
i

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA,

NIGERIA

CENTRE FOR OPEN DISTANCE AND

E-LEARNING

(CODeL)

SCHOOL OF SCIENCE AND SCIENCE EDUCATION

COURSE TITLE

OBJECT-ORIENTED PROGRAMMING, I

COURSE CODE:

CPT 211

COURSE TITLE: OBJECT-ORIENTED PROGRAMMING I

ii

COURSE CODE: CPT 211

COURSE UNIT: 3

Course Coordinator

Bashir Mohammad (Ph.D.)
Computer Science Department

FUT Minna, Nigeria.

iii

COURSE DEVELOPMENT TEAM

Course Coordinator Sapun Aksana (Mrs.)
Potapenko Natalya
Department of Information & Media
Technology
Federal University of Technology,
Minna, Nigeria

Subject matter experts Abraham, O. (Ph.D.)
Agboola, A. K. (Ph.D.)
Department of Information & Media
Technology

ODL Experts Amosa Isiaka GAMBARI (Ph.D.)
Nicholas E. ESEZOBOR

Instructional System Designers FALODE, Oluwole Caleb (Ph.D.)
Bushrah Temitope OJOYE (Mrs.)

Language Editors Chinenye Priscilla UZOCHUKWU
Mubarak Jamiu ALABEDE

Centre Director Abiodun Musa AIBINU (Ph.D.)
Centre for Open Distance & e-Learning
FUT Minna, Nigeria.

iv

STUDY GUIDE

CPT211: OBJECT-ORIENTED PROGRAMMING I

1.0 Introduction

CPT 211: Object-oriented programming I is a 3 credit unit course for students studying

towards acquiring a Bachelor of Technology in Information Technology and other related

disciplines. The course is divided into 7 modules and 17 study units. It will first take a brief

review of the concepts of Object-oriented programming. This course will then go ahead to

deal with the Object-oriented programming II.

Architecture. The course goes further to deal with the concept of Objects and Classes,

Polymorphism, Inheritance, Abstract Classes. The course concludes by discussing some

concepts like Algorithms, Object oriented design.

2.0 Course Guide

The course guide therefore gives you an overview of what the course; CPT 211 is all about,

the textbooks and other materials to be referenced, what you expect to know in each unit, and

how to work through the course material. The course guide introduces to you what you will

learn in this course and how to make the best use of the material. It brings to your notice the

general guidelines on how to navigate through the course and on the expected actions you

have to take for you to complete this course successfully. Also, the guide will hint you on

how to respond to your Self Assessment Question(s) and Tutor-Marked Assignments.

3.0 What You Will Learn In This Course

The overall aim of this course, CPT 211 is to introduce you to the basic concepts of Object-

oriented programming to enable students to understand the basics of Objects and Classes,

Polymorphism, Inheritance, Abstract Classes.

This course highlights different primitive types and control structures. This course will

introduce you to the practical terms and definitions of object-oriented programming.

v

4.0 Course Aim

The aim of this course is to introduce students to the basics and concepts of Object-oriented

programming. It is believed the knowledge will enable the student to understand the

functionalities and capabilities of Object-oriented programming to combine objects into

structured networks to form a complete program and to acquaint the student with modern

programming practices.

5.0 Course Objectives

It is important to note that each unit has specific objectives. Students should study them

carefully before proceeding to subsequent units. Therefore, it may be useful to refer to these

objectives in the course of your study of the unit to assess your progress. You should always

look at the unit objectives after completing a unit. In this way, you can be sure that you have

done what is required of you by the end of the unit. However, below are overall objectives of

this course. On completing this course, you should be able to:

(i) introducing the principles of object-oriented programming;

(ii) to develop students’ competence in primitive types and control structures;

(iii) differentiating objects and classes;

(iv) showcase some practical issues of object-oriented programming; and

(v) dealing with inheritance, abstract classes, polymorphisms and algorithms.

6.0 Working Through This Course

To complete this course, you are required to study all the units, the recommended textbooks,

and other relevant materials. Each unit contains some self-assessment exercises and tutor

marked assignments, and at some point, in this course, you are required to submit the tutor

marked assignments. There is also a final examination at the end of this course. Stated below

are the components of this course and what you have to do.

7.0 Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

vi

8.0 Study Units

There are 17 study units and 7 modules in this course. They are:

MODULE 1: INTRODUCTION TO PROGRAMMING

Unit 1: Overview Paradigms of Programming

Unit 2: Overview of Programming Languages and the Compilation Process

Unit 3: Introduction to Object Oriented Programming

MODULE 2: FUNDAMENTALS OF OBJECTS AND CLASSES

Unit 1: Objects and Classes

Unit 2: Class Members and Instance Members

Unit 3: Methods, Message Passing, Creating and Destroying Objects

MODULE 3: INHERITANCE, POLYMORPHISM AND ABSTRACT

CLASSES

Unit 1: Inheritance

Unit 2: Polymorphism

Unit 3: Abstract Classes

MODULE 4: PRIMITIVE DATA TYPES

Unit 1: Primitive Data Types

Unit 2: Control Structures

MODULE 5: ARRAYS AND STRINGS

Unit 1: Arrays

Unit 2: Strings

MODULE 6: ALGORITHMS

Unit 1: Concept of an Algorithm, Problem-Solving Strategies

Unit 2: Pseudocode and Stepwise Refinement

MODULE 7: OBJECT ORIENTED DESIGN

Unit 1: Fundamental design concept and principles

Unit 2: introduction to design patterns

vii

9.0 RECOMMENDED TEXTS

These texts and especially the internet resource links will be of enormous benefit to you in

learning this course:

http://docs.oracle.com/javase/tutorial/java/

http://www.kodejava.org/

http://objc.toodarkpark.net/objctoc.html

http://en.wikipedia.org/wiki/Object-oriented_programming

10.0 ASSIGNMENT FILE

The assignment file will be given to you in due course. In this file, you will find all the details

of the work you must submit to your tutor for marking. The marks you obtain for these

assignments will count towards the final mark for the course. Altogether, there are tutor

marked assignments for this course.

11.0 PRESENTATION SCHEDULE

The presentation schedule included in this course guide provides you with important dates for

completion of each tutor marked assignment. You should therefore endeavor to meet the

deadlines.

12.0 ASSESSMENT

There are two aspects to the assessment of this course. First, there are tutor marked

assignments; and second, the written examination. Therefore, you are expected to take note of

the facts, information and problem solving gathered during the course. The tutor marked

assignments must be submitted to your tutor for formal assessment, in accordance to the

deadline given. The work submitted will count for 40% of your total course mark.

At the end of the course, you will need to sit for a final written examination. This

examination will account for 60% of your total score.

13.0 Tutor Marked Assignments (TMAS)

There are TMAs in this course. You need to submit all the TMAs. The best 10 will therefore

be counted. When you have completed each assignment, send them to your tutor as soon as

possible and make certain that it gets to your tutor on or before the stipulated deadline. If for

any reason, you cannot complete your assignment on time, contact your tutor before the

assignment is due to discuss the possibility of extension. Extension will not be granted after

the deadline, unless on extraordinary cases.

http://docs.oracle.com/javase/tutorial/java/
http://www.kodejava.org/
http://objc.toodarkpark.net/objctoc.html
http://en.wikipedia.org/wiki/Object-oriented_programming

viii

14.0 Final Examination And Grading

The final examination for CPT 211 will be of last for a period of 2 hours and have a value of

60% of the total course grade. The examination will consist of questions which reflect the

Self Assessment Questions and tutor marked assignments that you have previously

encountered. Furthermore, all areas of the course will be examined. It would be better to use

the time between finishing the last unit and sitting for the examination, to revise the entire

course. You might find it useful to review your TMAs and comment on them before the

examination. The final examination covers information from all parts of the course.

15.0 The Following Are Practical Strategies For Working Through

This Course

1. Read the course guide thoroughly

2. Organize a study schedule. Refer to the course overview for more details. Note the

time you are expected to spend on each unit and how the assignment relates to the units.

Important details, e.g. details of your tutorials and the date of the first day of the semester are

available. You need to gather together all these information in one place such as a diary, a

wall chart calendar or an organizer. Whatever method you choose, you should decide on and

write in your own dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick to

it. The major reason that students fail is that they get behind with their course works. If you

get into difficulties with your schedule, please let your tutor know before it is too late for

help.

4. Turn to Unit 1 and read the introduction and the objectives for the unit.

5. Assemble the study materials. Information about what you need for a unit is given

in the table of content at the beginning of each unit. You will almost always need both the

study unit you are working on and one of the materials recommended for further readings, on

your desk at the same time.

6. Work through the unit, the content of the unit itself has been arranged to provide a

sequence for you to follow. As you work through the unit, you will be encouraged to read

from your set books

7. Keep in mind that you will learn a lot by doing all your assignments carefully. They

have been designed to help you meet the objectives of the course and will help you pass the

examination.

8. Review the objectives of each study unit to confirm that you have achieved them. If

you are not certain about any of the objectives, review the study material and consult your

tutor.

9. When you are confident that you have achieved a unit’s objectives, you can start on

the next unit. Proceed unit by unit through the course and try to pace your study so that you

can keep yourself on schedule.

10. When you have submitted an assignment to your tutor for marking, do not wait for

its return before starting on the next unit. Keep to your schedule. When the assignment is

ix

returned, pay particular attention to your tutor’s comments, both on the tutor marked

assignment form and also written on the assignment. Consult you tutor as soon as possible if

you have any questions or problems.

11. After completing the last unit, review the course and prepare yourself for the final

examination. Check that you have achieved the unit objectives (listed at the beginning of

each unit) and the course objectives (listed in this course guide).

16.0 Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will be notified of the

dates, time and location together with the name and phone number of your tutor as soon as

you are allocated a tutorial group. Your tutor will mark and comment on your assignments,

keep a close watch on your progress and on any difficulties, you might encounter and provide

assistance to you during the course. You must mail your tutor marked assignment to your

tutor well before the due date. At least two working days are required for this purpose. They

will be marked by your tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you need

help. The following might be circumstances in which you would find help necessary: contact

your tutor if:

• You do not understand any part of the study units or the assigned readings.

• You have difficulty with the self test or exercise.

• You have questions or problems with an assignment, with your tutor’s comments on

an assignment or with the grading of an assignment.

You should Endeavour to attend the tutorials. This is the only opportunity to have face to face

contact with your tutor and ask questions which are answered instantly. You can raise any

problem encountered in the course of your study. To gain the maximum benefit from the

course tutorials, have some questions handy before attending them. You will learn a lot from

participating actively in discussions.

GOODLUCK!

x

Table of Contents

MODULE 1: Overview…………………………………………….…………1

Unit 1: Overview Paradigms of Programming………………………………….…………2

1.0 Introduction……………………………………………………………………………3

2.0 Learning Outcomes……………………………………………………………………3

3.0 Learning Contents……………………………………………………………………..3

3.1 What is Paradigm……………………………………………………………....3

3.2 Programming paradigm……………………………………………………….4

4.0 Conclusion……………………………………………………………………………..7

5.0 Summary……………………………………………………………………………….7

6.0 Tutor-Marked Assignment (TMA)…………………………………………………….8

7.0 References/Further Reading…………………………………………………………...8

Unit 2: Overview of Programming Languages and The Compilation Process…………..9

1.0 Introduction…………………………………………………………………………..10

2.0 Learning Outcomes……………………………………………………………...…..10

3.0 Learning Contents……………………………………………………………...……10

3.1 Types of programming Languages……………………………………..…...10

3.2 Compilation Process………………………………………………..………..12

4.0 Conclusion………………………………………………………………..…………15

5.0 Summary……………………………………………………………….…………...15

6.0 Tutor-Marked Assignment (TMA)……………………………………………….….15

7.0 References/Further Reading………………………………………………….……...16

Unit 3: Introduction to Object Oriented Programming……………………………….…17

1.0 Introduction…………………………………………………………………..………18

2.0 Learning Outcomes…………………………………………………………..………18

3.0 Learning Contents…………………………………………………………….….….18

3.1 Overview of object oriented programming…………………………….……18

3.2 Overview of basic object oriented programming concepts……………….….19

4.0 Conclusion…………………………………………………………………………....22

5.0 Summary……………………………………………………………………….……..23

6.0 Tutor-Marked Assignment (TMA)……………………………………………….…..23

7.0 References/Further Reading………………………………………….………………23

MODULE 2: Fundamentals of Objects and Classes……………….……....24

Unit 1: Objects and Classes……………………………………..…………………..……...25

1.0 Introduction…………………………………………………………….……….26

2.0 Learning Outcomes……………………………………………………………...26

3.0 Learning Contents………………………………...……………………..………26

3.1 Objects, Encapsulation, Messages……………………………..……..…26

xi

4.0 Conclusion…………………………………………..………………..…………29

5.0 Summary………………………………….…………………………...………...29

6.0 Tutor-Marked Assignment (TMA)……………………………………………...29

7.0 References/Further Reading……………………………….…………………….30

Unit 2: Class Members and Instance members……………………………………...31

1.0 Introduction……………………………………………………………………..32

2.0 Learning Outcomes……………………………………………………….……..32

3.0 Learning Contents…………………………………………………….………...32

4.0 Conclusion…………………………………………………….………………...38

5.0 Summary……………………………………………………….………………...38

6.0 Tutor-Marked Assignment (TMA)……………………………….……………...39

7.0 References/Further Reading………………………………………..……………39

Unit 3: Creating and Destroying Objects…………………………….……………….40

1.0 Introduction………………………………………………….…….……………..41

2.0 Learning Outcomes………………………………………………….…………...41

3.0 Learning Contents…………………………………………………….………….41

3.1.1 Initializing Instance Variables…………………………..….........41

3.1.2 Constructors…………………..………………………...………...43

4.0 Conclusion…………………………..……………………………………...…….47

5.0 Summary……………………..……………………………………………...……48

6.0 Tutor-Marked Assignment (TMA)………………..………………………………48

7.0 References/Further Reading……………….………………………………....48

MODULE 3: Inheritance, Polymorphism, Abstract Classes…………..49

Unit 1: Inheritance………………………………….…………………………….……..50

1.0 Introduction………………………………...…………………………….……….51

2.0 Learning Outcomes………………………………..……………………….……...51

3.0 Learning Contents……………………………..……………………….…………51

3.1 Extending Existing Classes………………………………….…..………..51

3.2 Inheritance and Class Hierarchy……………………………….……..…..54

4.0 Conclusion………………………………….….………………………..………....57

5.0 Summary……………………….………….………………………..……………...58

6.0 Tutor-Marked Assignment (TMA)…………………………….……58

7.0 References/Further Reading…………………………………..…….58

Unit 2: Polymorphism………………………………………………….….59

1.0 Introduction……………………………………………………..…..60

 2.0 Learning Outcomes………………………………………………....60

 3.0 Learning Contents…………………………………………….…….60

3.1 Overloading Polymorphism…………………….…………...61

xii

3.2 Parametric Polymorphism…………………….……………..61

3.3 Inclusion Polymorphism………………………………..……62

4.0 Conclusion……………………………………………………..……63

5.0 Summary……………………………………..………………………63

6.0 Tutor-Marked Assignment (TMA)…………………………..………63

7.0 References/Further Reading………………………………..………..63

Unit 3: Abstract Classes…………………………………………………....64

1.0 Introduction…………………………………………………..……..65

2.0 Learning Outcomes………………………………………………....65

3.0 Learning Contents………………………………………….………65

4.0 Conclusion………………………………………………………...72

5.0 Summary…………………………………………………………..72

6.0 Tutor-Marked Assignment (TMA)………………………………...73

7.0 References/Further Reading……………………………………….73

MODULE 4: Primitive Data Types…………………………74

Unit 1: Variables and the Primitive Types…………………….……….75

1.0 Introduction……………………………………………..…………..76

2.0 Learning Outcomes………………………………………….………76

3.0 Learning Contents……………………………………..………...…..76

3.1 Variables………………………………..…………………...77

3.2 Types And Literals…………………………………..………79

3.3 Variables In Programs…………………………………….…82

4.0 Conclusion………………………………………………..…………84

5.0 Summary……………………………….…………………………...84

6.0 Tutor-Marked Assignment (TMA)……………………………….…85

7.0 References/Further Reading…………………………………..…….85

Unit 2: Control Flow Statements…………………………………….…..86

1.0 Introduction…………………………..……………………………………..87

2.0 Learning Outcomes………………….………………………………………87

3.0 Learning Contents………….………………………………………………..87

 3.1 The if-then and if-then-else Statements………………………..…….87

3.2 The if-then-else Statement………………………………….…….….88

3.3 The Switch Statement…………………..……………………………89

3.4 Using Strings in switch Statements………………………..…………93

3.5 The while and do-while Statements…….……………………………95

 3.6 The for Statement……………………………………………….……97

4.0 Conclusion…………………………………………………………………...99

5.0 Summary……………………………………………………………………..99

6.0 Tutor-Marked Assignment (TMA)………………………………..…..……100

xiii

7.0 References/Further Reading……………………..………………...………..100

MODULE 5: Arrays and Strings…………………………………………..101

Unit 1: Arrays………………………………………………………………...…………..102

1.0 Introduction…………………………………….………………………..………….103

2.0 Learning Outcomes…………………………………………………..……………..103

3.0 Learning Contents……………………………………………………..……………103

3.1 Declaring a Variable to Refer to an Array……………………..…………...105

3.2 Creating, Initializing, and Accessing an Array…………………..….…...…106

3.3 Copying Arrays………………………..………………………..…………...108

4.0 Conclusion………………………………………………………………..………....109

5.0 Summary………………………………………………………………..……….…..109

6.0 Tutor-Marked Assignment (TMA)……………………………………..……….…..109

7.0 References/Further Reading……………………………………………..……….…110

Unit 2: Strings……………………………………………………………….……….…...111

1.0 Introduction………………………………………...……………………………….112

2.0 Learning Outcomes……………………………………………………………..…..112

3.0 Learning Contents………………………………………………………..………....112

3.1 Creating Strings………………………………………………...…………...112

3.2 String Length…………………………………………………...…………...113

3.3 Concatenating Strings………………………………………...……………..114

3.4 Creating Format Strings………………………………………...…………...115

3.5 Converting Strings to Numbers………………………………..……….…...116

3.6 Converting Numbers to Strings………………….……………………….....117

3.7 Manipulating Characters in a String……………………………………...…118

3.8 Getting Characters and Substrings by Index…………..…………………....119

3.9 Other Methods for Manipulating Strings…………………………120

3.10 Searching for Characters and Substrings in a String……..……...121

3.11 Replacing Characters and Substrings into a String……………….122

3.12 Comparing Strings and Portions of Strings………..…………..….125

4.0 Conclusion………………………………………………...……………...127

5.0 Summary……………………………………………...…………………..128

6.0 Tutor-Marked Assignment (TMA)…………………………………….....128

7.0 References/Further……………………………………...………………...128

MODULE6: Algorithms………………………………..………….129

Unit 1: Algorithm Concepts……………………………………………………130

1.0 Introduction………………………………………………………………..131

2.0 Learning Outcomes………………………...……………………………. 131

3.0 Learning Contents…………………………………………………………132

 3.1 Algorithm………………………………………………………….133

xiv

 3.2 Algorithm Specialized by Input…………………………………...134

 3.3 Algorithm Specialized by Strategy………………………………...135

 3.4 Dynamic Programming Algorithm………………………………...136

 3.5 Iterative Algorithm………………………………………………....138

4.0 Conclusion……………………………………………………………….....139

5.0 Summary…………………………………………………………………....139

6.0 Tutor-Marked Assignment (TMA)………………………………………....139

7.0 References/Further Reading……………………………………………...…140

Unit 2: Programming Algorithms………………………………………...…….141

1.0 Introduction………………………………………………………………….142

2.0 Learning Outcomes…………………………………………………………..142

3.0 Learning Contents……………………………………………………………142

3.1 Pseudocode and Stepwise Refinement……………………………….143

3.2 The 3N+1 Problem……………………………………...…………....146

3.3 Coding, Testing, Debugging……………………………………….…150

4.0 Conclusion……………………………………………………………….…...152

5.0 Summary………………………………………………………………….…..152

6.0 Tutor-Marked Assignment (TMA)……………………………………..……..153

7.0 References/Further Reading……………………………………………...……153

MODULE 7: Software Design…………………………..………...…..154

Unit 1: Design Concepts and Principles…………………………………………...155

1.0 Introduction……………………………………………………..………..…….156

2.0 Learning Outcomes……………………………………………….……………..156

3.0 Learning Outcomes……………………………………….……………………..156

 3.1 Design - Concepts and Principles………………………….…………….156

 3.2 Design Specification Models……………………………………….……157

3.3 Design Guidelines………………………………………….…………….158

 3.4 Design Principles………………………………………………………...158

 3.5 Fundamental Software Design Concepts…………………………….…..160

4.0 Conclusion………………………………………………………….…………….161

5.0 Summary………………………………………………….………………………161

6.0 Tutor-Marked Assignment (TMA)………………………………………….……161

7.0 References/Further Reading……………………………………….……………..162

Unit 2: Introduction to Design Patterns……………………………………………..163

1.0 Introduction………………………………………………………………….……164

2.0 Learning Outcomes……………………………………………………………….165

3.0 Learning Contents………………………………………………………………...165

 3.1 What is a Design Pattern?...165

 3.2 Design Patterns in Smalltalk MVC………………………………….…….166

 3.3 Describing Design Patterns………………………………………….……168

 3.4 Pattern Name and Classification……………………….………………….169

xv

 3.5 How Design Patterns Solve Design Problems…………………………….172

 3.6 Finding Appropriate Objects………………………………………….…...172

 3.7 Determining Object Granularity……………….…………………………..173

3.8 Programming to an Interface, not an Implementation……………….…….174

3.9 Application Programs…………………………………………..…………..175

3.10 How to Select a Design Pattern…………………………..………………...176

3.11 How to Use a Design Pattern…………………………………………........176

4.0 Conclusion…………………………………………………...……………………...177

5.0 Summary……………………………………...………………………………...…..178

6.0 Tutor-Marked Assignment (TMA)……………………………...…………………..178

7.0 References/Further Reading…………………………………………………...……179

1

Module 1

Introduction to Object

Oriented Programming
Unit 1: Overview Paradigms of Programming

Unit 2: Overview of Programming Languages and the Compilation Process

Unit 3: Introduction to Object Oriented Programming

2

Unit 1

Overview Paradigms of

Programming

CONTENTS

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 What is Paradigm?

3.2 Programming paradigm

4.0 Conclusion

5.0 Summary

8.0 Tutor-Marked Assignment (TMA)

9.0 References/Further Reading

1.0 Introduction

In this introductory part of the material we will introduce the concept of programming

paradigms. Several main styles (or paradigms, or models) of programming – imperative,

functional, logic and object oriented ones – were developed during more than forty-year

3

history of programming. Each of them is based on specific algorithmic abstractions of data,

operations, and control and presents a specific mode of thinking about program and its

execution. Various programming techniques (including data structures and control

mechanisms) were elaborated rather independently within each style, thereby forming

different scopes of their applicability. For instance, the object-oriented style and

corresponding techniques are suitable for creating programs with complicated data and

interface, while the logic style is convenient to program logic inference.

2.0 Learning Outcomes

At the end of this unit should be able to:

1. define a paradigm of programming;

2. know four distinct and fundamental programming paradigms;

3. distinguish a programming paradigm by its key features.

3.0 Learning Contents

3.1 What Is 'Paradigm'?

The simple definition is - "An example that serves as pattern or model."

But more scientific definitions are given in 'The American Heritage Dictionary of the English

Language, Third Edition':

"A philosophical and theoretical framework of a scientific school or discipline within which

theories, laws, and generalizations and the experiments performed in support of them is

formulated".

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

4

3.2 Programming Paradigms

Programming paradigm means:

1) a pattern that serves as a school of thoughts for programming of computers;

2) programming technique - related to an algorithmic idea for solving a particular class

of problems (for examples: 'divide and conquer', 'program development by stepwise

refinement');

3) programming style - the way we express ourselves in a computer program, related to

elegance or lack of elegance; and

4) programming culture - The totality of programming behavior, which often is tightly

related to a family of programming languages.

Paradigm= Programming styles + Certain Programming Techniques

The term paradigm refers to a pattern of thought that guides a collection of related activities.

Thus, programming paradigms can be thought of as a pattern of problem solving thought that

underlies a particular genre of programs and languages.

There are four distinct and fundamental programming paradigms:

1. imperative programming;

2. object-oriented programming;

3. functional programming; and

4. logic programming.

There are some programming languages that were intentionally designed to support more

than one paradigm. For example, C++ is a hybrid of imperative and object-oriented language.

Imperative Programming

Imperative programming is the oldest paradigm. It is grounded in the classic “von Neumann-

Ekert” model of computation.

For imperative programming, procedural abstraction is the essential building block. By

procedural abstraction we mean assignments, loops, sequences, conditional statements, and

exception handling.

The leading languages in this domain are Cobol, Fortran, C, Ada and Perl.

Object Oriented Programming

Object Oriented Programming (OOP) is a model based on the collection of objects that

interact with each other by passing messages that transform their state. Message passing

allows the data objects to become active rather than passive as in imperative paradigms.

5

Object classification, inheritance and message passing are the fundamental building blocks

for object oriented programming paradigm.

The major languages in this paradigm are Smalltalk, C++, Java, and C#.

Functional Programming

Functional programming models a computational problem as a collection of mathematical

functions, each with an input (domain) and a result (range) spaces.

Functions in program interact and combine with each other using functional composition,

conditionals and recursion.

Major functional programming languages are Lisp, Scheme, Haskell..

Logic Programming

Logic programming or declarative programming allows a program to model a problem by

declaring what outcome the program should accomplish rather than how it should be

accomplished. These languages are also called rule-based languages because program’s

declarations look more like a set of rules or constraints on the problem rather than a set of

commands to be carried out.

The major languages in logic programming paradigm are Prolog.

Beyond these four paradigms, several key topics such as Event-Handling, Concurrency,

Distributed programming, Database programming are other key concepts. Table 1.1 depicts

four paradigms, their key features and base languages.

Paradigm Key Features Base Languages

Event-Driven

(Visual Programming)

✓ Programming is based on

the set of anticipated

events

✓ The base system

recognizes the events as

they occur and coordinates

the necessary responses

✓ This paradigm is very

useful in developing a

good user interface

Visual Basic

Visual C++

Concurrent Programming

(Parallel Programming)

✓ This paradigm supports

multi-threading i.e.

segments of same program

can execute concurrently

and synchronization i.e.

facilitates cooperation

amongst the several

threads

Concurrent Pascal

ParC

PARLOG

Occam

6

Distributed Programming

(Network and internet

programming)

✓ Synchronization and

Semantics for message

passing from the core

support for implementing

✓ Remote Procedure Call

(RPC) or Remote Method

Invocation (RMI)

Ajax

JavaScript

 Java

Database Programming

(Structured Query

Languages)

✓ This paradigm provides a

structured way of framing

the query on RDBMS

✓ It also provides the

framework for verifying

and validating the query

results

SQL

MySql

Table 1.1 Description of four paradigms

Features of the main programming paradigms are in the table 1.2.

Table 1.2 Features of the main programming paradigms

Self -Assessment Questions

Self-Assessment Answers

Paradigm Key concept Program Program

execution

 Result

Imperative Command

(instruction)

Sequence of

commands

Execution of

commands

Final state of

computer

memory

Functional Function Collection of

functions

Evaluation of

functions

Value of the

main function

Logic Predicate Logic formulas:

axioms and a

theorem

Logic proving of

the theorem

Failure or

Success of

proving

Object-oriented Object Collection of

classes of

objects

Exchange of

messages

between the

objects

Final state of the

objects’ states

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

7

4.0 Conclusion

This unit took you through the basic concept of paradigms of programming. The main idea of

a programming paradigm can be formulated as following: a programming paradigm is a

combination of programming styles and certain programming techniques.

There are four distinct and fundamental programming paradigms: imperative programming,

object-oriented programming, functional programming, logic programming.

5.0 Summary

1. Programming techniques of traditional imperative paradigm essentially differ

from techniques of nontraditional ones – functional and logic. They have different scopes of

applicability, and for this reason necessity to integrate techniques of different paradigms

often arises in programming projects.

2. Profound education in computer science implies acquirement of programming

techniques of all main paradigms, and usual learning of modern programming languages

should be complemented by learning of programming paradigms and their base programming

techniques.

6.0 Tutor-Marked Assignment (TMA)

1. How many base paradigms exist?

2. Name major programming paradigms.

3. Is Object a key concept of Object-oriented Paradigm? Yes or No?

4. The major language in logic programming paradigm is Prolog? True or False?

5. Programming paradigm means combination of programming styles and certain

programming techniques. Yes or NO?

