the devices are physically wired. The logical

topology defines how the data flows from one device to another.

123

Broadly categorized into I) Bus II) Ring III) Star IV) Mesh

3.7.1 Bus Topology

In a bus topology all devices are connected to the transmission medium as backbone. There

must be a terminator at each end of the bus to avoid signal reflections, which may distort the

original signal. Signal is sent in both directions, but some buses are unidirectional. Good for

small networks. Can be used for 10BASE5 (thick net), 10BASE2 (thin net) or 10BROAD36

(broad band) co-axial bus standards.

The main problem with the bus topology is failure of the medium will seriously affect the whole

network. Any small break in the media the signal will reflect back and cause errors. The whole

network must be shut down and repaired. In such situations it is difficult to troubleshoot and

locate where the break in the cable is or which machine is causing the fault; when one device

fails the rest of the LAN fails.

3.7.2 Ring Topology

Ring topology was in the beginning of LAN area. In a ring topology, each system is connected

to the next as shown in the following picture.

124

Each device has a transceiver which behaves like a repeater which moves the signal around

the ring; ideal for token passing access methods. In this topology signal degeneration is low;

only the device that holds the token can transmit which reduces collisions. If you see its

negative aspect, it is difficult to locate a problem cable segment; expensive hardware.

3.7.3 Star topology

In a star topology each station is connected to a central node. The central node can be either

a hub or a switch. The star topology does not have the problem as seen in bus topology. The

failure of a media does not affect the entire network. Other stations can continue to operate

until the damaged segment is repaired.

Commonly used for 10BASE5, 10BASE-T or 100BASE-TX types.

The advantages are cabling is inexpensive, easy to wire, more reliable and easier to manage

because of the use of hubs which allow defective cable segments to be routed around; locating

and repairing bad cables is easier because of the concentrators; network growth is easier.

The disadvantages are all nodes receive the same signal therefore dividing bandwidth;

Maximum computers are 1,024 on a LAN. Maximum UTP (Un shielded twisted pair) length is

100 meters; distance between computers is 2.5 meters.

125

This topology is the dominant physical topology today.

3.7.4 Mesh Topology

A mesh physical topology is when every device on the network is connected to every device

on the network; most commonly used in WAN configurations Helps find the quickest route on

the network; provides redundancy. Very expensive and not easy to set up.

3.7.5 Hybrid Topology

A hybrid topology is a combination of any two or more network topologies in such a way that

the resulting network does not have one of the standard forms. For example, a tree network

connected to a tree network is still a tree network, but two star networks connected together

exhibit hybrid network topologies. A hybrid topology is always produced when two different

basic network topologies are connected.

Self-Assessment Question

1. List the Network topologies you know.

Self-Assessment Answer

1. Star, Ring, Bus, Tree, Mesh and Hybrid topologies

126

4.0 Conclusion

What you have learned in this unit is on computer network. You also learnt about the five types

of network; Point-point, LAN, MAN, WAN and VAN. You as well learnt about the network

topology which defines how the devices (computers, printers...etc.) are connected and how

the data flows from one device to another. Furthermore, you learnt that they are broadly

categorized as bus, ring, star, mesh and hybrid.

5.0 Summary

Networking not only enables sharing information and resources among the users but also

distributed processing. There are five types of network. Point-point, LAN, MAN, WAN and

VAN. Point-point allows sharing of files at a very low speed. LANs are networks distributed

over a small geographical area. They can be configured peer-peer or much powerful

client/server model.

MANs cover entire metropolitan area and may have private lines. WANs cover relatively large

geographical area. Here machines are called hosts connected by subnets. The Internet is the

largest WAN. VANs are communications networks supplied and managed by third-party

companies that facilitate electronic data interchange, Web services and transaction delivery

by providing extra networking services.

The network topology defines how the devices (computers, printers,etc.) are connected and

how the data flows from one device to another. They are broadly categorized as bus, ring,

star, mesh and hybrid. In a bus topology all devices are connected to the transmission medium

as backbone. Ring topology was in the beginning of LAN area. In a star topology each station

is connected to a central node.

The central node can be either a hub or a switch. A mesh physical topology is when every

device on the network is connected to every device on the network; most commonly used in

WAN configurations. A hybrid topology is a combination of any two or more network topologies

in such a way that the resulting network does not have one of the standard forms.

6.0 Tutor-Marked Assignment

1. Different people have different reasons for setting up a computer networks. What some of

these reasons?

2. Explain the topology of a computer networks with emphasis on the bus topology?

3. Using metropolitan area network and wide area network explain the differences between

the types of computer networks?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

127

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

NOUN, (2008). INTRODUCTION TO COMPUTER ORGANISATION. CIT 246 Course

Material, National Open University of Nigeria, Headquarters 14/16 Ahmadu Bello Way,

Victoria Island,Lagos. First Printed 2008

Stallings William. Computer Organisation and Architecture (3rd ed). Maxwell Macmillan

International Editions.

Tanenbaum, Andrew S. (1993). Structural Computer Organisation (3rd ed) Prentice Hall of

India.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

128

Unit 2

Multimedia Support
RAID Architectures

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 What is RAID?

3.2 The driving factors behind RAID

3.3 RAID Levels

3.4 Types of RAID

3.5 Server Technology Comparison

3.6 Parity

3.7 Fault tolerance

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

129

1.0 Introduction

In this unit, what you will learn borders on RAID technology. RAID stands for Redundant Array

of Inexpensive (or sometimes "Independent") Disks. RAID technology was first defined by a

group of computer scientists at the University of California at Berkeley in 1987. The scientists

studied the possibility of using two or more disks to appear as a single device to the host

system.

Although the array's performance was better than that of large, single-disk storage systems,

reliability was unacceptably low. To address this, the scientists proposed redundant

architectures to provide ways of achieving storage fault tolerance. In addition to defining RAID

levels 1 through 5, the scientists also studied data striping -- a non-redundant array

configuration that distributes files across multiple disks in an array.

Often known as RAID 0, this configuration actually provides no data protection. However, it

does offer maximum throughput for some data-intensive applications such as desktop digital

video production.

2.0 Learning Outcome

By the end of this unit, you should be able to:

1. Define RAID

2. Describe the driving factors behind RAID

3. Explain RAID Levels

4. Describe types of RAID

5. Explain server technology comparison

6. Describe RAID parity

7. Explain RAID fault tolerance

3.0 Learning Content

3.1 What is RAID?

Redundant Array of Inexpensive (or sometimes "Independent") Disks (RAID) is a method of

combining several hard disk drives into one logical unit (two or more disks grouped together

to appear as a single device to the host system). RAID technology was developed to address

the fault-tolerance and performance limitations of conventional disk storage. It can offer fault

tolerance and higher throughput levels than a single hard drive or group of independent hard

drives.

While arrays were once considered complex and relatively specialized storage solutions,

today they are easy to use and essential for a broad spectrum of client/server applications.

130

Self-Assessment Question

1. What is the full meaning of RAID?

Self-Assessment Answer

1. Redundant Array of Inexpensive (or sometimes "Independent") Disks (RAID) is a

method of combining several hard disk drives into one logical unit (two or more disks

grouped together to appear as a single device to the host system).

3.2 The Driving Factors behind RAID

A number of factors are responsible for the growing adoption of arrays for critical network

storage. More and more organizations have created enterprise-wide networks to improve

productivity and streamline information flow. While the distributed data stored on network

servers provides substantial cost benefits, these savings can be quickly offset if information is

frequently lost or becomes inaccessible.

As today's applications create larger files, network storage needs have increased

proportionately. In addition, accelerating CPU speeds have outstripped data transfer rates to

storage media, creating bottlenecks in today's systems. RAID storage solutions overcome

these challenges by providing a combination of outstanding data availability, extraordinary and

highly scalable performance, high capacity, and recovery with no loss of data or interruption

of user access.

By integrating multiple drives into a single array -- which is viewed by the network operating

system as a single disk drive -- organizations can create cost-effective, minicomputer sized

solutions of up to a terabyte or more of storage.

3.3 RAID Levels

There are several different RAID "levels" or redundancy schemes, each with inherent cost,

performance, and availability (fault-tolerance) characteristics designed to meet different

storage needs. No individual RAID level is inherently superior to any other. Each of the five

array architectures is well-suited for certain types of applications and computing environments.

For client/server applications, storage systems based on RAID levels 1, 0/1, and 5 have been

the most widely used. This is because popular NOSs such as Windows NT® Server and

NetWare manage data in ways similar to how these RAID architectures perform.

RAID 0 - RAID 1 - RAID 2 - RAID 3 - RAID 4 - RAID 5 - RAID 01 (0+1) and RAID 10 (1+0)

RAID 0

Data striping without redundancy (no protection).

i. Minimum number of drives: 2

ii. Strengths: Highest performance.

iii. Weaknesses: No data protection; One drive fails, all data is lost.

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid0
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid1
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid2
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid3
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid4
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid5
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid01

131

DRIVE 1 DRIVE 2

Data A Data B

Data C Data D

Data E Data F

RAID 1

Disk mirroring.

i. Minimum number of drives: 2

ii. Strengths: Very high performance; Very high data protection; Very minimal penalty

on write performance.

iii. Weaknesses: High redundancy cost overhead; Because all data is duplicated, twice

the storage capacity is required.

Mirroring

Standard Host

Adapter

DRIVE 1 DRIVE 2

Data A Data A

Data B Data B

Data C Data C

Original Data Mirrored Data

Duplexing

Standard

Host

Adapter 1

Standard

Host

Adapter 2

DRIVE 1 DRIVE 2

Data A Data A

Data B Data B

Data C Data C

Original Data
Mirrored

Data

RAID 2

No practical use.

i. Minimum number of drives: Not used in LAN

ii. Strengths: Previously used for RAM error environments correction (known as

Hamming Code) and in disk drives before he uses of embedded error correction.

iii. Weaknesses: No practical use; Same performance can be achieved by RAID 3 at

lower cost.

132

RAID3

Byte-level data striping with dedicated parity drive.

i. Minimum number of drives: 3

ii. Strengths: Excellent performance for large, sequential data requests.

iii. Weaknesses: Not well-suited for transaction-oriented network applications; Single

parity drive does not support multiple, simultaneous read and write requests.

RAID 4

Block-level data striping with dedicated parity drive.

i. Minimum number of drives: 3 (Not widely used)

ii. Strengths: Data striping supports multiple simultaneous read requests.

iii. Weaknesses: Write requests suffer from same single parity-drive bottleneck as RAID

3; RAID 5 offers equal data protection and better performance at same cost.

RAID 5

Block-level data striping with distributed parity.

i. Minimum number of drives: 3

ii. Strengths: Best cost/performance for transaction-oriented networks; Very high

performance, very high data protection; Supports multiple simultaneous reads and

writes; Can also be optimized for large, sequential requests.

iii. Weaknesses: Write performance is slower than RAID 0 or RAID 1.

DRIVE 1 DRIVE 2 DRIVE 3

Parity A Data A Data A

Data B Parity B Data B

Data C Data C Parity C

RAID 01 (0+1) and RAID 10 (1+0)

Combination of RAID 0 (data striping) and RAID 1 (mirroring). RAID 01 (0+1) is a mirrored

configuration of two striped sets (mirror of stripes); RAID 10 (1+0) is a stripe across a number

of mirrored sets (stripe of mirrors). RAID 10 provides better fault tolerance and rebuild

performance than RAID 01. Both array types provide very good to excellent overall

performance by combining the speed of RAID 0 with the redundancy of RAID 1 without

requiring parity calculations.

i. Minimum number of drives: 4

ii. Strengths: Highest performance, highest data protection (can tolerate multiple drive

failures).

iii. Weaknesses: High redundancy cost overhead; Because all data is duplicated, twice

the storage capacity is required; Requires minimum of four drives.

133

RAID 01 (0+1 mirror of stripes)

DRIVE 1 DRIVE 2 DRIVE 3 DRIVE 4

Data A Data A mA mA

Data B Data B mB mB

Data C Data C mC mC

Original

Data

Original

Data

Mirrored

Data

Mirrored

Data

RAID 10 (1+0 stripe of mirrors)

DRIVE 1 DRIVE 2 DRIVE 3 DRIVE 4

Data A mA Data B mB

Data C mC Data D mD

Data E mE Data F mF

Original Data Mirrored Data Original Data Mirrored Data

Self-Assessment Question

1. List the different levels of RAID.

Self-Assessment Answer

1. RAID 0 - RAID 1 - RAID 2 - RAID 3 - RAID 4 - RAID 5 - RAID 01 (0+1) and RAID 10

(1+0)

3.4 Types of RAID

There are three primary array implementations: software-based arrays, bus-based array

adapters/controllers, and subsystem-based external array controllers. As with the various

RAID levels, no one implementation is clearly better than another -- although software-based

arrays are rapidly losing favor as high-performance, low-cost array adapters become

increasingly available.

Each array solution meets different server and network requirements, depending on the

number of users, applications, and storage requirements.

134

It is important to note that all RAID code is based on software. The difference among the

solutions is where that software code is executed -- on the host CPU (software-based arrays)

or offloaded to an on-board processor (bus-based and external array controllers).

Description Advantages

Software-

based

RAID

Primarily used with entry-level servers, software-based

arrays rely on a standard host adapter and execute all

I/O commands and mathematically intensive RAID

algorithms in the host server CPU. This can slow system

performance by increasing host PCI bus traffic, CPU

utilization, and CPU interrupts. Some NOSs such as

NetWare and Windows NT include embedded RAID

software. The chief advantage of this embedded RAID

software has been its lower cost compared to higher-

priced RAID alternatives. However, this advantage is

disappearing with the advent of lower-cost, bus-based

array adapters.

 Low price

 Only requires a

standard controller.

