
NUMERICAL SOLUTION TO SYSTEM OF

LINEAR EQUATIONS: A PASCAL

PROGRAMMING APPROACH

BY
" \

BASHIR LATEEF EKUNDA YO
PGDIMCSI99120001936

A PROJECT SUBMITTED TO THE DEPARTMENT OF

MATHEMATICS/COMPUTER SCIENCE, IN PARTIAL

FULFILLMENT OF THE REQUIREMENT FOR AWARD OF A POST

GRADUATE DIPLOMA IN COMPUTER SCIENCE, FEDERAL

UNIVERSITY OF TECHNOLOGY, MINNA, NIGER STATE,

NIGERIA.

SEPTEMBER 2001

11

..

•

NUMERICAL SOLUTION TO SYSTEM OF

LINEAR EQUATIONS: A PASCAL

PROGRAMMING APPROACH

BY

BASHIR LATEEF EKUNDA YO
PGD/MCS/99/2000/936

DEPARTMENT OF MATHEMATICS/COMPUTER SCIENCE

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

"\ \

SEPTEMBER 2001

· .,

CERTIFICATION

This is to certify that this project work was carried out by BASHIR .

LATEEF EKUNDAYO (PGD/l'vlCS/1999/2000/963) in the department of

Mathematics/Cornputel' Sciences, School of Science and Science

Education, Federal University of Technology, Minna, Niger State,

Nigeria.

DR. Y. AIYESIMI

Pi\OJEG SUPERVISOR

DR. S. A. REJU

I-lEAD OF DEPARTMENT

---------------- , \

EXTEl~NAL EXAMINER

Date

Date

Date

111

V
I

, \

ACI(NOWLEDGEMENT

Special thanks to Almighty God for given me this opportunjty to complete

this project successfully; and to my supervisor Dr. Yomi Aiyesimi for his accurate

supervision throughout this project. I remain indebted to his constant guidance.

May Almighty God bless him throughout his lifetime.

I wish to express my sincere gratitude to my Dad BASHill A]IBOLA; he had

been in the forefront of my Education, I pray he lives long to reap the fruit of his

labour.

My appreciation goes to Mr. And Mrs Oke for their parental support given to

me and my friends; may God regard them for their kindness, bless them and make

them keep up their good deeds.

I am also grateful to my freidns, Alabi Olusola John, Beky Dawood, Ogunbiyi

Tunde (GSM), Lekan ,Uncle Tajudeen (Computer) and the entire members of PGD

computer 2000. May God let us reap the Good fruit of life.

Finally, for those who were helpful to me at one time or the other, I thank you

all, God bless.

BASHIR LATEEF EKUNDAYO

v

ABSTRACT

The l11ethoJs of solving systcllls of lincar algebraic equatiolls are divided into two:

The I1rsl group compri ses oC the so-called exacl or direct methods and the second is the

numcrical mcthod . The eXiJet mcthod el1Clblcs us to obtain solution of a lincar 'systcm aflc:- a

finite number Cl[arithmetic opcraliom; have been performed: Among these are Crammer's

rule, Gmlsian Elimimitioll lim! swcep mcthod . The Numcrical mcthods involve clirrying out

series of iterations to obtain an approximnte solution. This project uses iteration methods of

Ja~obi ami Siedcl [0 les[the convergcncy ratc of both Jacobi and sicdcl's mcthod of solution;

and number or iterations involves.

'. \

VI I' . !
I r
• l

TABLE OF CONTENT

Cover page

Title page

Certification

Dedication

Abstract

Table of cOlltcnt

CHAPTER ONE

1.0 Introduction

: 1.1 Aillls

1.2 Scopc & Limitatioll

1.3 Del1nitioll of terms

CHAPTER TWO

'. \

2.1 System of linear Equation

2.2 Solutions

2.2.1 Iteration method of solution

2.2.2 Gauss Jacobi's mcthod

2.2.3 Gauss Siedel's method

CHAPTER THREE

3.1

3.2

3.3

3.4

Pascal Programming Language

Arithmetic Operation

Punctuation

Program structure

VII

11

III

IV

v

VI

1

2

2

3

3

4

5

6

9

]0

10

I 1

;.

CHAPTER FOUR

4.0 DATA PRESENTATION AND PASCAL PROGRAMS

4.1 Gauss Jacobi ' s Simultalleous PrograJlls , \
15

4.2 Gauss Siedel's Successive di spfacC lll c.nt 20

4.3 F low Chart 27

4.4 Applicatioll of Pascal program 10 jllcob i 31

4.5 Application of Pascal progralll 10 Sicdcl 32

CHAPTER FIVE

5.1 Discussion of Result 33

5.2 Conclusion and Sumlllary 33

5.3 Refercllccs 34

VJIl

..
~

f. ,
~.