7.0 References/Further Reading

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms-book.html

http://daitanmarks.sourceforge.net/or/squeak/squeak tutorial.html

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms-book.html
http://daitanmarks.sourceforge.net/or/squeak/squeak%20tutorial.html

8

Unit 2

Overview of Programming

Languages and the

Compilation Process

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Types of programming Languages

3.2 Compilation Process

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

8.0 References/Further Reading

9

1.0 Introduction

In this unit we are going to discuss various programming languages and the compilation

process. There are many more languages to use with computers than any person, project or

organization might need. In the earlier days of computing, programming languages were

created because they were needed. Languages of any of the types include features and

libraries to solve problems of all types, but time can be saved by using a language which

expresses the class of problems at hand cleanly and efficiently. Compilation may be so-called

intermediate languages, i.e. languages which define virtual machines.

2.0 Learning Outcomes

At the end of this unit, you should be able to:

1. define a programming language;

2. know the types of programming languages;

3. name five stages of compilation process; and

4. know the phases of the compilation process.

3.0 Learning Contents

3.1 Types of Programming Languages

 A "program" was a plan of action, again usually step-by-step, but usually intended to

connote something more general than a specific algorithm. An algorithm is a plan of action

for solving a problem, while a program is a specific set of instructions for a computer to carry

out the algorithm.

Programs, as they are actually stored and executed in most computers, are lists of numbers,

sometimes expressed as decimal numbers, but more often as binary, octal, or hexadecimal

numbers. This is very inconvenient to work with. In order to simplify the process of writing

programs, various tools (which are, as might be expected, themselves programs) have been

designed (table 1.3).

Assemblers Assemblers allow symbolic names to be used

instead of numeric machine instructions and

instead of numeric machine addresses for

data

Macro Assemblers Macro assemblers allow groups of

instructions to be given names, i.e. to be

10

made into macro-instructions

Compilers and Interpreters Compilers and Interpreters allow statements

more oriented to the problem domain than to

the structure of computers to be used to

specify a program. A compiler takes large

groups of statements and converts them to

machine code for subsequent execution,

while an interpreter translates one statement

at a time and executes it immediately.

Table 1.3 Simplify the process of writing programs, various tools

Most programming languages today are specified by rigorous syntax definitions, defining the

statements of the languages in terms of simpler constructs, much as an English language

sentence might be defined in terms of nouns, verbs, subjects, predicates, etc.

Overview of Languages

There are many more languages to use with computers than any person, project or

organization might need. In the earlier days of computing, programming languages were

created because they were needed. Fortran made computers accessible to scientists who were

not prepared to deal with the intricacies of machine language programming. COBOL did the

same for business programmers. Arguably, many recent languages have not been creating to

meet any pressing need, but to satisfy the intellectual curiosity of their creators. Some of

these "language of the month" creations will introduce new ideas which will be adopted by

the community, and a few will survive and prosper, but most are, at best, of academic

interest. Only time will tell which are which.

The languages of most interest for those who will have an interest in the mainstream of

computer science (table 1.4).

Type Meaning Examples

procedural (Imperative) von Neumann model

instructions executed in

sequence

Fortran, Cobol, C

logic (production) rule-based, non-procedural Prolog

functional (applicative) based on mappings, non-

procedural

Lisp, Scheme, ML, Haskell

object-oriented support for encapsulation,

classes, objects

Simula, Smalltalk, C++, Java

pattern-matching combine parsing rules with

procedural execution

Snobol, Awk, Perl

Table 1.4 Languages in the mainstream of computer science

11

In most cases, languages of any of these types include features and libraries to solve problems

of all types, but time can be saved by using a language which expresses the class of problems

at hand cleanly and efficiently.

Self -Assessment Questions

Self-Assessment Answers

3.2 Compilation Process

Translating Languages

A compiler translates major blocks of statements (source code) for subsequent execution

(object code). An interpreter translates small portions of code for immediate execution.

There are two computational contexts to consider (table 1.5).

Translation context The context within which the language is translated.

Execution context The context within which the translated statements are

executed.

Table 1.5 Two computational contexts

The five stages of a compiler combine to translate a high level language to a low level

language, generally closer to that of the target computer. Each stage, or sub-process, fulfills a

single task and has one or more classic techniques for implementation (table 1.6).

Component Purpose Techniques

Lexical Analyzer

✓ Analyzes the Source Code

✓ Removes "white space" and

comments

✓ Formats it for easy access (creates

tokens)

✓ Tags language elements with type

information

✓ Begins to fill in information in the

Linear Expressions Finite

State Machines

LEX

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

12

SYMBOL TABLE **

Syntactic Analyzer ✓ Analyzes the Tokenized Code for

structure

✓ Amalgamates symbols into

syntactic groups

✓ Tags groups with type

information Backus-Naur Form

Top-down analyzers

Bottom-up analyzers

Expression analyzers

YACC

Semantic Analyzer ✓ Analyzes the Parsed Code for

meaning

✓ Fills in assumed or missing

information

✓ Tags groups with meaning

information

Attribute Grammars

Ad hoc analyzers

Code Generator ✓ Linearizes the Qualified Code and

produces the equivalent Object Code

Generally completed by

hand-written code

Optimizer ✓ Examines the Object Code to

determine whether there are more

efficient means of execution

Common-subexpression

elimination

 Loop unrolling

Operator reduction

etc.

Table 1.6 Five stages of a compiler combine

** The Symbol Table is the data structure that all elements of the compiler use to collect and

share information about symbols and groups of symbols in the program being translated.

 Each context may be a physical machine or a virtual machine created in software, and these

contexts need not be the same. A common practice is to make the language or a subset of the

language to define the translation context, so that the translator is written in terms of the

language itself. This requires manual compilation for the first system, and cross-compilation

to move from system to system.

Compilation may be so-called intermediate languages, i.e. languages which define virtual

machines, such a stack-oriented machine or a simple one-address machine with an

accumulator.

Compilation

⎯ source code ==> relocatable object code (binaries)

⎯ Linking: many relocatable binaries (modules plus libraries) ==> one relocatable

binary (with all external references satisfied)

⎯ Loading: relocatable ==> absolute binary (with all code and data references bound to

the addresses occupied in memory)

⎯ Execution: control is transferred to the first instruction of the program

13

 At compile time (CT), absolute addresses of variables and statement labels are not

known. In static languages (such as Fortran), absolute addresses are bound at load time (LT).

In block-structured languages, bindings can change at run time (RT).

Phases of the Compilation Process

⎯ Lexical analysis (scanning): the source text is broken into tokens.

⎯ Syntactic analysis (parsing): tokens are combined to form syntactic structures, typically

represented by a parse tree.

⎯ The parser may be replaced by a syntax-directed editor, which directly generates a parse

tree as a product of editing.

⎯ Semantic analysis: intermediate code is generated for each syntactic structure.

⎯ Type checking is performed in this phase. Complicated features such as generic

declarations and operator overloading (as in Ada and C++) are also processed.

⎯ Machine-independent optimization: intermediate code is optimized to improve efficiency.

⎯ Code generation: intermediate code is translated to relocatable object code for the target

machine.

⎯ Machine-dependent optimization: the machine code is optimized.

On some systems (e.g., C under Unix), the compiler produces assembly code, which is then

translated by an assembler.

 Type checking is performed in this phase. Complicated features such as generic declarations

and operator overloading (as C++) are also processed.

Machine-independent optimization: intermediate code is optimized to improve

efficiency.

Code generation: intermediate code is translated to reloadable object code for the

target machine.

Machine-dependent optimization: the machine code is optimized.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Most programming languages are specified by rigorous syntax definitions, defining the

statements of the languages in terms of simpler constructs. There are also translating

Languages. A compiler translates major blocks of statements (source code) for subsequent

execution (object code). An interpreter translates small portions of code for immediate

execution.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

14

5.0 Summary

A "programming language" is a language designed to describe a set of consecutive actions to

be executed by a computer. Programming languages may be roughly divided into two

categories: interpreted languages and compiled languages. A program written in an

interpreted language requires an extra program (the interpreter) which translates the programs

commands as needed. A program written in a compiled language has the advantage of not

requiring an additional program to run it once it has been compiled. Furthermore, as the

translation only needs to be done once, at compilation it executes much faster.

 6.0 Tutor Marked Assignment (TMA)

1. An algorithm is a specific set of instructions for a computer to carry out the

program: Yes or No?

2. Name phases of the compilation process.

3. Is lexical analysis the first or the last phase of the compilation process?

4. Name five stages of compilation process.

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Programming_language

http://programmers.stackexchange.com/questions/164442/human-powered-document-

processing

http://www.webopedia.com/TERM/P/programming_language.html

http://en.wikipedia.org/wiki/Programming_language
http://programmers.stackexchange.com/questions/164442/human-powered-document-processing
http://programmers.stackexchange.com/questions/164442/human-powered-document-processing
http://www.webopedia.com/TERM/P/programming_language.html

15

Unit3

 Introduction to Object

Oriented Programming

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Overview of object oriented programming

3.2 Overview of basic object oriented programming concepts

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

16

1.0 Introduction

Object-Oriented Programming (OOP) uses a different set of programming languages than old

procedural programming languages (C, Pascal, etc.). Everything in OOP is grouped as self-

sustainable "objects". In this unit we shall be discussing basic object-oriented programming

concepts such as objects, classes, inheritance, data abstraction, data encapsulation,

polymorphism, overloading and reusability.

2.0 Learning Outcomes

By the end of this unit, you should be able to:

1. define the object oriented programming;

2. have general idea of basic object-oriented programming concepts;

3. provide an example of an object; and

4. provide an example of a class.

3.0 Learning Contents

3.1 Overview of Object Oriented Programming

Object Oriented Programming, also known as OOP, is a computer science term which is used

to describe a computer application that is composed of multiple objects which are connected

to each other. Traditionally, most computer programming languages were simply a group of

functions or instructions.

With OOP, every object can handle data, get messages, and transfer messages to other

objects. The objects will all act as independent units in their own right, and they will be

responsible for carrying out a certain process.

Because the objects are not dependent on each other, OOP is seen as being more flexible than

older methods of programming. It has become quite popular, and it is now used in a number

of advanced software engineering projects. Many programmers feel that object oriented

programming is easier for beginners to learn than previous programming methods. Because it

is easier to learn, it can also be analyzed and maintained without a large amount of difficulty.

However, there are some people that feel that OOP is more complicated than older

programming methods. To understand object oriented programming, there are a few concepts

you will need to become familiar with.

Self -Assessment Questions

Please insert Self-Assessment Questions

17

Self-Assessment Answers

3.2 Overview of basic object-oriented programming concepts

Object oriented programming is based on the following concepts:

1. objects;

2. classes;

3. inheritance;

4. data Abstraction;

5. data Encapsulation;

6. polymorphism;

7. overloading; and

8. reusability.

Let us see the concept of each briefly.

What is Object?

An object can be considered as a "thing" that can perform a set of related activities. The set of

activities that the object performs defines the object's behavior. In pure OOP terms an object

is an instance of a class.

What is a Class?

A class is simply a representation of a type of object. It is the blueprint/ plan/ template that

describe the details of an object. A class is the blueprint from which the individual objects are

created. Class is composed of three things: a name, attributes (variables or fields), and

operations (functions or methods). Next figure 1.1 explains it.

Object

”laptop”

Object

”server”

Object

”terminal”

Class “Computer”

Object

”Anna”

Object

”Helen”

Object

”Aisha”

Class “Girl”

Please insert Self-Assessment Answers

18

Figure 1.1 Example of class

Any blueprint of class “Computer” is object, and any blueprint of class “Girl” is object also.

But each copy has individual properties and methods. Each girl has attributes. These

attributes are called properties. The precise meaning of these terms depends on language

/system/universe we are used.

How to identify and design a Class?

Each designer/programmer uses different techniques to identify classes. However according

to Object Oriented Design Principles, there are 5 principles that you must follow when design

a class (table 1.6).

№ Named Explain

1 SRP – The Single Responsibility

Principle

A class should have one, and only one, reason to

change.

2 OCP – The Open Closed

Principle

You should be able to extend a classes behavior,

without modifying it.

3 LSP – The Liskov Substitution

Principle

Derived classes must be substitutable for their base

classes

4 DIP – The Dependency

Inversion Principle

Depend on abstractions, not on concretions

5 ISP – The Interface Segregation

Principle

Make fine grained interfaces that are client specific

Table 1.6 Principles that you must follow when design a class

Additionally to identify a class correctly, you need to identify the full list of leaf level

functions/ operations/methods of the system. Then you can proceed to group each function to

form classes (classes will group same types of functions/ operations). However a well-

defined class must be a meaningful grouping of a set of functions and should support the re-

usability while increasing expandability/ maintainability of the overall system.

In software world the concept of dividing and conquering is always recommended, if you

start analyzing a full system at the start, you will find it harder to manage. So the better

approach is to identify the module of the system first and then dig deep in to each module

separately to seek out classes.

A software system may consist of many classes. But in any case, when you have many, it

needs to be managed. Same technique can be applies to manage classes of your software

system as well. In order to manage the classes of a software system, and to reduce the

complexity, the system designers use several techniques, which can be grouped under four

main concepts named Encapsulation, Abstraction, Inheritance, and Polymorphism.

19

What is Encapsulation (or information hiding)?

The encapsulation is the inclusion within a program object of all the resources need for the

object to function - basically, the methods and the data. In OOP the encapsulation is mainly

achieved by creating classes, the classes expose public methods and properties. The class is

kind of a container or capsule or a cell, which encapsulate the set of methods, attribute and

properties to provide its indented functionalities to other classes. In that sense, encapsulation

also allows a class to change its internal implementation without hurting the overall

functioning of the system. That idea of encapsulation is to hide how a class does it but to

allow requesting what to do.

According to OOP there are several techniques, classes can use to link with each other and

they are named association, aggregation, and composition. What are association, aggregation,

and composition in table 1.7?

Association relationship between two classes, where one class use another

Aggregation the object of one class uses a part of object of other class

Composition the object of one class uses a objects of a lot classes

Table 1.7 Base concept

So in summary, we can say that aggregation is a special kind of an association and

composition is a special kind of an aggregation. (Association->Aggregation->Composition)

There are several other ways that an encapsulation can be used, as an example we can take

the usage of an interface. The interface can be used to hide the information of an

implemented class.

What is Abstraction?

Abstraction is an emphasis on the idea, qualities and properties rather than the particulars (a

suppression of detail). The importance of abstraction is derived from its ability to hide

irrelevant details and from the use of names to reference objects. Abstraction is essential in

the construction of programs. It places the emphasis on what an object is or does rather than

how it is represented or how it works. Thus, it is the primary means of managing complexity

in large programs.

What is an Abstract class?

Abstract classes, which declared with the abstract keyword, cannot be instantiated. It can only

be used as a super-class for other classes that extend the abstract class. Abstract class is the

concept and implementation gets completed when it is being realized by a subclass. In

addition to this a class can inherit only from one abstract class (but a class may implement

many interfaces) and must override all its abstract methods/ properties and may override

virtual methods/ properties. Abstract classes are ideal when implementing frameworks.

This class will allow all subclass to gain access to a common exception logging module and

will facilitate to easily replace the logging library.

20

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Object-oriented programming is a way to think. It is not the classes, syntax, encapsulation, or

other big words that we will learn about in the following units. The true purpose of OOP is

the empowering it gives us to see our programs in a new light, a higher view, a clearer

picture. It is hard to go back once you’ve had a taste.

Object-oriented programming was conceived to allow us to create larger projects more

simply. Thus, it is very helpful in our larger projects that we do. It can also be nice in smaller

projects, especially once we get the hang of it. Small projects are easily done in procedural

programming though, and even once we learn how to program object-oriented we may still

find ourselves using procedural at times.

5.0 Summary

1. Object is the basic unit of object oriented programming. That is both data and

function that operate on data are bundled as a unit called as object.

2. Classes are the data types on which objects are created. So while a class is created

no memory is allocated only when an object is created memory gets allocated

3. The ability to derive new classes from existing classes. A derived class (or

"subclass") inherits the instance variables and methods of the base class and may add

new instance variables and methods. New methods may be defined with the same

names as those in the base class, in which case they override the original one.

4. Data Encapsulation is the process of combining data and functions into a single unit

called class. By this method one cannot access the data directly. Data is accessible

only through the functions present inside the class. Thus Data Encapsulation gave

rise to the important concept of data hiding.

5. The ability to use an operator or function in different ways in other words giving

different meaning or functions to the operators or functions is called polymorphism.

Poly refers many. That is a single function or an operator functioning in many ways

different upon the usage is called polymorphism.

6. That is object oriented programming has the feature of allowing an existing class

which is written and debugged to be used by other programmers and there by

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

21

provides a great time saving and also code efficiency to the language. Also it is

possible to a have the existing class and adds new features to the existing class as pet

the programmer’s choice.

6.0 Tutor Marked Assignment (TMA)

1. What is object oriented programming?

2. An object is both data and function that operate on data: True or False?

3. What is known as data types? On which objects are they created?

4. What is polymorphism?

7.0 References/Further Reading

http://docs.oracle.com/javase/tutorial/java/javaOO/

http://en.wikipedia.org/wiki/Class_(computer_programming)

http://www.tutorialspoint.com/java/java_object_classes.htm

http://cnx.org/content/m11708/latest/

http://docs.oracle.com/javase/tutorial/java/javaOO/
http://en.wikipedia.org/wiki/Class_(computer_programming)
http://www.tutorialspoint.com/java/java_object_classes.htm
http://cnx.org/content/m11708/latest/

22

Module2

Fundamentals of Objects

and Classes
Unit 1: Objects and Classes

Unit 2: Class Members and Instance Members

Unit 3: Methods, Message Passing, Creating and Destroying Objects

23

Unit1

 Objects and Classes

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Objects, Encapsulation, Messages

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

8.0 References/Further Reading

24

1.0 Introduction

In this unit we will move from the conceptual picture of objects and classes to a thorough

study of classes and objects. You will learn that objects are closely related to classes. A class

can contain variables and methods. If an object is also a collection of variables and methods,

how do they differ from classes? The answer to this question will be given in this unit.

This unit will enable you to distinguish between an object and a class and be familiarized

with object’s variables.

2.0 Learning Outcomes

By the end of this unit, you should be able to:

1. distinguish between classes and objects;

2. name the benefits of encapsulation; and

3. know and use three parts of a message.

3.0 Learning Contents

3.1 Objects, Encapsulation, Messages

In object-oriented programming we create software objects that model real world objects.

Software objects are modeled after real-world objects in that they too have state and

behavior. A software object maintains its state in one or more variables. A variable is an item

of data named by an identifier. A software object implements its behavior with methods. A

method is a function associated with an object.

An object is a software bundle of variables and related methods.

An object is also known as an instance. An instance refers to a particular object. For e.g.

Jim’s car is an instance of a car — it refers to a particular car. Sandy Zafira is an instance of a

Student.

The variables of an object are formally known as instance variables because they contain the

state for a particular object or instance. In a running program, there may be many instances of

an object. For e.g. there may be many Student objects.

Each of these objects will have their own instance variables and each object may have

different values stored in their instance variables. For e.g. each Student object will have a

different number stored in its Student Number variable.

25

Object diagrams show that an object’s variables make up the center, or nucleus, of the object.

Methods surround and hide the object’s nucleus from other objects in the program. Packaging

an object’s variables within the protective custody of its methods is called encapsulation.

Encapsulating related variables and methods into a neat software bundle is a simple yet

powerful idea that provides two benefits to software developers:

1. Modularity: The source code for an object can be written and maintained independently of

the source code for other objects. Also, an object can be easily passed around in the system.

You can give your bicycle to someone else, and it will still work.

2. Information-hiding: An object has a public interface that other objects can use to

communicate with it. The object can maintain private information and methods that can be

changed at any time without affecting other objects that depend on it.

Messages

Software objects interact and communicate with each other by sending messages to each

other. When object A wants object B to perform one of B’s methods, object A sends a

message to object B

There are three parts of a message: The three parts for the message

System.out.println{‘‘Hello World’’}; are:

• The object to which the message is addressed (System.out)

• The name of the method to perform (println)

• Any parameters needed by the method (“Hello World!”)

Classes

In object-oriented software, it’s possible to have many objects of the same kind that share

characteristics: rectangles, employee records, video clips, and so on. A class is a software

blueprint for objects. A class is used to manufacture or create objects.

The class declares the instance variables necessary to contain the state of every object. The

class would also declare and provide implementations for the instance methods necessary to

operate on the state of the object.

A class is a blueprint that defines the variables and the methods common to all objects of a

certain kind.

A class is a kind of factory for constructing objects. The non-static parts of the class specify,

or describe, what variables and methods the objects will contain. This is part of the

explanation of how objects differ from classes: Objects are created and destroyed as the

program runs, and there can be many objects with the same structure, if they are created using

the same class.

26

A class is an expanded concept of a data structure: instead of holding only data, it can hold

both data and functions.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an

object would be the variable.

Classes are generally declared using the keyword class, with the following format:

class class_name {

 access_specifier_1:

 member1;

 access_specifier_2:

 member2;

 ...

 } object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names

for objects of this class. The body of the declaration can contain members, that can be either

data or function declarations, and optionally access specifies.

All is very similar to the declaration on data structures, except that we can now include also

functions and members, but also this new thing called access specifier. An access specifier is

one of the following three keywords: private, public or protected. These specifiers modify the

access rights that the members following them acquire:

1. private members of a class are accessible only from within other members of the same

class or from their friends;

2. protected members are accessible from members of their same class and from their

friends, but also from members of their derived class; and

3. Finally, public members are accessible from anywhere where the object is visible.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Object-oriented languages provide more powerful and flexible encapsulation mechanisms for

restricting interactions between components. When used carefully, these mechanisms allow

the software developers to restrict the interactions between components to those that are

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

27

required to achieve the desired functionality. The management of component interactions is

an important part of software design. It has a significant impact on the ease of understanding,

testing, and maintenance of components.

5.0 Summary

An object is a software bundle of variables and related methods. The variables of an object

are formally known as instance variables because they contain the state for a particular object

or instance. Packaging an object’s variables within the protective custody of its methods is

called encapsulation. Software objects interact and communicate with each other by sending

messages to each other.

In object-oriented software, it’s possible to have many objects of the same kind that share

characteristics: rectangles, employee records, video clips, and so on. A class is a software

blueprint for objects. A class is used to manufacture or create objects.

6.0 Tutor-Marked Assignment (TMA)

1. What is the difference between classes and objects? Give examples.

2. Name the benefits of encapsulation.

3. Three parts of a message are object, name, any class: True or False?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)

http://en.wikipedia.org/wiki/Encapsulation

http://en.wikipedia.org/wiki/Object-oriented_programming

http://en.wikipedia.org/wiki/Encapsulation_(networking)

http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
http://en.wikipedia.org/wiki/Encapsulation
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Encapsulation_(networking)

28

Unit 2

Class Members and

Instance members
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

29

1.0 Introduction

In this unit you will learn what classes are made of. In many object-oriented languages,

classes are objects in their own right (to a greater or lesser extent, depending on the

language). Their primary function is as factories for objects in the category. A class can also

hold data variable and constants that are shared by all of its objects and can handle methods

that deal with an entire class rather than an individual object. These members are called class

members or, in some languages (C++ and Java, for example), static members. The members

that are associated with objects are called instance members.

2.0 Learning Outcomes

By the end of this unit, you will be able to:

1. define static and instance class members;

2. know the purpose of use of static and instance class members; and

3. know and use static and instance class members.

3.0 Learning Contents

A class definition is made of members or components. A class can define variables (or fields)

and methods. Variables and methods can be static or non-static i.e. they are defined with or

without the keyword static.

static double lastStudentNumber;// a s t a t i c member / v a r i a b l e / f i e l d

double studentNumber; // a non−s t a t i c v a r i a b l e

static void printLastNumber() {...} // a s t a t i c member / method

void printNumber() {...} // a non−s t a t i c method

The non-static members of a class (variables and methods) are also known as instance

variables and methods while the non-static members are also known as class variables and

class methods. Each instance of a class (each object) gets its own copy of all the instance

variables defined in the class. When you create an instance of a class, the system allocates

enough memory for the object and all its instance variables.

In addition to instance variables, classes can declare class variables. A class variable contains

information that is shared by all instances (objects) of the class. If one object changes the

variable, it changes for all other objects of that type. e.g. A Student number generator in a

New Student class.

30

You can invoke a class method directly from the class, whereas you must invoke instance

methods on a particular instance. e.g. The methods in the Math class are static and can be

invoked without creating an instance of the Math class for e.g. we can say Math.sqrt(x).

Consider a simple class whose job is to group together a few static member variables for

example a class could be used to store information about the person who is using the

program:

class UserData { static String name; static int age; }

In programs that use this class, there is one copy each of the variables UserData.name and

UserData.age. There can only be one “user,” since we only have memory space to store data

about one user. The class, UserData, and the variables it contains exist as long as the program

runs. Now, consider a similar class that includes non-static variables:

class PlayerData { String name; int age; }

In this case, there is no such variable as PlayerData.name or PlayerData.age, since name and

age are not static members of PlayerData. There is nothing much in the class except the

potential to create objects. But, it’s a lot of potential, since it can be used to create any

number of objects. Each object will have its own variables called name and age. There can be

many “players” because we can make new objects to represent new players on demand. A

program might use this class to store information about multiple players in a game. Each

player has a name and an age. When a player joins the game, a new PlayerData object can be

created to represent that player. If a player leaves the game, the PlayerData object that

represents that player can be destroyed. A system of objects in the program is being used to

dynamically model what is happening in the game. You can’t do this with “static” variables.

An object that belongs to a class is said to be an instance of that class and the variables that

the object contains are called instance variables. The methods that the object contains are

called instance methods.

For example, if the PlayerData class, is used to create an object, then that object is an instance

of the PlayerData class, and name and age are instance variables in the object. It is important

to remember that the class of an object determines the types of the instance variables;

however, the actual data is contained inside the individual objects, not the class. Thus, each

object has its own set of data.

The source code for methods is defined in the class yet it’s better to think of the instance

methods as belonging to the object, not to the class. The non-static methods in the class

merely specify the instance methods that every object created from the class will contain. For

example a draw() method in two different objects do the same thing in the sense that they

both draw something. But there is a real difference between the two methods—the things that

they draw can be different. You might say that the method definition in the class specifies

what type of behavior the objects will have, but the specific behavior can vary from object to

object, depending on the values of their instance variables.

31

The static and the non-static portions of a class are very different things and serve very

different purposes. Many classes contain only static members, or only non-static. However, it

is possible to mix static and non-static members in a single class. The “static” definitions in

the source code specify the things that are part of the class itself, whereas the non-static

definitions in the source code specify things that will become part of every instance object

that is created from the class. Static member variables and static member methods in a class

are sometimes called class variables and class methods, since they belong to the class itself,

rather than to instances of that class.

It is a good idea to look at a specific example to see how classes and objects work. Consider

this extremely simplified version of a Student class, which could be used to store information

about students taking a course:

public class Student {

public String name; / / Student ’ s name . p u b l i c double t e st 1 ,

test2, test3; / / Grades on t h r e e t e s t s .

public double getAverage() { / / compute average t e s t grade r e t u r n

(test1 + test2 + test3) / 3; }

} / / end of c l a s s Student

None of the members of this class are declared to be static, so the class exists only for

creating objects. This class definition says that any object that is an instance of the Student

class will include instance variables named name, test1, test2, and test3, and it will include an

instance method named getAverage(). The names and tests in different objects will generally

have different values. When called for a particular student, the method getAverage() will

compute an average using that student’s test grades. Different students can have different

averages. (Again, this is what it means to say that an instance method belongs to an

individual object, not to the class.)

In JAVA, for example, a class is a type, similar to the built-in types such as int and boolean.

So, a class name can be used to specify the type of a variable in a declaration statement, the

type of a formal parameter, or the return type of a method. For example, a program could

define a variable named std of type Student with the statement

Student std; However, declaring a variable does not create an object!

You should think of objects as floating around independently in the computer’s memory. In

fact, there is a special portion of memory called the heap where objects live. Instead of

holding an object itself, a variable holds the information necessary to find the object in

memory. This information is called a reference or pointer to the object. In effect, a reference

to an object is the address of the memory location where the object is stored. When you use a

variable of class type, the computer uses the reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an object and

returns a reference to that object. For example, assuming that std is a variable of type Student,

declared as above, the assignment statement std = new Student(); would create a new object

which is an instance of the class Student, and it would store a reference to that object in the

32

variable std. The value of the variable is a reference to the object, not the object itself. It is

not quite true to say that the object is the “value of the variable std”. It is certainly not at all

true to say that the object is “stored in the variable std.” The proper terminology is that “the

variable std refers to the object”.

So, suppose that the variable std refers to an object belonging to the class Student.

That object has instance variables name, test1, test2, and test3. These instance variables can

be referred to as std.name, std.test1, std.test2, and std.test3. This follows the usual naming

convention that when B is part of A, then the full name of B is A.B. For example, a program

might include the lines

System.out.println(" Hello , " + std.name + " . Your t e s t grades are: ");

System.out.println(std.test1);

System.out.println(std.test2);

System.out.println(std.test3);

This would output the name and test grades from the object to which std refers. Similarly, std

can be used to call the getAverage() instance method in the object by saying

std.getAverage(). To print out the student’s average, you could say:

System.out.println(" Your average i s " + std.getAverage());

More generally, you could use std.name any place where a variable of type String is legal.