Hardware-

based

RAID

Unlike software-based arrays, bus-based array

adapters/controllers plug into a host bus slot [typically a

133 MByte (MB)/sec PCI bus] and offload some or all of

the I/O commands and RAID operations to one or more

secondary processors. Originally used only with mid- to

high-end servers due to cost, lower-cost bus-based

array adapters are now available specifically for entry-

level server network applications.

In addition to offering the fault-tolerant benefits of RAID,

bus-based array adapters/controllers perform

connectivity functions that are similar to standard host

adapters. By residing directly on a host PCI bus, they

provide the highest performance of all array types. Bus-

based arrays also deliver more robust fault-tolerant

features than embedded NOS RAID software.

As newer, high-end technologies such as Fibre Channel

become readily available, the performance advantage of

bus-based arrays compared to external array controller

solutions may diminish.

 Data protection

and performance

benefits of RAID

 More robust fault-

tolerant features and

increased

performance versus

software-based

RAID.

135

External

Hardware

RAID Card

Intelligent external array controllers "bridge" between

one or more server I/O interfaces and single- or multiple-

device channels. These controllers feature an on-board

microprocessor, which provides high performance and

handles functions such as executing RAID software

code and supporting data caching.

External array controllers offer complete operating

system independence, the highest availability, and the

ability to scale storage to extraordinarily large capacities

(up to a terabyte and beyond). These controllers are

usually installed in networks of stand-alone Intel-based

and UNIX-based servers as well as clustered server

environments.

 OS independent

 Build super high-

capacity storage

systems for high-end

servers.

Self-Assessment Question

1. What are the types of RAID?

Self-Assessment Answer

1. Software based and hardware based.

3.5 Server Technology Comparison

UDMA SCSI Fibre Channel

Best Suited

For

Low-cost entry level server

with limited expandability

Low to high-end server

when scalability is desired

Server-to-Server

campus networks

Advantages Uses low-cost ATA

drives

 Performance: up to 160

MB/s

 Reliability

 Connectivity to the

largest variety of

peripherals

 Expandability

 Performance: up to

100 MB/s

 Dual active loop

data path capability

 Infinitely scalable

3.6 Parity

The concept behind RAID is relatively simple. The fundamental premise is to be able to

recover data on-line in the event of a disk failure by using a form of redundancy called parity.

In its simplest form, parity is an addition of all the drives used in an array. Recovery from a

136

drive failure is achieved by reading the remaining good data and checking it against parity

data stored by the array.

Parity is used by RAID levels 2, 3, 4, and 5. RAID 1 does not use parity because all data is

completely duplicated (mirrored). RAID 0, used only to increase performance, offers no data

redundancy at all.

 A + B + C + D = PARITY

 1 + 2 + 3 + 4 = 10

 1 + 2 + X + 4 = 10

 7 + X = 10

 -7 + = -7

 --------- ----------

 X 3

 MISSING RECOVERED

 DATA DATA

3.7 Fault Tolerance

RAID technology does not prevent drive failures. However, RAID does provide insurance

against disk drive failures by enabling real-time data recovery without data loss. The fault

tolerance of arrays can also be significantly enhanced by choosing the right storage enclosure.

Enclosures that feature redundant, hot-swappable drives, power supplies, and fans can

greatly increase storage subsystem uptime based on a number of widely accepted measures:

a. MTDL:

Mean Time to Data Loss. The average time before the failure of an array component

causes data to be lost or corrupted.

b. MTDA:

Mean Time between Data Access (or availability). The average time before non-

redundant components fail, causing data inaccessibility without loss or corruption.

c. MTTR:

Mean Time To Repair. The average time required to bring an array storage subsystem

back to full fault tolerance.

d. MTBF:

Mean Time Between Failure. Used to measure computer component average

reliability/life expectancy. MTBF is not as well-suited for measuring the reliability of

array storage systems as MTDL, MTTR or MTDA (see below) because it does not

account for an array's ability to recover from a drive failure. In addition, enhanced

enclosure environments used with arrays to increase uptime can further limit the

applicability of MTBF ratings for array solutions.

137

Self-Assessment Question

1. What method does RAID use to recover data?

Self-Assessment Answer

1. Parity

4.0 Conclusion

What you have learned in this unit is on RAID technology. You also learnt about the driving

factors behind RAID, RAID Levels, and types of RAID, server technology comparison, RAID

parity and RAID fault tolerance.

5.0 Summary

RAID stands for Redundant Array of Inexpensive (or sometimes "Independent") Disks. RAID

technology was first defined by a group of computer scientists at the University of California

at Berkeley in 1987. The scientists studied the possibility of using two or more disks to appear

as a single device to the host system. RAID is a method of combining several hard disk drives

into one logical unit (two or more disks grouped together to appear as a single device to the

host system).

RAID technology was developed to address the fault-tolerance and performance limitations of

conventional disk storage. A number of factors are responsible for the growing adoption of

arrays for critical network storage. More and more organizations have created enterprise-wide

networks to improve productivity and streamline information flow.

While the distributed data stored on network servers provides substantial cost benefits, these

savings can be quickly offset if information is frequently lost or becomes inaccessible. There

are several different RAID "levels" or redundancy schemes, each with inherent cost,

performance, and availability (fault-tolerance) characteristics designed to meet different

storage needs.

No individual RAID level is inherently superior to any other. RAID 0 - RAID 1 - RAID 2 - RAID

3 - RAID 4 - RAID 5 - RAID 01 (0+1) and RAID 10 (1+0) There are three primary array

implementations: software-based arrays, bus-based array adapters/controllers, and

subsystem-based external array controllers.

As with the various RAID levels, no one implementation is clearly better than another --

although software-based arrays are rapidly losing favor as high-performance, low-cost array

adapters become increasingly available. Each array solution meets different server and

network requirements, depending on the number of users, applications, and storage

requirements.

The concept behind RAID is relatively simple. The fundamental premise is to be able to

recover data on-line in the event of a disk failure by using a form of redundancy called parity.

In its simplest form, parity is an addition of all the drives used in an array. Recovery from a

drive failure is achieved by reading the remaining good data RAID technology does not prevent

drive failures.

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid0
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid1
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid2
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid3
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid3
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid4
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid5
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid#raid01

138

However, RAID does provide insurance against disk drive failures by enabling real-time data

recovery without data loss. The fault tolerance of arrays can also be significantly enhanced by

choosing the right storage enclosure.

6.0 Tutor-Marked Assignment

1. RAID technology does not prevent drive failures. However, RAID does provide insurance

against disk drive failures. Explain the aspect of fault tolerance?

2. Explain the server technology comparison for RAID?

3. Describe the RAID parity?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993).Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.adaptec.com

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid

http://www.adaptec.com/

139

Unit 3

Data Path and Control Unit
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Data Path

3.1.1 One-Bus Organization

3.1.2 Two-Bus Organization

3.1.3 Three-Bus Organization

3.2 CPU Instruction Cycle

3.2.1 Fetch Instructions

3.2.2 Execute Simple Arithmetic Operation

3.2.3 Interrupt Handling

3.3 Control Unit

3.3.1 Hardwired Implementation

3.3.2 Micro programmed Control Unit

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

140

1.0 Introduction

In this unit, what you will learn concerns data path and control unit. A typical CPU has three

major components: (1) register set, (2) arithmetic logic unit (ALU), and (3) control unit (CU).

The register set differs from one computer architecture to another. It is usually a combination

of general-purpose and special purpose registers. General-purpose registers are used for any

purpose, hence the name general purpose.

Special-purpose registers have specific functions within the CPU. For example, the program

counter (PC) is a special-purpose register that is used to hold the address of the instruction to

be executed next. Another example of special-purpose registers is the instruction register (IR),

which is used to hold the instruction that is currently executed. The ALU provides the circuitry

needed to perform the arithmetic, logical and shift operations demanded of the instruction set.

The control unit is the entity responsible for fetching the instruction to be executed from the

main memory and decoding and then executing it. Figure 5.1 shows the main components of

the CPU and its interactions with the memory system and the input/output devices. The CPU

fetches instructions from memory, reads and writes data from and to memory, and transfers

data from and to input/output devices.

A typical and simple execution cycle can be summarized as follows:

1. The next instruction to be executed, whose address is obtained from the PC, is fetched

from the memory and stored in the IR.

2. The instruction is decoded.

3. Operands are fetched from the memory and stored in CPU registers, if needed.

4. The instruction is executed.

5. Results are transferred from CPU registers to the memory, if needed.

The execution cycle is repeated as long as there are more instructions to execute.

141

A check for pending interrupts is usually included in the cycle. Examples of interrupts include

I/O device request, arithmetic overflow, or a page fault (see Chapter 7).

When an interrupt request is encountered, a transfer to an interrupt handling routine takes

place.

Interrupt handling routines are programs that are invoked to collect the state of the currently

executing program, correct the cause of the interrupt, and restore the state of the program.

The actions of the CPU during an execution cycle are defined by micro-orders issued by the

control unit. These micro-orders are individual control signals sent over dedicated control lines.

For example, let us assume that we want to execute an instruction that moves the contents of

register X to register Y. Let us also assume that both registers are connected to the data bus,

D. The control unit will issue a control signal to tell register X to place its contents on the data

bus D. After some delay, another control signal will be sent to tell register Y to read from data

bus D. The activation of the control signals is determined using either hardwired control or

microprogramming. These concepts are explained later in this unit.

2.0 Learning Outcome

By the end of this unit, you should be able to:

1. Explain data path

2. Describe one-bus, two-bus and three-bus organizations

3. Explain CPU Instruction cycle

4. Describe fetch instructions

5. Explain how to execute simple arithmetic operation

6. Describe interrupt handling

7. Describe control unit

8. Explain hardwired implementation

9. Explain microprogrammed control unit

3.0 Learning Content

3.1 Data Path

The CPU can be divided into a data section and a control section. The data section, which is

also called the Data Path, contains the registers and the ALU. The Data Path is capable of

performing certain operations on data items. The control section is basically the control unit,

which issues control signals to the Data Path. Internal to the CPU, data move from one register

to another and between ALU and registers.

Internal data movements are performed via local buses, which may carry data, instructions,

and addresses. Externally, data move from registers to memory and I/O devices, often by

means of a system bus. Internal data movement among registers and between the ALU and

registers may be carried out using different organizations including one-bus, two-bus, or three-

bus organizations.

142

Dedicated Data Paths may also be used between components that transfer data between

themselves more frequently. For example, the contents of the PC are transferred to the MAR

to fetch a new instruction at the beginning of each instruction cycle. Hence, a dedicated Data

Path from the PC to the MAR could be useful in speeding up this part of instruction execution.

3.1.1 One-Bus Organization

Using one bus, the CPU registers and the ALU use a single bus to move outgoing and

incoming data. Since a bus can handle only a single data movement within one clock cycle,

two-operand operations will need two cycles to fetch the operands for the ALU. Additional

registers may also be needed to buffer data for the ALU.

This bus organization is the simplest and least expensive, but it limits the amount of data

transfer that can be done in the same clock cycle, which will slow down the overall

performance. Figure 5.3 shows a one-bus Data Path consisting of a set of general-purpose

registers, a memory address register (MAR), a memory data register (MDR), an instruction

register (IR), a program counter (PC), and an ALU.

3.1.2 Two-Bus Organization

Using two buses is a faster solution than the one-bus organization. In this case, general-

purpose registers are connected to both buses. Data can be transferred from two different

registers to the input point of the ALU at the same time. Therefore, a two operand operation

can fetch both operands in the same clock cycle. An additional buffer register may be needed

to hold the output of the ALU when the two buses are busy carrying the two operands.

Figure 5.4a shows a two-bus organization. In some cases, one of the buses may be dedicated

for moving data into registers (in-bus), while the other is dedicated for transferring data out of

the registers (out-bus). In this case, the additional buffer register may be used, as one of the

ALU inputs, to hold one of the operands.

The ALU output can be connected directly to the in-bus, which will transfer the result into one

of the registers. Figure 5.4b shows a two-bus organization with in-bus and out-bus.

3.1.3. Three-Bus Organization

In a three-bus organization, two buses may be used as source buses while the third is used

as destination.

143

The source buses move data out of registers (out-bus), and the destination bus may move

data into a register (in-bus). Each of the two out-buses is connected to an ALU input point.

The output of the ALU is connected directly to the in-bus. As can be expected, the more buses

we have, the more data we can move within a single clock cycle. However, increasing the

number of buses will also increase the complexity of the hardware. Figure 5.5 shows an

example of a three-bus Data Path.

144

Self-Assessment Question

1. The data path of the CPU contains the register and ALU. True or False?

Self-Assessment Answer

1. True

3.2 CPU Instruction Cycle

The sequence of operations performed by the CPU during its execution of instructions is

presented in Fig. 5.6. As long as there are instructions to execute, the next instruction is

fetched from main memory. The instruction is executed based on the operation specified in

the opcode field of the instruction. At the completion of the instruction execution, a test is made

to determine whether an interrupt has occurred. An interrupt handling routine needs to be

invoked in case of an interrupt.

The basic actions during fetching an instruction, executing an instruction, or handling an

interrupt are defined by a sequence of micro-operations. A group of control signals must be

enabled in a prescribed sequence to trigger the execution of a micro operation.

In this section, we show the micro-operations that implement instruction fetch, execution of

simple arithmetic instructions, and interrupt handling.

3.2.1 Fetch Instructions

The sequence of events in fetching an instruction can be summarized as follows:

1. The contents of the PC are loaded into the MAR.

2. The value in the PC is incremented. (This operation can be done in parallel with a

memory access.)

3. As a result of a memory read operation, the instruction is loaded into the MDR.

4. The contents of the MDR are loaded into the IR.

145

Let us consider the one-bus Data Path organization shown in Fig. 5.3. We will see that the

fetch operation can be accomplished in three steps as shown in the table below, where t0 < t1

< t2. Note that multiple operations separated by “;” imply that they are accomplished in parallel.

