
PERFORMANCE EVALUATION OF SELECTED DEEP LEARNING

ALGORITHMS IN AUTOMATIC WEED DETECTION SYSTEM

BY

ASHI, John

MTech/SET/2019/9802

DEPARTMENT OF SURVEYING AND GEOINFORMATICS,

FEDERAL UNIVERSITY OF TECHNOLOGY

MINNA

JUNE, 2023

PERFORMANCE EVALUATION OF SELECTED DEEP LEARNING

ALGORITHMS IN AUTOMATIC WEED DETECTION SYSTEM

BY

ASHI, John

MTech/SET/2019/9802

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, FEDERAL

UNIVERSITY OF TECHNOLOGY MINNA, IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER

OF TECHNOLOGY (M.Tech) IN SURVEYING AND GEOINFORMATICS

JUNE, 2023

ABSTRACT

Site-specific weed detection and management in agrarian lands is a crucial approach for

crop productivity management and chemical contamination mitigation in precision

agriculture. Traditional ways of executing this operation is expensive and labour

intensive, as well as exposing personnel to the danger of exposure to hazardous chemicals.

To create a more sustainable agricultural system, a program for automatically detecting

agricultural weeds in a mixed farmland using the Faster RCNN inception v2 model and

YOLOv5s neural network, was proposed. With the introduction of Unmanned Aerial

Vehicles (UAV) and technological advancements in Deep Learning techniques in recent

years, it has become possible to identify and classify weeds from crops at desired spatial

and temporal resolution. A DJI Phantom 4 UAV was used to simultaneously collect about

254 image pairs of a mixed-crop farmland. The proposed approach for Faster RCNN

involves labelling or annotating the images before uploading the dataset into an online

Graphic Processing Unit (GPU) known as Google Colaboratory (Colab) which runs on a

Python programming language, where the dataset were trained over five epochs (10,000,

20,000, 100,000, 200,000, and 242,000) to get the maximum epoch where the model

flattens out using Python programming codes and tested on the testing dataset for the

automatic identification and classification of weeds. Also, the YOLO v5 neural network

was trained over 100, 300, 500, 600, 700 and 1000 epochs and this was also implemented

on Colab using python programming language. Both neural network algorithms identified

and classified five classes which are as follows: sugarcane, spinach, banana, pepper and

weeds. The utilized classifiers' overall classification accuracy differed widely. Faster

RCNN exhibited the highest overall accuracies. Notably lower accuracies were observed

using YOLOv5. The lowest accuracies were achieved at 10,000 epochs with an overall

accuracy of 52%, weed precision of 50%, and weed recall of 8%, while the highest level

of accuracies and saturation point were achieved at 200,000 epochs with 98% overall

accuracy, 98% weed precision, and 99% weed recall. The minimum epoch of YOLOv5s

classification at 100 epochs achieved the overall accuracy of 16 %, weed precision of 5

% and 1% for the weed recall. Furthermore, the classifier achieved a maximum weed

precision at 600 epochs with a weed precision of 78 %, weed recall of 34 % and an overall

accuracy of 67 %. With only 16 % and 66% overall accuracy of YOLOv5s, the Faster

RCNN Deep Learning exhibited a better classification output, making it a better classifier

suitable for automatic weed identification and classification, and it is thus recommended.

Further research should be carried out to further compare the performance of Faster

RCNN inception v2 model with a few other recent powerful Deep Learning algorithms

to increase or strengthen weed detection on small farmlands. Also, images should be taken

at a flying height less than 30m and closer for smaller weeds so they appear larger in the

image.