You can use it in expressions. You can assign a value to it. You can pass it as a parameter to

method. You can even use it to call methods from the String class. For example,

std.name.length() is the number of characters in the student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no object at all.

We say in this case that std holds a null reference. The null reference is written in JAVA as

“null”. You can store a null reference in the variable std by saying “std = null;” and you could

test whether the value of “std” is null by testing “if (std == null) . . .”.

If the value of a variable is null, then it is, of course, illegal to refer to instance variables or

instance methods through that variable–since there is no object, and hence no instance

variables to refer to. For example, if the value of the variable st is null, then it would be

illegal to refer to std.test1. If your program attempts to use a null reference illegally like this,

the result is an error called a null pointer exception.

Let’s look at a sequence of statements that work with objects:

Student std, std1, / / Decla re f o u r v a r i a b l e s of

std2, std3; / / t ype Student .

std = new Student(); / / C reate a new o b j e ct belonging

/ / t o the c l a s s Student , and

/ / st o r e a r ef e r e n c e t o t h a t

/ / o b j e ct i n the v a r i a b l e st d .

std1 = new Student(); / / C reate a second Student o b j e ct

/ / and st o r e a r ef e r e n c e t o

33

/ / i t i n the v a r i a b l e std1 .

std2 = std1; / / Copy the r ef e r e n c e value i n std1

/ / i n t o the v a r i a b l e std2 .

std3 = null; / / Store a null reference i n the

/ / v a r i a b l e std3 .

std.name = " John Smith "; / / Set value s of some i n st a n c e variables

.std1.name = "Mary Jones "; / / (Other i n st a n c e v a r i a b l e s have default

/ / i n i t i a l value s of zero .)

When one object variable is assigned to another, only a reference is copied.

The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created. Instead, std2

was set to refer to the very same object that std1 refers to. This has some consequences that

might be surprising. For example, std1.name and std2.name are two different names for the

same variable, namely the instance variable in the object that both std1 and std2 refer to.

After the string “Mary Jones” is assigned to the variable std1.name, it is also be true that the

value of std2.name is “Mary Jones”. There is a potential for a lot of confusion here, but you

can help protect yourself from it if you keep telling yourself, “The object is not in the

variable. The variable just holds a pointer to the object.”

You can test objects for equality and inequality using the operators == and !=, but here again,

the semantics are different from what you are used to. The test “if (std1 == std2)”, tests

whether the values stored in std1 and std2 are the same. But the values are references to

objects, not objects. So, you are testing whether std1 and std2 refer to the same object, that is,

whether they point to the same location in memory. This is fine, if its what you want to do.

But sometimes, what you want to check is whether the instance variables in the objects have

the same values. To do that, you would need to ask whether

std1.test1 == std2.test1 && std1.test2 == std2.test2 && std1.test3

== std2.test3 && std1.name.equals(std2.name)}

It has been remarked previously that Strings are objects, and the strings “Mary Jones” and

“John Smith” can be shown as objects. A variable of type String can only hold a reference to

a string, not the string itself. It could also hold the value null, meaning that it does not refer to

any string at all. This explains why using the == operator to test strings for equality is not a

good idea.

The fact that variables hold references to objects, not objects themselves, has a couple of

other consequences that you should be aware of. They follow logically, if you just keep in

mind the basic fact that the object is not stored in the variable. The object is somewhere else;

the variable points to it.

Suppose that a variable that refers to an object is declared to be final. This means that the

value stored in the variable can never be changed, once the variable has been initialized. The

value stored in the variable is a reference to the object. So the variable will continue to refer

34

to the same object as long as the variable exists. However, this does not prevent the data in

the object from changing. The variable is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = " John Doe "; / / Change data i n the o b j e ct ;

/ / The value st o r e d i n st u i s not changed !

/ / I t s t i l l r e f e r s t o the same o b j e ct .

Next, suppose that obj is a variable that refers to an object. Let’s consider what happens when

obj is passed as an actual parameter to a method. The value of obj is assigned to a formal

parameter in the method, and the method is executed. The method has no power to change the

value stored in the variable, obj. It only has a copy of that value. However, that value is a

reference to an object. Since the method has a reference to the object, it can change the data

stored in the object. After the method ends, obj still points to the same object, but the data

stored in the object might have changed. Suppose x is a variable of type int and stu is a

variable of type Student. Compare:

void dontChange(int z) { void change(Student s) {

z = 42; s.name = " Fred ";

} }

The lines: The lines:

x = 17; stu.name = " Jane ";

dontChange(x); change(stu);

System.out.println(x); System.out.println(stu.name);

outputs the value 17. outputs the value " Fred ".

The value of x is not The value of stu is not changed ,

changed by the method, but stu.name is.

which is equivalent to This is equivalent to

z = x; s = stu;

z = 42; s.name = " Fred ";

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Static classes and class members are used to create data and functions that can be accessed

without creating an instance of the class. Static class members can be used to separate data

and behavior that is independent of any object identity: the data and functions do not change

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

35

regardless of what happens to the object. Static classes can be used when there is no data or

behavior in the class that depends on object identity.

5.0 Summary

A class can be declared static, indicating that it contains only static members. Use a static

class to contain methods that are not associated with a particular object. The main features of

a static class are: they only contain static members; they cannot be instantiated; they are

sealed; they cannot contain Instance Constructors (C# Programming Guide).

Creating a static class is therefore much the same as creating a class that contains only static

members and a private constructor. A private constructor prevents the class from being

instantiated.

The advantage of using a static class is that the compiler can check to make sure that no

instance members are accidentally added.

6.0 Tutor-Marked Assignment (TMA)

1. What can be referred to static class members?

2. The non-static members of a class (variables and methods) are also known as static

variables: YES or NO?

3. Why are static and instance class members used?

7.0 References/Further Reading

http://msdn.microsoft.com/en-us/library/79b3xss3(v=vs.80).aspx

http://www.functionx.com/cppcli/classes/Lesson12b.htm

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp?to

pic=%2Fcom.ibm.xlcpp8a.doc%2Flanguage%2Fref%2Fcplr038.htm

http://msdn.microsoft.com/en-us/library/98f28cdx(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/k6sa6h87(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/79b3xss3(v=vs.80).aspx
http://www.functionx.com/cppcli/classes/Lesson12b.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp?topic=%2Fcom.ibm.xlcpp8a.doc%2Flanguage%2Fref%2Fcplr038.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp?topic=%2Fcom.ibm.xlcpp8a.doc%2Flanguage%2Fref%2Fcplr038.htm

36

Unit 3

 Creating and Destroying

Objects

Contents

4.0 Introduction

5.0 Learning Outcomes

6.0 Learning Contents

6.1.1 Initializing Instance Variables

6.1.2 Constructors

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

1.0 Introduction

Object types in JAVA, for instance, are very different from the primitive types. Simply

declaring a variable whose type is given as a class does not automatically create an object of

that class. Objects must be explicitly constructed. For the computer, the process of

37

constructing an object means, first, finding some unused memory in the heap that can be used

to hold the object and, second, filling in the object’s instance variables. As a programmer,

you don’t care where in memory the object is stored, but you will usually want to exercise

some control over what initial values are stored in a new object’s instance variables. In many

cases, you will also want to do more complicated initialization or bookkeeping every time an

object is created.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. define instance variables;

2. know how to use instance variables; and

3. know and use constructors.

3.0 Learning Contents

3.1 Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any other

variable. For example, consider a class named PairOfDice. An object of this class will

represent a pair of dice. It will contain two instance variables to represent the numbers

showing on the dice and an instance method for rolling the dice:

public class PairOfDice {

public int die1 = 3; / / Number showing on the f i r s t d i e .

public int die2 = 4; / / Number showing on the second d i e .

public void roll() {

/ / R o l l the d i c e by s e t t i n g each of the d i c e t o be

/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;

die2 = (int)(Math.random()∗6) + 1;

}

} / / end c l a s s Pai rOfDi ce

The instance variables die1 and die2 are initialized to the values 3 and 4 respectively. These

initializations are executed whenever a PairOfDice object is constructed. It is important to

understand when and how this happens. Many PairOfDice objects may exist. Each time one

is created, it gets its own instance variables, and the assignments “die1 = 3” and “die2 = 4”

are executed to fill in the values of those variables. To make this clearer, consider a variation

of the PairOfDice class:

public class PairOfDice {

38

public int die1 = (int)(Math.random()∗6) + 1;

public int die2 = (int)(Math.random()∗6) + 1;

public void roll() {

die1 = (int)(Math.random()∗6) + 1;

die2 = (int)(Math.random()∗6) + 1;

}

} / / end c l a s s Pai rOfDi ce

Here, the dice are initialized to random values, as if a new pair of dice were being thrown

onto the gaming table. Since the initialization is executed for each new object, a set of

random initial values will be computed for each new pair of dice. Different pairs of dice can

have different initial values. For initialization of static member variables, of course, the

situation is quite different. There is only one copy of a static variable, and initialization of

that variable is executed just once, when the class is first loaded.

If you don’t provide any initial value for an instance variable, a default initial value is

provided automatically. Instance variables of numerical type (int, double, etc.) are

automatically initialized to zero if you provide no other values; boolean variables are

initialized to false; and char variables, to the Unicode character with code number zero. An

instance variable can also be a variable of object type. For such variables, the default initial

value is null. (In particular, since Strings are objects, the default initial value for String

variables is null.).

Self -Assessment Questions

Self-Assessment Answers

3.2 Constructors

Objects are created with the operator, new. For example, a program that wants to use a

PairOfDice object could say:

PairOfDice dice; / / Decla re a v a r i a b l e of t ype Pai rOfDi ce .

dice = new PairOfDice(); / / C o n st r u ct a new o b j e ct and st o r e a

/ / r ef e r e n c e t o i t i n the v a r i a b l e .

In this example, “new PairOfDice()” is an expression that allocates memory for the object,

initializes the object’s instance variables, and then returns a reference to the object. This

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

39

reference is the value of the expression, and that value is stored by the assignment statement

in the variable, dice, so that after the assignment statement is executed, dice refers to the

newly created object. Part of this expression, “PairOfDice()”, looks like a method call, and

that is no accident. It is, in fact, a call to a special type of method called a constructor. This

might puzzle you, since there is no such method in the class definition. However, every class

has at least one constructor. If the programmer doesn’t write a constructor definition in a

class, then the system will provide a default constructor for that class. This default

constructor does nothing beyond the basics: allocate memory and initialize instance variables.

If you want more than that to happen when an object is created, you can include one or more

constructors in the class definition.

The definition of a constructor looks much like the definition of any other method, with three

differences.

1. A constructor does not have any return type (not even void).

2. The name of the constructor must be the same as the name of the class in which it is

defined.

3. The only modifiers that can be used on a constructor definition are the access

modifiers public, private, and protected. (In particular, a constructor can’t be declared static.)

However, a constructor does have a method body of the usual form, a block of statements.

There are no restrictions on what statements can be used. And it can have a list of formal

parameters. In fact, the ability to include parameters is one of the main reasons for using

constructors. The parameters can provide data to be used in the construction of the object. For

example, a constructor for the PairOfDice class could provide the values that are initially

showing on the dice. Here is what the class would look like in that case:

The constructor is declared as “public PairOfDice(int val1, int val2)...”, with no return type

and with the same name as the name of the class. This is how the JAVA compiler recognizes

a constructor. The constructor has two parameters, and values for these parameters must be

provided when the constructor is called. For example, the expression “new PairOfDice(3,4)”

would create a PairOfDice object in which the values of the instance variables die1 and die2

are initially 3 and4. Of course, in a program, the value returned by the constructor should be

used in some way, as in

PairOfDice dice; / / Decla re a v a r i a b l e of t ype Pai rOfDi ce .

dice = new PairOfDice(1,1); / / Let d i c e r e f e r t o a new Pai rOfDi ce

/ / o b j e ct t h a t i n i t i a l l y shows 1 , 1.

Now that we’ve added a constructor to the PairOfDice class, we can no longer create an

object by saying “new PairOfDice()”! The system provides a default constructor for a class

only if the class definition does not already include a constructor, so there is only one

constructor in the class, and it requires two actual parameters. However, this is not a big

problem, since we can add a second constructor to the class, one that has no parameters. In

fact, you can have as many different constructors as you want, as long as their signatures are

different, that is, as long as they have different numbers or types of formal parameters. In the

PairOfDice class, we might have a constructor with no parameters which produces a pair of

dice showing random numbers:

40

public class PairOfDice {

public int die1; / / Number showing on the f i r s t d i e .

public int die2; / / Number showing on the second d i e .

public PairOfDice() {

/ / C o n st r u ct o r . R o l l s the dice , so t h a t the y i n i t i a l l y

/ / show some random value s .

roll(); / / C a l l the r o l l () method t o r o l l the d i c e .

}

public PairOfDice(int val1, int val2) {

/ / C o n st r u ct o r . C reates a p a i r of d i c e t h a t

/ / a re i n i t i a l l y showing the value s v a l 1 and v a l 2 .

die1 = val1; / / Assign s p e c i f i e d value s

die2 = val2; / / t o the i n st a n c e v a r i a b l e s .

}

public void roll() {

/ / R o l l the d i c e by s e t t i n g each of the d i c e t o be

/ / a random number between 1 and 6.

die1 = (int)(Math.random()∗6) + 1;

die2 = (int)(Math.random()∗6) + 1;

}

} / / end c l a s s Pai rOfDi ce

Now we have the option of constructing a PairOfDice object with “new PairOfDice()” or

with “new PairOfDice(x,y)”, where x and y are int-valued expressions. This class, once it is

written, can be used in any program that needs to work with one or more pairs of dice. None

of those programs will ever have to use the obscure incantation “(int)(Math.random()∗6)+1”,

because it’s done inside the PairOfDice class. And the programmer, having once gotten the

dice-rolling thing straight will never have to worry about it again. Here, for example, is a

main program that uses the PairOfDice class to count how many times two pairs of dice are

rolled before the two pairs come up showing the same value. This illustrates once again that

you can create several instances of the same class:

public class RollTwoPairs {

public static void main(String[] args) {

PairOfDice firstDice; / / Refe rs t o the f i r s t p a i r of d i c e .

firstDice = new PairOfDice();

PairOfDice secondDice; / / Refe rs t o the second p a i r of d i c e .

secondDice = new PairOfDice();

int countRolls; / / Counts how many time s the two p a i r s of

/ / d i c e have been r o l l e d .

int total1; / / T ot a l showing on f i r s t p a i r of d i c e .

int total2; / / T ot a l showing on second p a i r of d i c e .

countRolls = 0;

do { / / R o l l the two p a i r s of d i c e u n t i l t o t a l s a re the same .

firstDice.roll(); / / R o l l the f i r s t p a i r of d i c e .

total1 = firstDice.die1 + firstDice.die2; / / Get t o t a l .

41

System.out.println(" F i r s t pa i r comes up " + total1);

secondDice.roll(); / / R o l l the second p a i r of d i c e .

total2 = secondDice.die1 + secondDice.die2; / / Get t o t a l .

System.out.println(" Second pa i r comes up " + total2);

countRolls++; / / Count t h i s r o l l .

System.out.println(); / / Blank l i n e .

} while (total1 != total2);

System.out.println(" I t took " + countRolls

+ " r o l l s u n t i l the t o t a l s were the same. ");

} / / end main ()

} / / end c l a s s RollTwoPairs

Constructors are methods, but they are methods of a special type. They are certainly not

instance methods, since they don’t belong to objects. Since they are responsible for creating

objects, they exist before any objects have been created. They are more like static member

methods, but they are not and cannot be declared to be static. In fact, according to the JAVA

language specification, they are technically not members of the class at all. In particular,

constructors are not referred to as “methods”.

Unlike other methods, a constructor can only be called using the new operator, in an

expression that has the form new class−name{parameter−list} where the parameter−list is

possibly empty. I call this an expression because it computes and returns a value, namely a

reference to the object that is constructed. Most often, you will store the returned reference in

a variable, but it is also legal to use a constructor call in other ways, for example as a

parameter in a method call or as part of a more complex expression. Of course, if you don’t

save the reference in a variable, you won’t have any way of referring to the object that was

just created. A constructor call is more complicated than an ordinary method call. It is helpful

to understand the exact steps that the computer goes through to execute a constructor call:

1. first, the computer gets a block of unused memory in the heap, large enough to hold

an object of the specified type;

2. it initializes the instance variables of the object. If the declaration of an instance

variable specifies an initial value, then that value is computed and stored in the instance

variable. Otherwise, the default initial value is used;

3. the actual parameters in the constructor, if any, are evaluated, and the values are

assigned to the formal parameters of the constructor;

4. the statements in the body of the constructor, if any, are executed; and

5. a reference to the object is returned as the value of the constructor call. The end

result of this is that you have a reference to a newly constructed object. You can use this

reference to get at the instance variables in that object or to call its instance methods.

For another example, let’s rewrite the Student class. I’ll add a constructor, and we’ll also take

the opportunity to make the instance variable, name, private.

public class Student {

private String name; / / Student ’ s name .

public double test1, test2, test3; / / Grades on t h r e e t e s t s .

42

/ / C o n st r u ct o r f o r Student o b j e ct s−p r o v i d e s a name f o r the Student .

Student(String theName) {

name = theName;

}

/ / G ett e r method f o r the p r i v a t e i n st a n c e v a r i a b l e , name .

public String getName() {

return name;

}

/ / Compute average t e s t grade .

public double getAverage() {

return (test1 + test2 + test3) / 3;

}

} / / end of c l a s s Student

An object of type Student contains information about some particular student. The

constructor in this class has a parameter of type String, which specifies the name of that

student. Objects of type Student can be created with statements such as:

std = new Student(" John Smith ");

std1 = new Student("Mary Jones ");

In the original version of this class, the value of name had to be assigned by a program after it

created the object of type Student. There was no guarantee that the programmer would

always remember to set the name properly. In the new version of the class, there is no way to

create a Student object except by calling the constructor, and that constructor automatically

sets the name. The programmer’s life is made easier, and whole hordes of frustrating bugs are

squashed before they even have a chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance variable,

name, is private, there is no way for any part of the program outside the Student class to get

at the name directly. The program sets the value of name, indirectly, when it calls the

constructor.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

43

4.0 Conclusion

Constructors cannot be called explicitly as if they were regular member functions. They are

only executed when a new object of that class is created. You can also see how neither the

constructor prototype declaration (within the class) nor the latter constructor definition

include a return value; not even void.

The destructor fulfills the opposite functionality. It is automatically called when an object is

destroyed, either because its scope of existence has finished (for example, if it was defined as

a local object within a function and the function ends) or because it is an object dynamically

assigned and it is released using the operator delete.

5.0 Summary

1. Constructors and destructors are special member functions of classes that are used

to construct and destroy class objects. Construction may involve memory

allocation and initialization for objects. Destruction may involve cleanup and deal

location of memory for objects.

2. Like other member functions, constructors and destructors are declared within a

class declaration. They can be defined inline or external to the class declaration.

Constructors can have default arguments. Unlike other member functions,

constructors can have member initialization lists. The following restrictions apply

to constructors and destructors:

3. Constructors and destructors do not have return types nor can they return values.

References and pointers cannot be used on constructors and destructors because

their addresses cannot be taken.

4. Constructors cannot be declared with the keyword virtual.

5. Constructors and destructors cannot be declared static, const, or volatile.

6.0 Tutor-Marked Assignment (TMA)

1. What is a constructor?

2. A constructor has some return type (not even void): True or False?

3. What functionality does a destructor fulfill?

7.0 References/Further Reading

http://www.daniweb.com/software-development/cpp/threads/3138/creating-and-destroying-

objects

http://en.wikipedia.org/wiki/Object_to_Be_Destroyed

http://wiki.answers.com/Q/When_object_is_created_and_destroyed_in_java

http://www.daniweb.com/software-development/cpp/threads/3138/creating-and-destroying-objects
http://www.daniweb.com/software-development/cpp/threads/3138/creating-and-destroying-objects
http://en.wikipedia.org/wiki/Object_to_Be_Destroyed
http://wiki.answers.com/Q/When_object_is_created_and_destroyed_in_java

44

Module3

Inheritance, Polymorphism,

Abstract Classes
Unit 1: Inheritance

Unit 2: Polymorphism

Unit 3: Abstract Classes

45

Unit 1

 Inheritance

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Extending Existing Classes

3.2 Inheritance and Class Hierarchy

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

46

1.0 Introduction

A class represents a set of objects which share the same structure and behaviors. The class

determines the structure of objects by specifying variables that are contained in each instance

of the class, and it determines behavior by providing the instance methods that express the

behavior of the objects. This is a powerful idea.

However, something like this can be done in most programming languages. The central new

idea in object-oriented programming–the idea that really distinguishes it from traditional

programming–is to allow classes to express the similarities among objects that share some,

but not all, of their structure and behavior. Such similarities can be expressed using

inheritance and polymorphism.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. define the inheritance;

2. know about the class hierarchy; and

3. illustrate the power of inheritance with case studies.

3.0 Learning Contents

3.1 Extending Existing Classes

In day-to-day programming, especially for programmers who are just beginning to work with

objects, sub classing is used mainly in one situation: There is an existing class that can be

adapted with a few changes or additions. This is much more common than designing groups

of classes and subclasses from scratch. The existing class can be extended to make a subclass.

The syntax for this is

public class Subclass−name

extends Existing−class−name {

 / / Changes and a d d i t i o n s .

}

As an example, suppose you want to write a program that plays the card game, Blackjack.

You can use the Card, Hand, and Deck classes developed previously. However, a hand in the

game of Blackjack is a little different from a hand of cards in general, since it must be

possible to compute the “value” of a Blackjack hand according to the rules of the game. The

rules are as follows: The value of a hand is obtained by adding up the values of the cards in

the hand.

47

The value of a numeric card such as a three or a ten is its numerical value.

The value of a Jack, Queen, or King is 10.

The value of an Ace can be either 1 or 11. An Ace should be counted as 11 unless

doing so would put the total value of the hand over 21. Note that this means that the second,

third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method that computes

the Blackjack value of the hand. Here’s the definition of such a class:

public class BlackjackHand extends Hand {

/ ∗ ∗

∗ Computes and r et u r n s the value of t h i s hand i n the game

∗ of B l a c k j a c k .

∗ /

public int getBlackjackValue() {

int val; / / The value computed f o r the hand .

boolean ace; / / Thi s w i l l be s et t o t r u e i f the

/ / hand c o nt a i n s an ace .

int cards; / / Number of ca rds i n the hand .

val = 0;

ace = false;

cards = getCardCount();

for (int i = 0; i < cards; i++) {

/ / Add the value of the i −t h ca rd i n the hand .

Card card; / / The i −t h ca rd ;

int cardVal; / / The b l a c k j a c k value of the i −t h ca rd .

card = getCard(i);

cardVal = card.getValue(); / / The normal value , 1 t o 13.

if (cardVal > 10) {

cardVal = 10; / / For a Jack , Queen , o r King .

}

if (cardVal == 1) {

ace = true; / / There i s at l e a s t one ace .

}

val = val + cardVal;

}

/ / Now, v a l i s the value of the hand , c o u nt i n g any ace as 1.

/ / I f t h e r e i s an ace , and i f changing i t s value from 1 t o

/ / 11 would lea ve the sco re l e s s than o r equal t o 21 ,

/ / then do so by adding the e xt r a 10 p o i nt s t o v a l .

if (ace == true && val + 10 <= 21)

val = val + 10;

return val;

} / / end g etB l a c k j a c kV a l u e ()

} / / end c l a s s BlackjackHand

48

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand contains all the

instance variables and instance methods defined in Hand, plus the new instance method

named getBlackjackValue(). For example, if bjh is a variable of type BlackjackHand, then all

of the following are legal: bjh.getCardCount(), bjh.removeCard(0), and

bjh.getBlackjackValue(). The first two methods are defined in Hand, but are inherited by

BlackjackHand.

Inherited variables and methods from the Hand class can also be used in the definition of

BlackjackHand (except for any that are declared to be private, which prevents access even by

subclasses). The statement “cards = getCardCount();” in the above definition of

getBlackjackValue() calls the instance method getCardCount(), which was defined in Hand.

Extending existing classes is an easy way to build on previous work. We’ll see that many

standard classes have been written specifically to be used as the basis for making subclasses.

Access modifiers such as public and private are used to control access to members of a class.

There is one more access modifier, protected, that comes into the picture when subclasses are

taken into consideration. When protected is applied as an access modifier to a method or

member variable in a class, that member can be used in subclasses – direct or indirect – of the

class in which it is defined, but it cannot be used in non-subclasses. (There is one exception:

A protected member can also be accessed by any class in the same package as the class that

contains the protected member. Recall that using no access modifier makes a member

accessible to classes in the same package, and nowhere else. Using the protected modifier is

strictly more liberal than using no modifier at all: It allows access from classes in the same

package and from subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying that it is part

of the implementation of the class, rather than part of the public interface of the class.

However, you are allowing subclasses to use and modify that part of the implementation.

For example, consider a PairOfDice class that has instance variables die1 and die2 to

represent the numbers appearing on the two dice. We could make those variables private to

make it impossible to change their values from outside the class, while still allowing read

access through getter methods. However, if we think it possible that PairOfDice will be used

to create subclasses; we might want to make it possible for subclasses to change the numbers

on the dice.

For example, a GraphicalDice subclass that draws the dice might want to change the numbers

at other times besides when the dice are rolled. In that case, we could make die1 and die2

protected, which would allow the subclass to change their values without making them public

to the rest of the world. (An even better idea would be to define protected setter methods for

the variables. A setter method could, for example, ensure that the value that is being assigned

to the variable is in the legal range 1 through 6.).

49

Self -Assessment Questions

Self-Assessment Answers

3.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of its structure and

behavior from another class. The class that does the inheriting is said to be a subclass of the

class from which it inherits. If class B is a subclass of class A, we also say that class A is a

superclass of class B. (Sometimes the terms derived class and base class are used instead of

subclass and superclass; this is the common terminology inC++.) A subclass can add to the

structure and behavior that it inherits. It can also replace or modify inherited behavior

(though not inherited structure).

In Java, for example, to create a class named “B” as a subclass of a class named “A”, you

would write

class B extends A {

 / / a d d i t i o n s to , and m o d i f i c a t i o n s of ,

 / / s t u f f i n h e r i t e d from c l a s s A

}

Several classes can be declared as subclasses of the same superclass. The subclasses, which

might be referred to as “sibling classes,” share some structures and behaviors – namely, the

ones they inherit from their common superclass. The superclass expresses these shared

structures and behaviors. In the diagram to the left, classes B, C, and D are sibling classes.

Inheritance can also extend over several “generations” of classes. This is shown in the

diagram, where class E is a subclass of class D which is itself a subclass of class A. In this

case, class E is considered to be a subclass of class A, even though it is not a direct subclass.

This whole set of classes forms a small class hierarchy.

Let’s look at an example. Suppose that a program has to deal with motor vehicles, including

cars, trucks, and motorcycles. (This might be a program used by a Department of Motor

Vehicles to keep track of registrations.) The program could use a class named Vehicle to

represent all types of vehicles. Since cars, trucks, and motorcycles are types of vehicles, they

would be represented by subclasses of the Vehicle class, as shown in this class hierarchy

diagram:

The Vehicle class would include instance variables such as registration Number and owner

and instance methods such as transferOwnership(). These are variables and methods common

Please Insert Self-Assessment Questions

Please insert Self-Assessment Answers

50

to all vehicles. The three subclasses of Vehicle – Car, Truck, and Motorcycle – could then be

used to hold variables and methods specific to particular types of vehicles. The Car class

might add an instance variable numberOfDoors, the Truck class might have numberOfAxels,

and the Motorcycle class could have a boolean variable hasSidecar. (Well, it could in theory

at least, even if it might give a chuckle to the people at the Department of Motor Vehicles.)

The declarations of these classes in Java program would look, in outline, like this (although

in practice, they would probably be public classes, defined in separate files):

class Vehicle {

int registrationNumber;

Person owner; / / (Assuming t h a t a Person c l a s s has been d ef i n e d !)

void transferOwnership(Person newOwner) {

. . .

}

. . .

}

class Car extends Vehicle {

int numberOfDoors;

. . .

}

class Truck extends Vehicle {

int numberOfAxels;

. . .

}

class Motorcycle extends Vehicle {

boolean hasSidecar;

. . .

}

Suppose that myCar is a variable of type Car that has been declared and initialized with the

statement Car myCar = new Car(); Given this declaration, a program could refer to

myCar.numberOfDoors, since numberOfDoors is an instance variable in the class Car. But

since class Car extends class Vehicle, a car also has all the structure and behavior of a

vehicle. This means that myCar.registrationNumber, myCar.owner, and

myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The same is true in

a program. That is, an object of type Caror Truck or Motorcycle is automatically an object of

type Vehicle too. This brings us to the following Important Fact: A variable that can hold a

reference to an object of class A can also hold a reference to an object belonging to any

subclass of A.