Using the three-bus Data Path shown in Figure 5.5, the following table shows the steps

needed.

3.2.2 Execute Simple Arithmetic Operation

Add R1, R2, R0 This instruction adds the contents of source registers R1 and R2, and stores

the results in destination register R0. This addition can be executed as follows:

1. The registers R0 , R1 , R2 , are extracted from the IR.

2. The contents of R1 and R2 are passed to the ALU for addition.

3. The output of the ALU is transferred to R0 .

Using the one-bus Data Path shown in Figure 5.3, this addition will take three steps as shown

in the following table, where t0 < t1 < t2 .

Using the two-bus Data Path shown in Figure 5.4a, this addition will take two steps as shown

in the following table, where t0 < t1 .

Using the two-bus Data Path with in-bus and out-bus shown in Figure 5.4b, this addition will

take two steps as shown below, where t0 < t1 .

146

Using the three-bus Data Path shown in Figure 5.5, this addition will take only one step as

shown in the following table.

Add X, R0 This instruction adds the contents of memory location X to register R0 and stores

the result in R0 . This addition can be executed as follows:

1. The memory location X is extracted from IR and loaded into MAR.

2. As a result of memory read operation, the contents of X are loaded into MDR.

3. The contents of MDR are added to the contents of R0 .

Using the one-bus Data Path shown in Figure 5.3, this addition will take five steps as shown

below, where t0 < t1 < t2 < t3 < t4 .

Using the two-bus Data Path shown in Figure 5.4a, this addition will take four steps as shown

below, where t0 < t1 < t2 < t3 .

Using the two-bus Data Path with in-bus and out-bus shown in Figure 5.4b, this addition will

take four steps as shown below, where t0 < t1 < t2 < t3 .

147

Using the three-bus Data Path shown in Figure 5.5, this addition will take three steps as shown

below, where t0 < t1 < t2.

3.3.1 Interrupt Handling

After the execution of an instruction, a test is performed to check for pending interrupts. If there

is an interrupt request waiting, the following steps take place:

1. The contents of PC are loaded into MDR (to be saved).

2. The MAR is loaded with the address at which the PC contents are to be saved.

3. The PC is loaded with the address of the first instruction of the interrupt handling routine.

4. The contents of MDR (old value of the PC) are stored in memory.

The following table shows the sequence of events, where t1 < t2 < t3.

3.3 Control Unit

The control unit is the main component that directs the system operations by sending control

signals to the Data Path. These signals control the flow of data within the CPU and between

the CPU and external units such as memory and I/O. Control buses generally carry signals

between the control unit and other computer components in a clock-driven manner. The

system clock produces a continuous sequence of pulses in a specified duration and frequency.

A sequence of steps t0 , t1 , t2 , . . . ,

Self-Assessment Question

1. Which component directs the system operation by sending control signals to the data

path?

148

Self-Assessment Answer

1. The Control Unit

(t0 < t1 < t2 < . . .) are used to execute a certain instruction. The op-code field of a fetched

instruction is decoded to provide the control signal generator with information about the

instruction to be executed. Step information generated by a logic circuit module is used with

other inputs to generate control signals. The signal generator can be specified simply by a set

of Boolean equations for its output in terms of its inputs.

Figure 5.7 shows a block diagram that describes how timing is used in generating control

signals. There are mainly two different types of control units: microprogrammed and

hardwired. In microprogrammed control, the control signals associated with operations are

stored in special memory units inaccessible by the programmer as control words. A control

word is a microinstruction that specifies one or more micro operations.

A sequence of microinstructions is called a microprogram, which is stored in a ROM or RAM

called a control memory CM. In hardwired control, fixed logic circuits that correspond directly

to the Boolean expressions are used to generate the control signals. Clearly hardwired control

is faster than microprogrammed control. However, hardwired control could be very expensive

and complicated for complex systems. Hardwired control is more economical for small control

units. It should also be noted that microprogrammed control could adapt easily to changes in

the system design. We can easily add new instructions without changing hardware. Hardwired

control will require a redesign of the entire systems in the case of any change.

Example 1: Let us revisit the add operation in which we add the contents of source registers

R1 , R2 , and store the results in destination register R0 . We have shown earlier that this

149

operation can be done in one step using the three-bus Data Path shown in Figure 5.5. Let us

try to examine the control sequence needed to accomplish this addition at step t0.

Suppose that the op-code field of the current instruction was decoded to Inst-x type. First we

need to select the source registers and the destination register, then we select Add as the

ALU function to be performed. The following table shows the needed step and the control

sequence.

Figure 5.8 shows the signals generated to execute Inst-x during time period t0. The AND gate

ensures that these signals will be issued when the op-code is decoded into Inst-x and during

time period t0 . The signals (R1 out-bus 1), (R2 out-bus2),

(R0 in-bus), and (Add) will select R1 as a source on out-bus1, R2 as a source on outbus2, R0

as destination on in-bus, and select the ALUs add function, respectively.

3.3.2 Hardwired Implementation

In hardwired control, a direct implementation is accomplished using logic circuits. For each

control line, one must find the Boolean expression in terms of the input to the control signal

generator as shown in Figure 5.7. Let us explain the implementation using a simple example.

150

Assume that the instruction set of a machine has the three instructions: Inst-x, Inst-y, and Inst-

z; and A, B, C, D, E, F, G, and H are control lines. The following table shows the control lines

that should be activated for the three instructions at the three steps t0 , t1 , and t2 .

The Boolean expressions for control lines A, B, and C can be obtained as follows:

Figure 5.10 shows the logic circuits for these control lines. Boolean expressions for the rest of

the control lines can be obtained in a similar way. Figure 5.11 shows the state diagram in the

execution cycle of these instructions.

3.3.3 Microprogrammed Control Unit

The idea of microprogrammed control units was introduced by M. V. Wilkes in the early 1950s.

Microprogramming was motivated by the desire to reduce the complexities involved with

hardwired control. As we studied earlier, an instruction is implemented using a set of micro-

operations. Associated with each micro-operation is a set of control lines that must be

activated to carry out the corresponding micro operation. The idea of microprogrammed

control is to store the control signals associated with the implementation of a certain instruction

as a microprogram in a special memory called a control memory (CM).

151

A microprogram consists of a sequence of microinstructions. A microinstruction is a vector of

bits, where each bit is a control signal, condition code, or the address of the next

152

microinstruction. Microinstructions are fetched from CM the same way program instructions

are fetched from main memory (Fig. 5.12). When an instruction is fetched from memory, the

op-code field of the instruction will determine which microprogram is to be executed.

In other words, the op-code is mapped to a microinstruction address in the control memory.

The microinstruction processor uses that address to fetch the first microinstruction in the

microprogram. After fetching each microinstruction, the appropriate control lines will be

enabled. Every control line that corresponds to a “1” bit should be turned on. Every control line

that corresponds to a “0” bit should be left off. After completing the execution of one

microinstruction, a new microinstruction will be fetched and executed. If the condition code

bits indicate that a branch must be taken, the next microinstruction is specified in the address

bits of the current microinstruction. Otherwise, the next microinstruction in the sequence will

be fetched and executed. The length of a microinstruction is determined based on the number

of micro operations specified in the microinstructions, the way the control bits will be

interpreted, and the way the address of the next microinstruction is obtained.

A microinstruction may specify one or more micro-operations that will be activated

simultaneously. The length of the microinstruction will increase as the number of parallel

micro-operations per microinstruction increases. Furthermore, when each control bit in the

microinstruction corresponds to exactly one control line, the length of microinstruction could

get bigger.

The length of a microinstruction could be reduced if control lines are coded in specific fields in

the microinstruction. Decoders will be needed to map each field into the individual control

lines. Clearly, using the decoders will reduce the number of control lines that can be activated

simultaneously.

There is a tradeoff between the length of the microinstructions and the amount of parallelism.

It is important that we reduce the length of microinstructions to reduce the cost and access

time of the control memory. It may also be desirable that more micro-operations be performed

in parallel and more control lines can be activated simultaneously.

Self-Assessment Question

1. The idea of microprogrammed control units was introduced by ________.

Self-Assessment Answer

1. The idea of microprogrammed control units was introduced by M. V. Wilkes in the early

1950s.

153

4.0 Conclusion

What you have learned in this unit is on data path and control unit. Also, you have learnt about

one-bus organization, two-bus organization and three-bus organization. Furthermore, you

learnt about the CPU instruction cycle, fetch instructions, execute simple arithmetic operation,

interrupt handling, control unit, hardwired implementation and microprogrammed control unit.

5.0 Summary

The CPU is the part of a computer that interprets and carries out the instructions contained in

the programs we write. The CPU’s main components are the register file, ALU, and the control

unit. The register file contains general-purpose and special registers. General-purpose

registers may be used to hold operands and intermediate results.

The special registers may be used for memory access, sequencing, status information, or to

hold the fetched instruction during decoding and execution. Arithmetic and logical operations

are performed in the ALU. Internal to the CPU, data may move from one register to another

or between registers and ALU. Data may also move between the CPU and external

components such as memory and I/O.

The control unit is the component that controls the state of the instruction cycle. As long as

there are instructions to execute, the next instruction is fetched from main memory. The

instruction is executed based on the operation specified in the op-code field of the instruction.

The control unit generates signals that control the flow of data within the CPU and between

the CPU and external units such as memory and I/O. The control unit can be implemented

using hardwired or microprogramming techniques.

6.0 Tutor-Marked Assignment

1. Explain hardwired control implementation with a simple example?

2. Explain the process of interrupt handling in control unit?

3. Give a sketch of central processing unit and give summary of a typical and simple

execution cycle?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

154

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.adaptec.com

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid

http://www.adaptec.com/

155

Module 5

Instruction Pipelining,
RISCs & Multiprocessors

Unit 1: Pipelining Design Techniques

Unit 2: Introduction to Reduced Instruction Set Computers (RISCs)

Unit 3: Introduction to Multiprocessors

156

Unit 1

Introduction to Pipelining
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 Pipelining

3.2 Instruction Pipeline

3.2.1 Pipeline “Stall” Due to Instruction Dependency

3.2.2 Pipeline “Stall” Due to Data Dependency

3.3 Example Pipeline Processors

3.4 Instruction-Level Parallelism

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

157

1.0 Introduction

In this unit, what you will learn rotates around pipelining design techniques. There exist two

basic techniques to increase the instruction execution rate of a processor. These are to

increase the clock rate, thus decreasing the instruction execution time, or alternatively to

increase the number of instructions that can be executed simultaneously. Pipelining and

instruction-level parallelism are examples of the latter technique.

Pipelining owes its origin to car assembly lines. The idea is to have more than one instruction

being processed by the processor at the same time. Similar to the assembly line, the success

of a pipeline depends upon dividing the execution of an instruction among a number of

subunits (stages), each performing part of the required operations.

A possible division is to consider instruction fetch (F), instruction decode (D), operand fetch

(F), instruction execution (E), and store of results (S) as the subtasks needed for the execution

of an instruction. In this case, it is possible to have up to five instructions in the pipeline at the

same time, thus reducing instruction execution latency. In this unit, we discuss the basic

concepts involved in designing instruction pipelines.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Explain pipelining

ii. Describe pipelining design techniques

iii. Explain example pipeline processors

iv. Describe Instruction-Level Parallelism

3.0 Learning Content

3.1 Pipelining

Pipelining refers to the technique in which a given task is divided into a number of subtasks

that need to be performed in sequence. Each subtask is performed by a given functional unit.

The units are connected in a serial fashion and all of them operate simultaneously. The use

of pipelining improves the performance compared to the traditional sequential execution of

tasks.

Figure 9.1 shows an illustration of the basic difference between executing four subtasks of a

given instruction (in this case fetching F, decoding D, execution E, and writing the results W)

using pipelining and sequential processing.

158

It is clear from the figure that the total time required to process three instructions (I1, I2, I3) is

only six time units if four-stage pipelining is used as compared to 12 time units if sequential

processing is used. A possible saving of up to 50% in the execution time of these three

instructions is obtained.

In order to formulate some performance measures for the goodness of a pipeline in processing

a series of tasks, a space time chart (called the Gantt’s chart) is used. The chart shows the

succession of the subtasks in the pipe with respect to time. Figure 9.2 shows a Gantt’s chart.

In this chart, the vertical axis represents the subunits (four in this case) and the horizontal axis

represents time (measured in terms of the time unit required for each unit to perform its task).

In developing the Gantt’s chart, we assume that the time (T) taken by each subunit to perform

its task is the same; we call this the unit time. As can be seen from the figure, 13 time units

are needed to finish executing 10 instructions (I1 to I10). This is to be compared to 40 time units

if sequential processing is used (ten instructions each requiring four time units).

In the following analysis, we provide three performance measures for the goodness of a

pipeline. These are the Speed-up S(n), Throughput U(n), and Efficiency E(n). It should be

noted that in this analysis we assume that the unit time T = t units.

1. Speed-up S(n) Consider the execution of m tasks (instructions) using n-stages (units)

pipeline. As can be seen, n + m - 1 time units are required to complete m tasks.

159

Self-Assessment Question

1. What is Pipelining?

Self-Assessment Answer

1. Pipelining refers to the technique in which a given task is divided into a number of

subtasks that need to be performed in sequence.

3.2 Instruction Pipeline

The simple analysis made in Section 9.1 ignores an important aspect that can affect the

performance of a pipeline, that is, pipeline stall. A pipeline operation is said to have been

stalled if one unit (stage) requires more time to perform its function, thus forcing other stages

to become idle. Consider, for example, the case of an instruction fetch that incurs a cache

miss. Assume also that a cache miss requires three extra time units. Figure 9.3 illustrates the

effect of having instruction I2 incurring a cache miss (assuming the execution of ten

instructions I1 to I10).