I.

~ {'
" i .
~

r '.
I

! "
: . .
I .
(' .
I , . . [. ,' . . .
t· ·· .. .
1' .. :
[.:.> :.
. ":~: ';" :

,':.

-- --- _ --- - ---

'\ \

CIIAPTER ONI~

1.0 GENERAL INTRODUCTION

The numerical method of liner algebra inclucles the numerical methods of

solving systems or linear algebraic equations, matrix lllverSlOn, computing

determinants, and fiJldings (he Eigen values and Eigen vectors of matrices.

Methods of solving systems of linear algebraic equations are sub-divided into

two groups. The first group comprises so-called exact or direct methods that IS,

algorithms enabling us to obtain the solution of a system aner a finite number of

arithmetic operations. J\IJlong these are: Cramer's rule for finding the solution of a

system with the aiel of detenninanls, the Gauss Elimination and the sweep methods of

solving systems or linear algebraic equations, in particular.

This project discu sses the numerical solutions 1.0 system of linear equation

using iterative mcthods. Emphasis is laid 011 gauss Jacobi and Gauss Siedel's mcthod;

and the efficiency of Sicclel ovcr Jacobi using Pascal programming.

1.1 AIMS

(i) To show how fa st is it ill convcrgcnce

(ii) The number of itcla.tioll iJlvolves

(iii) llow accurate is the computed results

(iv) The e!liciency or Gauss Sieucl using Pascal Programming

'.
'\ \

1.2 SCOPES AND LlMITATION

The project discusses so lut ions to system of linear equations using iterative

lllethous. En1phasis is 011 Gauss Sicdcl unu Jacobi's ITlcthous of solution only.

1.3 DEFINITION OF TIi:RMS

(a) Matrices- I\. matrix is deli ned as a rectangular array of numbers enclosed in a

(b)

(c)

bracket.

Square matrix - A matrix with equal number of rows and columns

Singular matrix - a lIIatrix is said to be singular if and only if the rows or
~

, \

columns ortlle matrix are linearly dependent. Also ifits determinant is zero.

(d) Sparsc matrix - A matrix is said to be sparse ifmost of its elements aij {i =

I, ... ,n,j = I, 2 ... n} are zero

(e) Dense matrix - a matrix is said to be dense if most of its elements aij are non-

zero.

(f) Symmetric matrix - a square lIIatrix P defined by [Pij} of order m is called

symmetric matrix if every i,j we have that [P ij] = [Pji]

(~) TrullcatiolJ - Is the dropping of allY digits to the right of the decimal poillt.

(11) Label - is a positive integer used to prefix a statement of instruction within a

Pascal program.

(i) Constants - are objects whose values cannot change during the running of a

program.

Variables arc objccts whose value can change during program execution.

2

-- --_._-----------------.--~

, \

CIIAPTER TWO

2.0 LITEHATURE lu~vmw

: 2.1 SYSTEM or l,lNI~AR Ji:QlJATIONS

Any arbitrary systcllI of III lillcar equations ill II unkllowns will be written as

(1.0)

where Xl, X2, , XII are the unkllowns and the subscripted a's and b's denote

constants.

The above system is a linear <1lgcbraic system of 111 x 11.

2.2 Solutions

To solve tbe system (J .0) above, it is first abbreviated to <111 augmented matlix of the

aJ 1 a J2 a J3 a)n b)

a21 a22 a23 a2n b2 (1.1)

The method of solution of (1. I) dcpcnds on the density of the matrix form above.

, \ 3

0.
I

, , .

- ----_. ------

If the matrix is dense, then we use direct method of solution, mostly favoured

by Gaussian Elimination. If on the other hand, the matrix is sparse the appropriate

method of solution is the iterative procedure.

2 .. 2.1 ITERATIVE METHOD OF SOLUTION

Although GUl.lssi:lI1 Flill1ination (or the text version of :Gauss-Jordan

elimination) is generally the method of choice for solving a linear system of n

equations in Ii unknowns, t here arc other approachcs to solving linear systems, called

iterative or indirect methods, which arc bettcr in certain situations. These methods

start with an initial approximation to a solution and the generate a succession of better

and better approximations that telld tow'arc! an exact solution.

2.2.2 GAUSS-JACOBI OR METHOD OF SIMULTANEOUS DJSPLACEI'dENT

This method applied to linear systems of m equations jl) n unknowns, Suppose

that the system has exactly aile solution anc! that the diagonal entries

al J, an, ,am,) are nOll-zero.