The practical effect of this is that an object of type Car can be assigned to a variable of type

Vehicle; i.e. it would be legal to say Vehicle myVehicle = myCar; or even Vehicle

myVehicle = new Car();. After either of these statements, the variable myVehicle holds a

reference to a Vehicle object that happens to be an instance of the subclass, Car. The object

51

“remembers” that it is in fact a Car, and not just a Vehicle. Information about the actual class

of an object is stored as part of that object. It is even possible to test whether a given object

belongs to a given class, using the instanceof operator. The test: if (myVehicle instanceof

Car) ... determines whether the object referred to by myVehicle is in fact a car.

On the other hand, the assignment statement myCar = myVehicle; would be illegal because

myVehicle could potentially refer to other types of vehicles that are not cars. This is similar

to a problem we saw previously: The computer will not allow you to assign an int value to a

variable of type short, because not every int is a short. Similarly, it will not allow you to

assign a value of type Vehicle to a variable of type Car because not every vehicle is a car. As

in the case of int s and shorts, the solution here is to use type-casting. If, for some reason, you

happen to know that myVehicle does in fact refer to a Car, you can use the type cast

(Car)myVehicle to tell the computer to treat myVehicle as if it were actually of type Car. So,

you could say myCar = (Car)myVehicle; and you could even refer to

((Car)myVehicle).numberOfDoors. As an example of how this could be used in a program,

suppose that you want to print out relevant data about a vehicle. You could say:

System.out.println(" Vehicle Data : ");

System.out.println(" Reg i s t ra t ion number: "+ myVehicle.registrationNumber);

if (myVehicle instanceof Car) {

System.out.println(" Type of vehicle : Car ");

Car c;

c = (Car)myVehicle;

System.out.println("Number of doors : " + c.numberOfDoors);

}

else if (myVehicle instanceof Truck) {

System.out.println(" Type of vehicle : T ruck ");

Truck t;

t = (Truck)myVehicle;

System.out.println("Number of axe l s : " + t.numberOfAxels);

}

else if (myVehicle instanceof Motorcycle) {

System.out.println(" Type of vehicle : Motorcycle ");

Motorcycle m;

m = (Motorcycle)myVehicle;

System.out.println(" Has a sideca r : " + m.hasSidecar);

}

Note that for object types, when the computer executes a program, it checks whether type-

casts are valid. So, for example, if myVehicle refers to an object of type Truck, then the type

cast (Car)myVehicle would be an error. When this happes, an exception of type

ClassCastException is thrown.

Self -Assessment Questions

Please insert Self-Assessment Questions

52

Self-Assessment Answers

4.0 Conclusion

In object-oriented programming , inheritance is a way to reuse code of existing objects, or to

establish a subtype from an existing object, or both, depending upon programming language

support. In classical inheritance where objects are defined by classes, classes can inherit

attributes and behavior from pre-existing classes called base classes, superclasses, parent

classes or ancestor classes. The resulting classes are known as derived

classes, subclasses or child classes. The relationships of classes through inheritance gives rise

to a hierarchy. In prototype-based programming, objects can be defined directly from other

objects without the need to define any classes, in which case this feature is called differential

inheritance.

5.0 Summary

1. A method defined in a class is inherited by all descendants of that class.

2. When a message is sent to an object to use method m(), any messages that m() sends

will also be sent to the same object.

3. If the object receiving a message does not have a definition of the method requested,

an inherited definition is invoked.

4. If the object receiving a message has a definition of the requested method, that

definition is invoked.

6.0 Tutor-Marked Assignment (TMA)

The term inheritance refers to the fact that one object can inherit part or all of its structure and

behavior from another object: True or False?

1. Is the class that does the inheriting said to be a subclass of the class from which it

inherits?

2. Give an example of class hierarchy

3. Illustrate the power of inheritance with case study

Please insert Self-Assessment Answers

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Subtype_polymorphism
http://en.wikipedia.org/wiki/Class_(computer_programming)
http://en.wikipedia.org/wiki/Base_class
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Prototype-based_programming
http://en.wikipedia.org/wiki/Differential_inheritance
http://en.wikipedia.org/wiki/Differential_inheritance

53

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

http://expressionflow.com/2007/04/02/inheritance-and-class-hierarchies-in-object-oriented-

programming/

http://www.clear.rice.edu/comp215/handouts/Lecture6.pdf

http://staff.science.uva.nl/~heck/JAVAcourse/ch3/s1.html

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://expressionflow.com/2007/04/02/inheritance-and-class-hierarchies-in-object-oriented-programming/
http://expressionflow.com/2007/04/02/inheritance-and-class-hierarchies-in-object-oriented-programming/
http://www.clear.rice.edu/comp215/handouts/Lecture6.pdf
http://staff.science.uva.nl/~heck/JAVAcourse/ch3/s1.html

54

Unit 2

Polymorphism

Contents

 1.0 Introduction

 2.0 Learning Outcomes

 3.0 Learning Contents

3.1 Overloading Polymorphism

3.2 Parametric Polymorphism

3.3 Inclusion Polymorphism

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

55

1.0 Introduction

Polymorphism allows subclasses to have methods with the same names as methods in their

superclasses. It gives the ability for a program to call the correct method depending on the

type of object that is used to call it.

The term polymorphism refers to an object's ability to take different forms. It is a powerful

feature of object-oriented programming. Here, we will look at two essential ingredients of

polymorphic behavior:

1. The ability to define a method in a superclass, and then define a method with the

same name in a subclass. When a subclass method has the same name as a superclass method,

it is often said that the subclass method overrides the superclass method.

2. The ability to call the correct version of an overridden method, depending on the

type of object that is used to call it. If a subclass object is used to call an overridden method,

then the subclass's version of the method is the one that will execute. If a superclass object is

used to call an overridden method, then the superclass's version of the method is the one that

will execute.

2.0 Learning Outcomes

At the end of this unit you will be able to:

1. define polymorphism;

2. know three types of polymorphism; and

3. elucidate the difference between types of polymorphism.

3.0 Learning Contents

The word polymorphism comes from Greek and means having several different forms. This is

one of the essential concepts of object-oriented programming. Where inheritance is related to

classes and (their hierarchy), polymorphism is related to object methods.

In general there are three types of polymorphism:

1. overloading polymorphism;

2. Parametric polymorphism (also called template polymorphism); and

3. Inclusion polymorphism (also called redefinition or overriding).

Self -Assessment Questions

4.

5.
Please insert Self-Assessment Questions

http://en.kioskea.net/contents/poo/polymorp.php3#overloading
http://en.kioskea.net/contents/poo/polymorp.php3#parametric
http://en.kioskea.net/contents/poo/polymorp.php3#overriding

56

Self-Assessment Answers

3.1 Overloading Polymorphism

Overloading polymorphism is where functions of the same name exist, with similar

functionality, in classes which are completely independent of each other (these do not have to

be children of the object class). For example, the complex class, the image class and the link

class may each have the function "display". This means that we do not need to worry about

what type of object we are dealing with if all we want to do is display it on the screen.

Overloading polymorphism therefore allows us to define operators whose behaviour will vary

depending on the parameters that are applied to them. Therefore it is possible, for example, to

add the + operator and make it behave differently according to whether it refers to an

operation between two integers (addition) or between two character strings (concatenation).

Self -Assessment Questions

Self-Assessment Answers

3.2 Parametric Polymorphism

Parametric polymorphism is the ability to define several functions using the same name, but

using different parameters (name and/or type). Parametric polymorphism automatically

selects the correct method to be adopted according to the type of data passed in the

parameter.

We can therefore define several addition() methods using the same name which calculates a

sum of values.

The int addition (int, int) method would return the sum of two integers.

The float addition (float, float) would return the sum of two floats.

The char addition (char, char) would result as the sum of two characters as defined by

the author.

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

57

A signature is the name and type (static) given to the arguments of a function. Therefore it is

a method's signature which determines what is called on.

Self -Assessment Questions

Self-Assessment Answers

3.3 Inclusion Polymorphism

The ability to redefine a method in classes that are inherited from a base class is called

specialisation. One can therefore call on an object's method without having to know its

intrinsic type: this is inclusion polymorphism. This makes it possible to disregard the

specialised class details of an object family, by masking them with a common interface (this

being the basic class).

Imagine a game of chess, with the objects king, queen, bishop, knight, rook and pawn, each

inheriting the piece object.

The movement method could, using inclusion polymorphism, make the corresponding move

according to the object class that is called on. This therefore allows the program to perform

piece movement without having to be concerned with each piece's class.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Polymorphism is an object oriented strategy used when designing object models, to help

simplify the code. At its core polymorphism is the ability to define two similar yet different

objects, and to then treat the two objects as if they are the same.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

58

5.0 Summary

1. Polymorphism is one of the primary characteristics (concept) of object-oriented

programming.

2. Polymorphism is the characteristic of being able to assign a different meaning

specifically, to allow an entity such as a variable, a function, or an object to have

more than one form.

3. Polymorphism is the ability to process objects differently depending on their data

types.

4. Polymorphism is the ability to redefine methods for derived classes.

6.0 Tutor-Marked Assignment (TMA)

1. What is polymorphism?

2. How many types of polymorphism you know?

3. Which types of polymorphism do you know?

4. Overloading polymorphism is where functions of the same name exist, with similar

functionality: YES or NO?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming

http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-

Concep

http://en.kioskea.net/contents/poo/polymorp.php3

http://www.dotnetfunda.com/articles/article1005-basic-concepts-of-oop-polymorphism.aspx

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://en.kioskea.net/contents/poo/polymorp.php3
http://www.dotnetfunda.com/articles/article1005-basic-concepts-of-oop-polymorphism.aspx

59

Unit 3

Abstract Classes

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

60

1.0 Introduction

Abstract classes are partial classes, in other words, they are classes that needs to be inherited

by other classes to be used. The word abstract means that methods inside such class are not

completely implemented, an abstract class can mark some methods as abstract, so, the child

class needs to implement them according to its behavior. An abstract class works as a

generalized type that needs specialization for each subtype.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. define abstract classes;

2. know and use variable this;

3. know and use variable super; and

4. elucidate on the use of constructors in subclasses.

3.0 Learning Contents

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw()

method in the appropriate class that is executed. This leaves open the question, What does the

redraw() method in the Shape class do? How should it be defined?

The answer may be surprising: We should leave it blank. The fact is that the class Shape

represents the abstract idea of a shape, and there is no way to draw such a thing. Only

particular, concrete shapes like rectangles and ovals can be drawn. So, why should there even

be a redraw() method in the Shape class? Well, it has to be there, or it would be illegal to call

it in the setColor() method of the Shape class, and it would be illegal to write

“oneShape.redraw() ;”, where oneShape is a variable of type Shape. The compiler would

complain that oneShape is a variable of type Shape and there’s no redraw() method in the

Shape class. Nevertheless the version of redraw() in the Shape class itself will never actually

be called. In fact, if you think about it, there can never be any reason to construct an actual

object of type Shape . You can have variables of type Shape, but the objects they refer to will

always belong to one of the subclasses of Shape.

Shape is an abstract class. An abstract class is one that is not used to construct objects, but

only as a basis for making subclasses. An abstract class exists only to express the common

properties of all its subclasses. A class that is not abstract is said to be concrete. You can

create objects belonging to a concrete class, but not to an abstract class. A variable whose

type is given by an abstract class can only refer to objects that belong to concrete subclasses

of the abstract class.

61

Similarly, the redraw() method in class Shape is an abstract method, since it is never meant

to be called. In fact, there is nothing for it to do – any actual redrawing is done by redraw()

methods in the subclasses of Shape. The redraw() method in Shape has to be there. But it is

there only to tell the computer that all Shapes understand the redraw message. As an abstract

method, it exists merely to specify the common interface of all the actual, concrete versions

of redraw() in the subclasses of Shape. There is no reason for the abstract redraw() in class

Shape to contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the computer,

syntactically, that they are abstract by adding the modifier “abstract” to their definitions. For

an abstract method, the block of code that gives the implementation of an ordinary method is

replaced by a semicolon. An implementation must be provided for the abstract method in any

concrete subclass of the abstract class.

Here’s what the Shape class would look like as an abstract class:

public abstract class Shape {

Color color; / / co l o r of shape .

void setColor(Color newColor) { / / method to change the co l o r of the shape

color = newColor; / / change value of instance v a r i a b l e

redraw(); / / redraw shape , which w i l l appear i n new co l o r

}

abstract void redraw();

/ / a bs t rac t method−−must be def ined i n concrete subclasses

. . . / / more instance v a r i a b l e s and methods

} / / end of class Shape

Once you have declared the class to be abstract, it becomes illegal to try to create actual

objects of type Shape, and the computer will report a syntax error if you try to do so.

Recall that a class that is not explicitly declared to be a subclass of some other class is

automatically made a subclass of the standard class Object. That is, a class declaration with

no “extends” part such as public class myClass { . . . is exactly equivalent to public class

myClass extends Object {

This means that class Object is at the top of a huge class hierarchy that includes every other

class. (Semantially, Object is an abstract class, in fact the most abstract class of all.

Curiously, however, it is not declared to be abstract syntactially, which means that you can

create objects of type Object.)

Since every class is a subclass of Object, a variable of type Object can refer to any object

whatsoever, of any type. Java has several standard data structures that are designed to hold

Object s, but since every object is an instance of class Object, these data structures can

actually hold any object whatsoever. One example is the “ArrayList” data structure, which is

defined by the class ArrayList in the package java.util. An ArrayList is simply a list of Object

62

s. This class is very convenient, because an ArrayList can hold any number of objects, and it

will grow, when necessary, as objects are added to it. Since the items in the list are of type

Object, the list can actually hold objects of any type.

A program that wants to keep track of various Shape s that have been drawn on the screen

can store those shapes in an ArrayList. Suppose that the ArrayList is named listOfShapes. A

shape, oneShape for example, can be added to the end of the list by calling the instance

method “listOfShapes.add(oneShape);” and removed from the list with the instance method

“listOfShapes.remove(oneShape);”. The number of shapes in the list is given by the method

“listOfShapes.size()”. It is possible to retrieve the ith object from the list with the call

“listOfShapes.get(i)”.

(Items in the list are numbered from 0 to listOfShapes.size()−1.) However, note that

this method returns an Object, not a Shape. (Of course, the people who wrote the ArrayList

class didn’t even know about Shapes, so the method they wrote could hardly have a return

type of Shape!) Since you know that the items in the list are, in fact, Shapes and not just

Objects, you can type-cast the Object returned by

listOfShapes.get(i) to be a value of type Shape by saying:

oneShape = (Shape)listOfShapes.get(i);.

Let’s say, for example, that you want to redraw all the shapes in the list. You could do this

with a simple for loop, which is lovely example of object-oriented programming and of

polymorphism:

for (int i = 0; i < listOfShapes.size(); i++) {

Shape s; / / i−th element of the l i s t , considered as a Shape

s = (Shape)listOfShapes.get(i);

s.redraw(); / /What ’ s drawn here depends on what type of shape s i s !

}

The sample source code file ShapeDraw.java uses an abstract Shape class and an ArrayList to

hold a list of shapes. The file defines an applet in which the user can add various shapes to a

drawing area. Once a shape is in the drawing area, the user can use the mouse to drag it

around.

You might want to look at this file, even though you won’t be able to understand all of it at

this time. Even the definitions of the shape classes are somewhat different from those that I

have described in this section. (For example, the draw() method has a parameter of type

Graphics. This parameter is required because of the way Java handles all drawing.) It is

worthwhile to look at the definition of the Shape class and its subclasses in the source code.

You might also check how an ArrayList is used to hold the list of shapes.

If you click one of the buttons along the bottom of this applet, a shape will be added to the

screen in the upper left corner of the applet. The color of the shape is given by the “pop-up

menu” in the lower right. Once a shape is on the screen, you can drag it around with the

mouse. A shape will maintain the same front-to-back order with respect to other shapes on

63

the screen, even while you are dragging it. However, you can move a shape out in front of all

the other shapes if you hold down the shift key as you click on it.

In the applet the only time when the actual class of a shape is used is when that shape is

added to the screen. Once the shape has been created, it is manipulated entirely as an abstract

shape. The method that implements dragging, for example, works only with variables of type

Shape. As the Shape is being dragged, the dragging method just calls the Shape’s draw

method each time the shape has to be drawn, so it doesn’t have to know how to draw the

shape or even what type of shape it is. The object is responsible for drawing itself. If you

wanted to add a new type of shape to the program, you would define a new subclass of

Shape, add another button to the applet, and program the button to add the correct type of

shape to the screen. No other changes in the programming would be necessary.

The Special Variable this

A static member of a class has a simple name, which can only be used inside the class. For

use outside the class, it has a full name of the form class−name.simple−name. For example,

“System.out” is a static member variable with simple name “out” in the class “System”. It’s

always legal to use the full name of a static member, even within the class where it’s defined.

Sometimes it’s even necessary, as when the simple name of a static member variable is

hidden by a local variable of the same name.

Instance variables and instance methods also have simple names. The simple name of such an

instance member can be used in instance methods in the class where the instance member is

defined. Instance members also have full names, but remember that instance variables and

methods are actually contained in objects, not classes. The full name of an instance member

has to contain a reference to the object that contains the instance member. To get at an

instance variable or method from outside the class definition, you need a variable that refers

to the object. Then the full name is of the form variable−name.simple−name. But suppose

you are writing the definition of an instance method in some class. How can you get a

reference to the object that contains that instance method? You might need such a reference,

for example, if you want to use the full name of an instance variable, because the simple

name of the instance variable is hidden by a local variable or parameter.

Java, for example, provides a special, predefined variable named “this ” that you can use for

such purposes. The variable, this, is used in the source code of an instance method to refer to

the object that contains the method. This intent of the name, this, is to refer to “this object,”

the one right here that this very method is in. If x is an instance variable in the same object,

then this.x can be used as a full name for that variable. If otherMethod() is an instance

method in the same object, then this.otherMethod() could be used to call that method.

Whenever the computer executes an instance method, it automatically sets the variable, this,

to refer to the object that contains the method. One common use of thisis in constructors. For

example:

public class Student {

private String name; / / Name of the student .

public Student(String name) {

64

/ / Const ructor . Create a student wi th s p e c i f i e d name .

this.name = name;

}

 / / More v a r i a b l e s and methods .

}

In the constructor, the instance variable called name is hidden by a formal parameter.

However, the instance variable can still be referred to by its full name, this.name. In the

assignment statement, the value of the formal parameter, name, is assigned to the instance

variable, this.name. This is considered to be acceptable style: There is no need to dream up

cute new names for formal parameters that are just used to initialize instance variables. You

can use the same name for the parameter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method, you need

to pass the object that contains the method to a method, as an actual parameter. In that case,

you can use this as the actual parameter. For example, if you wanted to print out a string

representation of the object, you could say “System.out.println(this);”. Or you could assign

the value of this to another variable in an assignment statement. In fact, you can do anything

with this that you could do with any other variable, except change its value.

The Special Variable super

Java, for example, also defines another special variable, named “super”, for use in the

definitions of instance methods. The variable super is for use in a subclass. Like this, super

refers to the object that contains the method. But it’s forgetful. It forgets that the object

belongs to the class you are writing, and it remembers only that it belongs to the superclass of

that class. The point is that the class can contain additions and modifications to the

superclass. super doesn’t know about any of those additions and modifications; it can only be

used to refer to methods and variables in the superclass.

Let’s say that the class you are writing contains an instance method doSomething(). Consider

the method call statement super.doSomething(). Now, super doesn’t know anything about the

doSomething() method in the subclass. It only knows about things in the superclass, so it tries

to execute a method named doSomething() from the superclass. If there is none – if the

doSomething() method was an addition rather than a modification – you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are hidden by

things in the subclass. For example, super.x always refers to an instance variable named x in

the superclass. This can be useful for the following reason: If a class contains an instance

variable with the same name as an instance variable in its superclass, then an object of that

class will actually contain two variables with the same name: one defined as part of the class

itself and one defined as part of the superclass. The variable in the subclass does not replace

the variable of the same name in the superclass; it merely hides it. The variable from the

superclass can still be accessed, using super.

65

When you write a method in a subclass that has the same signature as a method in its

superclass, the method from the superclass is hidden in the same way. We say that the

method in the subclass overrides the method from the superclass. Again, however, super can

be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends the behavior

of the inherited method, instead of replacing that behavior entirely. The new method can use

super to call the method from the superclass, and then it can add additional code to provide

additional behavior. As an example, suppose you have a PairOfDice class that includes a

roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of dice

drawn on the computer screen. The roll() method in the GraphicalDice class should do

everything that the roll() method in the PairOfDice class does. We can express this with a call

to super.roll(), which calls the method in the superclass. But in addition to that, the roll()

method for a GraphicalDice object has to redraw the dice to show the new values. The

GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {

/ / Rol l the dice, and redraw them.

super.roll(); / / Cal l the r o l l method from Pai rOfDice .

redraw(); / / Cal l a method to draw the dice .

}

 / / More s t u f f , i n c l u d i n g d e f i n i t i o n of redraw () .

}

Note that this allows you to extend the behavior of the roll() method even if you don’t know

how the method is implemented in the superclass!

Constructors in Subclasses

Constructors are not inherited. That is, if you extend an existing class to make a subclass, the

constructors in the superclass do not become part of the subclass. If you want constructors in

the subclass, you have to define new ones from scratch. If you don’t define any constructors

in the subclass, then the computer will make up a default constructor, with no parameters, for

you.

This could be a problem, if there is a constructor in the superclass that does a lot of necessary

work. It looks like you might have to repeat all that work in the subclass.

This could be a real problem if you don’t have the source code to the superclass, and don’t

know how it works, or if the constructor in the superclass initializes private member variables

that you don’t even have access to in the subclass.

Obviously, there has to be some fix for this, and there is. It involves the special variable,

super. As the very first statement in a constructor, you can use super to call a constructor

from the superclass. The notation for this is a bit ugly and misleading, and it can only be used

in this one particular circumstance: It looks like you are calling super as a method (even

though super is not a method and you can’t call constructors the same way you call other

66

methods anyway). As an example, assume that the PairOfDice class has a constructor that

takes two integers as parameters.

 public class GraphicalDice extends PairOfDice {

public GraphicalDice() { / / Const ructor f o r t h i s class .

super(3,4); / / Cal l the cons t ruc tor from the

/ / Pai rOfDice class , wi th parameters 3 , 4.

initializeGraphics(); / / Do some i n i t i a l i z a t i o n s p e c i f i c

/ / to the GraphicalDice class .

}

 / / More const ructor s , methods , v a r i a b l e s . . .

}

The statement “super (3,4);” calls the constructor from the superclass. This call must be the

first line of the constructor in the subclass. Note that if you don’t explicitly call a constructor

from the superclass in this way, then the default constructor from the superclass, the one with

no parameters, will be called automatically.

This might seem rather technical, but unfortunately it is sometimes necessary. By the way,

you can use the special variable this in exactly the same way to call another constructor in the

same class. This can be useful since it can save you from repeating the same code in several

constructors.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Abstract types are an important feature in statically typed OO languages. Many dynamically

typed languages have no equivalent feature (although the use of duck typing makes abstract

types unnecessary); however traits are found in some modern dynamically-typed languages.

Some authors argue that classes should be leaf classes (have no subtypes), or else be abstract.

Abstract types are useful in that they can be used to define and enforce a protocol; a set of

operations which all objects that implement the protocol must support.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Dynamic_typing
http://en.wikipedia.org/wiki/Dynamic_typing
http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Leaf_class
http://en.wikipedia.org/wiki/Protocol_(object-oriented_programming)

67

5.0 Summary

In programming languages, an abstract type is a type in a nominative type system which

cannot be instantiated. (However, it may have concrete subtypes that do have instances.) An

abstract type may have no implementation, or an incomplete implementation. It may

include abstract methods or abstract properties that are shared by its subtypes. A type that is

not abstract is called a concrete type.

 Abstract classes can be created, signified, or simulated in several ways:

By use of the explicit keyword abstract in the class definition, as in Java, D or C#.

By including, in the class definition, one or more abstract methods (called pure virtual

functions in C++), which the class is declared to accept as part of its protocol, but for which

no implementation is provided.

By inheriting from an abstract type, and not overriding all missing features necessary

to complete the class definition.

In many dynamically typed languages such as Smalltalk, any class which sends a

particular method to this, but doesn't implement that method, can be considered abstract.

(However, in many such languages, like Objective-C, the error is not detected until the class

is used, and the message returns results in an exception error message such as "Does not

recognize selector: xxx" as - [NSObject doesNotRecognizeSelector:(SEL)selector] is invoked

upon detection of an unimplemented method).

6.0 Tutor-Marked Assignment (TMA)

1. What is known as an abstract class?

2. When is variable this used?

3. The variable super is not used in a subclass: True or False?

4. Constructors are inherited: Yes or No?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Abstract_type

http://www.dotnetfunda.com/interview/exam90-what-is-abstract-class.aspx

http://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

http://en.wikipedia.org/wiki/Programming_languages
http://en.wikipedia.org/wiki/Nominative_type_system
http://en.wikipedia.org/w/index.php?title=Concrete_type&action=edit&redlink=1
http://en.wikipedia.org/wiki/Keyword_(computer_programming)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/D_(programming_language)
http://en.wikipedia.org/wiki/Abstract_method
http://en.wikipedia.org/wiki/Virtual_functions
http://en.wikipedia.org/wiki/Virtual_functions
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/This_(computer_science)
http://en.wikipedia.org/wiki/Objective-C
http://en.wikipedia.org/wiki/Abstract_type
http://www.dotnetfunda.com/interview/exam90-what-is-abstract-class.aspx
http://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

68

Module4

Primitive Data Types

Unit 1: Primitive Data Types

Unit 2: Control Structures

69

Unit 1

 Variables and the Primitive

Types
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Variables

3.2 Types And Literals

3.3 Variables In Programs

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

70

1.0 Introduction

Names are fundamental to programming. In programs, names are used to refer to many

different sorts of things. In order to use those things, a programmer must understand the rules

for giving names to things and the rules for using the names to work with those things. That

is, the programmer must understand the syntax and the semantics of names.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. define variables;

2. know and use primitive types and literals; and

3. know and use variables in programs.

3.0 Learning Contents

According to the syntax rules of Java, a name is a sequence of one or more characters. It must

begin with a letter or underscore and must consist entirely of letters, digits, and underscores.

("Underscore" refers to the character '_'.) For example, here are some legal names:

N

n

rate

x15

quite_a_long_name

HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier, but "Hello World"

is not. Upper case and lower case letters are considered to be different, so that HelloWorld,

helloworld, HELLOWORLD, and hElloWorLD are all distinct names. Certain names are

reserved for special uses in Java, and cannot be used by the programmer for other purposes.

These reserved words include: class, public, static, if, else, while, and several dozen other

words.

Java is actually pretty liberal about what counts as a letter or a digit. Java uses the Unicode

character set, which includes thousands of characters from many different languages and

different alphabets, and many of these characters count as letters or digits. However, I will be

sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose names for things.

For example, it is customary for names of classes to begin with upper case letters, while

names of variables and of subroutines begin with lower case letters; you can avoid a lot of

confusion by following the same convention in your own programs. Most Java programmers

71

do not use underscores in names, although some do use them at the beginning of the names of

certain kinds of variables. When a name is made up of several words, such as HelloWorld or

interestRate, it is customary to capitalize each word, except possibly the first; this is

sometimes referred to as camel case, since the upper case letters in the middle of a name are

supposed to look something like the humps on a camel's back.

Finally, it’s necessary to note that things are often referred to by compound names which

consist of several ordinary names separated by periods. (Compound names are also called

qualified names.) You've already seen an example: System.out.println. The idea here is that

things in Java can contain other things. A compound name is a kind of path to an item

through one or more levels of containment. The name System.out.println indicates that

something called "System" contains something called "out" which in turn contains something

called "println". Non-compound names are called simple identifiers. I'll use the term

identifier to refer to any name -- simple or compound -- that can be used to refer to something

in Java. (Note that the reserved words are not identifiers, since they can't be used as names

for things.)

Self -Assessment Questions

Self-Assessment Answers

3.1 Variables

Programs manipulate data that are stored in memory. In machine language, data can only be

referred to by giving the numerical address of the location in memory where it is stored. In a

high-level language such as Java, names are used instead of numbers to refer to data. It is the

job of the computer to keep track of where in memory the data is actually stored; the

programmer only has to remember the name. A name used in this way - to refer to data stored

in memory - is called a variable.

Variables are actually rather subtle. Properly speaking, a variable is not a name for the data

itself but for a location in memory that can hold data. You should think of a variable as a

container or box where you can store data that you will need to use later. The variable refers

directly to the box and only indirectly to the data in the box. Since the data in the box can

change, a variable can refer to different data values at different times during the execution of

the program, but it always refers to the same box. Confusion can arise, especially for

beginning programmers, because when a variable is used in a program in certain ways, it

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

72

refers to the container, but when it is used in other ways, it refers to the data in the container.

You'll see examples of both cases below. (In this way, a variable is something like the title,

"The President of the United States." This title can refer to different people at different times,

but it always refers to the same office. If I say "the President is playing basketball," I mean

that Barack Obama is playing basketball. But if I say "Sarah Palin wants to be President" I

mean that she wants to fill the office, not that she wants to be Barack Obama.)