The figure shows that due to the extra time units needed for instruction I2 to be fetched, the

pipeline stalls, that is, fetching of instruction I3 and subsequent instructions are delayed. Such

situations create what is known as pipeline bubble (or pipeline hazards). The creation of a

pipeline bubble leads to wasted unit times, thus leading to an overall increase in the number

of time units needed to finish executing a given number of instructions.

160

The number of time units needed to execute the 10 instructions shown in Figure 9.3 is now 16

time units, compared to 13 time units if there were no cache misses. Pipeline hazards can

take place for a number of other reasons. Among these are instruction dependency and data

dependency. These are explained below.

3.2.1 Pipeline “Stall” Due to Instruction Dependency

Correct operation of a pipeline requires that operation performed by a stage MUST NOT

depend on the operation(s) performed by other stage(s). Instruction dependency refers to the

case whereby fetching of an instruction depends on the results of executing a previous

instruction. Instruction dependency manifests itself in the execution of a conditional branch

instruction. Consider, for example, the case of a “branch if negative” instruction.

In this case, the next instruction to fetch will not be known until the result of executing that

“branch if negative” instruction is known. In the following discussion, we will assume that the

instruction following a conditional branch instruction is not fetched until the result of executing

the branch instruction is known (stored). The following example shows the effect of instruction

dependency on a pipeline.

Example 1: Consider the execution of ten instructions I1–I10 on a pipeline consisting of four

pipeline stages: IF (instruction fetch), ID (instruction decode), IE (instruction execute), and IS

(instruction results store). Assume that the instruction I4 is a conditional branch instruction and

that when it is executed, the branch is not taken, that is, the branch condition(s) is(are) not

satisfied.

Assume also that when the branch instruction is fetched, the pipeline stalls until the result of

executing the branch instruction is stored. Show the succession of instructions in the pipeline;

that is, show the Gantt’s chart. Figure 9.4 shows the required Gantt’s chart. The bubble

created due to the pipeline stall is clearly shown in the figure.

3.2.2 Pipeline “Stall” Due to Data Dependency

Data dependency in a pipeline occurs when a source operand of instruction Ii depends on the

results of executing a preceding instruction, Ij, i > j. It should be noted that although instruction

Ii can be fetched, its operand(s) may not be available until the results of instruction Ij are stored.

3.3 Example Pipeline Processors

We briefly present two pipeline processors that use a variety of the pipeline techniques. Our

focus in this coverage is on the pipeline features of these architectures. The two processors

are the ARM 1026EJ-S and the UltraSPARC III.

161

1. ARM 1026EJ-S Processor This processor is part of a family of RISC processors

designed by Advanced RISC Machine (ARM) Company. The series is designed to suit

high-performance, low-cost, and low-power embedded applications. The ARM 022EJ-

S integer core has multiple execution units, thus allowing a number of instructions to

exist in the same pipeline stage. It also allows the execution of simultaneous

instructions. The ARM 1026EJ-S can deliver a peak throughput of one instruction per

cycle.

2. UltraSPARC III Processor the UltraSPARC III is based on the SUN SPARC-V9 RISC

architectural specifications. A number of features characterize the SPARC-V9. Among

these are the following:

i. Few and simple instruction formats. All instructions are 32-bit. Memory access is

done exclusively using Load and Store instructions.

ii. Few addressing modes. Memory addressing has only two modes, the Register +

Register and the Register + Immediate modes.

iii. Triadic register operands. Most instructions operate on two register operands or

one register and a constant operand. The results in both cases are stored in a third

register.

iv. Large window register file.

3.4 Instruction-Level Parallelism

Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of

multiple issue processors (MIP). An MIP has multiple pipelined Data Paths for instruction

execution. Each of these pipelines can issue and execute one instruction per cycle. Figure

9.17 shows the case of a processor having three pipes. For comparison purposes, we also

show in the same figure the sequential and the single pipeline case.

It is clear from the figure that while the limit on the number of cycles per instruction in the case

of a single pipeline is CPI = 1, the MIP can achieve CPI < 1. In order to make full use of ILP,

an analysis should be made to identify the instruction and data dependencies that exist in a

given program. This analysis should lead to the appropriate scheduling of the group of

instructions that can be issued simultaneously while retaining the program correctness.

Static scheduling results in the use of very long instruction word (VLIW) architectures, while

dynamic scheduling results in the use of superscalar architectures. In VLIW, an instruction

represents a bundle of many operations to be issued simultaneously.

The compiler is responsible for checking all dependencies and making the appropriate

groupings/scheduling of operations. This is in contrast with superscalar architectures, which

rely entirely on the hardware for scheduling of instructions. Superscalar Architectures A scalar

machine is able to perform only one arithmetic operation at once. A superscalar architecture

(SPA) is able to fetch, decode, execute, and store results of several instructions at the same

time. It does so by transforming a static and sequential instruction stream into a dynamic and

parallel one, in order to execute a number of instructions simultaneously.

Upon completion, the SPA reinforces the original sequential instruction stream such that

instructions can be completed in the original order.

162

In an SPA instruction, processing consists of the fetch, decode, issue, and commit stages.

During the fetch stage, multiple instructions are fetched simultaneously.

Branch prediction and speculative execution are also performed during the fetch stage. This

is done in order to keep on fetching instructions beyond branch and jump instructions.

Decoding is done in two steps. Pre-decoding is performed between the main memory and the

cache and is responsible for identifying branch instructions.

Actual decoding is used to determine the following for each instruction:

1. The operation to be performed;

2. The location of the operands; and

3. The location where the results are to be stored.

During the issue stage, those instructions among the dispatched ones that can start execution

are identified. During the commit stage, generated values/results are written into their

destination registers. The most crucial step in processing instructions in SPAs is the

dependency analysis. The complexity of such analysis grows quadratically with the instruction

word size.

This puts a limit on the degree of parallelism that can be achieved with SPAs such that a

degree of parallelism higher than four will be impractical. Beyond this limit, the dependence

analysis and scheduling must be done by the compiler. This is the basis for the VLIW

approach.

Very Long Instruction Word (VLIW) In this approach, the compiler performs dependency

analysis and determines the appropriate groupings/scheduling of operations. Operations that

can be performed simultaneously are grouped into a very long instruction word (VLIW).

Therefore, the instruction word is made long enough in order to accommodate the maximum

possible degree of parallelism.

For example, the IBM DAISY machine has an instruction word that is eight operation long,

called 8-issue machine. In VLIW, resource binding can be done by devoting each field of an

163

instruction word to one and only one functional unit. However, this arrangement will lead to a

limit on the mix of instructions that can be issued per cycle. A more flexible approach is to

allow a given instruction field to be occupied by different kinds of operations.

For example, the Philips TriMedia machine, a 5-issue machine, has 27 functional units

mapped to a 5-issue slot. In the IBM DAISY, every instruction implements a multiway path

selection scheme. In this case, the first 72 bits of the VLIW is called the header and contain

information on the tree form, condition tests, and branch targets. The header is followed by

eight 23-bit parcels, each encoding an operation.

In order to solve the problem of providing operands to a large number of functional units, the

IBM DAISY keeps eight identical copies of the same register file, one for each of the eight

functional units.

4.0 Conclusion

What you have learned in this unit is on pipelining techniques. Also, you have learnt about

definition of pipelining, example of pipeline processors and instruction level parallelism.

5.0 Summary

There exist two basic techniques to increase the instruction execution rate of a processor.

These are to increase the clock rate, thus decreasing the instruction execution time, or

alternatively to increase the number of instructions that can be executed simultaneously.

Pipelining and instruction-level parallelism are examples of the latter technique. Pipelining

owes its origin to car assembly lines.

The idea is to have more than one instruction being processed by the processor at the same

time. Pipelining refers to the technique in which a given task is divided into a number of

subtasks that need to be performed in sequence. Each subtask is performed by a given

functional unit. The units are connected in a serial fashion and all of them operate

simultaneously.

The use of pipelining improves the performance compared to the traditional sequential

execution of tasks. A pipeline operation is said to have been stalled if one unit (stage) requires

more time to perform its function, thus forcing other stages to become idle. Instruction

dependency refers to the case whereby fetching of an instruction depends on the results of

executing a previous instruction. Instruction dependency manifests itself in the execution of a

conditional branch instruction. We briefly present two pipeline processors that use a variety of

the pipeline techniques. Our focus in this coverage is on the pipeline features of these

architectures. The two processors are the ARM 1026EJ-S and the UltraSPARC III. Contrary

to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of multiple issue

processors (MIP). An MIP has multiple pipelined Data Paths for instruction execution. Each of

these pipelines can issue and execute one instruction per cycle.

6.0 Tutor-Marked Assignment

1. The merits of pipelining cannot be over-emphasized in computing. Explain this

statement?

2. Briefly explain instruction pipeline?

164

3. Explain the UltraSPARC III Processor as an example of pipelining?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.adaptec.com

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid

http://www.ar.com

http://www.arm.com/support/White_Papers

http://www.sun.com/ultrasparc

165

Unit 2

Introduction to Reduced
Instruction Set Computers

(RISCs)
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 RISC/CISC Evolution Cycle

3.2 RISCs Design Principles

3.3 Overlapped Register Windows

3.4 RISCs versus CISCs

3.5 Pioneer (University) RISC Machines

3.5.1 The Berkeley RISC

3.6 Example of Advanced RISC Machines

3.6.1 Compaq (Formerly DEC) Alpha 21264

3.6.2 The Alpha 21264 Pipeline

3.6.3 SUN UltraSPARC III

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

166

1.0 Introduction

This unit is dedicated to a study of reduced instruction set computers (RISCs). These

machines represent a noticeable shift in computer architecture paradigm. This paradigm

promotes simplicity rather than complexity. The RISC approach is substantiated by a number

of studies indicating that assignment statements, conditional branching, and procedure

calls/return represent more than 90% and that complex operations such as long division

represent only about 2% of the operations performed in a typical set of benchmark programs.

These studies showed also that among all operations, procedure calls/return are the most

time-consuming. Based on such results, the RISC approach calls for enhancing architectures

with the resources needed to make the execution of the most frequent and the most time-

consuming operations most efficient. The seed for the RISC approach started as early as the

mid-1970s.

Its real-life manifestation appeared in the Berkeley RISC-I and the Stanford MIPS machines,

which were introduced in the mid-1980s. Today, RISC-based machines are reality and they

are characterized by a number of common features such as simple and reduced instruction

set, fixed instruction format, one instruction per machine cycle, pipeline instruction

fetch/execute units, ample number of general purpose registers (or alternatively optimized

compiler code generation), Load/Store memory operations, and hardwired control unit design.

Our coverage in this unit starts with a discussion on the evolution of RISC architectures. We

then provide a brief discussion on some of the performance studies that led to the adoption of

the RISC paradigm. Overlapped Register Windows, an essential concept in the RISC

development, is then discussed. Toward the end of the unit we provide details on a number of

RISC-based architectures, such as the Berkeley RISC, the Stanford MIPS, the Compaq Alpha,

and the SUN UltraSparc.

2.0 Learning Outcome

By the end of this unit, you should be able to:

1. Explain RISC/CISC evolution cycle

2. Describe RISCs design principles

3. Explain overlapped register windows

4. Describe RISCs versus CISCs

5. Explain pioneer (University) RISC machines

6. Give example of advanced RISC machines

3.0 Learning Content

3.1 RISC/CISC Evolution Cycle

The term RISCs stands for Reduced Instruction Set Computers. It was originally introduced

as a notion to mean architectures that can execute as fast as one instruction per clock cycle.

RISC started as a notion in the mid-1970s and has eventually led to the development of the

167

first RISC machine, the IBM 801 minicomputer. The launching of the RISC notion announces

the start of a new paradigm in the design of computer architectures.

This paradigm promotes simplicity in computer architecture design. In particular, it calls for

going back to basics rather than providing extra hardware support for high-level languages.

This paradigm shift relates to what is known as the semantic gap, a measure of the difference

between the operations provided in the high-level languages (HLLs) and those provided in

computer architectures. It is recognized that the wider the semantic gap, the larger the number

of undesirable consequences.

These include (a) execution inefficiency, (b) excessive machine program size, and (c)

increased compiler complexity. Because of these expected consequences, the conventional

response of computer architects has been to add layers of complexity to newer architectures.

These include increasing the number and complexity of instructions together with increasing

the number of addressing modes.

The architectures resulting from the adoption of this “add more complexity” are now known as

Complex Instruction Set Computers (CISCs). However, it soon became apparent that a

complex instruction set has a number of disadvantages. These include a complex instruction

decoding scheme, an increased size of the control unit, and increased logic delays. These

drawbacks prompted a team of computer architects to adopt the principle of “less is actually

more.”

A number of studies were then conducted to investigate the impact of complexity on

performance. These are discussed below

Self-Assessment Question

1. What is RISC?

Self-Assessment Answer

1. RISC started as a notion in the mid-1970s and has eventually led to the development

of the first RISC machine, the IBM 801 minicomputer.

3.2 RISCs Design Principles

A computer with the minimum number of instructions has the disadvantage that a large

number of instructions will have to be executed in realizing even a simple function. This will

result in a speed disadvantage. On the other hand, a computer with an inflated number of

instructions has the disadvantage of complex decoding and hence a speed disadvantage.

It is then natural to believe that a computer with a carefully selected reduced set of instructions

should strike a balance between the above two design alternatives. The question then

becomes what constitutes a carefully selected reduced set of instructions? In order to arrive

at an answer to this question, it is necessary to conduct in-depth studies on a number of

aspects of computation.

These aspects should include

1. Operations that are most frequently performed during execution of typical (benchmark)

programs,

168

2. Operations that are most time consuming, and

3. The type of operands that are most frequently used. A number of early studies were

conducted in order to find out the typical breakdown of operations that are performed

in executing benchmark programs.

The estimated distribution of operations is shown in Table 10.1. A careful look at the estimated

percentage of operations performed reveals that assignment statements, conditional

branches, and procedure calls constitute about 90% of the total operations performed, while

other operations, however complex they may be, make up the remaining 10%.