To start, we rewrite system (J .0) by solving the first equation for Xl in terms of

t he remaining unknowns; solving the second for X2 in terms of the rcmauung

unknowns, and so on.

This yield

" \

4

-I

I
I
I

(1.2)

,.
I'

The above procedure gives the steps taken to obtain the first iteration. If an

approximation to the solution of (1.0) is known, and these approximate values are

substituted into t he right hillld side or (1.2), it is orlen the case that the values of .

XI,X2, . .. Xu that result Oil the lefl IWlld side form an even belter approximation to the

solution. This is a key to the Jacobian method.

To obtain the second iteration, we substitute the variolls values of Xk obtained by the

processes above into (J .0) and repeat the procedure.

Thus

2 1 [b X(I) X(I) X(I)]
XI = - I - a l2 2 + a l3 3 + +a lll /I

all

(2) _ 1 [b ~ X(I) ~ X(I)]
Xl - - I \- all I - ~ au k

a k = 1
' 22

X(2) = _I_[b - ~I a /¥(J) - ~ a /¥(I)]
III , m ~ m,. '-' mr r a r~ 1 r= m.J

"'"

5


~~~~~===-=- -- ---------

In general, we have the [til iteration 

XCII) = _1 -[b - ~I a )(CI I) 
m m i......J 1111' P a II - I 

rlUI 

2.2.3 GAUSS-SIEJ)EL OR SlICCI~SSIVE DISPLACEMENT METHOD 

In this method, a ll1inor modification of thc Jacobi method oHen reduces the number of 

iterations needed to obtain a given degree of accuracy. 

I f each iteratiolls or I he Jacobi , the ncw approximation IS obtained by 

substituting tbc previous ,lpproxillllltion into the right side or(l .2) rind solving for new 

valucs of XI, X2, . . . 

I.e. 

X(II = _1 [b _ ~7. a ./¥ (Ol ] 
1 t ~ 1m III a wO 

II 

. .. 
X CI) . = _1_ [b -"a· X(J) - ~' a X(o) 1 

< 1 1 21 I L..- 2111 m a ' \ _3 
22 

I ["'-7. "'- 11 1 XCI) = _ b - a X - a X CO
) 

3 a 3 ~1 3", II ~3 3m m 

33 

1 [ mil XCI) = _ b - a X(O) 
II 11 I 11m m a III- I 

11m 

also 

6 

I 
I. 
I 



X (2
) = _1 [b _ v," a XCI)] 

I I L., IZ k 
a k - 2 

' \I 

= _1 [b - ~I a )«2) - ~ a X(I)] 
JI L., ' /11. k i.J fit k a k ' i k = jlll 

/ '/1 

r fencc, ill gcncra l we havc the G<luss-Sicdcl jlcrCltion (IS 

( s) _ 1 [b Ir I v(s) X -- - a ./1 -
,. r fl/l 111 a 1/1- 1 

'" 

/I ] "a X(S-I) 
L..,; I'm 11/ 

m- y .. l 

These ncw valllcs ::Irc 110t (II computed sil]1llll'(I!lcously, first ;(1, is obtained 

on , Sincc thc ncw v::IhlcS ::Ire gCf1cr::llly closer 10 thc CX(lct so.llltion, this sllggests that 

better (!CCUf3GY might be obtained by usinr; the new X v111ues as soon as they are 

known, 

7 , \ 



..... ----- ---~-- --- - - - ------- --------

(1) _ ] [/-1 (0)] 
X - --- bn - I G/1/11XI1l 

II a 1l1= I 
1/1/1 

, \ 

I 
( 

I 

~ 
\ 

8 I 
J • ~ i 

t. 
\' 
:: 
• 
~ . 

!; ( . 
II 'f, • , . t 



CHAPTER THREE 

PASCAL 

3.1 PASCAL PROGRAMMING LANGUAGE 

Pilseal programming la/lguilgc was inveflted III 1970 by Professor NikJaus 

Wirth of Zurich, Swit7crland . It w~s named after the Seventeenth century French 

Mathem(Jtici(J1l who il1v(':llt ~d "n0 ortJm ~(1rlie~t mech(lniC(J1 caklliatine machine~ . 

.It .is {I oevclnp'l1~f1f of 1111 C'lIrlicr Jangllflgc; ALGOL (AJgorithm Language) 

.' whose mune implies that it is IY1Sed on a more organized (tnd rnathematicaUy oriented 

approach to programming th{)l1 other bngllages. The ll1~lhcmatical asrect refers to the 

ideas relating to the proor or !heorfllls rather than the mathematics or computations. 

The whole c(1nccpt of the IClngllage is the structure" approach to the solution of a 

prohlern Such an appro~(~11 no! only lni1kr.s it eClsier to write but also improves the 

clarity f(1r ()n ollt:-;iricr whC) nJfly hflvc ff) !nke over the ricvclopment. of program from 