In Java, the only way to get data into a variable -- that is, into the box that the variable names

- is with an assignment statement. An assignment statement takes the form:

variable = expression; where expression represents anything that refers to or computes a data

value. When the computer comes to an assignment statement in the course of executing a

program, it evaluates the expression and puts the resulting data value into the variable. For

example, consider the simple assignment statement

rate = 0.07; The variable in this assignment statement is rate, and the expression is the

number 0.07. The computer executes this assignment statement by putting the number 0.07 in

the variable rate, replacing whatever was there before. Now, consider the following more

complicated assignment statement, which might come later in the same program:

interest = rate * principal; Here, the value of the expression "rate * principal" is being

assigned to the variable interest. In the expression, the * is a "multiplication operator" that

tells the computer to multiply rate times principal. The names rate and principal are

themselves variables, and it is really the values stored in those variables that are to be

multiplied. We see that when a variable is used in an expression, it is the value stored in the

variable that matters; in this case, the variable seems to refer to the data in the box, rather

than to the box itself. When the computer executes this assignment statement, it takes the

value of rate, multiplies it by the value of principal, and stores the answer in the box referred

to by interest. When a variable is used on the left-hand side of an assignment statement, it

refers to the box that is named by the variable. (Note, by the way, that an assignment

statement is a command that is executed by the computer at a certain time. It is not a

statement of fact. For example, suppose a program includes the statement "rate = 0.07;". If

the statement "interest = rate * principal;" is executed later in the program, can we say that

the principal is multiplied by 0.07? No. The value of rate might have been changed in the

meantime by another statement. The meaning of an assignment statement is completely

different from the meaning of an equation in mathematics, even though both use the symbol

"=".).

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

73

3.2 Types and Literals

A variable in Java is designed to hold only one particular type of data; it can legally hold that

type of data and no other. The compiler will consider it to be a syntax error if you try to

violate this rule. We say that Java is a strongly typed language because it enforces this rule.

There are eight so-called primitive types built into Java. The primitive types are named byte,

short, int, long, float, double, char, and boolean. The first four types hold integers (whole

numbers such as 17, -38477, and 0). The four integer types are distinguished by the ranges of

integers they can hold. The float and double types hold real numbers (such as 3.6 and -

145.99). Again, the two real types are distinguished by their range and accuracy. A variable

of type char holds a single character from the Unicode character set. And a variable of type

boolean holds one of the two logical values: true or false.

Any data value stored in the computer's memory must be represented as a binary number, that

is as a string of zeros and ones. A single zero or one is called a bit. A string of eight bits is

called a byte. Memory is usually measured in terms of bytes. Not surprisingly, the byte data

type refers to a single byte of memory. A variable of type byte holds a string of eight bits,

which can represent any of the integers between -128 and 127, inclusive. (There are 256

integers in that range; eight bits can represent 256 - two raised to the power eight -- different

values.) As for the other integer types, short corresponds to two bytes (16 bits). Variables of

type short have values in the range -32768 to 32767. int corresponds to four bytes (32 bits).

Variables of type int have values in the range -2147483648 to 2147483647. long corresponds

to eight bytes (64 bits). Variables of type long have values in the range -

9223372036854775808 to 9223372036854775807. You don't have to remember these

numbers, but they do give you some idea of the size of integers that you can work with.

Usually, for representing integer data you should just stick to the int data type, which is good

enough for most purposes.

The float data type is represented in four bytes of memory, using a standard method for

encoding real numbers. The maximum value for a float is about 10 raised to the power 38. A

float can have about 7 significant digits. (So that 32.3989231134 and 32.3989234399 would

both have to be rounded off to about 32.398923 in order to be stored in a variable of type

float.) A double takes up 8 bytes, can range up to about 10 to the power 308, and has about

15 significant digits. Ordinarily, you should stick to the double type for real values.

A variable of type char occupies two bytes in memory. The value of a char variable is a

single character such as A, *, x, or a space character. The value can also be a special

character such a tab or a carriage return or one of the many Unicode characters that come

from different languages. When a character is typed into a program, it must be surrounded by

single quotes; for example: 'A', '*', or 'x'. Without the quotes, A would be an identifier and *

would be a multiplication operator. The quotes are not part of the value and are not stored in

the variable; they are just a convention for naming a particular character constant in a

program.

74

A name for a constant value is called a literal. A literal is what you have to type in a program

to represent a value. 'A' and '*' are literals of type char, representing the character values A

and *. Certain special characters have special literals that use a backslash, \, as an "escape

character". In particular, a tab is represented as '\t', a carriage return as '\r', a linefeed as '\n',

the single quote character as '\'', and the backslash itself as '\\'. Note that even though you type

two characters between the quotes in '\t', the value represented by this literal is a single tab

character.

Numeric literals are a little more complicated than you might expect. Of course, there are the

obvious literals such as 317 and 17.42. But there are other possibilities for expressing

numbers in a Java program. First of all, real numbers can be represented in an exponential

form such as 1.3e12 or 12.3737e-108. The "e12" and "e-108" represent powers of 10, so that

1.3e12 means 1.3 times 1012 and 12.3737e-108 means 12.3737 times 10-108. This format

can be used to express very large and very small numbers. Any numerical literal that contains

a decimal point or exponential is a literal of type double. To make a literal of type float, you

have to append an "F" or "f" to the end of the number. For example, "1.2F" stands for 1.2

considered as a value of type float. (Occasionally, you need to know this because the rules of

Java say that you can't assign a value of type double to a variable of type float, so you might

be confronted with a ridiculous-seeming error message if you try to do something like "x =

1.2;" when x is a variable of type float. You have to say "x = 1.2F;". This is one reason why I

advise sticking to type double for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such as 177777 and

-32 are literals of type byte, short, or int, depending on their size. You can make a literal of

type long by adding "L" as a suffix. For example: 17L or 728476874368L. As another

complication, Java allows octal (base-8) and hexadecimal (base-16) literals. I don't want to

cover base-8 and base-16 in detail, but in case you run into them in other people's programs,

it's worth knowing a few things: Octal numbers use only the digits 0 through 7. In Java, a

numeric literal that begins with a 0 is interpreted as an octal number; for example, the literal

045 represents the number 37, not the number 45. Hexadecimal numbers use 16 digits, the

usual digits 0 through 9 and the letters A, B, C, D, E, and F. Upper case and lower case letters

can be used interchangeably in this context. The letters represent the numbers 10 through 15.

In Java, a hexadecimal literal begins with 0x or 0X, as in 0x45 or 0xFF7A.

Hexadecimal numbers are also used in character literals to represent arbitrary Unicode

characters. A Unicode literal consists of \u followed by four hexadecimal digits. For example,

the character literal '\u00E9' represents the Unicode character that is an "e" with an acute

accent. Java 7 introduces a couple of minor improvements in numeric literals. First of all,

numeric literals in Java 7 can include the underscore character ("_"), which can be used to

separate groups of digits. For example, the integer constant for one billion could be written

1_000_000_000, which is a good deal easier to decipher than 1000000000. There is no rule

about how many digits have to be in each group. Java 7 also supports binary numbers, using

the digits 0 and 1 and the prefix 0b (or OB). For example: 0b10110 or 0b1010_1100_1011.

75

For the type boolean, there are precisely two literals: true and false. These literals are typed

just as I've written them here, without quotes, but they represent values, not variables.

Boolean values occur most often as the values of conditional expressions. For example,

rate > 0.05 is a boolean-valued expression that evaluates to true if the value of the variable

rate is greater than 0.05, and to false if the value of rate is not greater than 0.05. As you'll see

oolean-valued expressions are used extensively in control structures. Of course, boolean

values can also be assigned to variables of type boolean.

Java has other types in addition to the primitive types, but all the other types represent objects

rather than "primitive" data values. For the most part, we are not concerned with objects for

the time being. However, there is one predefined object type that is very important: the type

String. A String is a sequence of characters. You've already seen a string literal: "Hello

World!". The double quotes are part of the literal; they have to be typed in the program.

However, they are not part of the actual string value, which consists of just the characters

between the quotes. Within a string, special characters can be represented using the backslash

notation. Within this context, the double quote is itself a special character. For example, to

represent the string value

I said, "Are you listening!"

with a linefeed at the end, you would have to type the string literal:

"I said, \"Are you listening!\"\n"

You can also use \t, \r, \\, and Unicode sequences such as \u00E9 to represent other special

characters in string literals. Because strings are objects, their behavior in programs is peculiar

in some respects (to someone who is not used to objects). I'll have more to say about them in

the next section.

Self -Assessment Questions

Self-Assessment Answers

3.3 Variables in Programs

A variable can be used in a program only if it has first been declared. A variable declaration

statement is used to declare one or more variables and to give them names. When the

computer executes a variable declaration, it sets aside memory for the variable and associates

the variable's name with that memory. A simple variable declaration takes the form:

type-name variable-name-or-names;

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

76

The variable-name-or-names can be a single variable name or a list of variable names

separated by commas. (We'll see later that variable declaration statements can actually be

somewhat more complicated than this.) Good programming style is to declare only one

variable in a declaration statement, unless the variables are closely related in some way. For

example:

int numberOfStudents;

String name;

double x, y;

boolean isFinished;

char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to explain its

purpose in the program, or to give other information that might be useful to a human reader.

For example:

double principal; // Amount of money invested.

double interestRate; // Rate as a decimal, not percentage.

In this chapter, we will only use variables declared inside the main() subroutine of a program.

Variables declared inside a subroutine are called local variables for that subroutine. They

exist only inside the subroutine, while it is running, and are completely inaccessible from

outside. Variable declarations can occur anywhere inside the subroutine, as long as each

variable is declared before it is used in any expression. Some people like to declare all the

variables at the beginning of the subroutine. Others like to wait to declare a variable until it is

needed. My preference: Declare important variables at the beginning of the subroutine, and

use a comment to explain the purpose of each variable. Declare "utility variables" which are

not important to the overall logic of the subroutine at the point in the subroutine where they

are first used. Here is a simple program using some variables and assignment statements:

/**

 * This class implements a simple program that

 * will compute the amount of interest that is

 * earned on $17,000 invested at an interest

 * rate of 0.07 for one year. The interest and

 * the value of the investment after one year are

 * printed to standard output.

 */

 public class Interest {

 public static void main(String[] args) {

 /* Declare the variables. */

 double principal; // The value of the investment.

 double rate; // The annual interest rate.

 double interest; // Interest earned in one year.

 /* Do the computations. */

 principal = 17000;

 rate = 0.07;

77

 interest = principal * rate; // Compute the interest.

 principal = principal + interest;

 // Compute value of investment after one year, with interest.

 // (Note: The new value replaces the old value of principal.)

 /* Output the results. */

 System.out.print("The interest earned is $");

 System.out.println(interest);

 System.out.print("The value of the investment after one year is $");

 System.out.println(principal);

 } // end of main()

} // end of class Interest

This program uses several subroutine call statements to display information to the user of the

program. Two different subroutines are used: System.out.print and System.out.println. The

difference between these is that System.out.println adds a linefeed after the end of the

information that it displays, while System.out.print does not. Thus, the value of interest,

which is displayed by the subroutine call "System.out.println(interest);", follows on the same

line after the string displayed by the previous System.out.print statement. Note that the value

to be displayed by System.out.print or System.out.println is provided in parentheses after the

subroutine name. This value is called a parameter to the subroutine.

A parameter provides a subroutine with information it needs to perform its task. In a

subroutine call statement, any parameters are listed in parentheses after the subroutine name.

Not all subroutines have parameters. If there are no parameters in a subroutine call statement,

the subroutine name must be followed by an empty pair of parentheses.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

An abstract class is a class that is designed to be specifically used as a base class. An abstract

class contains at least one pure virtual function. You declare a pure virtual function by using

a pure specifier (= 0) in the declaration of a virtual member function in the class declaration.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

78

You cannot use an abstract class as a parameter type, a function return type, or the type of an

explicit conversion, nor can you declare an object of an abstract class. You can, however,

declare pointers and references to an abstract class.

You can call member functions from a constructor or destructor of an abstract class.

However, the results of calling (directly or indirectly) a pure virtual function from its

constructor are undefined.

5.0 Summary

1. Primitive variables are places in the computer where primitive data is stored. You can

think of them as boxes.

2. Each variable or box must have a data type associated with it, which describes the

kind of data that it can store. Some examples of primitive types

are int, double, boolean, and char.

3. Variables are created by 'declaring' them to the computer. You have to specify the

name of the variable and its data type.

4. Giving a value to a variable to store is called assigning the variable. If it is the first

value it is going to hold, then it is called initializing the variable.

6.0 Tutor-Marked Assignment (TMA)

1. A variable is not a name for the data itself but for a location in memory that can hold

data: True or False?

2. When can a variable be used in a program?

3. It is customary for names of classes to begin with lower case letters, while names of

variables and of subroutines begin with upper case letter: Yes or No?

4. How many are there so-called primitive types built into Java?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Primitive_data_type

http://sydney.edu.au/engineering/it/~jchan3/soft1001/jme/primitive_variables/index.html

http://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

http://en.wikipedia.org/wiki/Primitive_data_type
http://sydney.edu.au/engineering/it/~jchan3/soft1001/jme/primitive_variables/index.html
http://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

79

Unit 2

Control Flow Statements
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

 3.1 The if-then and if-then-else Statements

3.2 The if-then-else Statement

3.3 The Switch Statement

3.4 Using Strings in switch Statements

3.5 The while and do-while Statements

 3.6 The for Statement

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

80

1.0 Introduction

The statements inside your source files are generally executed from top to bottom, in the

order that they appear. Control flow statements, however, break up the flow of execution by

employing decision making, looping, and branching, enabling your program to conditionally

execute particular blocks of code. This section describes the decision-making statements (if-

then, if-then-else, switch), the looping statements (for, while, do-while), and the branching

statements (break, continue, return) supported by the Java programming language.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. know control flow statements;

2. use if-then and if-then-else Statements; and

3. know and use the switch Statement.

3.0 Learning Contents

3.1 The if-then and if-then-else Statements

The if-then statement is the most basic of all the control flow statements. It tells your

program to execute a certain section of code only if a particular test evaluates to true. For

example, the Bicycle class could allow the brakes to decrease the bicycle's speed only if the

bicycle is already in motion. One possible implementation of the applyBrakes method could

be as follows:

void applyBrakes() {

 // the "if" clause: bicycle must be moving

 if (isMoving){

 // the "then" clause: decrease current speed

 currentSpeed--;

 }

}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the

end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the "then" clause

contains only one statement:

void applyBrakes() {

81

 // same as above, but without braces

 if (isMoving)

 currentSpeed--;

}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make the

code more brittle. If a second statement is later added to the "then" clause, a common mistake

would be forgetting to add the newly required braces. The compiler cannot catch this sort of

error; you'll just get the wrong results.

Self -Assessment Questions

Self-Assessment Answers

3.2 The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause

evaluates to false. You could use an if-then-else statement in the applyBrakes method to take

some action if the brakes are applied when the bicycle is not in motion. In this case, the

action is to simply print an error message stating that the bicycle has already stopped.

void applyBrakes() {

 if (isMoving) {

 currentSpeed--;

 } else {

 System.err.println("The bicycle has " + "already stopped!");

 }

}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A

for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {

 public static void main(String[] args) {

 int testscore = 76;

 char grade;

 if (testscore >= 90) {

 grade = 'A';

 } else if (testscore >= 80) {

 grade = 'B';

 } else if (testscore >= 70) {

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

82

 grade = 'C';

 } else if (testscore >= 60) {

 grade = 'D';

 } else {

 grade = 'F';

 }

 System.out.println("Grade = " + grade);

 }

}

The output from the program is:

 Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the

compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the

appropriate statements are executed (grade = 'C';) and the remaining conditions are not

evaluated.

Self -Assessment Questions

Self-Assessment Answers

3.3 The Switch Statement

Unlike if-then and if-then-else statements, the switch statement can have a number of

possible execution paths. A switch works with the byte, short, char, and int primitive data

types. It also works with enumerated types (discussed in Enum Types), the String class, and a

few special classes that wrap certain primitive types: Character, Byte, Short, and Integer

(discussed in Numbers and Strings).

The following code example, SwitchDemo, declares an int named month whose value

represents a month. The code displays the name of the month, based on the value of month,

using the switch statement.

public class SwitchDemo {

 public static void main(String[] args) {

 int month = 8;

 String monthString;

 switch (month) {

 case 1: monthString = "January";

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

83

 break;

 case 2: monthString = "February";

 break;

 case 3: monthString = "March";

 break;

 case 4: monthString = "April";

 break;

 case 5: monthString = "May";

 break;

 case 6: monthString = "June";

 break;

 case 7: monthString = "July";

 break;

 case 8: monthString = "August";

 break;

 case 9: monthString = "September";

 break;

 case 10: monthString = "October";

 break;

 case 11: monthString = "November";

 break;

 case 12: monthString = "December";

 break;

 default: monthString = "Invalid month";

 break;

 }

 System.out.println(monthString);

 }

}

In this case, August is printed to standard output.

The body of a switch statement is known as a switch block. A statement in the switch block

can be labeled with one or more case or default labels. The switch statement evaluates its

expression, then executes all statements that follow the matching case label.

You could also display the name of the month with if-then-else statements:

int month = 8;

if (month == 1) {

 System.out.println("January");

} else if (month == 2) {

 System.out.println("February");

}

... // and so on

84

Deciding whether to use if-then-else statements or a switch statement is based on readability

and the expression that the statement is testing. An if-then-else statement can test expressions

based on ranges of values or conditions, whereas a switch statement tests expressions based

only on a single integer, enumerated value, or String object.

Another point of interest is the break statement. Each break statement terminates the

enclosing switch statement. Control flow continues with the first statement following the

switch block. The break statements are necessary because without them, statements in switch

blocks fall through: All statements after the matching case label are executed in sequence,

regardless of the expression of subsequent case labels, until a break statement is encountered.

The program SwitchDemoFallThrough shows statements in a switch block that fall through.

The program displays the month corresponding to the integer month and the months that

follow in the year:

public class SwitchDemoFallThrough {

 public static void main(String args[]) {

 java.util.ArrayList<String> futureMonths =

 new java.util.ArrayList<String>();

 int month = 8;

 switch (month) {

 case 1: futureMonths.add("January");

 case 2: futureMonths.add("February");

 case 3: futureMonths.add("March");

 case 4: futureMonths.add("April");

 case 5: futureMonths.add("May");

 case 6: futureMonths.add("June");

 case 7: futureMonths.add("July");

 case 8: futureMonths.add("August");

 case 9: futureMonths.add("September");

 case 10: futureMonths.add("October");

 case 11: futureMonths.add("November");

 case 12: futureMonths.add("December");

 break;

 default: break;

 }

 if (futureMonths.isEmpty()) {

 System.out.println("Invalid month number");

 } else {

 for (String monthName : futureMonths) {

 System.out.println(monthName);

 }

 }

 }

}

85

This is the output from the code:

August

September

October

November

December

Technically, the final break is not required because flow falls out of the switch statement.

Using a break is recommended so that modifying the code is easier and less error prone. The

default section handles all values that are not explicitly handled by one of the case sections.

The following code example, SwitchDemo2, shows how a statement can have multiple case

labels. The code example calculates the number of days in a particular month:

class SwitchDemo2 {

 public static void main(String[] args) {

 int month = 2;

 int year = 2000;

 int numDays = 0;

 switch (month) {

 case 1: case 3: case 5:

 case 7: case 8: case 10:

 case 12:

 numDays = 31;

 break;

 case 4: case 6:

 case 9: case 11:

 numDays = 30;

 break;

 case 2:

 if (((year % 4 == 0) &&

 !(year % 100 == 0))

 || (year % 400 == 0))

 numDays = 29;

 else

 numDays = 28;

 break;

 default:

 System.out.println("Invalid month.");

 break;

 }

 System.out.println("Number of Days = "

 + numDays);

 }

}

This is the output from the code:

86

Number of Days = 29

Self -Assessment Questions

Self-Assessment Answers

3.4 Using Strings in switch Statements

In Java SE 7 and later, you can use a String object in the switch statement's expression. The

following code example, StringSwitchDemo, displays the number of the month based on the

value of the String named month:

public class StringSwitchDemo {

 public static int getMonthNumber(String month) {

 int monthNumber = 0;

 if (month == null) {

 return monthNumber;

 }

 switch (month.toLowerCase()) {

 case "january":

 monthNumber = 1;

 break;

 case "february":

 monthNumber = 2;

 break;

 case "march":

 monthNumber = 3;

 break;

 case "april":

 monthNumber = 4;

 break;

 case "may":

 monthNumber = 5;

 break;

 case "june":

 monthNumber = 6;

 break;

 case "july":

 monthNumber = 7;

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

87

 break;

 case "august":

 monthNumber = 8;

 break;

 case "september":

 monthNumber = 9;

 break;

 case "october":

 monthNumber = 10;

 break;

 case "november":

 monthNumber = 11;

 break;

 case "december":

 monthNumber = 12;

 break;

 default:

 monthNumber = 0;

 break;

 }

 return monthNumber;

 }

 public static void main(String[] args) {

 String month = "August";

 int returnedMonthNumber =

 StringSwitchDemo.getMonthNumber(month);

 if (returnedMonthNumber == 0) {

 System.out.println("Invalid month");

 } else {

 System.out.println(returnedMonthNumber);

 }

 }

}

The output from this code is 8.

The String in the switch expression is compared with the expressions associated with each

case label as if the String.equals method were being used. In order for the StringSwitchDemo

example to accept any month regardless of case, month is converted to lowercase (with the

toLowerCase method), and all the strings associated with the case labels are in lowercase.

Note: This example checks if the expression in the switch statement is null. Ensure that the

expression in any switch statement is not null to prevent a NullPointerException from being

thrown.

Self -Assessment Questions

Please insert Self-Assessment Questions

88

Self-Assessment Answers

3.5 The while and do-while Statements

The while statement continually executes a block of statements while a particular condition is

true. Its syntax can be expressed as:

while (expression) {

 statement(s)

}

The while statement evaluates expression, which must return a boolean value. If the

expression evaluates to true, the while statement executes the statement(s) in the while block.

The while statement continues testing the expression and executing its block until the

expression evaluates to false. Using the while statement to print the values from 1 through 10

can be accomplished as in the following WhileDemo program:

class WhileDemo {

 public static void main(String[] args){

 int count = 1;

 while (count < 11) {

 System.out.println("Count is: "

 + count);

 count++;

 }

 }

}

You can implement an infinite loop using the while statement as follows:

while (true){

 // your code goes here

}

The Java programming language also provides a do-while statement, which can be

expressed as follows:

do {

 statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at

the bottom of the loop instead of the top. Therefore, the statements within the do block are

always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {

Please insert Self-Assessment Answers

89

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: "

 + count);

 count++;

 } while (count < 11);

 }

}

Self -Assessment Questions

Self-Assessment Answers

3.6 The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers

often refer to it as the "for loop" because of the way in which it repeatedly loops until a

particular condition is satisfied. The general form of the for statement can be expressed as

follows:

for (initialization; termination;

 increment) {

 statement(s)

}

When using this version of the for statement, keep in mind that: The initialization expression

initializes the loop; it's executed once, as the loop begins. When the termination expression

evaluates to false, the loop terminates. The increment expression is invoked after each

iteration through the loop; it is perfectly acceptable for this expression to increment or

decrement a value.

The following program, ForDemo, uses the general form of the for statement to print the

numbers 1 through 10 to standard output:

class ForDemo {

 public static void main(String[] args){

 for(int i=1; i<11; i++){

 System.out.println("Count is: "

 + i);

 }

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

90

 }

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

Notice how the code declares a variable within the initialization expression. The scope of this

variable extends from its declaration to the end of the block governed by the for statement, so

it can be used in the termination and increment expressions as well. If the variable that

controls a for statement is not needed outside of the loop, it's best to declare the variable in

the initialization expression. The names i, j, and k are often used to control for loops;

declaring them within the initialization expression limits their life span and reduces errors.

The three expressions of the for loop are optional; an infinite loop can be created as

follows:

// infinite loop

for (; ;) {

 // your code goes here

}

The for statement also has another form designed for iteration through Collections and arrays

This form is sometimes referred to as the enhanced for statement, and can be used to make

your loops more compact and easy to read. To demonstrate, consider the following array,

which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

The following program, EnhancedForDemo, uses the enhanced for to loop through the array:

class EnhancedForDemo {

 public static void main(String[] args){

 int[] numbers =

 {1,2,3,4,5,6,7,8,9,10};

 for (int item : numbers) {

 System.out.println("Count is: "

 + item);

 }

 }

}

91

In this example, the variable item holds the current value from the numbers array. The output

from this program is the same as before:

Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

Count is: 8

Count is: 9

Count is: 10

We recommend using this form of the for statement instead of the general form whenever

possible.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Statements are the ``steps'' of a program. Most statements compute and assign values or call

functions, but we will eventually meet several other kinds of statements as well. By default,

statements are executed in sequence, one after another. We can, however, modify that

sequence by using control flow constructs which arrange that a statement or group of

statements is executed only if some condition is true or false, or executed over and over again

to form a loop.

5.0 Summary

The if-then statement is the most basic of all the control flow statements. It tells your

program to execute a certain section of code only if a particular test evaluates to true. The if-

then-else statement provides a secondary path of execution when an "if" clause evaluates to

false. Unlike if-then and if-then-else, the switch statement allows for any number of possible

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

92

execution paths. The while and do-while statements continually execute a block of statements

while a particular condition is true. The difference between do-while and while is that do-

while evaluates its expression at the bottom of the loop instead of the top. Therefore, the

statements within the do block are always executed at least once. The for statement provides

a compact way to iterate over a range of values. It has two forms, one of which was designed

for looping through collections and arrays.

6.0 Tutor-Marked Assignment (TMA)

1. Each break statement terminates the enclosing switch statement: True or

False?

2. What continues with the first statement following the switch block?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Control_flow

http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/nutsandbolts/while.html

http://www.eskimo.com/~scs/cclass/notes/sx3.html

http://en.wikipedia.org/wiki/Control_flow
http://www.karlin.mff.cuni.cz/network/prirucky/javatut/java/nutsandbolts/while.html
http://www.eskimo.com/~scs/cclass/notes/sx3.html

93

Module5

Arrays and Strings
Unit 1: Arrays

Unit 2: Strings

94

Unit 1

Arrays
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Declaring a Variable to Refer to an Array

3.2 Creating, Initializing, and Accessing an Array

3.3 Copying Arrays

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

95

1.0 Introduction

In JAVA there are two types in programming language theory, a reference type is a data type

that can only be accessed by references. Unlike objects of value types, objects of reference

types cannot be directly embedded into composite objects and are always dynamically

allocated. They are usually destroyed automatically after they become unreachable.

For immutable objects, the distinction between reference type to an immutable object type

and value type is sometimes unclear, because a reference type variable to an immutable

object behaves with the same semantics as a value type variable—for example, in both cases

the "value" of the data the variable represents can only be changed by direct assignment to

the variable (whereas for mutable objects, the data could be changed by modifying the object

through another reference to the object).

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. Define an array

2. Know and use arrays

3. Create and initialize arrays

3.0 Learning Contents

There are four kinds of reference types: class types, interface types, type variables, and array

types. In this module we’ll talk about arrays.

An array is a container object that holds a fixed number of values of a single type. The length

of an array is established when the array is created. After creation, its length is fixed. You've

seen an example of arrays already, in the main method of the "Hello World!" application

(figure 5.1). This unit discusses arrays in greater detail.

Figure 5.1 Array of ten elements

Each item in an array is called an element, and each element is accessed by its

numerical index. As shown in the above illustration, numbering begins with 0. The 9th

element, for example, would therefore be accessed at index 8.

96

The following program, ArrayDemo, creates an array of integers, puts some values in it, and

prints each value to standard output.

class ArrayDemo {

 public static void main(String[] args) {

 // declares an array of integers

 int[] anArray;

 // allocates memory for 10 integers

 anArray = new int[10];

 // initialize first element

 anArray[0] = 100;

 // initialize second element

 anArray[1] = 200;

 // etc.

 anArray[2] = 300;

 anArray[3] = 400;

 anArray[4] = 500;

 anArray[5] = 600;

 anArray[6] = 700;

 anArray[7] = 800;

 anArray[8] = 900;

 anArray[9] = 1000;

 System.out.println("Element at index 0: "

 + anArray[0]);

 System.out.println("Element at index 1: "

 + anArray[1]);

 System.out.println("Element at index 2: "

 + anArray[2]);

 System.out.println("Element at index 3: "

 + anArray[3]);

 System.out.println("Element at index 4: "

 + anArray[4]);

 System.out.println("Element at index 5: "

 + anArray[5]);

 System.out.println("Element at index 6: "

 + anArray[6]);

 System.out.println("Element at index 7: "

 + anArray[7]);

 System.out.println("Element at index 8: "

 + anArray[8]);

 System.out.println("Element at index 9: "

 + anArray[9]);

 }

}

The output from this program is:

Element at index 0: 100

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/ArrayDemo.java

97

Element at index 1: 200

Element at index 2: 300

Element at index 3: 400

Element at index 4: 500

Element at index 5: 600

Element at index 6: 700

Element at index 7: 800

Element at index 8: 900

Element at index 9: 1000

In a real-world programming situation, you'd probably use one of the supported looping

constructs to iterate through each element of the array, rather than write each line

individually as shown above. However, this example clearly illustrates the array syntax.