TABLE OF CONTENTS

Content Page

Cover Page i

Title Page ii

Declaration iii

Certification iv

Dedication v

Acknowledgement vi

Abstract viii

Table of Contents ix

List of Tables xiii

List of Figures xiv

List of Plates xvi

List of Abbreviations xvii

CHAPTER ONE

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 7

1.3 Research Questions 9

1.4 Aim and Objectives 9

1.5 Scope of the Study 10

1.6 Limitations 10

1.7 Significance of the Study 10

1.8 Study Area 11

CHAPTER TWO

2.0 LITERATURE REVIEW 14

2.1 Precision Agriculture 14

2.1.1 Precision agriculture tools 14

2.1.1.1 Global positioning system (GPS) 14

2.1.1.2 Geographic information system (GIS) 15

2.1.1.3 Remote sensing 15

2.1.1.4 Real-time kinematic (RTK) system 16

2.1.1.5 Drones 16

2.2 Weed Management 16

2.2.1 Principles of site-specific weed management 17

2.2.2 Unmanned aerial vehicle remote sensing tools 18

2.3 Machine Learning Methods 20

2.4 Deep Learning Methods 20

2.4.1 Convolutional neural network architecture 21

2.4.1.1 Convolution layers 23

2.4.1.2 Pooling layer or subsampling layer 25

2.4.1.3 Fully connected layer 27

2.4.1.4 Rectified linear unit layer 27

2.5 Faster Region Based Convolutional Neural Network Architecture 27

2.5.1 Inception v2 architecture 29

2.5.2 YOLO v5 architecture 30

2.6 Training Epochs 32

2.7 Google Colaboratory 33

2.8 Software 34

2.9 Related Literatures on Weed Detection using Machine

 and Deep Learning Algorithms 36

CHAPTER THREE

3.0 RESEARCH METHODOLOGY 40

3.1 The Research Design 40

3.1.1 Hardware materials used for this study 40

3.1.2 Softwares and tools used 41

3.2 Data Acquisition 41

3.3 Flow Chart for the Faster RCNN Algorithm 43

3.4 Pre-Processing of Images 44

3.4.1 Image resizing 45

3.4.2 Data annotation 45

3.4.3 Splitting data 45

3.5 Supervised Learning for both Faster RCNN and YOLO v5 46

3.6 Training the Model with Dataset 46

3.7 Evaluation and Prediction 48

3.7.1 Evaluation of performance for both faster RCNN and YOLO 48

3.7.2 Accuracy metric 49

3.7.3 Precision metric 49

3.7.4 Recall metric 50

3.7.5 F1 score metric 50

3.8 Flow Chart for the YOLO v5 Algorithm 51

3.8.1 Pre-processing of images 52

3.8.1.1 Image resizing 53

3.8.1.2 Data annotation 53

3.8.1.3 Splitting data 53

3.9 Training, Validation and Test of YOLO v5 Model 54

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION 56

4.1 Results and Discussions for the Faster RCNN 56

4.1.1 Training loss graphs 56

4.2 Confusion Matrix for 10,000 Epochs 59

4.2.1 Precision and recall values for 10,000 epochs 60

4.3 Confusion Matrix for 20,000 Epochs 61

4.3.1 Precision and recall values for 20,000 epochs 62

4.4 Confusion Matrix for 100,000 Epochs 63

4.4.1 Precision and recall values for 100,000 epochs 64

4.5 Confusion Matrix for 200,000 Epochs 65

4.5.1 Precision and recall values for 200,000 epochs 66

4.6 Confusion Matrix for 242,000 Epochs 67

4.6.1 Precision and recall values for 242,000 epochs 68

4.7 Performance of Faster RCNN Model Showing the

 Cumulative Result from the Accuracy Metrics 69

4.8 Classification on Testing Dataset 71

4.9 Results and Discussions for the YOLO v5 77

4.9.1 Training loss graphs from YOLO v5 78

4.9.2 Validation graphs from YOLO v5 81

4.10 Confusion Matrix for 100 Epochs 84

4.10.1 Precision and recall values and graphs for 100 epochs 85

4.11 Confusion Matrix for 300 Epochs 87

4.11.1 Precision and recall values and graphs for 300 epochs 88

4.12 Confusion Matrix for 500 Epochs 91

4.12.1 Precision and recall values and graphs for 500 epochs 92

4.13 Confusion Matrix for 600 Epochs 94

4.13.1 Precision and recall values and graphs for 600 epochs 95

4.14 Confusion Matrix for 700 Epochs 97

4.14.1 Precision and recall values and graphs for 700 epochs 98

4.15 Confusion Matrix for 1000 Epochs 100

4.15.1 Precision and recall values and graphs for 1000 epochs 102

4.16 Cummulative Accuracy Metric Values 103

4.17 Output of the Model on the Testing Dataset 106

4.18 Comparing the Performance Evaluation of Faster RCNN

 and YOLO v5 based on Results gotten from the Overall

 Classification Accuracies, Weed Precision and Weed Recall 113

4.18.1 Processing time 114

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS 116

5.1 Summary of Research Findings 116

5.2 Conclusion 116

5.3 Recommendations 117

5.4 Contributions to Knowledge 118

5.5 Future Work 118

References 119

Appendix (ces) 140

LIST OF TABLES

Table Page

2.1 Software packages utilized for image processing in the research 35

3.1 Details of the flight plan 43

4.1 Confusion matrix for 10,000 epochs 60

4.2 Precision and recall for 10,000 epochs 61

4.3 Confusion matrix for 20,000 epochs 62

4.4 Shows the precision and recall for 20,000 epochs 63

4.5 Confusion matrix for 100,000 epochs 64

4.6 Precision and recall values for 100,000 epochs 65

4.7 Shows the confusion matrix for 200,000 epochs 66

4.8 Precision and recall for 200,000 epochs 67

4.9 Confusion matrix for 242,000 epochs 68

4.10 Precision and recall for 242,000 epochs 69

4.11 Performance of faster rcnn inception v2 model showing

 the cumulative result from the accuracy metrics. 70

4.12 Precision and recall for 100 epochs 86

4.13 Precision and recall for 300 epochs 89

4.14 Precision and recall for 500 epochs 93

4.15 Precision and recall for 600 epochs 96

4.16 Precision and recall for 700 epochs 99

4.17 Precision and recall for 1000 epochs 102

4.18 Showing the cumulative accuracy metrics of YOLO v5 105

4.19 Accuracy comparison of the minimal and maximal achievable

 accuracy epochs of both classifiers 114

4.20 The minimum and maximum processing time for training the

 two deep learning models 115

LIST OF FIGURES

Figure Page

1.1 Geographic description of the study area 13

2.1 The classification of ai 21

2.2 Pattern of neuronal connectivity 22

2.3 Architecture of CNN 23

2.4 Activation function plot 25

2.5 Max pooling layer applied a single slice of an input volume 26

2.6 Faster RCNN architecture 29

2.7 Inception v2 architecture 30

2.8 The design of YOLO v5 network 32

3.1 The workflow of the development and implementation of the faster RCNN

 and YOLO v5 based weed classification model 44

3.2 Workflow for pre-processing 46

3.3 The training process flowchat 48

3.4 The workflow for the methodology of YOLO v5 processing 52

3.5 Workflow for pre-processing of YOLO v5 dataset 54

3.6 Process flow of YOLO v5 55

4.1 Total loss for 10,000 epochs 57

4.2 Total loss for 20,000 epochs 57

4.3 Total loss for 100,000 epochs 58

4.4 Total loss for 200,000 epochs 58

4.5 Total loss for 242,000 epochs 59

4.6 The train/classification loss for 100 epochs 79

4.7 The train/classification loss for 300 epochs 79

4.8 The train/classification loss for 500 epochs 80

4.9 The train/classification loss for 600 epochs 80

4.10 The train/classification loss for 700 epochs 81