the OIiginal author. 

PflscaJ progr"'ll is hpill with lexic," tokcns thol is, a progmm header ono the 

body. The tok en ;lre f:' ithcr lallgu<lge syl1lbols or basic entities constructed by 

: . programmers. 

Word ~ymbols (!re re;;e,\Ied words with predefined mearungs III Pascal 

programs and cannot be redefined by the user. 

Identifiers are 5e<1"ence 0r letters (Inri digits beginning with a letler(s) used for naming 

the vario1Js objects defincd. 

9 



Numbers arc represented in decimal notation only and they denote integers or 

real values. A llull1ber with a decilllal point and or letter 'e' is a real number; 

otherwise it is an integer number. 

Labels are unsigned integers in the close interval from 0 to 9999. 

They are used lor prefixing statement, if necessary. 

Strings arc character whose value is denoted by a character sequ~nce endorsed 

within quotes. However, if quotation marks must appear within a string, the marks are 

duplicates. 

Comments (Ire ch~raGtcr sequcnce occurring outside character standard , \ 

alterna~ive representation for curly braces. 

3.2 ARITUl\1ETIC OI)ERATOR 

Operators OpCI ate on aile or two operand and perform a specific opel , 1011. The 

; standard bllilt in arithmctic operators in Pascal includc the following: 

(i) + Addition 

(ii) Subtraction 

(iii) * Multiplication 

(iv) / Division to obtain real number result 

(v) DIV Division to yield a truncated integer result. 

(vi) MOD· Modulus to yield the remainder ofa division 

3.3 PUNCTUATION 

The following punctuation rules arc considered in Pascal Program. 

10 



(i) Semicolon: This terl1linates the program heading, declaration and each 

statement from the next. 

(ii) Commas: They arc use.d to sepa rate items in lists such as the names in a real 

vtlriabk; dedar<ltioll or the itc ll1 ~ in a WRITE and READ statement. 

(iii) Colon: This is used in several sil uations but in elenientary program. The main 

function is to separate list of items in a declaration from the corresponding data 

type name. 

(iv) Period: This is used to terminate programs and always appear after the last end. 

(v) Procedure and runct ion: Proceuures and functions are two kind ofsubprogi"am 

available in Pascal. Thcy are like subroutine which when called upon within 

the Program; they will pelform the tn:.;k they arc design to do. Hence, for a 

procedure or a function to be uscful in a program, they need to have been 

declared ill the procedure amI fl.1llctioll declaration part. 

The differellce betwccn thesc two forms of subprogram 111 Pascal is that 

function operates to yield a single result while a procedure can yield more than 

one result. 

(vi) Procedure: It allows more than olle value to be retumed into the main program 

during execution. lOll case where no value is returned to the main program, 

Ill/Out specific operations arc performe? like '1rran~iQ~ ~ list of numbers in a 

particular order etc. The format for declaring a procedure' ill the procedure and 

function part takes the form : 

PROCEDURE Name (11,12,13:Rcal; VAR Rl, R2:lntcgcr), 

, \ 

11 

.. , 

r 
',' 
t. , 
:: .. 

:~ 

,. 
I 

. : 

.. 
1 



After the name of the procedure, a list of formal parameters are enclosed in 

parenthesis. This list consists of two parts ; one sublist is It , 12, .. and the other 

The parameters II, h, 11, in the first sub list are called value parameters and the 

other parameters R I , R2, prefixed with V AR are called reference parameters. 

The Input value (arguments) to be processed by the procedure are copied into 