You'll learn about the various looping constructs (for, while, and do-while) in the Control

Flow unit.

Self -Assessment Questions

Self-Assessment Answers

3.1 Declaring a Variable to Refer to an Array

The above program declares anArray with the following line of code:

// declares an array of integers

int[] anArray;

Like declarations for variables of other types, an array declaration has two components: the

array's type and the array's name. An array's type is written as type[], where type is the data

type of the contained elements; the square brackets are special symbols indicating that this

variable holds an array. The size of the array is not part of its type (which is why the brackets

are empty). An array's name can be anything you want, provided that it follows the rules and

conventions as previously discussed in the naming section. As with variables of other types,

the declaration does not actually create an array — it simply tells the compiler that this

variable will hold an array of the specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

98

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the square brackets after the array's name:

// this form is discouraged

float anArrayOfFloats[];

However, convention discourages this form; the brackets identify the array type and

should appear with the type designation.

Self -Assessment Questions

Self-Assessment Answers

3.2 Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in

the ArrayDemo program allocates an array with enough memory for ten integer elements and

assigns the array to the anArray variable.

// create an array of integers

anArray = new int[10];

If this statement were missing, the compiler would print an error like the following, and

compilation would fail:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = {

 100, 200, 300,

 400, 500, 600,

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

99

 700, 800, 900, 1000

};

Here the length of the array is determined by the number of values provided

between { and }.

You can also declare an array of arrays (also known as a multidimensional array) by using

two or more sets of square brackets, such as String[][] names. Each element, therefore, must

be accessed by a corresponding number of index values.

In the Java programming language, a multidimensional array is simply an array whose

components are themselves arrays. This is unlike arrays in C or Fortran. A consequence of

this is that the rows are allowed to vary in length, as shown in the

following MultiDimArrayDemoprogram:

class MultiDimArrayDemo {

 public static void main(String[] args) {

 String[][] names = {

 {"Mr. ", "Mrs. ", "Ms. "},

 {"Smith", "Jones"}

 };

 // Mr. Smith

 System.out.println(names[0][0] + names[1][0]);

 // Ms. Jones

 System.out.println(names[0][2] + names[1][1]);

 }

}

The output from this program is:

Mr. Smith

Ms. Jones

Finally, you can use the built-in length property to determine the size of any array. The

code System.out.println(anArray.length);

will print the array's size to standard output.

Self -Assessment Questions

Self-Assessment Answers

3.3 Copying Arrays

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

100

The System class has an arraycopy method that you can use to efficiently copy data from one

array into another:

public static void arraycopy(Object src, int srcPos,

 Object dest, int destPos, int length)

The two Object arguments specify the array to copy from and the array to copy to. The

three int arguments specify the starting position in the source array, the starting position in

the destination array, and the number of array elements to copy.

The following program, ArrayCopyDemo, declares an array of char elements, spelling the

word "decaffeinated". It uses arraycopy to copy a subsequence of array components into a

second array:

class ArrayCopyDemo {

 public static void main(String[] args) {

 char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e',

 'i', 'n', 'a', 't', 'e', 'd' };

 char[] copyTo = new char[7];

 System.arraycopy(copyFrom, 2, copyTo, 0, 7);

 System.out.println(new String(copyTo));

 }

}

The output from this program is:

Caffeine.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

Arrays are ordered, integer-indexed collections of any object. Array indexing starts at 0, as in

C or Java. A negative index is assumed to be relative to the end of the array—that is, an index

of -1 indicates the last element of the array, -2 is the next to last element in the array, and so

on.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/ArrayCopyDemo.java

101

5.0 Summary

A collection of data items that can be selected by indices computed at run-time, including:

Array data structure, an arrangement of items at equally spaced addresses in computer

memory

Array data type, used in a programming language to specify a variable that can be

indexed

Associative array, an abstract data structure model that generalizes arrays to arbitrary

indices.

6.0 Tutor-Marked Assignment (TMA)

1. What is an array?

2. How is each item in an array called?

3. One way to create an array is with the new operator: Yes or No?

4. Write first element of array B[9]?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/Array

http://www.ruby-doc.org/core-1.9.3/Array.html

http://www.boost.org/doc/libs/1_51_0/doc/html/array.html

http://tldp.org/LDP/abs/html/arrays.html

http://en.wikipedia.org/wiki/Array
http://www.ruby-doc.org/core-1.9.3/Array.html
http://www.boost.org/doc/libs/1_51_0/doc/html/array.html
http://tldp.org/LDP/abs/html/arrays.html

102

Unit2

 Strings
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Creating Strings

3.2 String Length

3.3 Concatenating Strings

3.4 Creating Format Strings

3.5 Converting Strings to Numbers

3.6 Converting Numbers to Strings

3.7 Manipulating Characters in a String

3.8 Getting Characters and Substrings by Index

3.9 Other Methods for Manipulating Strings

3.10 Searching for Characters and Substrings in a String

3.11 Replacing Characters and Substrings into a String

3.12 Comparing Strings and Portions of Strings

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further.

103

1.0 Introduction

Strings, which are widely used in Java programming, are a sequence of characters. In the Java

programming language, strings are objects. The Java platform provides the String class to

create and manipulate strings.

2.0 Learning Outcomes

At the end of this unit you will be able to:

1. define strings;

2. know how to create strings;

3. concatenate strings; and

4. convert strings to numbers.

3.0 Learning Contents

3.1 Creating Strings

The most direct way to create a string is to write:

String greeting = "Hello world!";

In this case, "Hello world!" is a string literal—a series of characters in your code that is

enclosed in double quotes. Whenever it encounters a string literal in your code, the compiler

creates a String object with its value—in this case, Hello world!.

As with any other object, you can create String objects by using the new keyword and a

constructor. The String class has thirteen constructors that allow you to provide the initial

value of the string using different sources, such as an array of characters:

char[] helloArray = { 'h', 'e', 'l', 'l', 'o', '.' };

String helloString = new String(helloArray);

System.out.println(helloString);

The last line of this code snippet displays hello.

Note: The String class is immutable, so that once it is created a String object cannot be

changed. The String class has a number of methods, some of which will be discussed below,

that appear to modify strings. Since strings are immutable, what these methods really do is

create and return a new string that contains the result of the operation.

Self -Assessment Questions

Please insert Self-Assessment Questions

104

Self-Assessment Answers

3.2 String Length

Methods used to obtain information about an object are known as accessory methods. One

accessor method that you can use with strings is the length() method, which returns the

number of characters contained in the string object. After the following two lines of code

have been executed, len equals 17:

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled the same forward and

backward, ignoring case and punctuation. Here is a short and inefficient program to reverse a

palindrome string. It invokes the String method charAt(i), which returns the ith character in

the string, counting from 0.

public class StringDemo {

 public static void main(String[] args) {

 String palindrome = "Dot saw I was Tod";

 int len = palindrome.length();

 char[] tempCharArray = new char[len];

 char[] charArray = new char[len];

 // put original string in an

 // array of chars

 for (int i = 0; i < len; i++) {

 tempCharArray[i] =

 palindrome.charAt(i);

 }

 // reverse array of chars

 for (int j = 0; j < len; j++) {

 charArray[j] =

 tempCharArray[len - 1 - j];

 }

 String reversePalindrome =

 new String(charArray);

 System.out.println(reversePalindrome);

 }

}

Running the program produces this output: doT saw I was to D

Please insert Self-Assessment Answers

105

To accomplish the string reversal, the program had to convert the string to an array of

characters (first for loop), reverse the array into a second array (second for loop), and then

convert back to a string. The String class includes a method, getChars(), to convert a string,

or a portion of a string, into an array of characters so we could replace the first for loop in the

program above with palindrome.getChars(0, len, tempCharArray, 0);

Self -Assessment Questions

Self-Assessment Answers

3.3 Concatenating Strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at the end.

You can also use the concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in

"Hello," + " world" + "!"

which results in

"Hello, world!"

The + operator is widely used in print statements. For example:

String string1 = "saw I was ";

System.out.println("Dot " + string1 + "Tod");

which prints

Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each object that is not a

String, its toString() method is called to convert it to a String.

Note: The Java programming language does not permit literal strings to span lines in

source files, so you must use the + concatenation operator at the end of each line in a multi-

line string. For example:

String quote =

 "Now is the time for all good " +

 "men to come to the aid of their country.";

Breaking strings between lines using the + concatenation operator is, once again, very

common in print statements.

Self -Assessment Questions

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

106

Self-Assessment Answers

3.4 Creating Format Strings

You have seen the use of the printf() and format() methods to print output with formatted

numbers. The String class has an equivalent class method, format(), that returns a String

object rather than a PrintStream object.

Using String's static format() method allows you to create a formatted string that you

can reuse, as opposed to a one-time print statement. For example, instead of

System.out.printf("The value of the float " +

 "variable is %f, while " +

 "the value of the " +

 "integer variable is %d, " +

 "and the string is %s",

 floatVar, intVar, stringVar);

you can write

String fs;

fs = String.format("The value of the float " +

 "variable is %f, while " +

 "the value of the " +

 "integer variable is %d, " +

 " and the string is %s",

 floatVar, intVar, stringVar);

System.out.println(fs);

Self -Assessment Questions

Self-Assessment Answers

3.5 Converting Strings to Numbers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

107

Frequently, a program ends up with numeric data in a string object—a value entered by the

user, for example.

The Number subclasses that wrap primitive numeric types

(Byte, Integer, Double, Float, Long, and Short) each provide a class method

named valueOf that converts a string to an object of that type. Here is an

example, ValueOfDemo , that gets two strings from the command line, converts them to

numbers, and performs arithmetic operations on the values:

public class ValueOfDemo {

 public static void main(String[] args) {

 // this program requires two

 // arguments on the command line

 if (args.length == 2) {

 // convert strings to numbers

 float a = (Float.valueOf(args[0])).floatValue();

 float b = (Float.valueOf(args[1])).floatValue();

 // do some arithmetic

 System.out.println("a + b = " +

 (a + b));

 System.out.println("a - b = " +

 (a - b));

 System.out.println("a * b = " +

 (a * b));

 System.out.println("a / b = " +

 (a / b));

 System.out.println("a % b = " +

 (a % b));

 } else {

 System.out.println("This program " +

 "requires two command-line arguments.");

 }

 }

}

The following is the output from the program when you use 4.5 and 87.2 for the

command-line arguments:

a + b = 91.7

a - b = -82.7

a * b = 392.4

a / b = 0.0516055

a % b =

Note: Each of the Number subclasses that wrap primitive numeric types also provides

a parseXXXX() method (for example, parseFloat()) that can be used to convert strings to

primitive numbers. Since a primitive type is returned instead of an object,

108

the parseFloat() method is more direct than the valueOf() method. For example, in

the ValueOfDemo program, we could use:

float a = Float.parseFloat(args[0]);

float b = Float.parseFloat(args[1]);

Self -Assessment Questions

Self-Assessment Answers

3.6 Converting Numbers to Strings

Sometimes you need to convert a number to a string because you need to operate on the value

in its string form. There are several easy ways to convert a number to a string:

int i;

// Concatenate "i" with an empty string; conversion is handled for you.

String s1 = "" + i;

or

// The valueOf class method.

String s2 = String.valueOf(i);

Each of the Number subclasses includes a class method, toString(), that will convert its

primitive type to a string. For example:

int i;

double d;

String s3 = Integer.toString(i);

String s4 = Double.toString(d);

The ToStringDemo example uses the toString method to convert a number to a string.

The program then uses some string methods to compute the number of digits before and after

the decimal point:

public class ToStringDemo {

 public static void main(String[] args) {

 double d = 858.48;

 String s = Double.toString(d);

 int dot = s.indexOf('.');

 System.out.println(dot + " digits " +

 "before decimal point.");

 System.out.println((s.length() - dot - 1) +

 " digits after decimal point.");

 }

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

109

}

The output of this program is:

3 digits before decimal point.

2 digits after decimal point.

Self -Assessment Questions

Self-Assessment Answers

3.7 Manipulating Characters in a String

The String class has a number of methods for examining the contents of strings, finding

characters or substrings within a string, changing case, and other tasks.

Self -Assessment Questions

Self-Assessment Answers

3.8 Getting Characters and Substrings by Index

You can get the character at a particular index within a string by invoking

the charAt() accessor method. The index of the first character is 0, while the index of the last

character is length()-1. For example, the following code gets the character at index 9 in a

string:

String anotherPalindrome = "Niagara. O roar again!";

char aChar = anotherPalindrome.charAt(9);

Indices begin at 0, so the character at index 9 is 'O', as illustrated in the following

figure 5.2.

Figure 5.2 Indices begin at 0, so the character at index 9 is 'O'

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

110

If you want to get more than one consecutive character from a string, you can use

the substring method. The substring method has two versions, as shown in the following table

5.1.

Method Description

String substring(int beginIndex, int

endIndex)

Returns a new string that is a substring of this string.

The first integer argument specifies the index of the

first character. The second integer argument is the

index of the last character - 1.

String substring(int beginIndex)

Returns a new string that is a substring of this string.

The integer argument specifies the index of the first

character. Here, the returned substring extends to the

end of the original string.

Table 5.1 The substring Methods in the String Class

The following code gets from the Niagara palindrome the substring that extends from index

11 up to, but not including, index 15, which is the word "roar":

String anotherPalindrome = "Niagara. O roar again!";

String roar = anotherPalindrome.substring(11, 15);

Figure 5.3 Following code.

Self -Assessment Questions

Self-Assessment Answers

3.9 Other Methods for Manipulating Strings

Here are several other String methods for manipulating strings (table 5.2).

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

111

Method Description

String[] split(String regex)

String[] split(String regex, int limit)

Searches for a match as specified by the

string argument (which contains a regular

expression) and splits this string into an array

of strings accordingly. The optional integer

argument specifies the maximum size of the

returned array. Regular expressions are

covered in the lesson titled "Regular

Expressions."

CharSequence subSequence(int beginIndex,

int endIndex)

Returns a new character sequence

constructed from beginIndex index up

untilendIndex - 1.

String trim()
Returns a copy of this string with leading and

trailing white space removed.

String toLowerCase()

String toUpperCase()

Returns a copy of this string converted to

lowercase or uppercase. If no conversions are

necessary, these methods return the original

string.

Table 5.2 Other Methods in the String Class for Manipulating Strings.

Self -Assessment Questions

Self-Assessment Answers

3.10 Searching for Characters and Substrings in a String

Here are some other String methods for finding characters or substrings within a string.

The String class provides accessor methods that return the position within the string of a

specific character or substring: indexOf() and lastIndexOf(). The indexOf() methods search

forward from the beginning of the string, and the lastIndexOf()methods search backward

from the end of the string. If a character or substring is not

found, indexOf() and lastIndexOf() return -1.

The String class also provides a search method, contains, that returns true if the string

contains a particular character sequence. Use this method when you only need to know that

the string contains a character sequence, but the precise location isn't important.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

112

The following table describes the various string search methods (table 5.3).

Method Description

int indexOf(int ch)

int lastIndexOf(int ch)

Returns the index of the first (last)

occurrence of the specified character.

int indexOf(int ch, int fromIndex)

int lastIndexOf(int ch, int fromIndex)

Returns the index of the first (last)

occurrence of the specified character,

searching forward (backward) from the

specified index.

int indexOf(String str)

int lastIndexOf(String str)

Returns the index of the first (last)

occurrence of the specified substring.

int indexOf(String str, int fromIndex)

int lastIndexOf(String str, int fromIndex)

Returns the index of the first (last)

occurrence of the specified substring,

searching forward (backward) from the

specified index.

boolean contains(CharSequence s)
Returns true if the string contains the

specified character sequence.

Table 5.3 The Search Methods in the String Class

Note: CharSequence is an interface that is implemented by the String class. Therefore, you

can use a string as an argument for the contains() method.

Self -Assessment Questions

Self-Assessment Answers

3.11 Replacing Characters and Substrings into a String

The String class has very few methods for inserting characters or substrings into a string. In

general, they are not needed: You can create a new string by concatenation of substrings you

have removed from a string with the substring that you want to insert.

The String class does have four methods for replacing found characters or substrings,

however. They are table 5.4:

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

113

Method Description

String replace(char oldChar, char newChar)

Returns a new string resulting from replacing

all occurrences of oldChar in this string with

newChar.

String replace(CharSequence target,

CharSequence replacement)

Replaces each substring of this string that

matches the literal target sequence with the

specified literal replacement sequence.

String replaceAll(String regex, String

replacement)

Replaces each substring of this string that

matches the given regular expression with the

given replacement.

String replaceFirst(String regex, String

replacement)

Replaces the first substring of this string that

matches the given regular expression with the

given replacement.

Table 5.4 Methods in the String Class for Manipulating Strings

An Example

The following class, Filename, illustrates the use of lastIndexOf() and substring() to

isolate different parts of a file name.

Note: The methods in the following Filename class don't do any error checking and

assume that their argument contains a full directory path and a filename with an extension. If

these methods were production code, they would verify that their arguments were properly

constructed.

public class Filename {

 private String fullPath;

 private char pathSeparator,

 extensionSeparator;

 public Filename(String str, char sep, char ext) {

 fullPath = str;

 pathSeparator = sep;

 extensionSeparator = ext;

 }

 public String extension() {

 int dot = fullPath.lastIndexOf(extensionSeparator);

 return fullPath.substring(dot + 1);

 }

 // gets filename without extension

 public String filename() {

 int dot = fullPath.lastIndexOf(extensionSeparator);

 int sep = fullPath.lastIndexOf(pathSeparator);

114

 return fullPath.substring(sep + 1, dot);

 }

 public String path() {

 int sep = fullPath.lastIndexOf(pathSeparator);

 return fullPath.substring(0, sep);

 }

}

Here is a program, FilenameDemo, that constructs a Filename object and calls all of its

methods:

public class FilenameDemo {

 public static void main(String[] args) {

 final String FPATH = "/home/user/index.html";

 Filename myHomePage = new Filename(FPATH, '/', '.');

 System.out.println("Extension = " + myHomePage.extension());

 System.out.println("Filename = " + myHomePage.filename());

 System.out.println("Path = " + myHomePage.path());

 }

}

And here's the output from the program:

Extension = html

Filename = index

Path = /home/user

As shown in the following figure 6.3, our extension method uses lastIndexOf to locate the

last occurrence of the period (.) in the file name. Then substring uses the return value

of lastIndexOf to extract the file name extension — that is, the substring from the period to

the end of the string. This code assumes that the file name has a period in it; if the file name

does not have a period, lastIndexOf returns -1, and the substring method throws

a StringIndexOutOfBoundsException.

Figure 5.4 Example of extension method

Also, notice that the extension method uses dot + 1 as the argument to substring. If the period

character (.) is the last character of the string, dot + 1 is equal to the length of the string,

which is one larger than the largest index into the string (because indices start at 0). This is a

legal argument to substring because that method accepts an index equal to, but not greater

than, the length of the string and interprets it to mean "the end of the string."

Self -Assessment Questions

115

Self-Assessment Answers

3.12 Comparing Strings and Portions of Strings

The String class has a number of methods for comparing strings and portions of strings. The

following table lists these methods (table 5.5).

Method Description

boolean endsWith(String suffix)

boolean startsWith(String prefix)

Returns true if this string ends with or begins

with the substring specified as an argument

to the method.

boolean startsWith(String prefix, int offset)

Considers the string beginning at the

index offset, and returns true if it begins with

the substring specified as an argument.

int compareTo(String anotherString)

Compares two strings lexicographically.

Returns an integer indicating whether this

string is greater than (result is > 0), equal to

(result is = 0), or less than (result is < 0) the

argument.

int compareToIgnoreCase(String str)

Compares two strings lexicographically,

ignoring differences in case. Returns an

integer indicating whether this string is

greater than (result is > 0), equal to (result is

= 0), or less than (result is < 0) the argument.

boolean equals(Object anObject)

Returns true if and only if the argument is

a String object that represents the same

sequence of characters as this object.

boolean equalsIgnoreCase(String

anotherString)

Returns true if and only if the argument is

a String object that represents the same

sequence of characters as this object,

ignoring differences in case.

boolean regionMatches(int toffset, String Tests whether the specified region of this

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

116

other, int ooffset, int len) string matches the specified region of the

String argument.

Region is of length len and begins at the

index toffset for this string and ooffsetfor the

other string.

boolean regionMatches(boolean ignoreCase,

int toffset, String other, int ooffset, int len)

Tests whether the specified region of this

string matches the specified region of the

String argument.

Region is of length len and begins at the

index toffset for this string and ooffsetfor the

other string.

The boolean argument indicates whether

case should be ignored; if true, case is

ignored when comparing characters.

boolean matches(String regex)

Tests whether this string matches the

specified regular expression. Regular

expressions are discussed in the lesson titled

"Regular Expressions."

Table 5.5 Methods for Comparing Strings

The following program, RegionMatchesDemo, uses the regionMatches method to search for

a string within another string:

public class RegionMatchesDemo {

 public static void main(String[] args) {

 String searchMe = "Green Eggs and Ham";

 String findMe = "Eggs";

 int searchMeLength = searchMe.length();

 int findMeLength = findMe.length();

 boolean foundIt = false;

 for (int i = 0;

 i <= (searchMeLength - findMeLength);

 i++) {

 if (searchMe.regionMatches(i, findMe, 0, findMeLength)) {

 foundIt = true;

 System.out.println(searchMe.substring(i, i + findMeLength));

 break;

 }

 }

 if (!foundIt)

 System.out.println("No match found.");

 }

}

117

The output from this program is Eggs. The program steps through the string referred to

by searchMe one character at a time. For each character, the program calls the regionMatches

method to determine whether the substring beginning with the current character matches the

string the program is looking for.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

A string is generally understood as a data type and is often implemented as an array of bytes

(or words) that stores a sequence of elements, typically characters, using some character

encoding. A string may also denote more general array data types and/or other sequential data

types and structures; terms such as <data type> string or string of <data types> are sometimes

used to denote strings in which the stored data represents other data types.

Depending on programming language and/or precise data type used, a variable declared to be

a string may either cause storage in memory to be statically allocated for a predetermined

max length or employ dynamic allocation to allow it to hold chronologically variable number

of elements.

When a string appears literally in source code, it is known as a string literal and has a

representation that denotes it as such.

5.0 Summary

1. Strings are a sequence of characters and are widely used in Java programming. In the

Java programming language, strings are objects. The String class has over 60 methods

and 13 constructors.

2. Most commonly, you create a string with a statement like

3. String s = "Hello world!";

4. Rather than using one of the String constructors.

5. The String class has many methods to find and retrieve substrings; these can then be

easily reassembled into new strings using the + concatenation operator.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

118

6. A string can be converted to a string builder using a StringBuilder constructor. A

string builder can be converted to a string with the toString() method.

6.0 Tutor-Marked Assignment (TMA)

1. What is a string?

2. The String class is immutable, so that once it is created a String object cannot be

changed: Yes or No?

3. How can numbers be converted into strings?

4. A program never ends up with numeric data in a string object—a value entered by the

user: True or False?

7.0 References/Further Reading

http://en.wikipedia.org/wiki/String_(computer_science)

http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/oo.html

http://www.landofcode.com/java-tutorials/object-oriented-java2.php

http://en.wikipedia.org/wiki/String_(computer_science)
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/oo.html
http://www.landofcode.com/java-tutorials/object-oriented-java2.php

119

Module6

Algorithms

Unit 1: Concept of an Algorithm, Problem-Solving Strategies

Unit 2: Pseudocode and Stepwise Refinement

120

Unit 1

Algorithm Concepts

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

 3.1 Algorithm

 3.2 Algorithm Specialized by Input

 3.3 Algorithm Specialized by Strategy

 3.4 Dynamic Programming Algorithm

 3.5 Iterative Algorithm

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

121

1.0 Introduction

While there is no generally accepted formal definition of "algorithm," an informal definition

could be "a set of rules that precisely defines a sequence of operations." For some people, a

program is only an algorithm if it stops eventually; for others, a program is only an algorithm

if it stops before a given number of calculation steps.

Algorithms are essential to the way computers process data. Many computer

programs contain algorithms that detail the specific instructions a computer should perform

(in a specific order) to carry out a specified task, such as calculating employees' paychecks or

printing students' report cards. Thus, an algorithm can be considered to be any sequence of

operations that can be simulated by a Turing-complete system. Authors who assert this thesis

include Minsky (1967), Savage (1987) and Gurevich (2000):

Minsky: "But we will also maintain, with Turing . . . that any procedure which could

"naturally" be called effective, can in fact be realized by a (simple) machine. Although this

may seem extreme, the arguments . . . in its favor are hard to refute".

Gurevich: "...Turing's informal argument in favor of his thesis justifies a stronger

thesis: every algorithm can be simulated by a Turing machine ... according to Savage [1987],

an algorithm is a computational process defined by a Turing machine".

Typically, when an algorithm is associated with processing information, data is read from an

input source, written to an output device, and/or stored for further processing. Stored data is

regarded as part of the internal state of the entity performing the algorithm. In practice, the

state is stored in one or more data structures.

For some such computational process, the algorithm must be rigorously defined: specified in

the way it applies in all possible circumstances that could arise. That is, any conditional steps

must be systematically dealt with, case-by-case; the criteria for each case must be clear (and

computable).

2.0 Learning Outcomes

A the end of this unit you will be able to:

1. define an algorithm;

2. know the structure of the algorithm; and

3. know and use different types of an algorithm.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Turing_completeness
http://en.wikipedia.org/wiki/Data_structure

122

3.0 Learning Contents

 Figure 6.1 Definition of algorithm

A computational method is a method for solving a specific type of problem by means of a

finite set of steps operating on inputs, which are quantities given to it before execution of the

steps begins or during executing, and producing one or more outputs, which have a specified

relation to the inputs. The number of steps in the method is required to be not only finite but

also independent of the inputs. (The program does not grow or shrink in response to the

inputs, but it might have different variations for different types of inputs.) The method is also

required to be resource constrained, which means there are requirements on all operations of

all steps of the method that constrain the resources (time, space) that can used in executions

of the method.

Execution of steps may repeat other steps, so that although the set of steps is finite,

executions of them may produce an infinite sequence of steps—finite termination is not a

requirement (it is a requirement of the algorithm) concept). Some nonterminating

computational methods are useful, such as computer operating systems or event-driven

simulation systems. Even though the execution of such methods does not terminate, we are

still generally interested in bounding the number of steps taken in producing some partial

output (as in proving response-time guarantees for an operating system).

In order to bound the resources—time and space—consumed during an execution of the

method, we first need bounds on the resources consumed by individual steps. This motivates

the resource-constraint requirement on computational methods.

Effectiveness of a computational method is the property that all operations of all steps of the

method “must be sufficiently basic that they can in principle be done exactly and in a finite

length of time.” As defined here, effectiveness of computational methods follows from their

resource-constraint requirement.

Definiteness of a computational method is the property that each step of the method “must be

precisely defined; the actions to be carried out must be rigorously and unambiguously

123

specified for each case” . This includes the property that it must be unambiguous which step,

if any, follows the current step in any execution of the method.

Again, resource-constraint requirements place some limitations on just how “indefinite” the

steps of a method may be.

Self -Assessment Questions

Self-Assessment Answers

3.1 Algorithm

Figure 6.2 Refinement of: Computational Method

Finiteness of a computational method is the property that the number of steps in any

execution of the method must be finite. The finiteness property is also called termination, and

the method is said to be terminating. Algorithm is a synonym for finite computational

method, a computational method with the additional property of finiteness. Every abstraction

that belongs to an algorithm concept must have the termination property.

Among the abstractions belonging to a computational method concept, some might be

terminating while others are nonterminating.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

124

3.2 Algorithm Specialized by Input

Figure 6.3 Refinement of: Algorithm

This concept is a narrowing of the algorithm concept by restrictions on the form of input.

Subconcepts restrict their input to some particular domain, such as sets, graphs, or linear

sequences.

Refinements: Set Algorithm, Sequence Algorithm, Polynomial Algorithm, Matrix Algorithm,

Graph Algorithm.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

125

3.3 Algorithm Specialized by Strategy

Figure 6.4 Refinement of: Algorithm

This concept is a narrowing of the algorithm concept in terms of strategies used in structuring

the steps of the algorithm.

Refinements: Divide-and-Conquer Algorithm, Dynamic Programming Algorithm, Greedy

Algorithm, Iterative Algorithm.

1.5 Divide-and-Conquer Algorithm

Figure 6.5 Refinement of: Algorithm

A divide-and-conquer algorithm is an algorithm whose steps are structured according to the

following strategy:

1. construct the output directly and return it, if the input is simple enough. Otherwise;

2. divide the input into two or more (a finite number) of smaller inputs; and

3. recursively apply the algorithm to each of the smaller inputs produced in the first step.

4. Combine the outputs from the recursive applications to produce the output

corresponding to the original input.