In addition to the above findings, studies on time–performance characteristics of operations

revealed that among all operations, procedure calls/return are the most time-consuming. With

regards to the type of operands used during typical computation, it was noticed that the

majority of references (no less than 60%) are made to simple scalar variables and that no less

than 80% of scalars are local variables (to procedures).

The above observations about typical program behavior have led to the following conclusions:

1. Simple movement of data (represented by assignment statements), rather than complex

operations, are substantial and should be optimized.

2. Conditional branches are predominant and therefore careful attention should be paid to

the sequencing of instructions. This is particularly true when it is known that pipelining is

indispensable to use.

3. Procedure calls/return are the most time-consuming operations and therefore a

mechanism should be devised to make the communication of parameters among the

calling and the called procedures cause the least number of instructions to execute.

4. A prime candidate for optimization is the mechanism for storing and accessing local scalar

variables.

The above conclusions have led to the argument that instead of bringing the instruction set

architecture closer to HLLs, it should be more appropriate to rather optimize the performance

of the most time-consuming features of typical HLL programs. This is obviously a call for

making the architecture simpler rather than complex. Remember that complex operations

such as long division represent only a small portion (less than 2%) of the operations performed

during a typical computation.

One then should ask the question: how can we achieve that? The answer is by (a) keeping

the most frequently accessed operands in CPU registers and (b) minimizing the register-to-

memory operations.

169

The above two principles can be achieved using the following mechanisms:

1. Use a large number of registers to optimize operand referencing and reduce the

processor memory traffic.

2. Optimize the design of instruction pipelines such that minimum compiler code generation

can be achieved.

3. Use a simplified instruction set and leave out those complex and unnecessary

instructions.

The following two approaches were identified to implement the above three mechanisms.

1. Software approach. Use the compiler to maximize register usage by allocating registers

to those variables that are used the most in a given time period (this is the philosophy

adopted in the Stanford MIPs machine).

2. Hardware approach. Use ample CPU registers so that more variables can be held in

registers for larger periods of time (this is the philosophy adopted in the Berkeley RISC

machine). The hardware approach necessitates the use of a new register organization,

called overlapped register window. This is explained below.

3.3 Overlapped Register Windows

The main idea behind the use of register windows is to minimize memory accesses. In order

to achieve that, a large number of CPU registers are needed. For example, the number of

CPU general-purpose registers available in the original SPARC machine (one of the earliest

RISCs) was 120. However, it is desirable to have only a subset of these registers visible at

any given time and to have them addressed as if they were the only set of registers available.

Therefore, CPU registers are divided into multiple small sets, each assigned to a different

procedure. A procedure call will automatically switch the CPU to use a different fixed-size

window of registers. In order to minimize the actual movement of parameters among the

calling and the called procedures, each set of registers is divided into three subsets: parameter

registers, local registers, and temporary registers.

When a procedure call is made, a new overlapping window will be created such that the

temporary registers of the caller are physically the same as the parameter registers of the

called procedure. This overlap allows parameters to be passed among procedure without

actual movement of data (Fig. 10.1).

170

In addition, a set of a fixed number of CPU registers are identified as global registers and are

available to all procedures. For example, references to registers 0 through 7 in the SPARC

architecture refer to unique global registers, and references to registers 8 through 31 indicate

registers in the current window. The current window is pointed to using what is normally called

the current window pointer (CWP).

Upon having all windows filled, the register window wraps around, thus acting like a “circular

buffer.” Table 10.2 shows the number of windows and the window size for a number of

architectures. It should be noted that a study was conducted in 1985 to find out the impact of

using register window on the performance of the Berkeley RISC. In this study, two versions of

the machine were studied.

The first is designed with register windows and the second was a hypothetical Berkeley RISC

implemented without windows. The results of the study indicated a decrease by a factor of 2

to 4 (depending on specific benchmark) in the memory traffic due to the use of register

windows.

3.4 RISCs versus CISCs

The choice of RISC versus CISC depends totally on the factors that must be considered by a

computer designer. These factors include size, complexity, and speed. A RISC architecture

has to execute more instructions to perform the same function performed by a CISC

architecture. To compensate for this drawback, RISC architectures must use the chip area

saved by not using complex instruction decoders in providing a large number of CPU registers,

additional execution units, and instruction caches.

The use of these resources leads to a reduction in the traffic between the processor and the

memory. On the other hand, a CISC architecture with a richer and more complex instructions,

will require a smaller number of instructions than its RISC counterpart. However, a CISC

architecture requires a complex decoding scheme and hence is subject to logic delays. It is

therefore reasonable to consider that the RISC and CISC paradigms differ primarily in the

strategy used to trade off different design factors.

There is very little reason to believe that an idea that improves performance for a RISC

architecture will fail to do the same thing in a CISC architecture and vice versa. For example,

one key issue in RISC development is the use of optimizing the compiler to reduce the

complexity of the hardware and to optimize the use of CPU registers. These same ideas

should be applicable to CISC compilers.

171

Increasing the number of CPU registers could very much improve the performance of a CISC

machine. This could be the reason behind not finding a pure commercially available RISC (or

CISC) machine. It is not unusual to see a RISC machine with complex floating-point

instructions (see the details of the SPARC architecture in the next section). It is equally

expected to see CISC machines making use of the register windows RISC idea.

In fact, there have been studies indicating that a CISC machine such as the Motorola 680xx

with a register window will achieve a 2 to 4 times decrease in the memory traffic. This is the

same factor that can be achieved by a RISC architecture, such as the Berkeley RISC, due to

the use of a register window. It should, however, be noted that most processor developers

(except for Intel and its associates) have opted for RISC processors.

Computer system manufacturers such as Sun Microsystems are using RISC processors in

their products. However, for compatibility with the PC-based market, such companies are still

producing CISC-based products. Tables 10.3 and 10.4 show a limited comparison between

an example RISC and CISC machine in terms of performance and characteristics,

respectively.

An elaborate comparison among a number of commercially available RISC and CISC

machines is shown in Table 10.5. It is worth mentioning at this point that the following set of

common characteristics among RISC machines is observed:

1. Fixed-length instructions

2. Limited number of instructions (128 or less)

3. Limited set of simple addressing modes (minimum of two: indexed and PC-relative)

4. All operations are performed on registers; no memory operations

5. Only two memory operations: Load and Store

172

6. Pipelined instruction execution

7. Large number of general-purpose registers or the use of advanced compiler

technology to optimize register usage

8. One instruction per clock cycle

9. Hardwired control unit design rather than microprogramming

3.5 Pioneer (University) RISC Machines

In this section, we present brief descriptions of the main architectural features of two pioneer

university-introduced RISC machines. The first machine is the Berkeley RISC and the second

is the Stanford MIPS machine. These machines are presented as a means to show how

original RISC machines look and also to make the reader appreciate the advances made in

RISC machines development since their inception.

3.5.1 The Berkeley RISC

There are two Berkeley RISC machines: RISC-I and RISC-II. Unless otherwise mentioned, we

refer to RISC-I in our discussion. RISC is a 32-bit LOAD/STORE architecture. There are 138

32-bit registers R0–R137 available to the users. The first ten registers R0–R9 are global

registers (seen by all procedures). Register R0 is used to synthesize addressing modes and

operations that are not directly available on the machine. Registers R10–R137 are divided into

an overlapping register window scheme with 32 registers visible at any instant. A 5-bit variable,

called current window pointer (CWP) is used to point to the current register set.

All RISC instructions occupy a full word (32 bits). The RISC instruction set is divided into four

categories. These are ALU (a total of 12 instructions), Load/Store (a total of 16 instructions),

Branch & Call (a total of seven instructions), and special instructions (a total of four

instructions). Some examples of the RISC instructions are:

1. ALU: ADD Rs, S, Rd; Rd ←Rs + S

2. Load/Store: LDXW (Rx)S, Rd; Rd ←M[Rx + S]

173

3. Branch & Call: JMPX COND, (Rx)S; PC ←Rx + S; where COND is a condition

4. Special Instructions: GETPSW Rd; Rd ←PSW

All arithmetic and logical instructions have three operands and have the form Destination: =

source1 op source2 (Fig. 10.2). The LOAD and STORE instructions may use either of the

indicated formats with DST being the register to be loaded or stored. The low order 19 bits of

the instructions are used to determine the effective address.

Instructions load and store 8-, 16-, 32-, and 64-bit quantities into 32-bit registers.

Two methods are provided for calling procedures. The CALL instruction uses a

30-bit PC relative offset (Fig. 10.3). The JMP instruction uses any of the instruction formats

used for arithmetic and logical operations and allows the return address to be put in any

register. RISC uses a three-address instruction format with the availability of some two and

one-address instructions.

There are only two addressing modes. These are indexed mode and PC relative modes. The

indexed mode can be used to synthesize three other modes. These are base-absolute (direct),

register indirect, and indexed for linear byte array modes. RISC uses a static two-stage

pipeline: fetch and execute.

The floating-point unit (FPU) contains thirty-two 32-bit registers to hold 32 single precision (32-

bit) floating-point operands, 16 double-precision (64-bit) operands, or eight extended-precision

(128-bit) operands. The FPU can execute about 20 floating- point instructions most of them in

single-, double-, or extended-precision using the first instruction format used for arithmetic. In

addition to instructions for loading and storing FPUs registers, the CPU can also test FPUs

registers and branch conditionally on results. RISC employs a conventional MMU supporting

a single paged 32-bit address space. The RISC four-bus organization is shown in Figure 10.4.

10.5.2. Stanford MIPS (Microprocessor Without Interlock Pipe Stages)

MIPS is a 32-bit pipelined LOAD/STORE machine. It uses a five-stage pipeline consisting of

Instruction Fetch (IF), Instruction Decode (ID), Operand Decode

174

(OD), Operand Store/Execution (OS/EX), and Operand Fetch (OF). The first three stages

perform respectively instruction fetch, instruction decode, and operand fetch. The OS/EX

stage sends operand to memory in the case of a store instruction or use the ALU in case of

instruction execution. The OF stage receives the operand in case of a load instruction. MIPS

uses a mechanism called pipeline interlock in order to prevent an instruction from continuing

until the needed operand is available.

Unlike the Berkeley RISC, MIPS has a single set of sixteen 32-bit general purpose registers.

The MIPS compiler optimizes the use of registers in whatever way is best for the program

currently being compiled. In addition to the 16 general purpose registers, MIPS provided four

additional registers in order to hold the four previous PC values (to support backtracking and

restart in case of a fault).

A fifth register is used to hold the future PC value (to support branch instructions). Four

addressing modes are used in MIPS. These are immediate, indexed, based with offset, and

base shifted. Four instruction groups were identified in MIPS. These are ALU, Load/Store,

Control, and Special instructions. A total of 13 ALU instructions were provided. These include

all register-to-register two- or three operand formats (Fig. 10.5). A total of 10 LOAD/STORE

instructions were provided. They use 16 or 32 bits. In the latter case, indexed addressing is

used by adding a 16-bit signed constant to a register using the second format in Figure 10.5.

A total of six control flow instructions were provided.

175

These include jumps, relative jumps, and compare instructions. Only two special flow

instructions were provided. They support procedure and interrupt linkage. Some examples of

MIPS instructions are:

1. ALU: Add src1, src2, dst; dst ←src1 + src2

2. Load/Store: Ld [src1 + src2], dst; dst ←M[src1 + src2]

3. Control: Jmp dst; PC ←dst

4. Special Function: SavePC A; M[A] ←PC

MIPS does not provide direct support for floating-point operations. Floating point operations

are to be done by a specialized coprocessor. Surprisingly, non-RISC instructions such as

MULT and DIV were included and they use special functional units. The contents of two

registers can be multiplied or divided and the 64-bit product is kept in two special registers LO

and HI.

Procedure call can be made through the JUMP instruction shown in Figure 10.6.

The instruction uses a 26-bit jump target address.

The MIPS virtual address is 32 bits long, thus allowing for up to four Gwords virtual address

space. A virtual address is divided into a 20-bit virtual page number and a 12-bit offset within

the page.

The actual implementation of MIPS was restricted by packaging constraints allowing only 24

address pins; that is, the actual physical address space is 224 = 16 Mwords (32 bits each). A

support for off-chip TLB for address translation is provided. The MIPS organization is shown

in Figure 10.7.

3.6 Example of Advanced RISC Machines

In this section, we introduce two representative advanced RISC machines. Our emphasis in

this coverage is on the pipeline features and the branch handling mechanisms used.

3.6.1 Compaq (Formerly DEC) Alpha 21264

Alpha 21264 (EV6) is a third generation Compaq (formerly DEC) RISC superscalar processor.

It is a full 64-bit processor. The 21264 has an 80-entry integer register file and a 72-entry

floating-point register file. It employs a two-level cache. The L1 data and instruction caches

176

are 64 KB each. They are organized in a two-way set-associative manner. The L2 data cache

can be 1 to 16 MB (shared by instructions and data) organized using direct-mapping.

The block size is 64 bytes. The data cache can receive any combination of two loads or stores

from the integer execution pipe every cycle. This is equivalent to having the 64 KB on-chip

data cache delivering 16 bytes every cycle, hence twice the clock speed of the processor. The

21264 memory system can support up to 32 in-flight loads, 32 in-flight stores, and 8 in-flight

(64 byte) cache block fills and 8 cache misses.

It has a 64 KB, two-way set-associative cache (both instruction and data). It can also support

up to two out-of-order operations (Fig. 10.8).

3.6.2 The Alpha 21264 Pipeline

The Alpha 21264 instruction pipeline is shown in Figure 10.9. It consists of SEVEN stages.

These are the Fetch, Slot Assignment, Rename, Issue, Register Read, Execute, and Memory

stages. The fetch stage can fetch and execute up to four instructions per cycle. A block

diagram of the fetch stage is shown in Figure 10.10. This stage uses a unique “block and set”

prediction technique.