4.11 The train/classification loss for 1000 epochs 81

4.12 Validation loss for 100 epochs 82

4.13 Validation loss for 300 epochs 82

4.14 Validation loss for 500 epochs 83

4.15 Validation loss for 600 epochs 83

4.16 Validation loss for 700 epochs 84

4.17 Validation loss for 1000 epochs 84

4.18 Confusion matrix for 100 epochs 85

4.19 Depicts the precision metrics curve at 100 epochs 87

4.20 Depicts the recall metrics curve at 100 epochs 87

4.21 Confusion matrix for 300 epochs 88

4.22 Depicts the precision metrics curve at 300 epochs 90

4.23 Depicts the recall metrics curve at 300 epochs 90

4.24 Confusion matrix for 500 epochs 92

4.25 Depicts the precision metrics curve at 500 epochs 94

4.26 Depicts the recall metrics curve at 500 epochs 94

4.27 Confusion matrix for 600 epochs 95

4.28 Depicts the precision metrics curve at 600 epochs 97

4.29 Depicts the recall metrics curve at 600 epochs 97

4.30 Confusion matrix for 700 epochs 98

4.31 Depicts the precision metrics curve at 700 epochs 100

4.32 Depicts the recall metrics curve at 700 epochs 100

4.33 Confusion matrix for 1000 epochs 101

4.34 Depicts the precision metrics curve at 1000 epochs 103

4.35 Depicts the recall metrics curve at 1000 epochs 103

LIST OF PLATES

Plate Page

I the flight path of the UAV 42

II Unmanned aerial vehicle DJI phantom 4 42

III Flight controller and the display screen 42

IV The dgps instrument used for acquiring GCP’s 43

V The classifier’s confidence in detecting and classifying weed

 classes was 62 % in accuracy at 10,000 epochs from the image 73

VI The classifier’s confidence in detecting and classifying weed classes

 was 67 % in accuracy at 20,000 epochs from the image 74

VII The classifier’s confidence in detecting and classifying weed classes

 was 98 % in accuracy at 100,000 epochs from the image 75

VIII The classifier’s confidence in detecting and classifying weed classes

 was 99 % in accuracy at 200,000 epochs from the image 76

IX The classifier’s confidence in detecting and classifying weed classes

 was 96 % in accuracy at 242,000 epochs from the image 77

X Weed classification results on test images at 100 epochs 107

XI Weed classification results on test images at 300 epochs 108

XII Weed classification results on test images at 500 epochs 109

XIII Weed classification results on test images at 600 epochs 110

XIV Weed classification results on test images at 700 epochs 111

XV Weed classification results on test images at 1000 epochs 112

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CNN Convolutional Neural Network

DL Deep Learning

DoD Department of Defence

FAO Food and Agricultural AOrganization

GCP Ground Control Point

GIS Geographic Information System

GPS Global Positionning System

GPU Graphical Processing Unit

Knn k-Nearest Neighbor

ML Machine Learning

NN Neural Network

OBIA Object Based Image Analysis

PA Precision Agriculture

RCNN Region-based Convolutional Neural Network

RF Random Forest

RoI Region of Interest

RPN Region Proposal Networks

RS Remote Sensing

RTK Real Time Kinematics

SSWM Site-Specific Weed Management

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

YOLO You Only Look Once

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

It is predicted that the world population will grow to an all-time high of 10 billion in the

year 2050 according to Alexandratos & Bruinsma (2012), but due to the currently

implemented agricultural production method and other environmental factors affecting

production rate, it will be nearly impossible to achieve the predicted increase in

agricultural produce demand. Hence, the need for the introduction of innovative ways and

systems of boosting the production rate of agriculture while minimizing the effect of these

environmental factors. One of such innovative systems is the Precision Agriculture.

The idea of Precision Agriculture (PA), also known as smart farming, has been discussed

in the agricultural sector as a management method since the middle of the 1980s. Later,

throughout the last two decades, Precision Agriculture was ranked among the top 10

agricultural sector breakthroughs (Crookston, 2006). Precision Agriculture is a systematic

technique and also a management system of using the proper quantity of input (such as

compost/fertilizer, water, and herbicides) at just the appropriate time and place to increase

productivity and minimize chemical use in order to protect the environment from

pollution (Zhang & Kovacs, 2012; Torres-Sánchez et al., 2013; Adekunle, 2013; Yao &

Huang, 2013; Huang & Thomson, 2015).

The ability of any farmer to adopt any highest quality judgment at the appropriate moment

for the best location of the farm depends on the ability to gather and interpret various

types of information (Mulla, 2013). As a result, techniques such as GPS/GNSS devices

2

and Remote Sensing (RS) are being deployed both as information sources and as tools

for carrying out various PA operations. For instance, RS technologies demonstrate a

significant capacity to offer the farmer useful information by utilizing satellite or aerial

vehicles for various imaging solutions. These technologies quickly capture photos over a

vast region (Zhang & Kovacs, 2012). Farmers can therefore utilize the photographs

gathered to assess crop strain, track crop yields, or forecast crop production. Although

these imaging systems provide farmers a lot of knowledgeable power, their poor spatial

resolution places restrictions on them. Therefore, to give greater in-depth picture data,

terrestrial RS systems were deployed. Regrettably, these methods lack the time necessary

to completely survey the vast agricultural areas. As a result, a different platform was

required which could bridge the barrier amongst aerial and also terrestrial remote sensing

systems. The Unmanned Aerial Vehicle (UAV) displayed a robust ability to fill this

shortfall (Pena et al., 2013).

UAVs have demonstrated their versatility over the last several years by serving as

platforms for various sensors including lidar, GNSS cameras, RGB and thermal sensors

(Nex & Remondino, 2014). Broadly speaking, the UAV imaging system is viewed as a

more affordable substitute to traditional remote sensing platforms that rely on satellites

or aircraft. Furthermore, due to the fact that UAVs fly at lower altitudes than satellites

and other aerial platforms, their imaging systems can offer superior spatial resolution

(Grenzdörffer et al., 2008). Therefore, UAV imaging technologies can be employed for

many precision agriculture operations such as plant health tracking (McCabe et al., 2015),

weeds control (Hervás Martínez et al., 2015; Pena et al., 2015; Hassanein & El-sheimy,

2017), and plant row identification (Slaughter et al., 2008).