the value parameters. After the procedure has processes the inputs, the results 

or outputs are stored in the reference parameters. 

However, a procedure having being declared in the appropriate declaration part 

can be used in the body of the program by typing the procedure name which 
, . , 

may be followed by parameters (both value and reference or variable 

parameters). If the procedure is not meant for any computation , it can be 

called without starting any parameters along the name of the procedure. 

(vii) Function: The use of function allows the introduction of programmer (users 

defined function as against the built-in functions, which are predefined within 

the compiler. 

However, the fOFm~t of these two forms of subprogram is the same. It 

commences with the name of subprogram followed by the parameter of this 

format is given as: 

FUNCTION Power (Number, Index : Integer) : rnteger; 

Where power represents the name of the function with which it will be called. 

Number and index represents local variable to be operated upon within the 

function. 

12 



The integer illside the par,?lll hesis represellls local variable types while the one 

outside the parenthesis reprcscnt the function type. 

(viii) Array: 

3.4 PROGRAM STRUCTURE 

III Pascal, a program is composed or a program heading (its identification), that 
, 
, . 

is followed by a block (definition and declarations of all objects, used in the program 

and statements) . The progl am heading contains the identification details of the 

program. The format of this is given below as: 

PROGRAM Idenlifier; 

The identifier may be followed by parameter lists in parenthesis which 

represents the input and output devices to be used by the program. 

The second section of a Pascal is made up of the declaration and definition and 

statement part. This seclion is further subdivided into six parts; the parts are listed in 

the required order as follow: 
~ 

LABEL DECL.An)\T10N PART 

CONSTANT IJEFINlTION PART 

Typr, nnrlNlTJON PART 

VARIABLE DECLARATION PAlU' 

PROCEDURE AND FUNCTION 

The above listed parts are discussed as follow: 

Label declarCltion : This part CC'lnsists of all labels defined in the block. It is used with 

13 



GOTO statement to alter the sequence of execution of a program. The 

format of this part is as shown below. 

where Nt and N2 are positive integers which are used to preftx lines of 

instruction in the statement parts. 

Constant definition : This part consists the definition of constant used in the program. 

They are used to assign permanent values to identifiers. It could be an 
~ 

integer orr eaJ The format for constant definitions is given as: 

CONST pi = 3.1415926536; 

Type Definition: This part allows a programmer to define an identifier as being the 

new type assign from the predefined type such as integer, real etc. 

However, once the new type has been defined, it has to be followed by 

the necessary declaration in the variable declaration part. For instance 

Type dayoftheweek = (mon, tue, wed, thur, fri, sat., sun); 

Variable declaration: This part consists of variables that are used in the program. The 

format is given as 

V AR Sellingprice: real ; 

14 



CJIAPTER FOUR 

4.0 DATA PRESENTATION AND PASCAL PROGRAM 

4.1 GAUSS JACOBI'S SOI,lJTION 

Compute the approximate so lutioll orthe (ollowing linen r algebraic system using 

Gauss Jacobi 

I.C . 
, ~ 

)XI - X2 + XJ = ~6\ 

' XI + 5x:2 + 3X.I :=': 8 

Using Gauss Jacobi's method of solution, 

Algorithm: 

X' = b - a X "'" a [ " ]/ n on ~ ,,~, '" 