According to this technique, both the locations of the next four instructions and the set (there

are two sets) in which they are located, are predicted. The “block and set” prediction technique

combines the speed advantages of a direct-mapped cache with the lower miss ratio of a two-

way set-associative cache.

This technique achieves more than an 85% hit ratio. The misprediction penalty is a single

cycle. The 21264 uses speculative branch prediction. Branch prediction in the 21264 is a two-

level scheme. It is based on the observation that branches exhibit both local and global

correlation. Local correlation makes use of the branch’s past behavior. Global correlation, on

the other hand, makes use of the past behavior of all previous branches.

The combined local/global prediction used in the 21264 correlates the branch behavior pattern

with local branch history, that is, the execution of a single branch at a unique PC location, and

global branch history, that is, the execution of all previous branches. The scheme dynamically

selects between local and global branch history (Fig. 10.11). The local branch predictor has

two tables.

177

The first is a 1024_10 local history table in which each entry holds a 10-bit local history of the

selected branch over the last executions. The local history table is indexed by the instruction

address (using the PC). The second table is a 1024_3 local prediction table in which each

entry has a 3-bit saturating counter to predict the branch outcome. After branches’ retirement,

the 21264 updates the local history table with the true branch direction and the referenced

counter.

This enhances the possibility for correct prediction and is called predictor training.

The global branch predictor has a 4096_2 global prediction table in which each entry holds a

2-bit saturating counter. It keeps track of the global history of the last 12 branches. The global

branch prediction table is indexed by a 4096_2 choice prediction table.

After branches’ retirement, the 21264 updates the referenced global prediction counter,

enhancing the possibility for correct prediction. Local prediction is useful in the case of an

alternating taken/not-taken sequence of a given branch. In this case, the local history of the

branch will eventually resolve to a pattern of ten alternating zeros and ones indicating the

success, or failure, of the branch on alternate encounters. As the branch executes multiple

times, it saturates the prediction counters corresponding to the local history values and hence

makes the prediction correct.

Global prediction is useful when the outcome of a branch can be inferred from the direction of

previous branches. Consider, for example, the case of repeated invocations of two branches.

If the first branch that checks for a value equal to 1001 succeeds, the second branch that

checks for the same value to be odd must also succeed. The global history predictor can learn

this pattern with repeated invocations of these two branches.

The 2096 x 2 choice predictor is a table in which each entry holds a 2-bit saturating counter

and is used to implement the selection (tournament) scheme. If the predictions of the local

178

and global predictors differ, the 21264 updates the selected choice prediction entry to support

the correct predictor. The 21264 updates the choice prediction table when a branch retires.

The slot assignment stage (S #2) simply assigns instructions to slots associated with the

integer and the floating-point queues.

The out-of-order (OOO) issue logic in the 21264 receives four fetched instructions every cycle,

renames and remaps the registers (to avoid unnecessary register dependencies), and queues

the instructions until operands and/or functional units become available. It dynamically issues

up to six instructions every cycle, four integers and two floating-point instructions.

Register renaming means mapping instruction virtual registers to internal physical registers.

There are 31 integers and 31 floating-point registers that are visible to users. These registers

are renamed during execution to internal registers. It is only when instructions are finished

(retired) that the internal registers are renamed back to visible registers. Register renaming

eliminates write-after-write and write-after-read data dependencies.

However, it preserves all the read-after-write dependencies that are necessary for correct

computation. A list of the pending instructions is maintained by the OOO queue logic. In each

cycle, both the integer and the floating-point queues select those instructions that are ready

to execute. This selection is made based on a scoreboard of the renamed registers.

The scoreboard maintains the status of renamed registers by tracking the progress of single-

cycle, multiple-cycle, and variable-cycle instructions. Upon the availability of the functional

unit(s) or load data results, the scoreboard unit notifies all instructions in the queue of the

availability of the required register value. Each queue selects the oldest data-ready and

functional-unit-ready instructions for execution of each cycle.

The 21264 integer queue statically assigns instructions to two of four pipes, either the upper

or the lower pipe (Fig. 10.12). The Alpha 21264 has four integers and two floating-point

pipelines. This allows the processor to dynamically issue up to six instructions in the same

cycle. The issue (or queue) stage maintains an inventory from which it can dynamically select

to issue a maximum of six instructions.

There is a 20-entry integer issue queue and a 15-entry floating-point issue queue. Instruction

issue reordering takes place in the issue stage. The 21264 uses two integer files, 80-entry

each, to store a duplicate of register contents. Two pipes access a single file to form a cluster.

The two clusters form a four-way integer instruction execution. Results are broadcasted from

each cluster to the other cluster.

Instructions are dynamically selected by the integer issue queue to execute on a given

instruction pipe. An instruction can heuristically be selected to execute on the same cluster

that produces the result. The 21264 has one 72-entry floating-point register file. The floating-

point register file, together with two instruction execution pipes, form a cluster. Figure 10.12

shows the register read/execution pipes.

On a final note, we should indicate that the 21264 uses a write-invalidate cache coherence

mechanism in the level 2 cache to provide support for shared-memory multiprocessing. It also

supports the following cache states: modified, owned, shared, exclusive, and invalid.

179

3.6.3 SUN UltraSPARC III

The UltraSPARCIII is a high-performance superscalar RISC processor that implements the

64-bit SPARC®-V9 RISC architecture. There exist a number of implementations of the

SPARC III processor. These include the UltraSPARC IIIi and the UltraSPARC III Cu. Our

coverage in this section will be independent of any particular implementation.

We will however refer to specific implementations whenever appropriate. The UltraSPARC III

is a third generation 64-bit SPARCw RISC microprocessor. It supports a 64-bit virtual address

space and a 43-bit physical address space. The UltraSPARC III employs a multilevel cache

architecture.

For example, the Ultra-SPARC IIIi (and the UltraSPARC III Cu) architecture has a 32 KB, four-

way set associative L1 instruction cache, a 64 KB four-way set-associative L1 data cache, a

2 KB prefetch cache, and a 2 KB write cache. The UltraSPARC IIIi supports a 1 MB four-way

set-associative, unified instruction/data on chip L2 cache. A cache block size of 64 bytes is

used in the UltraSPARC IIIi. While the UltraSPARC III Cu architecture supports a 1, 4, or 8

MB two-way set-associative, unified instruction/ data external cache. Cache block size in the

UltraSPARC III Cu varies between 64 bytes (for the 1 MB cache) to 512 bytes (for the 8 MB

cache) (Fig. 10.13).

The UltraSPARC III uses two instruction TLBs that can be accessed in parallel and three data

TLBs that can be accessed in parallel. The two instruction TLBs are organized in a 16-entry

fully associative manner to hold entries for 8 KB, 64 KB, 512 KB, and 4 MB page sizes. A 128-

entry two-way set-associative TLB is used exclusively for 8 KB page sizes. The three data

TLBs are organized in a 16-entry associative manner for 8 KB, 64 KB, 512 KB, and 4 MB page

sizes and two 512-entry two-way set-associative TLBs that can be programmed to hold any

one page size at a given time. The UltraSPARC III uses a write-allocate, writeback cache write

policy.

On a final note, it should be mentioned that the UltraSPARC III has been designed to support

a one-to-four-way multiprocessing. For this purpose, it uses the JBus, which supports a small-

scale multiprocessor system. The JBus is capable of delivering the high bandwidth needed for

180

networking and embedded systems applications. Through the JBus, processors can attach to

a coherent shared bus with no needed glue logic (Fig. 10.14).

4.0 Conclusion

What you have learned in this unit is on reduced instruction set computers (RISCs). Also, you

learnt about RISC/CISC evolution cycle, RISCs design principles, overlapped register

windows, RISCs versus CISCs, pioneer (University) RISC machines and example of

advanced RISC machines.

5.0 Summary

A RISC architecture saves the extra chip area used by CISC architectures for decoding and

executing complex instructions. The saved chip area is then used to provide an on-chip

instruction cache that can be used to reduce instruction traffic between the processor and the

memory.

Common characteristics shared by most RISC designs are: limited and simple instruction set,

large number of general purpose registers and/or the use of compiler technology to optimize

register usage, and optimization of the instruction pipeline. An essential RISC philosophy is to

keep the most frequently accessed operands in registers and minimize register-memory

operations.

This can be achieved using one of two approaches: Software Approach, use the compiler to

maximize register usage by allocating registers to those variables that will be used the most

in a given time period (this is the philosophy used in Stanford MIPs machine); or Hardware

181

Approach, use more registers so that more variables can be held in registers for larger periods

of time (this is the philosophy used in the Berkeley RISC machine).

Register windows are multiple small sets of registers, each assigned to a different procedure.

A procedure call automatically switches the CPU to use a different fixed-size window of

registers rather than saving registers in memory at the call time. At any time, only ONE window

of registers is visible and is addressed as if it were the only set of registers.

Window overlapping requires that temporary registers at one level are physically the same as

the parameter registers at the next level. This overlap allows parameters to be passed without

the actual movement of data. It is worthwhile mentioning that the classification of processors

as entirely pure RISC or entirely pure CISC is becoming more and more inappropriate and

may be irrelevant.

What actually counts is how much performance gain can be achieved by including an element

of a given design style. Most modern processors use a calculated combination of elements of

both design styles. The decisive factor in which element(s) of each design style to include is

made based on a trade-off between the required improvement in performance and the

expected added cost.

A number of processors are classified as RISC while employing a number of CISC features,

such as integer/floating-point division instructions. Similarly, there exist processors that are

classified as CISC while employing a number of RISC features, such as pipelining

6.0 Tutor-Marked Assignment

1. Explain the RISC/CISC Evolution Cycle?

2. Describe the four categories of the RISC instruction set?

3. Give some examples of MIPS instructions?

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

182

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.adaptec.com

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid

http://www.ar.com

http://www.arm.com/support/White_Papers

http://www.sun.com/ultrasparc

http://www.sun.com/processors/UltraSPARC-IIIi

http://www.sun.com/processors/whitepapers

http://www.adaptec.com/

183

Unit 3

Introduction to Multiprocessors
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Content

3.1 What is a Multiprocessor System?

3.2 Classification of Computer Architectures

3.2.1 Flynn’s Classification

3.2.2 Kuck Classification Scheme

3.2.3 Hwang and Briggs Classification Scheme

3.2.4 Erlangen Classification Scheme

3.2.5 Skillicorn Classification Scheme

3.3 SIMD Schemes

3.4 MIMD Schemes

3.4.1 Shared Memory Organization

3.4.2 Message-Passing Organization

3.5 Interconnection Networks

3.5.1 Mode of Operation

3.5.2 Control Strategy

3.5.3 Switching Techniques

3.5.4 Topology

3.6 Analysis and Performance Metrics 4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

184

1.0 Introduction

Having covered the essential issues in the design and analysis of uniprocessors and pointing

out the main limitations of a single-stream machine, we begin in this unit to pursue the issue

of multiple processors. Here a number of processors (two or more) are connected in a manner

that allows them to share the simultaneous execution of a single task. The main argument for

using multiprocessors is to create powerful computers by simply connecting many existing

smaller ones.

A multiprocessor is expected to reach a faster speed than the fastest uniprocessor. In addition,

a multiprocessor consisting of a number of single uniprocessors is expected to be more cost-

effective than building a high-performance single processor. An additional advantage of a

multiprocessor consisting of n processors is that if a single processor fails, the remaining fault-

free n - 1 processors should be able to provide continued service, albeit with degraded

performance.

Our coverage in this unit starts with a section on the general concepts and terminology used.

We then point to the different topologies used for interconnecting multiple processors. Different

classification schemes for computer architectures are then introduced and analyzed. We then

introduce a topology-based taxonomy for interconnection networks.

Two memory-organization schemes for MIMD (multiple instruction multiple data)

multiprocessors are also introduced. Our coverage in this unit ends with a touch on the

analysis and performance metrics for multiprocessors.

2.0 Learning Outcome

By the end of this unit, you should be able to:

i. Define a Multiprocessor System

ii. Explain Classification of Computer Architectures

iii. Describe SIMD Schemes

iv. Explain MIMD Schemes

v. Describe Interconnection Networks

vi. Explain Analysis and Performance Metrics

3.0 Learning Content

3.1 What is a Multiprocessor System?

A multiple processor system consists of two or more processors that are connected in a

manner that allows them to share the simultaneous (parallel) execution of a given

computational task. Parallel processing has been advocated as a promising approach for

building high-performance computer systems. Two basic requirements are inevitable for the

efficient use of the employed processors.

These requirements are

1. Low communication overhead among processors while executing a given task and

185

2. A degree of inherent parallelism in the task. A number of communication styles exist for

multiple processor networks.

These can be broadly classified according to

1. The communication model (CM), which can be further classified as

a. Multiple processors (single address space or shared memory computation) or

b. Multiple computers (multiple address space or message passing computation).

According to PC, networks can be further classified as

2. The physical connection (PC), which can also be further classified as

a. Bus-based or

b. Network based multiple processors. Typical sizes of such systems are summarized in

Table 11.1.

The organization and performance of a multiple processor system are greatly influenced by

the interconnection network used to connect them. On the one hand, a single shared bus can

be used as the interconnection network for multiple processors. On the other hand, a crossbar

switch can be used as the interconnection network.

While the first technique represents a simple easy-to-expand topology, it is, however, limited

in performance since it does not allow more than one processor/memory transfer at any given

time. The crossbar provides full processor/memory distinct connections but it is expensive.

Multistage interconnection networks (MINs) strike a balance between the limitation of the

single, shared bus system and the expense of a crossbar-based system.

In a MIN more than one processor/memory connection can be established at the same time.

The cost of a MIN can be considerably less than that of a crossbar, particularly for a large

number of processors and/or memories. The use of multiple buses to connect multiple

processors to multiple memory modules has also been suggested as a compromise between

the limited single bus and the expensive crossbar.