3

Amongst the most common deployment of Unmanned Aerial Vehicles (UAVs) in PA is

the mapping and controlling of weeds. Distinct methods for weed classification using

UAV photographs platform have indeed been explored as they demonstrates the

potentials of bridging the differences amongst terrestrial and aerial imaging platforms

(Hassanein & El-Sheimy, 2017; Mulla, 2013; Hervás Martínez et al., 2015; Pena et al.,

2015; Torres-Sánchez et al., 2013). Agricultural output and viability can be significantly

impacted by biological hazards which could be bacteria, viruses, weeds, fungi, and

insects. Weeds constitute the most serious issue amongst these, contributing to a

significant damage to crops on a global scale (Esposito et al., 2021). In essence, weeds

are uncultivated plants which thrives within agricultural fields as well as contend with

agricultural crops for natural resources such as water, manure, growing spaces, and also

sunshine (Hassanein & El-sheimy, 2017; Monteiro & Santos, 2022). Thus, it is critical to

get rid of such weeds as promptly as humanly possible so that the planted vegetation may

get the right quantity of nutrients to improve the output quality and quantity of the farm

area.

Nonetheless, one of most popular weed management techniques since the advent of

agriculture have been human weeding, mechanized weeding, and herbicide sprays

(Griepentrog & Dedousis, 2010; Bergin, 2011; Rueda-Ayala et al., 2011; Chauvel et al.,

2012). Medieval weed management techniques included hand pulling, chopping, or

physically covering weeds (Young et al., 2014). Hand implements were fabricated across

history to cultivate soils and eradicate weeds (Jabran et al., 2015). While these weed

management techniques significantly increase agricultural output, they are not without

their share of difficulties. The main difficulties in hand weeding include declining

available labor, rising labor costs, and uneven weed management (Carballido et al., 2013;

Gianessi, 2013). In a related manner, mechanical weed management necessitates

4

increased soil turnover, which can disrupt morphology of the soil and reduce nutrients of

the soil (Smith et al., 2011). The effectiveness, cost, and longevity of mechanical weed

management are not always good (Bond & Grundy, 2001). Also, Agrochemicals have

been employed recently in cubbing the spread of weeds (Peterson et al., 2018). The main

obstacles to routinely utilizing herbicides for weed management include herbicide-

resistant weeds, adverse health consequences, and ecological pollution (Annett et al.,

2014; Hoppin, 2014; Starling et al., 2014). It is crucial to diversify existing contemporary

weed management techniques due to the difficulties regarding traditional weed control

strategies, such as hand weeding, mechanical weed management and pesticides

(Westwood et al., 2018).

As a result, Agriculture has developed to use resources in a way that is considerably more

productive and cost-effective. Hence, Site-Specific Weed Management (SSWM), a

Precision Agricultural management system, was developed for efficient weed control

(Pena-Barragán et al., 2012). The ability to accurately pinpoint and identify weeds is a

necessary initial step in the development of an autonomous weed management system

(Liu & Bruch, 2020).

The four main processes of a standard weed detection system are image acquisition, pre-

processing of photographs, feature extraction, identification, and categorization of weed

plants (Shanmugam et al., 2020). These phases have been completed by the use of several

advancing technologies. The identification and classification of weeds is the phase that is

most important. The automatic detection of weed species has been more popular in recent

years as a result of the advancements in digital technology, notably in Graphics

Processing Unit (GPU), the application of Machine Learning (ML) approaches and

embedded processors (Gu et al., 2018; LeCun et al., 2015; Yu et al., 2019).

5

In subsequent times, Deep Learning models have developed as more precise and effective

substitutes for conventional parametric algorithms, particularly for large and extremely

complicated data (Rodriguez-Galiano et al., 2012). A key area of machine learning (ML)

is Deep Learning (DL). DL models do have several benefits in comparison to

conventional ML models for photograph categorization and object detection, such as the

Support Vector Machine (SVM) classifier (Sabat-Tomala et al., 2020), Object Based

Image Analysis (OBIA) (Torres-Sanchez et al., 2015), k-Nearest Neighbor (kNN)

(Kramer, 2013), the Random Forest algorithm (RF) (Liu et al., 2012), considering crops

and weeds can sometimes be identical, it can be challenging to extract and choose

differentiating features using Machine Learning techniques. Premised on its extremely

effective learning abilities, DL approaches can effectively solve this challenge.

Convolutional Neural Networks (CNN) have been discovered to operate excellently well

throughout vision - based applications ranging from categorization, forecasting, and

object identification, thanks to advances in parallel computing as well as the utilization

of larger datasets (Krizhevsky et al., 2012). The typical pixel-based technique requires

pixel-level computational analysis and mainly focuses on spectral characteristics,

ignoring the possibilities of geographical and textural variables to increase accuracy of

the model (Blaschke, 2010). Convolutional Neural Networks, on the other hand, which

consider spectral, textural, and spatial characteristics of pictures, have recently evolved,

allowing for higher classification accuracy and with increase in computational power

(especially Graphical Processing Units, GPUs) (Nogueira et al., 2017; Cevallos et al.,

2019; Sharma et al., 2017a). A Deep Neural Network with a convolutional structure is

known as a Convolutional Neural Network. It basic premise is to include convolutional

operations into neural networks in an attempt to solve the inadequacies of the original

6

neural networks with a large number of variables (Chang et al., 2016). Additionally, it

may retrieve more detailed information and mitigate the issue of overfitting in typical

neural networks. In this research; the Faster RCNN and the YOLO v5 algorithms were

implemented and compared for performance accuracy.