Taking XO = (0, 0, 0) 

[ I 6 + X (0, _ X ,0 , ] 

X (1l = ' .' 
I ] 

=.1% = 5.333333 

= Ys =1.600000 

[4X (U' + X (ftl ] 
X" = I 2 = 0 

J 2 

15 



21111 Hcr .. tion 
, \ 

[16 + X~' ) - X" ' ] . X (2) = _ .. 
I 3 

[16 + 1.6 - 0] 
= 3 

= 17 .~ 

= 5.866667 

[8 - XOI 
- 3X (II ] 

X fl} = I \ 

2 5 

[8 - 5.33333 - 3(0)] 
= 

5 

= 0.533333 

[4X(IJ + X C)) ] 
X '2) = I 2 

1 2 

X"" = [4 x 5.333333 + 0.533333J 
.. 2 

_ 21.866653/ 
- /2 
- 10.933333 

3,·d i'Cl"SlfioJl 

16 + X (21 - X t21 

X I!} = 1 .' 
I 3 

16 

, . . 

,. 
!' 



4th itcrntion 

[16+ 0.533333- 10.933333] 
= 

5.600003 
=---

3 

= 1.866667 

" ., 

[8 - X(2) - 3X'~) ] 
XU) = I , 

' . 5 

[8 - 5.866667 - 3 x 10.93333] 
= 

5 
8 - 5.866667 - 32.79999 

= 
5 

[-30.666667] 
= 5 

= -6.13 3333 

[4X (~1 + X~2) ] 
X(" = 1 • 

\ 2 

4 x 5.866667 + 0.533333 
----

2 

- 24.0000011 
- /2 

= 12.00000 I 

16 + X (.I) - X IJ) 

X (1) = 21 .1 

1 3 

[16-6.133333 -12.000001] 

3 

[9.866667 - J 2.00000 J] 
3 

- -2. J 33334/ 
- /3 ~ 

~.:! - 0.7 1 I J 1 h 

17 

.. 
, . . ' . 
. ' 

." 

t' :' 
j .• :; 
I. , 

:.:' 



, , . 

[8 - X (II - 3X(\'] 
x (II) =_ I J 

1 5 

5th iterations 

8 -1.866667 - 3 x 12.00000 I = ---
5 

6.133333 - 36.000003 

5 

- -29 .8666Ys - 5 
= -5.973334 

[4X(I' + X(Ii] 
X (1l = I 1 

) 2 
[4 x 1.866667 - 6.133333J 

= 
2 

[7 .4CJ(}CJ()~ - () 1111:n I 
-

2 

[1.333335] 
= 

2 
= 0.666668 

[16 I- X'" - XIII] 
X(~I = 2 J 

I 3 

[16 - i.973334 - 0.666668] = :\....-...--- - - -
3 

[16 - 6.640002] 
= 

3 

19.J599981 
= -_.-._-----

3 
:=: 3.! 19999 

18 



t -~~------~-=.~~~- ------~~~~~~~~ 
[8 - X I') - 3X(·')] 

X (~) = I -' ~ 
I 5 

[8 - 0.711111 - 3 x 0.666668] 

5 

[8-2.711115j 

5 

[5 .288885] 

5 

. 

= 1.057777 

[4X'" + X''' ] 
X ( ~I = I 2 

J 2 

[4 x -0.711 111-5.973334J 

2 

[ -8.817778] 
= 

2 

= -4.408889 

, ). 

Summa I'V () f Results 

--- - ---------.- -, 

m X (III) 
-" I 

X ('"' X I,") 
2 J 

-_._-------- f---o o 0 0 

1 5.33333 1.60000 0.00000 

- -
2 5.866667 0.533333 10.933333 

- -------
3 1.866667 -6.133333 12.000001 

.-
4 -0.711111 -5 .973334 0.666668 

- ._-
5 3.1 L9999 1.057777 -4.408889 

_. __ .. _ - - -_._._ .. _---_ .. _--- ----- .----------------------

19 

'. 



-- - _____ 4 ___ _ _ 

4.2 GAUSS SIEDEL'S SOLUTION 

Compute the approximate solution of the following linear algebraic system using 

Gauss Siedcl's method 

I.e. 3XI-X2+X) = 16 

Xl + 5X2 + 3X3 = 8 ~ 
"\ \ 

4xI + X2 - 2x.l = 0 

Using Gauss Siedel's method of solution 

Algorithm: for the mill iteration, the solution for Xr is given as 

1 st iteration 

Taking the initial solution as XO = (0, 0, 0) 

[ I G + X (0) - X (OJ] 

X(I) = 2 , 

I 3 

~ 5.333333 

[8 - XII) - 3X(O' ] 
X (I) = I J 

2 5 

8 - 5.333333 - 0 
=------

5 

2.666667 
=----

5 

= 0.5333334 

20 

" , 



--~-

x (0) 

1 

= ~4X~1) + XC:) 1 
2 

" \ 



2nd iteration 

·-- .--------

. [4 x 5.333333 -\- 0.5333334] 
= 2 

21.333332 + 0.5333334 
= - ------

2 

= 10.9333327 

[16 + 0.5333334 - 10.933333] 
= 

3 

5.6000004 
= - - -

3 
= 1.8666668 

[8 - X I2) - 3X(" ] 
X C!I = 1 , 

2 5 

[8 - 1.8666668 - 3 x 10.933333] 
= 5 

26.666666 
= 

5 ~ 

= - 5.3333332 

[4X(2' + X(2' ] x (2) = I 2 

J 2 

x (0, = [4 x 1.8666668 - 5.3333332] 
j 2 

_ 2 .1444440/ 
- /2 
= 1.072222 

22 

'. 



3rd iterations 

4th Iteration 

[16 - 5.3333332 - 1.072222] 
= 3 

9.594 4448 
=--- -

3 
= 3.1781483 

, ~ 

[8 - X 0) ~ 3"1)( (2) ] 

X CII = I .l 

. 2 5 

[8 - 3.1781483 - 3 x 1.072222] 
= 

5 
8 - 6.3948113 

=--- --
5 

1.6051887 
= 5 
= 0.321 03772 

[4XO) + X (j)] 
X ()) = I 2 

~ 2 