Figure 11.1 illustrates the four types of interconnection networks mentioned above.

186

Self-Assessment Question

1. Describe a Multiprocessor?

Self-Assessment Answer

1. A multiple processor system consists of two or more processors that are connected in

a manner that allows them to share the simultaneous (parallel) execution of a given

computational task.

3.2 Classification of Computer Architectures

A classification means to order a number of objects into categories, each having common

features, among which certain relationship(s) exist(s). In this regard, a classification scheme

for computer architectures aims at categorizing them such that those architectures that have

common features fall into one category and such that different categories represent distinct

groups of architectures.

In addition, a classification scheme for computer architecture should provide a basis for

information ordering and a basis for predicting the features of a given architecture. Two broad

schemes exist for computer architecture classification. The first is based on external

(morphological) features of architectures and the second is based on the evolutionary features

of architectures.

The first scheme emphasizes the finished form of architectures, while the second scheme

emphasizes the way an architecture has been derived from its predecessor and suggests

speculative views on its successor. Morphological classification provides a basis for predictive

power, while evolutionary classification provides a basis for better understanding of

architectures.

Examining the extent to which a classification scheme is satisfying its stated objective(s) could

assess the pros and cons of that scheme. A number of classification schemes have been

proposed over the last three decades. These include the Flynn’s classification (1966), the

Kuck (1978), the Hwang and Briggs (1984), the Erlangen (1981), the Giloi (1983), the Skillicorn

(1988), and the Bell (1992). A number of these are briefly discussed below.

3.2.1 Flynn’s Classification

Flynn’s classification scheme is based on identifying two orthogonal streams in a computer.

These are the instruction and the data streams. The instruction stream is defined as the

sequence of instructions performed by the computer. The data stream is defined as the data

187

traffic exchanged between the memory and the processing unit. According to Flynn’s

classification, either of the instruction or data streams can be single or multiple.

This leads to four distinct categories of computer architectures:

1. Single-instruction single-data streams (SISD)

2. Single-instruction multiple-data streams (SIMD)

3. Multiple-instruction single-data streams (MISD)

4. Multiple-instruction multiple-data streams (MIMD)

Figure 11.2 shows the orthogonal organization of the streams according to Flynn’s

classification. Schematics for the four categories of architectures resulting from Flynn’s

classification are shown in Figure 11.3. Table 11.2 lists some of the commercial machines

belonging to each of the four categories.

Observations on Flynn’s Classification

1. Flynn’s classification is among the first of its kind to be introduced and as such it must

have inspired subsequent classifications.

2. The classification helped in categorizing architectures that were available and those that

have been introduced later. For example, the introduction of the SIMD and MIMD

machine models in the classification must have inspired architects to introduce these

new machine models.

3. The classification stresses the architectural relationship at the memory processor level.

Other architectural levels are totally overlooked.

4. The classification stresses the external (morphological) features of architectures. No

information is included on the revolutionary relationship of architectures that belong to

the same category.

5. Owing to its pure abstractness, no practically viable machine has exemplified the MISD

model introduced by the classification (at least so far). It should, however, be noted that

some architects have considered pipelined machines (and perhaps systolic-array

computers) as examples for MISD.

6. A very important aspect that is lacking in Flynn’s classification is the issue of machine

performance. Although the classification gives the impression that machines in the SIMD

and the MIMD are superior to their SISD and MISD counterparts, it gives no information

on the relative performance of SIMD and MIMD machines.

188

189

3.2.2 Kuck Classification Scheme

Flynn’s taxonomy can be considered a general classification that has been extended by a

number of computer architects. One such extension is the classification introduced by D. J.

Kuck in 1978. In his classification, Kuck extended the instruction stream further to single

(scalar and array) and multiple (scalar and array) streams.

The data stream in Kuck’s classification is called the execution stream and is also extended

to include single (scalar and array) and multiple (scalar and array) streams. The combination

of these streams results in a total of 16 categories of architectures, as shown in Table 11.3.

Our main observation is that both Flynn’s and Kuck’s classifications cover the entire

architecture space.

However, while Flynn’s classification emphasizes the description of architectures at the

instruction set level, the Kuck’s classification emphasizes the description of architectures at

the hardware level.

3.2.3 Hwang and Briggs Classification Scheme

The main new contribution of the classification due to Hwang and Briggs is the introduction of

the concept of classes. This is a further refinement on Flynn’s classification. For example,

according to Hwang and Briggs, the SISD category is further refined into two subcategories:

single functional unit SISD (SISD-S) and multiple functional units SISD (SISD-M).

The MIMD category is further refined into loosely coupled MIMD (MIMD-L) and tightly coupled

MIMD (MIMD-T). The SIMD category is further refined into word-sliced processing (SIMD-W)

and bit-sliced processing (SIMD-B). Therefore, Hwang and Briggs classification added a level

to the hierarchy of machine classification such that a given machine should be first classified

as SISD, SIMD, MIMD, and then further classified according to its constituent descendant.

According to the Hwang and Briggs’s taxonomy, it is always true to predict that an

SISD-M will perform better than an SISD-S. It is, however, doubtful that such prediction can

be made with respect to SIMD-Wand SIMD-B. For example, it has been indicated that using

the maximum degree of potential parallelism as a performance measure, then the ILLAC-IV

machine (SIMD-W) is inferior to the MPP machine (SIMD-B).

A final observation on the Hwang and Briggs’s taxonomy is that shared memory systems map

naturally into the MIMD-T category, while non shared memory systems map into the MIMD-L

category.

190

3.2.4 Erlangen Classification Scheme

In its simplest form, this classification scheme adds one more level of details to the internal

structure of a computer, compared to Flynn’s scheme. In particular, this scheme considers

that in addition to the control (CNTL) and processing (ALU) units, a third subunit, called the

elementary logic unit (ELU), can be used to characterize a given computer architecture. The

ELU represents the circuitry required to perform the bit-level processing within the ALU.

An architecture is characterized using a three-tuple system (k, d, w) such that k = number of

CNTLs, d = number of ALU units associated with one control unit, and w = number of ELUs

per ALU (the width of a single data word). For example, in one of its models, the ILLAC-IV

was made up of a mesh connected array of 64 64-bit ALUs controlled by a Burroughs B6700

computer. According to Erlangen, this model of the ILLAC-IV is characterized as (1, 64, 64).

Postulating that pipelining can exist at all three levels of hardware processing, the

classification includes three additional parameters. These are w’ = the number of pipeline

stages per ALU, d’ = the number of functional units per ALU, and k’ = the number of ELUs

forming the control unit. Given the expected multi-unit nature of each of the three hardware

processing levels, a more general six-tuple can be used to characterize an architecture as

follows: (k x k’, d x d’, w x w’).

Figure 11.4 illustrates the Erlangen classification system. More complex systems can still be

characterized using the Erlangen system by using two additional operators, the AND operator,

denoted by x, and the

For example, a later design of the ILLAC-IV consisted of two DEC PDP-10 as the front-end

controller where data can only be accepted from one PDP-10 at a time. This version of the

ILLAC-IV can be characterized as (2, 1, 36) x (1, 64, 64). Now, since the ILLAC-IV can also

191

work in a half-word mode whereby there are 128 32-bit processors rather than the 64 64-bit

processors, then an overall characterization of the ILLAC-IV is given by (2, 1, 36) x [(1, 64,

64) x (1, 128, 32)].

As can be seen, this classification scheme can be regarded as a hierarchical classification

that puts more emphasis on the internal structure of the processing hardware. It does not

provide any basis for the classification and/or grouping of computer architectures. In particular,

the classification overlooks the interconnection among different units.

3.2.5 Skillicorn Classification Scheme

Owing to its inherent nature, Flynn’s classification may end up grouping computer systems

with similar architectural characteristics but with diverse functionality into one class. This same

observation has been the main motive behind the Skillicorn classification introduced in 1988.

According to this classification, an abstract von

Neumann machine is modeled as shown in Figure 11.5. As can be seen, the abstract model

includes two memory subdivisions, instruction memory (IM) and data memory (DM), in addition

to the instruction processor (IP) and the data processor (DP). In developing the classification

scheme, the following possible interconnection relationships were considered: (IP–DP), (IP–

IM), (DP–DM), and (DP–IP). The interconnection scheme takes into consideration the type

and number of connections among the data processors, data memories, instruction

processors, and instruction memories. There may exist no, one-to-many, and many-to-many

such connections.

Table 11.4 illustrates the different connection schemes identified by the classification.

Using the given connection schemes, Skillicorn arrived at 28 different classes. Sample classes

are shown in Table 11.5. The rightmost column of the table indicates the corresponding

Flynn’s class. Figure 11.6 illustrates four example classes according to the classification.

Major advantages of the Skillicorn classification include (1) simplicity, (2) the proper

192

consideration of the interconnectivity among units, (3) flexibility, and (4) the ability to represent

most current computer systems.

However, the classification

1. Lacks the inclusion of operational aspects such as pipelining and

2. Has difficulty in predicting the relative power of machines belonging to the same class

without explicit knowledge of the interconnection scheme used in that class.

Multiple processor systems can be further classified as tightly coupled versus loosely coupled.

In a tightly coupled system, all processors can equally access a global memory. In addition,

each processor may also have its own local or cache memory. In a loosely coupled system,

the memory is divided among processors such that each processor will have its own memory

attached to it.

193

However, processors still share the same memory address space. Any processor can directly

access any remote memory. Examples of tightly coupled multiple processors include the CMU

C.mmp, Encore Computer Multimax, and the Sequent Corp. Balance series. Examples of

loosely coupled multiple processors include CMU Cm x, the BBN Butterfly, and the IBM RP3.

3.3 SIMD Schemes

Recall that Flynn’s classification results in four basic architectures. Among those, the SIMD

and the MIMD are frequently used in constructing parallel architectures. In this section, we will

provide basic information on the SIMD paradigm. It is important at the outset to indicate that

SIMD are mostly designed to exploit the inherent parallelism encountered in matrix (array)

operations, which are required in applications such as image processing. Famous real-life

machines that have been commercially constructed include the ILLIAC-IV (1972), the

STARAN (1974), and the MPP (1982).

Two main SIMD configurations have been used in real-life machines. These are shown in

Figure 11.7. In the first scheme, each processor has its own local memory. Processors can

communicate with each other through the interconnection network. If the interconnection

network does not provide direct connection between a given pair of processors, then this pair

can exchange data via an intermediate processor. The

194

ILLIAC-IV used such an interconnection scheme. The interconnection network in the ILLIAC-

IV allowed each processor to communicate directly with four neighboring processors in an 8 x

8 matrix pattern such that the ith processor can communicate directly with the (i - 1)th, (i +

1)th, (i - 8)th, and (i + 8)th processors. In the second SIMD scheme, processors and memory

modules communicate with each other via the interconnection network.

Two processors can transfer data between each other via intermediate memory module(s) or

possibly via intermediate processor(s). Assume, for example, that processor i is connected to

memory modules (i - 1), i, and (i + 1). In this case, processor 1 can communicate with

processor 5 via memory modules 2, 3, and 4 as intermediaries. The BSP (Burroughs’ Scientific

Processor) used the second SIMD scheme.

In order to illustrate the effectiveness of SIMD in handling array operations, consider, for

example, the operations of adding the corresponding elements of two one dimensional arrays

A and B and storing the results in a third one-dimensional array C. Assume also that each of

the three arrays has N elements.

Assume also that SIMD scheme 1 is used. The N additions required can be done in one step

if the elements of the three arrays are distributed such that M0 contains the elements A(0),

B(0), and C(0), M1 contains the elements A(1), B(1), and C(1), . . . , and MN21 contains the

elements A(N - 1), B(N - 1), and C(N - 1). In this case, all processors will execute

simultaneously an add instruction of the form C A þ B. After executing this single step by all

processors, the elements of the resultant array C will be stored across the memory modules

such that M0 will store C(0), M1 will store C(1), . . . , and MN21 will store C(N - 1).

It is customary to formally represent an SIMD machine in terms of five-tuples (N, C, I, M, F).

The meaning of each argument is given below.

1. N is the number of processing elements (N = 2k, k ≥ 1).

2. C is the set of control instructions used by the control unit, for example, do, for, step.

3. I is the set of instructions executed by active processing units.

4. M is the subset of processing elements that are enabled.

5. F is the set of interconnection functions that determine the communication links

among processing elements.

3.4 MIMD Schemes

MIMD machines use a collection of processors, each having its own memory, which can be

used to collaborate on executing a given task. In general, MIMD systems can be categorized

based on their memory organization into shared-memory and message-passing architectures.

The choice between the two categories depends on the cost of communication (relative to that

of the computation) and the degree of load imbalance in the application.

3.4.1 Shared Memory Organization

There has been recent growing interest in distributed shared memory systems. This is

because shared memory provides an attractive conceptual model for inter-process interaction

even when the underlying hardware provides no direct support. A shared memory model is

195

one in which processors communicate by reading and writing locations in a shared memory

that is equally accessible by all processors.

Each processor may have registers, buffers, caches, and local memory banks as additional

memory resources. A number of basic issues in the design of shared memory systems have

to be taken into consideration. These include access control, synchronization, protection, and

security. Access control determines which process accesses are possible to which resources.

Access control models make the required check for every access request issued by the

processors to the shared memory, against the contents of the access control table. The latter

contains flags that determine the legality of each access attempt. If there are access attempts

to resources, then until the desired access is completed, all disallowed access attempts and

illegal processes are blocked.

Requests from sharing processes may change the contents of the access control table during

execution. The flags of the access control with the synchronization rules determine the

system’s functionality. Synchronization constraints limit the time of accesses from sharing

processes to shared resources. Appropriate synchronization ensures that the information

flows properly and ensures system functionality.