The methodology for detecting objects using the Faster RCNN is built upon a region

proposal approach. The original region-based methodological framework was called the

Region based Convolutional Neural Network (RCNN) (Girshick et al., 2015). Moreover,

it required a lot of computing work because each suggested location required a CNN-

based feature extraction. Through distributing convolutional features across several area

suggestions, a Fast RCNN was developed to cut down on computing time (Girshick,

2015). Employing Fully Convolutional Region Proposal Networks (RPN), which are

taught to suggest improved object regions, Faster Region-based Convolutional Neural

Network was developed to increase speed (Ren et al., 2015).

Secondly, YOLO is an abbreviation for "You Only Look Once" in English. YOLO

version 5 is a newer version of the You Only Look Once class algorithm, which is an

advanced object detector that does exceptional real time object identification (Malta et

al., 2021; Francies et al., 2022; Thuan, 2021; Reddy & Panicker, 2021). This can

categorize any imagery into a group as well as identify many objects inside a picture

(Jabir & Falih, 2022; Yang et al., 2021). This is among the fastest possible algorithms

which employs Convolutional Neural Network (CNN) for object identification integrated

bounding box predictions and object recognition into a unified end-to-end discrete

network.

The aforementioned CNN architectures (YOLO V5 and Faster RCNN with inception v2)

were implemented on the images of a mixed cropping farm for an automated

7

identification and classification of weeds from four (4) different crop classes taking into

consideration the significant influence of various training iterations or epochs on the

overall performance evaluation of the weed identification and classification scheme and

also defining the optimum and minimal training epoch for the classification algorithm.

Five varying epochs were tried to determine the ideal training epoch for the Faster RCNN

model, that indicates the maximal point of the training phase in which the model tends to

flatten out: 10,000, 20,000, 100,000, 200,000, and 242,000. For YOLOv5 model, six

varying epochs were also tested which includes 100, 300, 500, 600, 700 and 1000 epochs.

1.2 Statement of Research Problem

To fulfill the needs of an ever-increasing population, Agricultural production will need

to increase food production from subsistence Agriculture in the next decade via more

effective utilisation of natural resources with little environmental damage (Hobbs et al.,

2008).

According to the Food and Agricultural Organization (FAO), food productivity must

increase by 70%, with the majority of this coming from improved yields per hectare of

Agricultural land (McFadyen, 2012). Reduced output losses due to pests, namely weeds,

are a serious concern for agricultural output (Popp et al., 2013).

Worldwide, 40% agricultural productivity losses are attributed to weeds, despite farmer

control methods (Vila et al., 2004). The damages would be total when no intervention is

done to safeguard crops against weeds (Chauhan, 2020). In the developed countries,

weeds account for about 5% loss in agricultural production, while it accounts for 10%

and 25% in less developed and least developed countries (Vissoh et al., 2004).

Agricultural farmers in developed countries devote more resources on weed management

compared to any other pest (Akobundu, 1987).

8

Subsistence farming is the most common type of agriculture in underdeveloped countries,

and weeds are typically controlled by hand-weeding. Hand implements were fabricated

across history to cultivate soils and eradicate weeds (Jabran et al., 2015). However, due

to expanding urban development, rising labor expenses, and a shrinking Agricultural

manpower, many are turning to herbicides to control weeds.

As a result, the indiscriminate utilization of pesticides for weed management in

subsistence farming operations has increased, raising health and environmental problems

(Tirado et al., 2008; Gianessi, 2013). Also, the mechanical weed management

necessitates increased soil turnover, which can disrupt morphology of the soil and reduce

nutrients of the soil (Smith et al., 2011).

It is crucial to diversify existing contemporary weed management techniques due to the

difficulties regarding traditional weed control strategies, such as hand weeding,

mechanical weed management and pesticides to a more robust and real-time system

(Westwood et al., 2018).

Subsequently, Deep Learning models have developed as a more precise and effective

substitutes for conventional parametric algorithms, particularly for large and extremely

complicated data (Rodriguez-Galiano et al., 2012). A key area of Machine Learning (ML)

is Deep Learning (DL). DL models do have several benefits compared to conventional

ML techniques for the classification of imagery, object identification and recognition, and

these ML algorithms includes the Support Vector Machine (SVM) classifier (Sabat-

Tomala et al., 2020), Object Based Image Analysis (OBIA) (Torres-Sanchez et al., 2015),

k-Nearest Neighbor (kNN) (Kramer, 2013), the Random Forest algorithm (RF) (Liu et

al., 2012). Considering crops and weeds can sometimes be identical, it can be challenging

to extract and choose differentiating features using Machine Learning techniques.

9

To diversify this existing contemporary method, this project research incorporates the use

of Unmanned Aerial Vehicle (UAV) automation and Deep Learning algorithms (Faster

RCNN and YOLO). Hence, the need to evaluate the two Deep Learning algorithms since

the performance accuracy depends on the choice of algorithm utilized.

1.3 Research Questions

Consequent upon the objectives, this study will provide answers to the following

questions:

1. What method is used to define the spatial extent of the study area?

2. What is the measure of accuracy obtainable from the Faster RCNN algorithm in

 automatic weed detection?

3. What is the classification performance of YOLO v5 algorithm on weed

detection?

4. How efficient is the FRCNN compared to YOLO v5 in automatic weed detection?

1.4 Aim and Objectives of the Study

The aim of this research is to evaluate the performance of Faster RCNN and YOLO v5

algorithms in precision weed mapping utilizing photographs taken by an Unmanned

Aerial Vehicle (UAV). In achieving the identified aim, the objectives to be pursued are:

1. UAV mapping of the mixed-crop farmland.

2. To implement Faster Region based Convolutional Neural Network algorithm for

 automatic weed classification.