4 x 3. 1781483 + 0.32103772 

2 

13.03361092 

2 
= 6.51680546 

[ 16 + X U) - X CI)] 
X ('I) :.: 2.1 

I 3 

23 

' ". 



5~1 Iteration 

::; 

" \ 
[16+ 0- 6.51680546] 

3 

9.48319451 
::; ----

3 
::; 3.16106485 

[8 - X (I) - JX(ll ] 
X ('l)::; -- ' I 

2 5 

[8 - 3.12773151 - 3 x 6.51680546] 
= 

5 
1'1 .6781'1789 

= 
5 

::; - 2.935629572 

. [4X'·' -I- Xc.)] 
X ('I) ::; , 2 

.1 2 

4 x 3. 12773151- 2.935629572 

2 

19.575297'168 
=-----

2 

= 4.787648734 

[16 -1- XC'" - Xc,,] 
X C') _ 2 ~ 

", - 3 

[16 - 2.935629572 - 4.787648734] 

3 

8.276721694 
::; 

3 

::; 2.75890723 

24 

, \ 



[8 - X '" - 3X'.'·] 
XC') = ' .-

2 5 

[8 - 2.75890723 - 3 x 4.787648734] 
= 

= 
9.121853332 

5 
= - 1.8243706664 

XC') _ [4X:" + X ~<'] 
.1 - 2 

5 

4 x 2.75890723 - l.8243 706664 

2 
9.2112582536 

= ----
2 

= 4.6056291268 

Summary of Results 

m X (m) X ( m ) X(m ) 

.-.. --_.-...... -. _ .. -.. -.- .--.... __ .. -.. _- ..... --... _--._._-.-.. -.- ---.-- .-- ---'1 
, 2 J 

------------ ._-- -------- f-------o 0.000000 0.000000 0.000000 

--_._--_._-_. ---_._----_ .. - ._--- -----_._----
5.333333 0.5333334 10.9335327 

---------- ... -------- ---.. --- '------'------·----1 
2 1.8666668 -5 .3333332 1.072222 

~ 

--·3----... - --"- 3~~781483--'- "-'-Ojil(B772--- - 6".5 1680546 

-....... ----. - -.-.. -----.. ------. -.. _-- --- -... ----.--------.-----1 
4 3.1277315 I -2 .935629572 4.787648734 

~=5~~-= .~~ 2. 758<)~~~~J~I.87243 70666T - :U;056291268 

25 

, 
•• <; 



4.3 FLOWCHART 

Start 

Initial values 

~ ,-------~----------~ 
Coefficients of equations 

Display initial values 

Compute iterations 

Display iterations result 

End 



I> 

4.4 APPLICATION OF PASCAL TO JACOBI 

Program JACOBI (Inp~t , Output) ; 
Type 

Begin 

Var 

store2=packed array[1 .. 3,1 .. 4] of real ; 
store4= packed array[1 .. 5 , 1 .. 5] of real ; 

Initial : store2 ; 
8:store4; 
c ,k, j ,i,B:Integer ; 

writeln ('Enter your initial values'); 
For c : = 1 to 3 do 

Readln(8[1,c] ); 

Begin 
Writeln('Enter the coefficients your equation 

line by line'); 
For k:= 1 to 3 do 
Begin 

end; 
end; 

For J : = 1 to 4 do 
Readln(Initial[k , J]) ; 

for c:= 1 to 3 do 
write (" : 2,8 [1, c] : 9) ; writeln ; 

Begin 
For k : = 1 to 7 do 
Begin 

8[2,2] : = (Initial[1,4] -
(Initial [1,3] *8 [1 , 3])
(Initial[1,2]*8[1,2]) )/Initial[l,l]; 

8 [3, 3] : = (Initial [2 , 4] -
(Initial [2, 3] *8 [1 , 3])
(Initial[2,1]*8[1,1]) )/Initial[2,2]; 

8 [ 4 , 4] : = ( Ini tial [3 , 4] -
(Initial [3, 3] *8 [1, 2] )
(Initial[3,2]*8[1,2]) )/In~tial[3,3]; 

write 
( , , : 2 , 8 [ 2 , 2] : 9, , , : 5 , 8 [ 3 , 3] : 9 , , , : 5 , 8 [ 4 , 4] : 9) ; wr it e 1 n; 



end 
end 

end . 

s [ 1, 3] : =S [ 4 , 4 ] ; 
S [ 1 , 2] : =S [ 3 , 3] ; 
S [ 1, 1] : =S [ 2 , 2 ] ; 

, \ 



---- ... -

5 APPLICATION OF PASCAL TO SIEDEL 

ogram Siedel (Input, Output); 
Type 

Var 

store2=packed array[l .. 3,1 .. 4J of real; 
store4= packed array[1 .. 5,1 .. 5J of real; 

Initial: store2; 
S: store4; 
c,k,j:Integer; 

writeln ('Enter your initial values'); 
For c:= 1 to 3 do 

Readln(S[l,cJ); 

Begin 
Writeln('Enter the coefficients your 

equation line by line'); 

end; 

For k:= 1 to 3 do 
Begin 

end; 

For J: ~ 1 to 4 do 
Re~dln(Initial[k,J]); 

for c:= 1 to 3 do 
write (" :2, S [1, cJ : 9) ;writeln; 

Begin 
For k:= 1 to 5 do 
Begin 

S [1, 1J := (Initial [1, 4] 
(Ini tial [1, 3 J * S [ 1, 3] ) -
(Initial[1,2J*S[1,2]))/Initial[1,1]; 

S [2,1] : = (Initial [2, 4J -
(Initial[2,3]*S[1,3])
(Initial[2,lJ*S[1,1]))/Initial[2,2]; 



S[3,1] :=(Initial[3,4] -

Initial[3,1]*S[1,1])