Protection is a system feature that prevents processes from making arbitrary access to

resources belonging to other processes. Sharing and protection are incompatible; sharing

allows access, whereas protection restricts it. Running two copies of the same program on

two processors will decrease the performance relative to that of a single processor, due to

contention for shared memory.

The performance degrades further as three, four, or more copies of the program execute at

the same time.

A shared memory computer system consists of

1. A set of independent processors,

2. A set of memory modules, and

3. An interconnection network.

The simplest shared memory system consists of one memory module (M) that can be

accessed from two processors Pa and Pb (Fig. 11.8). Requests arrive at the memory module

through its two ports. An arbitration unit within the memory module passes requests through

to a memory controller. If the memory module is not busy and a single request arrives, then

the arbitration unit passes that request to the memory controller and the request is satisfied.

The module is placed in the busy state while a request is being serviced.

If a new request arrives while the memory is busy servicing a previous request, the memory

module sends a wait signal through the memory controller to the processor making the new

196

request. In response, the requesting processor may hold its request on the line until the

memory becomes free or it may repeat its request some time later. If the arbitration unit

receives two requests, it selects one of them and passes it to the memory controller.

Again, the denied request can be either held to be served next or it may be repeated some

time later. The arbitration unit may not be adequate to organize the use of the memory module

by the two processors. The main problem will be in the sequencing of interactions between

memory accesses from the two processors. Consider the following two scenarios for

accessing the same memory location M (1000) by the two processors Pa and Pb (Fig. 11.9).

Let us also assume that the initial value stored in memory location M (1000) is 150. Note that

in both cases, the sequence of instructions performed by each processor is the same. The

only difference between the two scenarios is the relative time at which the two processors

update the value in M (1000).

A careful examination of the two scenarios will show that the value stored in location M (1000)

after the first scenario will be 151 while the stored value following the second scenario will be

152. The above illustrative example presents the case of a nonfunctional behavior of this

simple shared memory system. Such an example should demonstrate the basic requirements

for the success of such systems.

These requirements are:

i. A mechanism for conflict resolution among rival processors

ii. A technique for specifying the sequencing constraints

iii. A mechanism for enforcing the sequencing specifications

The use of different interconnection networks in a shared memory multiprocessor system

leads to systems with one of the following characteristics:

i. Shared memory architecture with a uniform memory access (UMA)

ii. Cache-only memory architecture (COMA)

iii. Distributed shared memory architecture with non-uniform memory access (NUMA)

197

Figure 11.10 shows typical organization for the abovementioned three shared memory

architectures. In the UMA system, a shared memory is accessible by all processors through

an interconnection network in the same way a single processor accesses its memory.

Therefore, all processors have equal access time to any memory location.

The interconnection network used in the UMA can be a single bus, multiple bus, a crossbar,

or a multiport memory. In the NUMA system, each processor has part of the shared memory

attached. The memory has a single address space. Therefore, any processor could access

any memory location directly using its real address. However, the access time to modules

depends on the distance to the processor.

This results in a non-uniform memory access time. A number of architectures are used to

interconnect processors to memory modules in a NUMA. Among these are the tree and the

hierarchical bus networks. Similar to the NUMA, each processor has part of the shared

memory in the COMA. However, in this case the shared memory consists of cache memory.

A COMA system requires that data be migrated to the processor requesting it.

3.4.2 Message-Passing Organization

Message passing represents an alternative method for communication and movement of data

among multiprocessors. Local, rather than global, memories are used to communicate

messages among processors. A message is defined as a block of related information that

travels among processors over direct links. There exist a number of models for message

passing.

Examples of message-passing systems include the cosmic cube, workstation cluster, and the

transputer. The introduction of the transputer system T212 in 1983 announced the birth of the

first message-passing multiprocessor. Subsequently the T414 was announced in 1985, while

Inmos introduced the VISI transputer processor in 1986. Two subsequent transputer products,

the T800 (1988) and T9000 (1990), have been introduced.

The cosmic cube message-passing multiprocessor was designed at Caltech during the period

1981–1985. It represented the first hypercube multiprocessor system that was made to work.

Wormhole routing in message passing was introduced in 1987 as an alternative to the

traditional store-and forward routing in order to reduce the size of the required buffers and to

decrease the message latency.

198

In wormhole routing, a packet is divided into smaller units that are called flits (flow control bits)

such that flits move in a pipeline fashion with the header flit of the packet leading the way to

the destination node.

When the header flit is blocked due to network congestion, the remaining flits are blocked as

well. The elimination of the need for a large global memory, which is usually a reason for a

slowdown of the overall system, together with its asynchronous nature, give message-passing

schemes an edge over shared-memory schemes.

Similar to shared-memory multiprocessors, application programs are divided into smaller

parts; each can be executed by an individual processor in a concurrent manner. A simple

example of a message-passing multiprocessor architecture is shown in Figure 11.11. As can

be seen from the figure, processors use local bus (internal channels) to communicate with

their local memories while communicating with other processors via an interconnection

networks (external channels).

Processes running on a given processor use internal channels to exchange messages among

themselves. Processes running on different processors use external channels to exchange

messages. Such a scheme offers a great deal of flexibility in accommodating a large number

of processors and being readily scalable. It should be noted that the process and the

processor, which executes it, are considered as two separate entities. The size of a process

is determined by the programmer and can be described by its granularity, given by:

Three types of granularity can be distinguished. These are:

1. Coarse granularity. Each process holds a large number of sequential instructions and

takes a substantial time to execute.

2. Medium granularity. Since the process communication overhead increases as the

granularity decreases, medium granularity describes a middle ground whereby

communication overhead is reduced in order to enable each nodal communication to take

less amount of time.

199

3. Fine granularity. Each process contains a few numbers of sequential instructions (as few

as just one instruction).

Message-passing multiprocessors use mostly medium or coarse granularity. Message-

passing multiprocessors employ static networks in local communication. In particular,

hypercube networks have been receiving special attention for use in a message-passing

multiprocessor. The nearest neighbor two-dimensional and three-dimensional mesh networks

have the potential for being used in a message-passing system as well.

Two important factors have led to the suitability of hypercube and mesh networks for use as

message-passing networks. These factors are (1) the ease of VLSI implementation and (2)

the suitability for two and three-dimensional applications. Two important design factors must

be considered in designing such networks. These are (1) the link bandwidth and (2) the

network latency.

The link bandwidth is defined as the number of bits that can be transmitted per unit time

(bits/second). The network latency is defined as the time to complete a message transfer. For

example, links could be unidirectional or bidirectional and they can transfer one bit or several

bits at a time. To estimate the network latency, we must first determine the path setup time,

which depends on the number of nodes on the path.

The actual transition time, which depends on the message size, must also be considered. The

information transfer from a given source through the network can be done in two ways:

1. Circuit-switching networks. In this type of network, there is no buffer required in each node.

The path between the source and destination is first determined. All links along that path

are reserved. After information transfer, reserved links are released for use by other

messages. Circuit-switching networks are characterized by producing the smallest amount

of delay.

Inefficient link utilization is the main disadvantage of circuit-switching networks. Circuit-

switching networks are, therefore, advantageously used only in the case of large message

transfer.

2. Packet-switching networks. Here, messages are divided into smaller parts, called packets,

before being transmitted between nodes. Each node must contain enough buffers to hold

received packets before transmitting them. A complete path from source to destination

may not be available at the start of transmission. As links become available, packets are

moved from a node to a node until they reach the destination node.

The technique is also known as the store-and-forward packet-switching technique. Although

store-and-forward packet-switching networks eliminate the need for a complete path at the

start of transmission, they tend to increase the overall network latency. This is because

packets are expected to be stored in node buffers waiting for the availability of outgoing

links.

In order to reduce the size of the required buffers and decrease the incurred network latency,

wormhole routing (see above) has been introduced. Having touched on some of the

machine categories based on the Flynn’s classifications, we now provide an introduction

into the interconnection networks used in these machines.

200

3.5 Interconnection Networks

A number of classification criteria exist for interconnection networks (INs). Among these

criteria are the following.

3.5.1 Mode of Operation

According to the mode of operation, INs are classified as synchronous versus asynchronous.

In synchronous mode of operation, a single global clock is used by all components in the

system such that the whole system is operating in a lockstep manner. Asynchronous mode of

operation, on the other hand, does not require a global clock. Handshaking signals are used

instead in order to coordinate the operation of asynchronous systems.

While synchronous systems tend to be slower compared to asynchronous systems, they are

race and hazard-free.

3.5.2 Control Strategy

According to the control strategy, INs can be classified as centralized versus decentralized. In

centralized control systems, a single central control unit is used to oversee and control the

operation of the components of the system. In decentralized control, the control function is

distributed among different components in the system. The function and reliability of the

central control unit can become the bottleneck in a centralized control system.

While the crossbar is a centralized system, the multistage interconnection networks are

decentralized.

3.5.3 Switching Techniques

Interconnection networks can be classified according to the switching mechanism as circuit

versus packet switching networks. In the circuit switching mechanism, a complete path has to

be established prior to the start of communication between a source and a destination. The

established path will remain in existence during the whole communication period. In a packet

switching mechanism, communication between a source and destination takes place via

messages that are divided into smaller entities, called packets.

On their way to the destination, packets can be sent from one node to another in a store-and-

forward manner until they reach their destination. While packet switching tends to use the

network resources more efficiently, compared to circuit switching, it suffers from variable

packet delays.

3.5.4 Topology

According to their topology, INs are classified as static versus dynamic networks. In dynamic

networks, connections among inputs and outputs are made using switching elements.

Depending on the switch settings, different interconnections can be established. In static

networks, direct fixed paths exist between nodes. There are no switching elements (nodes) in

static networks.

Having introduced the general criteria for classification of interconnection networks, we can

now introduce a possible taxonomy for INs that is based on topology. In Figure 11.12, we

provide such a taxonomy. According to the shown taxonomy, INs are classified as either static

201

or dynamic. Static networks can be further classified according to their interconnection

patterns as one-dimension (1D), two-dimension (2D), or hypercubes (HCs).

Dynamic networks, on the other hand, can be further classified according to the scheme of

interconnection as bus-based versus switch-based. Bus-based INs are classified as single

bus or multiple bus. Switch-based dynamic networks can be further classified according to the

structure of the interconnection network as single-stage (SS), multistage (MS), or crossbar

networks.

Self-Assessment Question

1. Interconnection Networks are classified as __________.

Self-Assessment Answer

1. Synchronous versus asynchronous.

3.6 Analysis and Performance Metrics

Having provided an introduction to the architecture of multiprocessors, we now provide some

basic ideas about the performance issues in multiprocessors. A fundamental question that is

usually asked is how much faster a given problem can be solved using multiprocessors as

compared to a single processor? This question can be formulated into the speed-up factor

defined below.

A related question is that how efficiently each of the n processors is utilized. The question can

be formulated into the efficiency defined below.

202

In executing tasks (programs) using a multiprocessor, it may be assumed that a given task

can be divided into n equal subtasks each of which can be executed by one processor.

Therefore, the expected speed-up will be given by the S(n) = n while the efficiency E(n) =

100%. The assumption that a given task can be divided into n equal subtasks, each executed

by a processor, is unrealistic.

Self-Assessment Question

1. What is the formula for speed up factor?

Self-Assessment Answer

1.

4.0 Conclusion

What you have learned in this unit is on introduction to multiprocessor system. Also, you have

learnt about classification of computer architectures, SIMD schemes, MIMD schemes and

interconnection networks. Finally, the analysis and performance metrics were also explained.

5.0 Summary

In this unit, we have navigated through a number of concepts and system configurations

related to the issues of multiprocessing. In particular, we have provided the general concepts

and terminology used in the context of multiprocessors. A number of taxonomies for

multiprocessors have been introduced and analyzed. Two memory organization schemes

have been introduced.

These are the shared-memory and message-passing systems. In addition, we have

introduced the different topologies used for interconnecting multiple processors.

6.0 Tutor-Marked Assignment

1. In a message passing organization of multiprocessor system, three types of granularity

can be distinguished, what are they?

2. Flynn’s classification scheme is based on identifying two orthogonal streams in a

computer. Explain this classification?

3. Explain some basic ideas about the performance issues in multiprocessors?

203

7.0 References/Further Reading

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-Wesley Publishing

Company.

Daniel P, and David G, (2009). A Practical Introduction to Computer Architecture. Text in

Computer Science, Springer Dordrecht Heidelberg London New York.

Flautner, K. Kim, N.S. Martin, S. Blaauw D. and Mudge, T.N. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. In International Symposium on Computer

Architecture. (ISCA), 148–157, 2002

Hayes, John P. (1998). Computer Architecture and Organisation (2nd ed). McGraw-Hill

International editions.

Hennessy J.L and Patterson, D.A. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 2006. ISBN: 0-123-70490-1.

Premchand, P. Data Communication and Computer networks. Dept. of CSE, College of

Engineering, Osmania University, Hyd 500007.

Mano, M. Morris, (1993). Computer System Architecture (3rd ed). Prentice Hall of India.

Miles J, and Vincent P. H. (1999). Principle of Computer Architecture – Class Test Edition,

August 1999. http://www.cs.rutgers.edu/~murdocca/

http://ece-www.colorado.edu/faculty/heuring.html

Mostafa A. E.B and Hesham E. R, (2005). Fundamentals of Computer Organization and

Architecture. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

http://websrv.cs.fsu.edu/~tyson/CDA5155/refs.html

http://www.cs.ucsd.edu/classes/wi99/cse141_B/lectures.html

http://www.cs.caltech.edu/courses/cs184/ winter2001/slides/day5_2up.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/compSched.html

http://www.mmdb.ece.ucsb.edu/~ece154/lecture5.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

http://www.adaptec.com

http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_raid

http://www.ar.com

http://www.adaptec.com/

	COURSEWARE SINGLE BACKCOVER.pdf
	Page 1