3. To implement YOLO v5 algorithm for automatic weed classification.

4. To carryout a perfomance evaluation of the results obtained from varying training

 epochs in objective 2 and objective 3.

10

1.5 Scope of Study

This research focuses mainly on the use of a phantom 4 UAV having a Red Green Blue

sensor for acquiring data over a mixed crop farmland located in Lapan Gwari under Bosso

Local Government Area of Niger State, which aided the automatic detection of weeds.

The dataset acquired from the UAV shall cover the entire farm and the processes involved

in preprocessing and processing shall be covered.

This research further covers the implementation of the Faster Region Based

Convolutional Neural Network and You Only Look Once algorithms as well as the

training, testing, and validation of the developed model utilizing python programming

language codes on the google colaboratory interface. Finally, the performance of the

selected Deep Learning algorithms were evaluated.

1.6 Limitations

Due to the fact that this research was conducted during the dry season, it was a little bit

difficult getting an irrigated farm having a substantial amount of weed density. Also, the

successful processing and training of the Deep Learning models largely depended on the

properties of the Central Processing Unit (CPU) of the computer system. The CPU of the

system which was available to the author was inadequate to fully and successfully run the

model hence the switch to an online Graphic Processing Unit (GPU) on Google

Colaboratory pro with a RAM size of 32 GB and a runtime usage of 24hours that attracts

a fee of 9.99$.

1.7 Significance of Study

The findings of this study will aid farmers to identify or determine the locations of weed

clusters in the agricultural field and subsequently give the farmer a chart of the weed sites

gotten from the comparism of Faster RCNN and YOLO v5 algorithms. UAVs can map

11

the farm and provide information about weed patches by instantly surveying wide swaths

of farm land. The capacity to gather and evaluate this data in real time will result in higher

crop yields, less money spent on weeds herbicides and pesticides, and better management

decisions overall.

As UAVs fly at a relatively low height than satellites as well as other aerial operating

systems, they produce images with a better spatial resolution. Additionally, Unmanned

Aerial Vehicle systems enable users to gather visual data having excellent temporal

resolution that can increase the adaptability of the data collecting processes.

Faster RCNN and YOLO v5 algorithms can recognize and categorize weeds in a non-

destructive manner which will aid in site specific weed management and will allow

farmers to be more aware of weed growth and distribution around the farmland while also

arming them with site specific knowledge pertaining to weed development, control and

mitigation. This is significant because, if the locations of weed patches are identified,

they can be managed precisely and effectively.

It is hoped that the findings of the research presented in this dissertation will help farmers

understand the importance and the applicability of UAVs in Precision Agriculture in

Nigeria. In general, greater production and cost savings will be realized through more

efficient herbicides and fertilizer usage.

1.8 Study Area

The research was done during the dry season of 2022 within a mixed cropping farm. With

a coverage of 2.8228 hectares, the privately owned farm land located at Lapan Gwari,

Minna, Niger State located within geographical coordinates (9°31'33''N 6°30'02''E),

(9º31'34''N 6º29'59''), (9º31'38''N 6º30'03''E) and (9º31'37''N 6º30'05''E), under Bosso

12

LGA area is situated at about 7km away from F.U.T Minna permanent site (Gidan Kwanu

campus). The natives are Gwaris and they depend solely on agricultural practices such as

crop cultivation and fish farming. The natives mostly practice mixed cropping such as,

pepper, vegetables, sugarcane, rice maize and yams. The study site is generally made up

of loamy soil, and it is connected to a pumping machine for proper supply of water,

alongside the cultivation of spinach, pepper, banana and sugarcane. Figure 1.2 shows the

map of Niger State extracted from the map of Nigeria, from which the bosso local

government area under Minna is identified then finally, the site location map is displayed.

13

Figure 1.1: Geographic description of the study area

14

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Precision Agriculture

The precise implementation of Agricultural inputs in accordance with inherent spatial

variability, soil and weather patterns, and crop prerequisites for improving crop yield,

revenue growth, sustainable development, environmental preservation, and quality of

products may be a more appropriate description of Precision Agriculture in the Nigerian

context (Patil-Shirish & Bhalerao, 2013). It refers to the use of ICT (Information,

Communication, and Technology) to control field variability (Gemtos et al., 2013).

Precision Agriculture, as described by the International Society of Precision Agriculture,

is a management approach which "collects, processes, and evaluates temporal, spatial,

and individual data and intermixes it with additional information to support managerial

decisions pertaining to estimated variability for improved resource use efficiency,

productivity, quality, revenue growth, and sustainable development of agricultural

production" (Shrestha & Khanal, 2020).

2.1.1 Precision agriculture tools

Using a wide range of implements, comprising software, hardware, and best management

techniques, Precision Agriculture is a highly advanced agricultural method that

necessitates technological proficiency (Shrestha & Khanal, 2020). The accompanying

sections provides a basic description of these tools.

2.1.1.1 Global positioning system (GPS)

The primary idea behind Precision Agriculture is location specificity (Sahu et al., 2019).

A satellite-based radio navigation system predominantly known as the Global Positioning

System (GPS) delivers 3D location information (latitude, longitude, and elevation) having

15

precision ranging from 100 to 0.01 m at any time, in any condition, and at no cost. It is

made up of a whole set of 24 satellites that are circling the earth in a planned sequence

that is kept up by the US Department of Defense (DoD) (Yousefi & Razdari, 2015).

According to Brejda et al. (2000), GPS enables farmers to keep a close eye on crop health,

macro and micro-scale spatiotemporal heterogeneity of the soil, and to pinpoint the

precise location of field features like the field boundaries, acreage for field crops, soil

composition, pest presence, disease-affected areas and weed infestation. This enables the

implementation of key inputs such as (seeds, fertilizers, pesticides, herbicides, water, etc.)

depending on prior input data and effectiveness requirements (Batte & Van-Buren, 1999).