Initial[3,2]*S[2,1]))/Initial[3,3]; 

write 
( , , : 2, S [1, 1] : 9, , , : 5, S [2, 1] : 9, , , : 5, S [3, 1] : 9) ; wri teln 

end 
end 

end. 

S[1,2] :=S[2, 1]; 
S[1,3] :=S[3, 1]; 

"\ \ 



CHAPTER FIVE 

5.0 DISCUSSION OF RESULTS 

5.] RESULTS 
, \ 

The exact solutions to problems in section 4.1 and 4.2 is (3, -2,5). Clearly 

Gauss-siedel performs better iterations with approximate result than Gauss-Jacobi. 

This is attributed to the sllccessive displacement used by siedel. The Pascal program 

given in chapter four also illustrates this. It is also observed that the approximate 

solution becomes closer to the exact solution with increasing number of iterations. 

5.2 CONCLUSION 

The difference between the Jacobi and siedel methods is that in the latter, as 

each component. of Xrll is computed, we use it immediately in the iteration. For this 

reason, the Gauss-Sicdcl's method is sometimes called the method of successive 

displacement \vhile Gauss-Jacobi's method is called simultaneolls displacement. 

The Gauss-Siedel and Jacobi methods do not always work. In some cases, one 

or both of these methods can fail to produce a good approximation to solution, 

regardless of the number of iterations performed. In such cases, the approximation arc 

said to diverge. However, if by perfomling sufficiently many iteratjons, the solution 

can be obtained to any desired degree of accuracy, the approximations are said to 

converge. 

The conditions for the convergence of method of simple iterations and Sjedp,1s 

method do not coincide but intersect In some cases, Siedel's method yields more 

rapid convergence. 

26 



, \ 

.The following are the conditions for easy convergence. 

(a) If the matrix is synmletric, then the Gauss-Siedel approximation to the solution 

convergence to the exact solution of the system for all choices of the initial 

approximation. 

(b) Strictly diagonally dominant- if the absolute value of each diagonal entry is 

greater, then the sum of the absolute values of the remaining entries in the 

same row; that is 

(c) When the coefficient matrix has a high proportion of zero (such matrices are 

called sparse), iterative methods can be used to advantages because there zeros 

simplify the iteration equations thereby reducing the amount of calculations. 

(d) It may happen that a good estimate of the solution is known. If this used, as a 

starting value in an iterative method, then there is a good chance of obtaining a 

satisfactory approximate solution with fewer computations than a direct 

method would required. 

(e) With clever programming, less computer memory is needed for iterative 

method than direct methods. Thus, if memory space is a problem, iterative 

may be essential. 

(1) If the iterative methods diverge, as the rate of convergence is too slow, direct 

method may be essential. 

UNPUBLISHED WRITE UP AND HANDOUT 

DR. YOMI AIYESJM[ 2000 "INTRODUCTION TO NUMERICAL ANALYSIS 

27 

\ , 



DR. YOM! AlYESIMl 2000 " LECTURE NOTE ON GENERAL MA THEMA TICS 

ABDUL RAlIEEM KOLA 2000" COMPUTER PROGRAMMlNG" 

OMOYOSHO ROTIMI DAVID 2000" TllE USES OF COMPUTER IN PROPERTY 

VALUATION 

" 
" \ 

28 



REFERENCE 

ANTHONY RALSTON & PHILIP RABINOURTZ: ''FIRST COURSE IN rrumerica1 

Analysis". MAC GRAW- HILL TNTERNATIONAL EDITIONS. 

E.A. VOLKOV: NUMERICAL METHODS" MIR PUBLISHERS MOSCOW PP 133 

HOWARD ANTS AND CHRIS RONES:" ELEMENTARY LINEAR ALGEBRA WITH 

APPLICATION". PUBLISHED BY JOlIN WiLEY & SONS. PP 5,23,391 

JIM WELSH & JOHN ELDER" INTRODUCTION TO PASCAL" 1 ST EDITION, 

PUBLISHED BY ISO 1979. 

, \ 

29 