This concept is one of many known ways of narrowing the algorithm concept in terms of a

strategy, which gives a specific structure to the steps of the algorithm.

126

Self -Assessment Questions

Self-Assessment Answers

3.4 Dynamic Programming Algorithm

Figure 6.6 Refinement of: Algorithm Specialized by Strategy

A dynamic programming algorithm is an algorithm which solves a given problem by

combining solutions to smaller subproblems. The strategy depends on two characteristics of

the problem to be solved, optimal substructure and overlapping subproblems.

Optimal substructure: A problem is said to have optimal substructure if the optimal solution

to the problem contains within it optimal solutions to the contained subproblems.

Overlapping subproblems: A problem exhibits overlapping subproblems if the total number

of subproblems required to assemble and solve the complete problem is “small,” generally

polynomial in the input size. In other words, a naive recursive (top down) approach to the

problem would recompute the solution to the subproblems many times.

Taking advantage of the above properties, a dynamic programming algorithm functions in a

bottom up fashion. The overall strategy can be descibed as:

1. Compute and store the solutions to all of the simplest subproblems.

2. Repeat until the full problem has been solved:

(a) Combine the solutions to the subproblems of a given size to compute and store the

solutions to the next largest subproblems.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

127

As can be seen, the solutions to the various subproblems are stored for repeated access in

computing the solutions to larger subproblems. This storage is often done in some table, and

dynamic programming is sometimes referred to as a tabular method.

This concept if one of many known ways of narrowing the algorithm concept in terms of a

strategy , which gives a specific strategy to the steps of the algorithm.

Greedy Algorithm

Figure 6.7 Refinement of: Algorithm Specialized by Strategy

A greedy algorithm is an algorithm which always makes locally optimal choices during its

execution to produce a globally optimal solution to some problem. For such a strategy to

work, the problem must exhibit the greedy choice property, and optimal substructure.

Greedy choice property: A problem exhibits the greedy choice property if a globally optimal

solution can be arrived at by making locally optimal decisions at every decision point. In

other words, the subproblems which would result from various decisions, and their resulting

solutions to the whole problem, are irrelevant.

Optimal substructure: A problem is said to have optimal substructure if the optimal solution

to the problem contains within it optimal solutions to the contained subproblems.

Having seen this, a greedy algorithm is simply an algorithm which makes a sequence of

locally optimal decisions. Generally, the structure of the algorithm follows this pattern:

1. Repeat until the problem has been reduced to an empty or trivial base case.

(a) Augment the solution in some locally optimal fashion.

(b) Apply the local choice made to reduce or contract the problem.

This concept if one of many known ways of narrowing the algorithm concept in terms

of a strategy, which gives a specific strategy to the steps of the algorithm.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

128

3.5 Iterative Algorithm

Figure 6.8 Refinement of: Algorithm Specialized by Strategy

An iterative algorithm is an algorithm which, throughout the course of execution, maintains

some approximate output. As the name implies, the primary step in the strategy is to

recalculate a new approximate output based on the previous approximation. In general, the

approximate output grows closer to the final output (or solution) with each iteration, but this

condition is not necessary.

Another important note is that an iterative algorithm must include some termination criteria.

There are many useful iterative procedures which are not algorithms without a change in their

formulation. Without termination, they must be considered iterative computational methods.

This concept if one of many known ways of narrowing the algorithm concept in terms of a

strategy, which gives a specific strategy to the steps of the algorithm.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

129

4.0 Conclusion

Currently there is a serious conceptual and technical gap between ideas emphasized in object-

oriented programming. The former leads to “data-oriented” software artifacts while the latter

leads to “procedure-oriented” software artifacts.

Attempts to rectify this situation by re-expressing algorithms in terms of classes and objects

need to be grounded in sound fundamentals, less the cure be worse than the ailment. The

machine paradigm represents one approach to the challenge of re-expressing algorithms in

terms of classes and objects.

5.0 Summary

An algorithm is a method that can be used by a computer for the solution of a problem, a

sequence of computational steps that transform the input into the output.

Types of algorithms:

1. Greedy

2. Divide & conquer

3. Dynamic

4. Specialized by Input

5. Strategy specialized

6. Iterative

6.0 Tutor-Marked Assignment (TMA)

1. What is an algorithm?

2. What types of algorithm do you know?

3. An iterative algorithm is an algorithm which, throughout the course of execution,

maintains some approximate output: True or False?

4. A Divide-and-Conquer algorithm is an algorithm which always makes locally optimal

choices during its execution to produce a globally optimal solution to some problem:

Yes or No?

130

7.0 References/Further Reading

Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,

Third Edition, Addison-Wesley, Reading, MA, 1997.

http://en.wikipedia.org/wiki/Algorithm

http://www.cs.rpi.edu/~musser/gp/algorithm-concepts/algorithms-screen.pdf

http://163.22.21.49/course/biology/slide2_algorithm.pdf

http://en.wikipedia.org/wiki/Algorithm

131

Unit2

Programming Algorithms

Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

3.1 Pseudocode and Stepwise Refinement

3.2 The 3N+1 Problem

3.3 Coding, Testing, Debugging

 3.4 Pseudocode And Stepwise Refinement

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (TMA)

7.0 References/Further Reading

132

1.0 Introduction

Programming is difficult (like many activities that are useful and worthwhile -- and like most

of those activities, it can also be rewarding and a lot of fun). When you write a program, you

have to tell the computer every small detail of what to do. And you have to get everything

exactly right, since the computer will blindly follow your program exactly as written. How,

then, do people write any but the most simple programs? It's not a big mystery, actually. It's a

matter of learning to think in the right way.

2.0 Learning Outcomes

At the end of this unit you will be able to:

1. know and use pseudocode and stepwise refinement;

2. apply coding, testing, debugging.

3.0 Learning Contents

A program is an expression of an idea. A programmer starts with a general idea of a task for

the computer to perform. Presumably, the programmer has some idea of how to perform the

task by hand, at least in general outline. The problem is to flesh out that outline into a

complete, unambiguous, step-by-step procedure for carrying out the task. Such a procedure is

called an "algorithm." (Technically, an algorithm is an unambiguous, step-by-step procedure

that terminates after a finite number of steps; we don't want to count procedures that go on

forever.) An algorithm is not the same as a program. A program is written in some particular

programming language. An algorithm is more like the idea behind the program, but it's the

idea of the steps the program will take to perform its task, not just the idea of the task itself.

When describing an algorithm, the steps don't necessarily have to be specified in complete

detail, as long as the steps are unambiguous and it's clear that carrying out the steps will

accomplish the assigned task. An algorithm can be expressed in any language, including

English. Of course, an algorithm can only be expressed as a program if all the details have

been filled in.

So, where do algorithms come from? Usually, they have to be developed, often with a lot of

thought and hard work. Skill at algorithm development is something that comes with practice,

but there are techniques and guidelines that can help.

Self -Assessment Questions

Please insert Self-Assessment Questions

133

Self-Assessment Answers

3.1 Pseudocode and Stepwise Refinement

When programming in the small, you have a few basics to work with: variables, assignment

statements, and input/output routines. You might also have some subroutines, objects, or

other building blocks that have already been written by you or someone else. (Input/output

routines fall into this class.) You can build sequences of these basic instructions, and you can

also combine them into more complex control structures such as while loops and if

statements.

Suppose you have a task in mind that you want the computer to perform. One way to proceed

is to write a description of the task, and take that description as an outline of the algorithm

you want to develop. Then you can refine and elaborate that description, gradually adding

steps and detail, until you have a complete algorithm that can be translated directly into

programming language. This method is called stepwise refinement, and it is a type of top-

down design. As you proceed through the stages of stepwise refinement, you can write out

descriptions of your algorithm in pseudocode -- informal instructions that imitate the

structure of programming languages without the complete detail and perfect syntax of actual

program code.

As an example, let's see how one might develop the program from the previous section,

which computes the value of an investment over five years. The task that you want the

program to perform is: "Compute and display the value of an investment for each of the next

five years, where the initial investment and interest rate are to be specified by the user." You

might then write - or at least think - that this can be expanded as:

Get the user's input

Compute the value of the investment after 1 year

Display the value

Compute the value after 2 years

Display the value

Compute the value after 3 years

Display the value

Compute the value after 4 years

Display the value

Compute the value after 5 years

Display the value

Please insert Self-Assessment Answers

134

This is correct, but rather repetitive. And seeing that repetition, you might notice an

opportunity to use a loop. A loop would take less typing. More important, it would be more

general: Essentially the same loop will work no matter how many years you want to process.

So, you might rewrite the above sequence of steps as:

Get the user's input

while there are more years to process:

 Compute the value after the next year

 Display the value

Following this algorithm would certainly solve the problem, but for a computer we'll have to

be more explicit about how to "Get the user's input," how to "Compute the value after the

next year," and what it means to say "there are more years to process." We can expand the

step, "Get the user's input" into

Ask the user for the initial investment

Read the user's response

Ask the user for the interest rate

Read the user's response

To fill in the details of the step "Compute the value after the next year," you have to know

how to do the computation yourself. (Maybe you need to ask your boss or professor for

clarification?) Let's say you know that the value is computed by adding some interest to the

previous value. Then we can refine the while loop to while there are more years to process:

 Compute the interest

 Add the interest to the value

 Display the value

As for testing whether there are more years to process, the only way that we can do that is by

counting the years ourselves. This displays a very common pattern, and you should expect to

use something similar in a lot of programs: We have to start with zero years, add one each

time we process a year, and stop when we reach the desired number of years. So the while

loop becomes:

years = 0

while years < 5:

 years = years + 1

 Compute the interest

 Add the interest to the value

 Display the value

We still have to know how to compute the interest. Let's say that the interest is to be

computed by multiplying the interest rate by the current value of the investment. Putting this

together with the part of the algorithm that gets the user's inputs, we have the complete

algorithm:

Ask the user for the initial investment

Read the user's response

135

Ask the user for the interest rate

Read the user's response

years = 0

while years < 5:

 years = years + 1

 Compute interest = value * interest rate

 Add the interest to the value

 Display the value

Finally, we are at the point where we can translate pretty directly into proper programming-

language syntax. We still have to choose names for the variables, decide exactly what we

want to say to the user, and so forth. Having done this, we could express our algorithm in

Java as:

double principal, rate, interest; // declare the variables

int years;

System.out.print("Type initial investment: ");

principal = TextIO.getlnDouble();

System.out.print("Type interest rate: ");

rate = TextIO.getlnDouble();

years = 0;

while (years < 5) {

 years = years + 1;

 interest = principal * rate;

 principal = principal + interest;

 System.out.println(principal);

}

This still needs to be wrapped inside a complete program, it still needs to be commented, and

it really needs to print out more information in a nicer format for the user. But it's essentially

the same program as the one in the previous section. (Note that the pseudocode algorithm

uses indentation to show which statements are inside the loop. In Java, indentation is

completely ignored by the computer, so you need a pair of braces to tell the computer which

statements are in the loop. If you leave out the braces, the only statement inside the loop

would be "years = years + 1;". The other statements would only be executed once, after the

loop ends. The nasty thing is that the computer won't notice this error for you, like it would if

you left out the parentheses around "(years < 5)". The parentheses are required by the syntax

of the while statement. The braces are only required semantically. The computer can

recognize syntax errors but not semantic errors.)

One thing you should have noticed here is that my original specification of the problem --

"Compute and display the value of an investment for each of the next five years" -- was far

from being complete. Before you start writing a program, you should make sure you have a

complete specification of exactly what the program is supposed to do. In particular, you need

to know what information the program is going to input and output and what computation it

136

is going to perform. Here is what a reasonably complete specification of the problem might

look like in this example:

"Write a program that will compute and display the value of an investment for each of

the next five years. Each year, interest is added to the value. The interest is computed by

multiplying the current value by a fixed interest rate. Assume that the initial value and the

rate of interest are to be input by the user when the program is run."

Self -Assessment Questions

Self-Assessment Answers

3.2 The 3N+1 Problem

Let's do another example, working this time with a program that you haven't already seen.

The assignment here is an abstract mathematical problem that is one of my favorite

programming exercises. This time, we'll start with a more complete specification of the task

to be performed:

"Given a positive integer, N, define the '3N+1' sequence starting from N as follows: If

N is an even number, then divide N by two; but if N is odd, then multiply N by 3 and add 1.

Continue to generate numbers in this way until N becomes equal to 1. For example, starting

from N = 3, which is odd, we multiply by 3 and add 1, giving N = 3*3+1 = 10. Then, since N

is even, we divide by 2, giving N = 10/2 = 5. We continue in this way, stopping when we

reach 1, giving the complete sequence: 3, 10, 5, 16, 8, 4, 2, 1.

"Write a program that will read a positive integer from the user and will print out the 3N+1

sequence starting from that integer. The program should also count and print out the number

of terms in the sequence."

A general outline of the algorithm for the program we want is:

 Get a positive integer N from the user.

 Compute, print, and count each number in the sequence.

 Output the number of terms.

The bulk of the program is in the second step. We'll need a loop, since we want to keep

computing numbers until we get 1. To put this in terms appropriate for a while loop, we need

to know when to continue the loop rather than when to stop it: We want to continue as long

as the number is not 1. So, we can expand our pseudocode algorithm to:

Get a positive integer N from the user;

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

137

while N is not 1:

 Compute N = next term;

 Output N;

 Count this term;

Output the number of terms;

In order to compute the next term, the computer must take different actions depending on

whether N is even or odd. We need an if statement to decide between the two cases:

Get a positive integer N from the user;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Count this term;

Output the number of terms;

We are almost there. The one problem that remains is counting. Counting means that you

start with zero, and every time you have something to count, you add one. We need a variable

to do the counting. (Again, this is a common pattern that you should expect to see over and

over.) With the counter added, we get:

Get a positive integer N from the user;

Let counter = 0;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Add 1 to counter;

Output the counter;

We still have to worry about the very first step. How can we get a positive integer from the

user? If we just read in a number, it's possible that the user might type in a negative number

or zero. If you follow what happens when the value of N is negative or zero, you'll see that

the program will go on forever, since the value of N will never become equal to 1. This is

bad. In this case, the problem is probably no big deal, but in general you should try to write

programs that are foolproof. One way to fix this is to keep reading in numbers until the user

types in a positive number:

Ask user to input a positive number;

Let N be the user's response;

while N is not positive:

 Print an error message;

138

 Read another value for N;

Let counter = 0;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Add 1 to counter;

Output the counter;

The first while loop will end only when N is a positive number, as required. (A common

beginning programmer's error is to use an if statement instead of a while statement here: "If N

is not positive, ask the user to input another value." The problem arises if the second number

input by the user is also non-positive. The if statement is only executed once, so the second

input number is never tested, and the program proceeds into an infinite loop. With the while

loop, after the second number is input, the computer jumps back to the beginning of the loop

and tests whether the second number is positive. If not, it asks the user for a third number,

and it will continue asking for numbers until the user enters an acceptable input.)

Here is a Java program implementing this algorithm. It uses the operators <= to mean "is less

than or equal to" and != to mean "is not equal to." To test whether N is even, it uses "N % 2

== 0". All the operators used here were discussed in Section 2.5.

/**

 * This program prints out a 3N+1 sequence starting from a positive

 * integer specified by the user. It also counts the number of

 * terms in the sequence, and prints out that number.

 */

 public class ThreeN1 {

 public static void main(String[] args) {

 int N; // for computing terms in the sequence

 int counter; // for counting the terms

 TextIO.put("Starting point for sequence: ");

 N = TextIO.getlnInt();

 while (N <= 0) {

 TextIO.put("The starting point must be positive. Please try again: ");

 N = TextIO.getlnInt();

 }

 // At this point, we know that N > 0

 counter = 0;

 while (N != 1) {

 if (N % 2 == 0)

 N = N / 2;

 else

139

 N = 3 * N + 1;

 TextIO.putln(N);

 counter = counter + 1;

 }

 TextIO.putln();

 TextIO.put("There were ");

 TextIO.put(counter);

 TextIO.putln(" terms in the sequence.");

 } // end of main()

} // end of class ThreeN1

As usual, you can try this out in an applet that simulates the program. Try different starting

values for N, including some negative values:

Two final notes on this program: First, you might have noticed that the first term of the

sequence -- the value of N input by the user -- is not printed or counted by this program. Is

this an error? It's hard to say. Was the specification of the program careful enough to decide?

This is the type of thing that might send you back to the boss/professor for clarification. The

problem (if it is one!) can be fixed easily enough. Just replace the line "counter = 0" before

the while loop with the two lines:

TextIO.putln(N); // print out initial term

counter = 1; // and count it

Second, there is the question of why this problem is at all interesting. Well, it's interesting to

mathematicians and computer scientists because of a simple question about the problem that

they haven't been able to answer: Will the process of computing the 3N+1 sequence finish

after a finite number of steps for all possible starting values of N? Although individual

sequences are easy to compute, no one has been able to answer the general question. To put

this another way, no one knows whether the process of computing 3N+1 sequences can

properly be called an algorithm, since an algorithm is required to terminate after a finite

number of steps! (This discussion assumes that the value of N can take on arbitrarily large

integer values, which is not true for a variable of type int in a Java program. When the value

of N in the program becomes too large to be represented as a 32-bit int, the values output by

the program are no longer mathematically correct.)

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

140

3.3 Coding, Testing, Debugging

It would be nice if, having developed an algorithm for your program; you could relax, press a

button, and get a perfectly working program. Unfortunately, the process of turning an

algorithm into Java source code doesn't always go smoothly. And when you do get to the

stage of a working program, it's often only working in the sense that it does something.

Unfortunately not what you want it to do.

After program design comes coding: translating the design into a program written in Java or

some other language. Usually, no matter how careful you are, a few syntax errors will creep

in from somewhere, and the Java compiler will reject your program with some kind of error

message. Unfortunately, while a compiler will always detect syntax errors, it's not very good

about telling you exactly what's wrong. Sometimes, it's not even good about telling you

where the real error is. A spelling error or missing "{" on line 45 might cause the compiler to

choke on line 105. You can avoid lots of errors by making sure that you really understand the

syntax rules of the language and by following some basic programming guidelines. For

example, I never type a "{" without typing the matching "}". Then I go back and fill in the

statements between the braces. A missing or extra brace can be one of the hardest errors to

find in a large program. Always, always indent your program nicely. If you change the

program, change the indentation to match. It's worth the trouble. Use a consistent naming

scheme, so you don't have to struggle to remember whether you called that variable

interestrate or interestRate. In general, when the compiler gives multiple error messages,

don't try to fix the second error message from the compiler until you've fixed the first one.

Once the compiler hits an error in your program, it can get confused, and the rest of the error

messages might just be guesses. Maybe the best advice is: Take the time to understand the

error before you try to fix it. Programming is not an experimental science.

When your program compiles without error, you are still not done. You have to test the

program to make sure it works correctly. Remember that the goal is not to get the right output

for the two sample inputs that the professor gave in class. The goal is a program that will

work correctly for all reasonable inputs. Ideally, when faced with an unreasonable input, it

should respond by gently chiding the user rather than by crashing. Test your program on a

wide variety of inputs. Try to find a set of inputs that will test the full range of functionality

that you've coded into your program. As you begin writing larger programs, write them in

stages and test each stage along the way. You might even have to write some extra code to do

the testing - for example to call a subroutine that you've just written. You don't want to be

faced, if you can avoid it, with 500 newly written lines of code that have an error in there

somewhere.

The point of testing is to find bugs - semantic errors that show up as incorrect behavior rather

than as compilation errors. And the sad fact is that you will probably find them. Again, you

141

can minimize bugs by careful design and careful coding, but no one has found a way to avoid

them altogether. Once you've detected a bug, it's time for debugging. You have to track down

the cause of the bug in the program's source code and eliminate it. Debugging is a skill that,

like other aspects of programming, requires practice to master. So don't be afraid of bugs.

Learn from them. One essential debugging skill is the ability to read source code - the ability

to put aside preconceptions about what you think it does and to follow it the way the

computer does -- mechanically, step-by-step -- to see what it really does. This is hard. I can

still remember the time I spent hours looking for a bug only to find that a line of code that I

had looked at ten times had a "1" where it should have had an "i", or the time when I wrote a

subroutine named WindowClosing which would have done exactly what I wanted except that

the computer was looking for windowClosing (with a lower case "w"). Sometimes it can help

to have someone who doesn't share your preconceptions look at your code.

Often, it's a problem just to find the part of the program that contains the error. Most

programming environments come with a debugger, which is a program that can help you find

bugs. Typically, your program can be run under the control of the debugger. The debugger

allows you to set "breakpoints" in your program. A breakpoint is a point in the program

where the debugger will pause the program so you can look at the values of the program's

variables. The idea is to track down exactly when things start to go wrong during the

program's execution. The debugger will also let you execute your program one line at a time,

so that you can watch what happens in detail once you know the general area in the program

where the bug is lurking.

A more traditional approach to debugging is to insert debugging statements into your

program. These are output statements that print out information about the state of the

program. Typically, a debugging statement would say something like

System.out.println("At start of while loop, N = " + N);

You need to be able to tell from the output where in your program the output is coming from,

and you want to know the value of important variables. Sometimes, you will find that the

computer isn't even getting to a part of the program that you think it should be executing.

Remember that the goal is to find the first point in the program where the state is not what

you expect it to be. That's where the bug is. And finally, remember the golden rule of

debugging: If you are absolutely sure that everything in your program is right, and if it still

doesn't work, then one of the things that you are absolutely sure of is wrong.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

142

4.0 Conclusion

In order for a computer to carry out some task, it has to be supplied with a program, which is

an implementation of an algorithm. This is expressed in a computer programming language;

however it is possible (and desirable) to talk and reason about algorithms in higher-level

terms.

• Developing a correct algorithm can be a significant intellectual challenge – by

contrast, coding it should be straightforward (although coding it well may not be).

• The most widely used notations for developing algorithms are flowcharts and pseudo-

code. These are independent of the programming language to be used to implement the

algorithm.

• A flowchart is a diagram containing lines representing all the possible paths through

the program.

• Pseudo-code is a form of “stylised” (or “structured”) natural language.

5.0 Summary

Pseudocode - informal instructions that imitate the structure of programming languages

without the complete detail and perfect syntax of actual program code. After program design

comes coding: translating the design into a program written in Java or some other language.

When your program compiles without error, you are still not done. You have to test the

program to make sure it works correctly. Remember that the goal is not to get the right output

for the two sample inputs that the professor gave in class. The goal is a program that will

work correctly for all reasonable inputs. Ideally, when faced with an unreasonable input, it

should respond by gently chiding the user rather than by crashing. Test your program on a

wide variety of inputs.

The point of testing is to find bugs - semantic errors that show up as incorrect behavior rather

than as compilation errors.

Most programming environments come with a debugger, which is a program that can help

you find bugs. Typically, your program can be run under the control of the debugger. The

debugger allows you to set "breakpoints" in your program.

143

6.0 Tutor-Marked Assignment (TMA)

1. An algorithm is the same as a program: True or False?

2. Informal instructions that imitate the structure of programming languages without the

complete detail and perfect syntax of actual program code named…?

3. An algorithm can be expressed in any language, including English. Yes or No?

7.0 References/Further Reading

http://www.csi.ucd.ie/staff/jmurphy/fecs/5_algodev.pdf

http://www.cs.fsu.edu/~jestes/cop3014/notes/stepwise.html

http://www.csi.ucd.ie/staff/jmurphy/fecs/5_algodev.pdf
http://www.cs.fsu.edu/~jestes/cop3014/notes/stepwise.html

144

Module7

Software Design
Unit 1: Fundamental design concept and principles

Unit 2: introduction to design patterns

145

Unit 1

Design Concepts and

Principles
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Outcomes

 3.1 Design - Concepts and Principles

 3.2 Design Specification Models

3.3 Design Guidelines

 3.4 Design Principles

 3.5 Fundamental Software Design Concepts

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

146

1.0 Introduction

A software design is a meaningful engineering representation of some software product that

is to be built. A design can be traced to the customer's requirements and can be assessed for

quality against predefined criteria. In the software engineering context, design focuses on

four major areas of concern: data, architecture, interfaces and components.

The design process is very important. From a practical standpoint, as a labourer, one would

not attempt to build a house without an approved blueprint thereby risking the structural

integrity and customer satisfaction. In the same manner, the approach to building software

products is no different. The emphasis in design is on quality; this phase provides us with

representation of software that can be assessed for quality. Furthermore, this is the only phase

in which the customer’s requirements can be accurately translated into a finished software

product or system. As such, software design serves as the foundation for all software

engineering steps that follow regardless of which process model is being employed. Without

a proper design we risk building an unstable system – one that will fail when small changes

are made, one that may be difficult to test; one whose quality cannot be assessed until late in

the software process, perhaps when critical deadlines are approaching and much capital has

already been invested into the product.

2.0 Learning Outcomes

By the end of this unit you will know how software designed. You will know basic design

concepts to provide the criteria for design quality

3.0 Learning Contents

3.1 Design - Concepts and Principles

During the design process the software specifications are transformed into design models that

describe the details of the data structures, system architecture, interface, and components.

Each design product is reviewed for quality before moving to the next phase of software

development. At the end of the design process a design specification document is produced.

This document is composed of the design models that describe the data, architecture,

interfaces and components.

At the data and architectural levels the emphasis is placed on the patterns as they relate to the

application to be built. Whereas at the interface level, human ergonomics often dictate the

147

design approach employed. Lastly, at the component level the design is concerned with a

“programming approach” which leads to effective data and procedural designs.

Self -Assessment Questions

Self-Assessment Answers

3.2 Design Specification Models

1. Data design – created by transforming the analysis information model (data dictionary

and ERD) into data structures required to implement the software. Part of the data

design may occur in conjunction with the design of software architecture. More detailed

data design occurs as each software component is designed.

2. Architectural design - defines the relationships among the major structural elements of

the software, the “design patterns” than can be used to achieve the requirements that

have been defined for the system, and the constraints that affect the way in which the

architectural patterns can be applied. It is derived from the system specification, the

analysis model, and the subsystem interactions defined in the analysis model (DFD).

3. Interface design - describes how the software elements communicate with each

other, with other systems, and with human users; the data flow and control flow

diagrams provide much of the necessary information required.

4. Component-level design - created by transforming the structural elements defined

by the software architecture into procedural descriptions of software components using

information obtained from the process specification (PSPEC), control specification

(CSPEC), and state transition diagram (STD).

 These models collectively form the design model, which is represented

diagrammatically as a pyramid structure with data design at the base and component

level design at the pinnacle. Note that each level produces its own documentation,

which collectively form the design specifications document, along with the guidelines

for testing individual modules and the integration of the entire package. Algorithm

description and other relevant information may be included as an appendix.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

148

3.3 Design Guidelines

In order to evaluate the quality of a design (representation) the criteria for a good design

should be established. Such a design should:

1. exhibit good architectural structure;

2. be modular;

3. contain distinct representations of data, architecture, interfaces, and

 components (modules);

4. lead to data structures that are appropriate for the objects to be implemented and

 be drawn from recognizable design patterns;

5. lead to components that exhibit independent functional characteristics;

6. lead to interfaces that reduce the complexity of connections between modules

 and with the external environment; and

7. be derived using a reputable method that is driven by information obtained

 during software requirements analysis.

These criteria are not achieved by chance. The software design process encourages good

design through the application of fundamental design principles, systematic methodology and

through review.

Self -Assessment Questions

Self-Assessment Answers

3.4 Design Principles

Software design can be viewed as both a process and a model. “The design process is a

sequence of steps that enable the designer to describe all aspects of the software to be built.

However, it is not merely a cookbook; for a competent and successful design, the designer

must use creative skill, past experience, a sense of what makes “good” software, and have a

commitment to quality.

The design model is equivalent to the architect’s plans for a house. It begins by

representing the totality of the entity to be built (e.g. a 3D rendering of the house), and slowly

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

149

refines the entity to provide guidance for constructing each detail (e.g. the plumbing layout).

Similarly the design model that is created for software provides a variety of views of the

computer software.” – adapted from book by R Pressman.

The set of principles which has been established to aid the software engineer in

navigating the design process are:

1. The design process should not suffer from tunnel vision – A good designer should

consider alternative approaches. Judging each based on the requirements of the problem, the

resources available to do the job and any other constraints.

2. The design should be traceable to the analysis model – because a single element of the

design model often traces to multiple requirements, it is necessary to have a means of

tracking how the requirements have been satisfied by the model

3. The design should not reinvent the wheel – Systems are constructed using a set of

design patterns, many of which may have likely been encountered before. These patterns

should always be chosen as an alternative to reinvention. Time is short and resources are

limited! Design time should be invested in representing truly new ideas and integrating those

patterns that already exist.

4. The design should minimise intellectual distance between the software and the problem

as it exists in the real world – That is, the structure of the software design should (whenever

possible) mimic the structure of the problem domain.

5. The design should exhibit uniformity and integration – a design is uniform if it appears

that one person developed the whole thing. Rules of style and format should be defined for a

design team before design work begins. A design is integrated if care is taken in defining

interfaces between design components.

6. The design should be structured to degrade gently, even with bad data, events, or

operating conditions are encountered – Well-designed software should never “bomb”. It

should be designed to accommodate unusual circumstances, and if it must terminate

processing, do so in a graceful manner.