2.1.1.2 Geographic information system (GIS)

The heart of PA has been the Geographic Information System (GIS) (Kumar et al., 2017).

The data evaluation using Global Positioning System (GPS) coordinates is the purpose of

this program. It analyzes and maintains globally dispersed data that is scattered both

spatially and temporally. New maps may be created using GIS data sets to show the

geographical and temporal variability in a certain field. GIS data gathered over time may

be utilized to retain records, discover relationships impacting output, and forecast how

crops will react to inputs (Dwivedi et al., 2017).

2.1.1.3 Remote sensing (RS)

According to Wójtowicz et al. (2016), Remote Sensing is a precision farming method

which employs sensors installed on aircraft or satellites to track variations in the

wavelength of light from fields and crops that are currently in development.

It is beneficial to keep track of the spectral and spatial variations throughout time at high

resolution (Moran et al., 1997). The spatio-temporal variations aid in understanding the

field's heterogeneity through time, aid in identifying various crop species, assist detect

16

plants that have been harmed by disease or pests, and keep track of stress, soil, plant, and

drought conditions.

2.1.1.4 Real-time kinematic (RTK) system

A GPS-based navigation system called Real-Time Kinematic System improves the

accuracy of satellite position data (Luo et al., 2016; Wang et al., 2016; Wikipedia

Contributors, 2020). This highly accurate guiding system lessens operator burden by

preventing costly skips and overlaps, saving money on input costs, and reducing

production costs. This technique employs a fixed base station that broadcasts geolocation

to the rover's GPS receiver in order for it to adjust its position with respect to the fixed

base station's known position with a precision of 1-2 cm (Dwivedi et al., 2017). It makes

precise row-to-row placement possible.

2.1.1.5 Drones

Drones might be seen as the body of farmers, whereas precision agriculture is their brain

(Smith, 2018). Drones are deployed to inspect agricultural fields, soil, and weed spots for

growth, texture, and the presence of diseases and pests. They are also utilized to spray

chemical agents. Drones capture photographs with great resolution, enabling the creation

of yield maps, contour maps, weed maps, and maps showing varied seeding rates

(Dwivedi et al., 2017).

2.2 Weed Management

Since the dawn of civilisation, weeds have existed and are certainly not going to go away

any time soon (Renard et al., 2012). Weeds are considered to be a persistent and pervasive

hazard to agricultural output (Chen et al., 2012). Designing the best effective strategy in

a range of settings that ensures a healthy environment and a low impact of invasive weeds

is the general objective of weed control (Di-Tomaso et al., 2017).

17

Mechanical, cultural, biological, and chemical treatments are the four categories into

which weed control strategies are typically separated (Scavo & Mauromicale, 2020).

Although the invention and use of herbicides in the middle of the 20th century led to a

reduction in the use of mechanical weeders on farms, these tools have since developed

into highly effective and adaptable weed control tools for a range of cropping systems

(Farooq et al., 2019). Many procedures can be used to accomplish mechanical weed

removal. By burying certain seeds at depths from which they cannot sprout, primary

tillage helps reduce weeds of species that reproduce by seeds (Machleb et al., 2020).

Other seeds would be raised to the soil's exterior, allowing them to be directly exposed to

cold, sunny or decomposition temperatures.

Herbicide treatments, often referred to as chemical applications, are the most effective

weed management techniques (Soltys et al., 2013). Herbicides are crucial weed-

controlling instruments that have increased production rates and enabled reduced-tillage

farming techniques (Bajwa, 2014). Although the effectiveness of herbicides is

undeniable, they may also cause soil erosion, environmental degradation, and health

issues in people (Kumar et al., 2019). There are several methods to decrease the usage of

expensive herbicides, including spot spraying, lower rates, and banding in conjunction

with between-row cultivation (Regnier & Janke, 2020). Cost savings brought on the less

frequent use of herbicides is one of the main advantages.

2.2.1 Principles of site-specific weed management (SSWM)

Site-Specific Weed Management (SSWM) entails treating solely weed spots and/or

altering herbicide treatments in accordance with the distribution of weed species (such as

herbicide-resistant or grass weeds) (De Castro et al., 2012). Numerous contemporary

agronomic and technical research on weed management have focused on automatic site-

specific herbicide administration because it has the capacity to reduce the quantity of

18

sprayed chemical, enhancing farmer profits and decreasing pollution (Lati et al., 2021).

The field is treated as a collection of discrete management zones by site-specific herbicide

administration techniques, which allows for the use of certain quantities and varieties of

herbicide to eliminate the weeds that are there (Meyer & Mulliken, 2008). No herbicide

is used if weeds are absent or if their concentration is lower than the economic threshold

for treatment (the amount of weeds needed to make treatment worthwhile) (Shirzadifar et

al., 2015). To choose the most effective herbicide, it is crucial to be aware of the weed

species that are present (Combarnous, 2017). When specific weeds have been identified,

weeds can be managed in real-time (tactical technique) or strategically (strategic

approach) employing a prepared field map that shows the species and position of weeds

(Adamchuk et al., 2008). The tactical method necessitates a unique procedure but

provides the farmer with a more accurate estimation of the quantity and kind of chemical

required for a particular weed issue. Before weeds reduce agricultural yields

economically, post-emergence herbicide treatments should be undertaken (De Castro et

al., 2018). The essential time for weed management, according to UNL weed scientist

Stevan Knezevic, is the post emergence period (Knezevic & Datta, 2015). The length of

this phase is determined by the kind of crop, the variety of weed, the surrounding

environment, and the quantity and concentration of the crop and weed.