7. The design should be reviewed to minimize conceptual (semantic) errors – there is

sometimes the tendency to focus on minute details when the design is reviewed, missing the

forest for the trees. The designer team should ensure that major conceptual elements of the

design have been addressed before worrying about the syntax if the design model.

8. Design is not coding, coding is not design – Even when detailed designs are created for

program components, the level of abstraction of the design model is higher than source code.

The only design decisions made of the coding level address the small implementation details

that enable the procedural design to be coded.

9. The design should be structured to accommodate change

10. The design should be assessed for quality as it is being created

When these design principles are properly applied, the design exhibits both external and

internal quality factors. External quality factors are those factors that can readily be observed

by the user, (e.g. speed, reliability, correctness, usability). Internal quality factors relate to the

technical quality (which is important to the software engineer) more so the quality of the

design itself. To achieve internal quality factors the designer must understand basic design

concepts.

150

Self -Assessment Questions

Self-Assessment Answers

3.5 Fundamental Software Design Concepts

A set of fundamental software design concepts has evolved over the past four decades, each

providing the software designer with a foundation from which more sophisticated design

methods can be applied. Each concept helps the soft ware engineer to answer the following

questions:

1. what criteria can be used to partition software into individual components?

2. how is function or data structure detail separated from a conceptual representation

 of software?

3. there are uniform criteria that define the technical quality of a software design?

The fundamental design concepts are:

1. Abstraction - allows designers to focus on solving a problem without being

concerned about irrelevant lower level details (procedural abstraction - named

sequence of events, data abstraction - named collection of data objects);

2. Refinement - process of elaboration where the designer provides successively

more detail for each design component;

3. Modularity - the degree to which software can be understood by examining

its components independently of one another;

4. Software architecture - overall structure of the software components and the

ways in which that structure provides conceptual integrity for a system;

5. Control hierarchy or program structure - represents the module

organization and implies a control hierarchy, but does not represent the

procedural aspects of the software (e.g. event sequences);

6. Structural partitioning - horizontal partitioning defines three partitions

(input, data transformations, and output); vertical partitioning (factoring)

distributes control in a top-down manner (control decisions in top level

modules and processing work in the lower level modules);

7. Data structure - representation of the logical relationship among individual

data elements (requires at least as much attention as algorithm design);

8. Software procedure - precise specification of processing (event sequences,

decision points, repetitive operations, data organization/structure);

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

javascript:openwindow('Design_Modularity.htm')
javascript:openwindow('control_terminology.htm')
javascript:openwindow('control_terminology.htm')
javascript:openwindow('partitioning.htm')

151

9. Information hiding - information (data and procedure) contained within a

module is inaccessible to modules that have no need for such information.

Self -Assessment Questions

4.

5.

Self-Assessment Answers

4.0 Conclusion

Software Design - an iterative process transforming requirements into a “blueprint” for

constructing the software.

Design is the core of software engineering

Design concepts provide the basic criteria for design quality

Modularity, abstraction and refinement enable design simplification

A design document is an essential part of the process

5.0 Summary

Recall that software design can be viewed as a process and a model. In general, the process

will be broken down into three broad stages:

1. Architectural design - specifications are analysed and the desired module structure is

produced.

2. Detailed design – each module is designed in detailed and specific algorithms and

data structures are selected.

3. Design testing – this is an activity that must be continuously conducted in parallel

with all software production activities.

6.0 Tutor-Marked Assignment (TMA)

1. What is an iterative process transforming requirements into a “blueprint” for

constructing the software?

2. What design specification models exit?

3. Architectural design is created by transforming the analysis information model (data

dictionary and ERD) into data structures required to implement the software: Yes or

No?

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

152

4. In order to evaluate the quality of a design (representation) the criteria for a good

design should be established. Name some of the criteria.

7.0 References/Further Reading

http://www.cavehill.uwi.edu/staff/eportfolios/paulwalcott/courses/comp2145/2010/design_-

_concepts_and_principles.htm

http://www.nskinfo.com/ppt%5CCSE%5CSEM-5%5CCS2301-

SOFTWARE%20ENGINEERING%5CCS2301-software%20design-3RDUNIT%5CCS2301-

lecture-3RDUNIT-4.pdf

http://courses.cs.tamu.edu/cpsc431/lively/431_ppt/CH-13.PPT

153

Unit2

Introduction to Design

Patterns
Contents

1.0 Introduction

2.0 Learning Outcomes

3.0 Learning Contents

 3.1 What is a Design Pattern?

 3.2 Design Patterns in Smalltalk MVC

 3.3 Describing Design Patterns

 3.4 Pattern Name and Classification

 3.5 How Design Patterns Solve Design Problems

 3.6 Finding Appropriate Objects

 3.7 Determining Object Granularity

3.8 Programming to an Interface, not an Implementation

3.9 Application Programs

3.10 How to Select a Design Pattern

3.11 How to Use a Design Pattern

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment (Tma)

7.0 References/Further Reading

154

1.0 Introduction

Designing object-oriented software is hard, and designing reusable object-oriented software

is even harder. You must find pertinent objects, factor them into classes at the right

granularity, define class interfaces and inheritance hierarchies, and establish key relationships

among them. Your design should be specific to the problem at hand but also general enough

to address future problems and requirements. You also want to avoid redesign, or at least

minimize it. Experienced object-oriented designers will tell you that a reusable and flexible

design is difficult if not impossible to get "right" the first time. Before a design is finished,

they usually try to reuse it several times, modifying it each time.

Yet experienced object-oriented designers do make good designs. Meanwhile new designers

are overwhelmed by the options available and tend to fall back on non-object-oriented

techniques they've used before. It takes a long time for novices to learn what good object-

oriented design is all about. Experienced designers evidently know something inexperienced

ones don't. What is it?

One thing expert designers know not to do is solve every problem from first principles.

Rather, they reuse solutions that have worked for them in the past. When they find a good

solution, they use it again and again. Such experience is part of what makes them experts.

Consequently, you'll find recurring patterns of classes and communicating obj ects in many

object-oriented systems. These patterns solve specific design problems and make object-

oriented designs more flexible, elegant, and ultimately reusable. They help designers reuse

successful designs by basing new designs on prior experience. A designer who is familiar

with such patterns can apply them immediately to design problems without having to

rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design their plots

from scratch. Instead, they follow patterns like "Tragically Flawed Hero" (Macbeth, Hamlet,

etc.) or "The Romantic Novel" (countless romance novels). In the same way, object-oriented

designers follow patterns like "represent states with objects" and "decorate objects so you can

easily add/remove features." Once you know the pattern, a lot of design decisions follow

automatically.

We all know the value of design experience. How many times have you had design deja-vu—

that feeling that you've solved a problem before but not knowing exactly where or how? If

you could remember the details of the previous problem and how you solved it, then you

could reuse the experience instead of rediscovering it. However, we don't do a good job of

recording experience in software design for others to use.

Design patterns make it easier to reuse successful designs and architectures. Expressing

155

proven techniques as design patterns makes them more accessible to developers of new

systems. Design patterns help you choose design alternatives that make a system reusable and

avoid alternatives that compromise reusability. Design patterns can even improve the

documentation and maintenance of existing systems by furnishing an explicit specification of

class and object interactions and their underlying intent. Put simply, design patterns help a

designer get a design "right" faster.

2.0 Learning Outcomes

By the end of this unit you will be able to:

1. define a design pattern;

2. know four essential elements of a pattern;

3. know and use Pattern Names and Classifications; and

4. know how to Determine Object Granularity.

3.0 Learning Contents

3.1 What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the solution to that problem, in such

a way that you can use this solution a million times over, without ever doing it the same way

twice" [AIS+77]. Even though Alexander was talking about patterns in buildings and towns,

what he says is true about object-oriented design patterns.

Point of view affects one's interpretation of what is and isn't a pattern. One person's pattern

can be another person's primitive building block. For this book we have concentrated on

patterns at a certain level of abstraction . Design patterns are not about designs such as linked

lists and hash tables that can be encoded in classes and reused as is. Nor are they complex,

domain-specific designs for an entire application or subsystem. The design patterns in this

book are descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design

structure that make it useful for creating a reusable object-oriented design. The design pattern

identifies the participating classes and instances, their roles and collaborations, and the

distribution of responsibilities. Each design pattern focuses on a particular object-oriented

design problem or issue. It describes when it applies, whether it can be applied in view of

other design constraints, and the consequences and trade-offs of its use. A design pattern also

156

provides sample C++ code to illustrate an implementation.

Self -Assessment Questions

Self-Assessment Answers

3.2 Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes [KP88] is used to build user interfaces in

Smalltalk-80. Looking at the design patterns inside MVC should help you see what we mean

by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object, the View is its

screen presentation, and the Controller defines the way the user interface reacts to user input.

Before MVC, user interface designs tended to lump these object s together. MVC decouples

them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol between them.

A view must ensure that its appearance reflects the state of the model. Whenever the model's

data changes, the model notifies views that depend on it. In response, each view gets an

opportunity to update itself. This approach lets you attach multiple views to a model to

provide different presentations. You can also create new views for a model without rewriting

it.

The following figure 7.1 shows a model and three views. (We've left out the controllers for

simplicity.) The model contains some data values, and the views defining a spreadsheet,

histogram, and pie chart display these data in various ways. The model communicates with its

views when its values change, and the views communicate with the model to access these

values.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

157

Figure 7.1 Model and three views

Taken at face value, this example reflects a design that decouples views from models. But the

design is applicable to a more general problem: decoupling objects so that changes to one can

affect any number of others without requiring the changed object to know details of the

others. This more general design is described by the Observer design pattern.

Another feature of MVC is that views can be nested. For example, a control panel of buttons

might be implemented as a complex view containing nested button views. The user interface

for an object inspector can consist of nested views that may be reused in a debugger. MVC

supports nested views with the CompositeView class, a subclass of View. CompositeView

objects act just like View objects; a composite view can be used wherever a view can be

used, but it also contains and manages nested views.

Again, we could think of this as a design that lets us treat a composite view just like we treat

one of its components. But the design is applicable to a more general problem, which occurs

whenever we want to group objects and treat the group like an individual object. This more

general design is described by the Composite design pattern. It lets you create a class

hierarchy in which some subclasses define primitive objects (e.g., Button) and other classes

define composite objects (CompositeView) that assemble the primitives into more complex

objects.

MVC also lets you change the way a view responds to user input without changing its visual

presentation. You might want to change the way it responds to the keyboard, for example, or

have it use a pop-up menu instead of command keys. MVC encapsulates the response

mechanism in a Controller object. There is a class hierarchy of controllers, making it easy to

create a new controller as a variation on an existing one.

158

A view uses an instance of a Controller subclass to implement a particular response strategy;

to implement a different strategy, simply replace the instance with a different kind of

controller. It's even possible to change a view's controller at run-time to let the view change

the way it responds to user input. For example, a view can be disabled so that it doesn't accept

input simply by giving it a controller that ignores input events.

The View-Controller relationship is an example of the Strategy design pattern. A Strategy is

an object that represents an algorithm. It's useful when you want to replace the algorithm

either statically or dynamically, when you have a lot of variants of the algorithm, or when the

algorithm has complex data structures that you want to encapsulate.

MVC uses other design patterns, such as Factory Method (121) to specify the default

controller class for a view and Decorator (196) to add scrolling to a view. But the main

relationships in MVC are given by the Observer, Composite, and Strategy design patterns.

Self -Assessment Questions

Self-Assessment Answers

3.3 Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and useful, aren't

sufficient. They simply capture the end product of the design process as relationships

between classes and objects. To reuse the design, we must also record the decisions,

alternatives, and trade-offs that led to it. Concrete examples are important too, because they

help you see the design in action.

We describe design patterns using a consistent format. Each pattern is divided into sections

according to the following template. The template lends a uniform structure to the

information, making design patterns easier to learn, compare, and use.

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

159

3.4 Pattern Name and Classification

The pattern's name conveys the essence of the pattern succinctly. A good name is vital,

because it will become part of your design vocabulary.

Intent

A short statement that answers the following questions: What does the design pattern do?

What is its rationale and intent? What particular design issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object structures in the

pattern solve the problem. The scenario will help you understand the more abstract

description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied? What are examples of

poor designs that the pattern can address? How can you recognize these situations?

Structure

A graphical representation of the classes in the pattern using a notation based on the Object

Modeling Technique (OMT) [RBP+91]. We also use interaction diagrams [JCJO92, Boo94]

to illustrate sequences of requests and collaborations between objects. Appendix B describes

these notations in detail.

Participants

The classes and/or objects participating in the design pattern and their responsibilities.

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

How does the pattern support its objectives? What are the trade-offs and results of using the

pattern? What aspect of system structure does it let you vary independently?

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the pattern?

160

Are there language-specific issues?

Sample Code

Code fragments that illustrate how you might implement the pattern in C++ or Smalltalk.

Known Uses

Examples of the pattern found in real systems. We include at least two examples from

different domains.

Related Patterns

What design patterns are closely related to this one? What are the important differences?

With which other patterns should this one be used?

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there are many

design patterns, we need a way to organize them. This section classifies design patterns so

that we can refer to families of related patterns. The classification helps you learn the patterns

in the catalog faster, and it can direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 7.1). The first criterion, called purpose,

reflects what a pattern does. Patterns can have either creational, structural, or behavioral

purpose. Creational patterns concern the process of object creation. Structural patterns deal

with the composition of classes or objects. Behavioral patterns characterize the ways in which

classes or objects interact and distribute responsibility.

Scope Class Factory Method Adapter Interpreter

 Template Method

 Object Abstract Factory (99) Adapter (15 7) Chain of Responsibility

 Builder (110) Bridge (171) (251)

 Prototype (133) Composite (183) Command (263)

 Singleton (144) Decorator (196) Iterator (289)

 Facade (208) Mediator (305)

 Flyweight (218) Memento (316)

 Proxy (233) Observer (326)

 State (338)

 Strategy (349)

 Visitor (366)

Table 7.1 Classification of design patterns

161

Clearly there are many ways to organize design patterns. Having multiple ways of thinking

about patterns will deepen your insight into what they do, how they compare, and when to

apply them (figure 7.2).

Figure 7.2 Design pattern relationships

Self -Assessment Questions

Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

162

3.5 How Design Patterns Solve Design Problems

Design patterns solve many of the day-to-day problems object-oriented designers face, and in

many different ways. Here are several of these problems and how design patterns solve them.

Self -Assessment Questions

Self-Assessment Answers

3.6 Finding Appropriate Objects

Object-oriented programs are made up of objects. An object packages both data and the

procedures that operate on that data. The procedures are typically called methods or

operations. An object performs an operation when it receives a request (or message) from a

client.

Requests are the only way to get an object to execute an operation. Operations are the only

way to change an object's internal data. Because of these restrictions, the object's internal

state is said to be encapsulated; it cannot be accessed directly, and its representation is

invisible from outside the object.

The hard part about object-oriented design is decomposing a system into objects. The task is

difficult because many factors come into play: encapsulation, granularity, dependency,

flexibility, performance, evolution, reusability, and on and on. They all influence the

decomposition, often in conflicting ways.

Object-oriented design methodologies favor many different approaches. You can write a

problem statement, single out the nouns and verbs, and create corresponding classes and

operations. Or you can focus on the collaborations and responsibilities in your system. Or you

can model the real world and translate the objects found during analysis into design. There

will always be disagreement on which approach is best.

Many objects in a design come from the analysis model. But object-oriented designs often

end up with classes that have no counterparts in the real world. Some of these are low-level

classes like arrays. Others are much higher-level. For example, the Composite pattern

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

163

introduces an abstraction for treating objects uniformly that doesn't have a physical

counterpart. Strict modeling of the real world leads to a system that reflects today's realities

but not necessarily tomorrow's. The abstractions that emerge during design are key to making

a design flexible.

Design patterns help you identify less-obvious abstractions and the objects that can capture

them. For example, objects that represent a process or algorithm don't occur in nature, yet

they are a crucial part of flexible designs. The Strategy (349) pattern describes how to

implement interchangeable families of algorithms. The State (338) pattern represents each

state of an entity as an object. These objects are seldom found during analysis or even the

early stages of design; they're discovered later in the course of making a design more flexible

and reusable.

Self -Assessment Questions

Self-Assessment Answers

3.7 Determining Object Granularity

Objects can vary tremendously in size and number. They can represent everything down to

the hardware or all the way up to entire applications. How do we decide what should be an

object?

Design patterns address this issue as well. The Facade pattern describes how to represent

complete subsystems as objects, and the Flyweight pattern describes how to support huge

numbers of objects at the finest granularities. Other design patterns describe specific ways of

decomposing an object into smaller objects. Abstract Factory and Builder yield objects whose

only responsibilities are creating other objects. Visitor and Command yield objects whose

only responsibilities are to implement a request on another object or group of objects.

Many of the design patterns depend on this distinction. For example, objects in a Chain of

Responsibility (251) must have a common type, but usually they don't share a common

implementation. In the Composite (183) pattern, Component defines a common interface, but

Composite often defines a common implementation. Command (263), Observer (326), State

(338), and Strategy (34 9) are often implemented with abstract classes that are pure

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

164

interfaces.

Self -Assessment Questions

Self-Assessment Answers

3.8 Programming to an Interface, not an Implementation

Class inheritance is basically just a mechanism for extending an application's functionality by

reusing functionality in parent classes. It lets you define a new kind of object rapidly in terms

of an old one. It lets you get new implementations almost for free, inheriting most of what

you need from existing classes.

However, implementation reuse is only half the story. Inheritance's ability to define families

of objects with identical interfaces (usually by inheriting from an abstract class) is also

important. Why? Because polymorphism depends on it.

When inheritance is used carefully (some will say properly), all classes derived from an

abstract class will share its interface. This implies that a subclass merely adds or overrides

operations and does not hide operations of the parent class. All subclasses can then respond to

the requests in the interface of this abstract class, making them all subtypes of the abstract

class.

There are two benefits to manipulating objects solely in terms of the interface defined by

abstract classes:

1. Clients remain unaware of the specific types of objects they use, as long as the

objects adhere to the interface that clients expect.

2. Clients remain unaware of the classes that implement these objects . Clients

only know about the abstract class(es) defining the interface.

This greatly reduces implementation dependencies between subsystems.

Self -Assessment Questions

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

165

Self-Assessment Answers

3.9 Application Programs

If you're building an application program such as a document editor or spreadsheet, then

internal reuse, maintainability, and extension are high priorities. Internal reuse ensures that

you don't design and implement any more than you have to. Design patterns that reduce

dependencies can increase internal reuse. Looser coupling boosts the likelihood that one class

of object can cooperate with several others. For example, when you eliminate dependencies

on specific operations by isolating and encapsulating each operation, you make it easier to

reuse an operation in different contexts. The same thing can happen when you remove

algorithmic and representational dependencies too.

Design patterns also make an application more maintainable when they're used to limit

platform dependencies and to layer a system. They enhance extensibility by showing you

how to extend class hierarchies and how to exploit object composition. Reduced coupling

also enhances extensibility. Extending a class in isolation is easier if the class doesn't depend

on lots of other classes.

Self -Assessment Questions

Self-Assessment Answers

3.10 How to Select a Design Pattern

With more than 20 design patterns in the catalog to choose from, it might be hard to find the

one that addresses a particular design problem, especially if the catalog is new and unfamiliar

to you. Here are several different approaches to finding the design pattern that's right for your

Please insert Self-Assessment Answers

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

166

problem:

1. Consider how design patterns solve design problems. Determine object

granularity; specify object interfaces, and several other ways in which design patterns solve

design problems. Referring to these discussions can help guide your search for the right

pattern.

2. Scan Intent sections. Read through each pattern's intent to find one or more

that sound relevant to your problem.

3. Study how patterns interrelate. Studying relationships can help direct you to

the right pattern or group of patterns.

4. Study patterns of like purpose.

Self -Assessment Questions

5.

6.

Self-Assessment Answers

3.11 How to Use a Design Pattern

Once you've picked a design pattern, how do you use it? Here's a step-by-step approach to

applying a design pattern effectively:

1. Read the pattern once through for an overview. Pay particular attention to the

Applicability and Consequences sections to ensure the pattern is right for your

problem.

2. Go back and study the Structure, Participants, and Collaborations sections. Make

sure you understand the classes and objects in the pattern and how they relate to one

another.

3. Look at the Sample Code section to see a concrete example of the pattern in code.

Studying the code helps you learn how to implement the pattern.

4. Choose names for pattern participants that are meaningful in the application context.

The names for participants in design patterns are usually too abstract to appear

directly in an application. Nevertheless, it's useful to incorporate the participant name

into the name that appears in the application. That helps make the pattern more

explicit in the implementation. For example, if you use the Strategy pattern for a text

compositing algorithm, then you might have classes SimpleLayoutStrategy or

TeXLayoutStrategy.

5. Define the classes. Declare their interfaces, establish their inheritance relationships,

and define the instance variables that represent data and object references. Identify

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

167

existing classes in your application that the pattern will affect, and modify them

accordingly.

6. Define application-specific names for operations in the pattern. Here again,

the names generally depend on the application. Use the responsibilities and collaborations

associated with each operation as a guide. Also, be consistent in your naming conventions.

For example, you might use the "Create-" prefix consistently to denote a factory method.

7. Implement the operations to carry out the responsibilities and collaborations

in the pattern. The Implementation section offers hints to guide you in the implementation.

The examples in the Sample Code section can help as well.

These are just guidelines to get you started. Over time you'll develop your own way of

working with design patterns.

No discussion of how to use design patterns would be complete without a few words on

how not to use them. Design patterns should not be applied indiscriminately. Often they

achieve flexibility and variability by introducing additional levels of indirection, and that can

complicate a design and/or cost you some performance.

A design pattern should only be applied when the flexibility it affords is actually

needed. The Consequences sections are most helpful when evaluating a pattern's benefits and

liabilities.

Self -Assessment Questions

Self-Assessment Answers

4.0 Conclusion

It's possible to argue that this book hasn't accomplished much. After all, it doesn't present any

algorithms or programming techniques that haven't been used before. It doesn't give a

rigorous method for designing systems, nor does it develop a new theory of design—it just

documents existing designs. You could conclude that it makes a reasonable tutorial, perhaps,

but it certainly can't offer much to an experienced object-oriented designer.

We hope you think differently. Cataloging design patterns is important. It gives us

standard names and definitions for the techniques we use.

Please insert Self-Assessment Questions

Please insert Self-Assessment Answers

168

5.0 Summary

In general, a pattern has four essential elements:

1. The pattern name is a handle we can use to describe a design problem, its solutions,

and consequences in a word or two. Naming a pattern immediately increases our

design vocabulary.

2. The problem describes when to apply the pattern. It explains the problem and its

context. It might describe specific design problems such as how to represent

algorithms as objects. It might describe class or object structures that are symptomatic

of an inflexible design. Sometimes the problem will include a list of conditions that

must be met before it makes sense to apply the pattern.

3. The solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations.

4. The consequences are the results and trade-offs of applying the pattern. Though

consequences are often unvoiced when we describe design decisions, they are critical

for evaluating design alternatives and for understanding the costs and benefits of

applying the pattern. The consequences for software often concern space and time

trade-offs. They may address language and implementation issues as well. Since reuse

is often a factor in object-oriented design, the consequences of a pattern include its

impact on a system's flexibility, extensibility, or portability. Listing these

consequences explicitly helps you understand and evaluate them.

6.0 Tutor-Marked Assignment (TMA)

1. What are descriptions of communicating objects and classes that are customized to

solve a general design problem in a particular context?

2. Are there any essential elements of a design pattern?

3. How to Select a Design Pattern?

4. Design Patterns Solve Design Problems: Yes or No?

7.0 References/Further Reading

http://www.cavehill.uwi.edu/staff/eportfolios/paulwalcott/courses/comp2145/2010/design_-

_concepts_and_principles.htm

http://www.cavehill.uwi.edu/staff/eportfolios/paulwalcott/courses/comp2145/2010/design_-_concepts_and_principles.htm
http://www.cavehill.uwi.edu/staff/eportfolios/paulwalcott/courses/comp2145/2010/design_-_concepts_and_principles.htm

169

http://www.itswtech.org/Lec/Rand(SoftwareEng)/Software%20Engineering%20%20%20%2

09.pdf

http://www.nskinfo.com/ppt%5CCSE%5CSEM-5%5CCS2301-

SOFTWARE%20ENGINEERING%5CCS2301-software%20design-3RDUNIT%5CCS2301-

lecture-3RDUNIT-4.pdf

http://www.itswtech.org/Lec/Rand(SoftwareEng)/Software%20Engineering%20%20%20%209.pdf
http://www.itswtech.org/Lec/Rand(SoftwareEng)/Software%20Engineering%20%20%20%209.pdf
http://www.nskinfo.com/ppt%5CCSE%5CSEM-5%5CCS2301-SOFTWARE%20ENGINEERING%5CCS2301-software%20design-3RDUNIT%5CCS2301-lecture-3RDUNIT-4.pdf
http://www.nskinfo.com/ppt%5CCSE%5CSEM-5%5CCS2301-SOFTWARE%20ENGINEERING%5CCS2301-software%20design-3RDUNIT%5CCS2301-lecture-3RDUNIT-4.pdf
http://www.nskinfo.com/ppt%5CCSE%5CSEM-5%5CCS2301-SOFTWARE%20ENGINEERING%5CCS2301-software%20design-3RDUNIT%5CCS2301-lecture-3RDUNIT-4.pdf

170

ANSWERS TO SELF ASSESSMENT QUESTIONS

MODULE 1. INTRODUCTION TO PROGRAMMING

Unit 1: Overview paradigms of programming

1. 4

2. Imperative, Object-oriented, Functional, Logic

3. True

4. Yes

5. Yes

Unit 2: Overview of programming languages and the compilation process

1. Yes

2. Translation, execution

3. Yes

4. Lexical, Syntactic, Semantic, Code Generator, Optimizer

Unit 3: Introduction to object oriented programming

1. Computer application that is composed of multiple objects which are

connected to each other.

2. True

3. Association, aggregation, composition

4. Encapsulation

MODULE 2. FUNDAMENTALS OF OBJECTS AND CLASSES

Unit 1: Objects and classes

1. A class is a kind of factory for constructing objects

2. Modularity, Information-hiding

3. False

Unit 2: Class members and instance members

1. Variables, methods

2. Yes

3. Job is to group together

Unit 3: Methods, message passing, Creating and Destroying Objects

1. Methods, but they are methods of a special type

2. True

3. Constructors and destructors cannot be declared static, const or volatile

MODULE 3 INHERITANCE, POLYMORPHISM AND ABSTRACT CLASSES

Unit 1: Inheritance

1 False

2 Yes, it is

3 Example of program

class B extends A {

171

 / / a d d i t i o n s to , and m o d i f i c a t i o n s of ,

 / / s t u f f i n h e r i t e d from c l a s s A

}

class Vehicle {

int registrationNumber;

Person owner; / / (Assuming t h a t a Person c l a s s has been d ef i n e d !)

void transferOwnership(Person newOwner) {

. . .

}

. . .

}

class Car extends Vehicle {

int numberOfDoors;

. . .

}

class Truck extends Vehicle {

int numberOfAxels;

. . .

}

class Motorcycle extends Vehicle {

boolean hasSidecar;

. . .

}

Unit 2: Polymorphism

1. Polymorphism is related to object methods

2. 3

3. Overloading, Parametric, Inclusion polymorphism

4. No

Unit 3: Abstract classes

1. Shape

2. type is given by an abstract class can only refer to objects that belong to

concrete subclasses of the abstract class.

3. False

4. No

MODULE 4. PRIMITIVE TYPES

Unit 1: Primitive data types

1. Yes

2. When variable declare

3. No

http://en.kioskea.net/contents/poo/polymorp.php3#overloading
http://en.kioskea.net/contents/poo/polymorp.php3#parametric
http://en.kioskea.net/contents/poo/polymorp.php3#overriding

172

4. 8

Unit 2: Control structures

1. True

2. Switch block

MODULE 5. ARRAYS AND STRINGS

Unit 1: Arrays

1. Container object that holds a fixed number of values of a single type

2. Element

3. No

4. B[0]

Unit 2: Strings

1. Strings are objects

2. Yes

3. toString method

4. True

MODULE 6. ALGORITHMS

Unit 1: Concept of an algorithm; problem-solving strategies

1. A set of rules that precisely defines a sequence of operations

2. Greedy, Divide & conquer, Dynamic, Specialized by Input, Strategy specialized,

Iterative

3. True

4. No

Unit 2: Pseudocode and Stepwise Refinement

1. Falshe

2. Pseudocode

3. Yes

MODULE 7. OBJECT ORIENTED DESIGN

Unit 1: Fundamental design concept and principles

1. Software Design

2. Process and a model

3. Yes

4. Design Guidelines

Unit 2: introduction to design patterns

1. Design pattern

2. Pattern name, problem, solution, consequences

3. Consider how design patterns solve design problems, Scan Intent sections,

Study how patterns interrelate, Study patterns of like purpose

173

4. Yes