2.2.2 Unmanned aerial vehicle remote sensing tasks

The majority of Unmanned Aerial Vehicle Remote Sensing applications employ

photographs from sensors as primary data inputs; hence, they are computer vision-related

tasks (Zhu et al., 2018). Thus, classification, detection, and segmentation are three

common and important computer vision problems that can be classified into three

categories for UAV Remote Sensing tasks in PA which employ Deep Learning techniques

(mostly CNN) (Everingham et al., 2015).

19

(i) Classification attempts to forecast whether there will be or won't be at atleast one

member of a specific object class in the photograph, and Deep Learning techniques

are necessary to offer a real-valued certainty of the item's existence (Chen et al.,

2021b). In order to identify crop diseases (Hu et al., 2020; Ha et al., 2017; Huang et

al., 2019), weed types (Bah et al., 2018a; Bah et al., 2018b; De Camargo et al., 2021;

Ukaegbu et al., 2021), or crop types (Onishi & Ise, 2018; Zhao et al., 2020),

classification approaches are generally utilize.

(ii) Detection operations attempt to answer the inquiry "where are the occurrences in the

photograph, if any," by predicting the bounding boxes of each item of a specific

object class in the photograph with corresponding certainty. In other words, the

object information that was retrieved is comparatively more accurate. The most

common uses include identifying crops that have pests Chen et al. (2021a) or other

diseases Li et al. (2021), locating the weeds in the images (Valente et al., 2019;

Veeranampalayam et al., 2020), counting the crop number for yield estimation

(Apolo-Apolo et al., 2020; Chen et al., 2019; Csillik et al., 2018) or disaster

evaluation (Zhang et al., 2020b).

(iii) Segmentation is a process which forecasts the instance labeling (for instance

Segmentation) or object labeling (for semantic segmentation) of each pixel in the test

photograph, providing a higher accurate categorization for each pixel. It has the

ability not only to find things but also collect their finer-grained pixels.

Consequently, to precisely pinpoint interesting characteristics in pictures,

segmentation techniques are typically utilized. Semantic segmentation could assist

in identifying and tracking crop leaf diseases (Stewart et al., 2019; Kerkech et al.,

2018; Kerkech et al., 2020), generating weed maps (Huang et al., 2018; Sa et al.,

2018; Zou et al., 2021), or assessing crop growth (Osco et al., 2021; Zhang et al.,

20

2020a), and yields (Xu et al., 2020), whilst also, instance segmentation indeed can

identify crop from weed plants (Champ et al., 2020; Mora-Fallas et al., 2020), or

conduct crop seed phenotyping Toda et al. (2020) at a finer level.

2.3 Machine Learning Methods

Across various fields, including medical systems (Tsouros et al., 2017; Bonotis et al.,

2019), marketing (Cui & Curry, 2005) and biology (Tarca et al., 2007), Machine Learning

(ML) has so far been utilized to analyze the data obtained for forecast and/or classification

applications. Machine learning technologies are frequently used in Precision Agriculture

to make the most of the vast amounts of data collected by UAVs (Mazzia et al., 2020).

The use of Machine Learning (ML) may diagnose diseases, predict certain factors relating

to crop growth rates, and even recognize different objects in photographs (Da Costa Lima

& Mendes, 2020). Owing to the rapid developments occurring, particularly in the Deep

Learning sector, the use of machine learning has significantly expanded lately (Dargan et

al., 2020)

2.4 Deep Learning Methods

A Deep Learning model, one of the types of machine learning, is created using the human

brain as a model. The Deep Learning Neural Networks replicate the cognitive processes

of the human brain by simulating a web of interconnected nodes (Magomadov, 2019).

Over the past few decades, a tiny subset of Artificial Intelligence (AI), commonly referred

to as Machine Learning (ML), has transformed a variety of fields since its development

in the 1950s. Deep Learning (DL) was born out of the ML sub - field of Neural Networks

(NN) (Alom et al., 2019). Since its introduction, Deep Learning has caused disruptions

of ever-increasing size and has excelled in nearly every application sector. Deep

Learning, which employs either hierarchical or Deep Learning structures, is a subset of

21

ML that has mostly been created after 2006. Determining model parameters is the first

step in the learning process, which enables the learnt model (or algorithm) to carry out a

specified task. For instance, the weight matrices are the parameters in Artificial Neural

Networks (ANN).

Contrarily, DL contains several layers between the input and output layer, allowing for

the presence of numerous stages of non-linear central processing unit having hierarchical

architectures which are employed for feature learning and pattern categorization

(Schmidhuber, 2015; LeCun et al., 2015). According to several articles, DL is a universal

learning strategy that can address practically any issue in a variety of application fields.

So DL is not task-specific, to put it another way (Bengio, 2009). Figure 2.1 shows the

classification of AI. Where, AI: Artificial Intelligence; ML: Machine Learning; SNN:

Spiking Neural Networks; NN: Neural Networks; DL: Deep Learning.

Figure 2.1: The classification of AI. (Source: Kilichan & Yilmaz, 2020)

2.4.1 Convolutional neural network architecture

As specified in a Conventional Multilayered Neural Network, CNN is among the

subclasses of deep classifier architecture and consists of one or more convolutional layers

22

accompanied by one or more fully connected layers (Savalia & Emamian, 2018). CNN's

design performs well while analyzing two-dimensional data types like images, movies,

and so on (Browne et al., 2008). A receptive field is a condensed area of the perceptual

field that is responsive to the intricate configuration of cells that make up the visual cortex

(Ide & Kurita, 2017). Numerous approaches, including Neocognitron, HMAX, and Lenet,

are available in the literature since the animal visual cortex seems to be the most potent

visual processing system (Sornam et al., 2017; Azizah et al., 2017; Zahara et al., 2020;

Pouyanfar et al., 2018). Since CNN never needs a shared weight, it differs from

Neocognitron (Du, 2018; Sornam et al., 2017). The localized connection pattern between

the neurons in neighbouring layers is how CNN's spatially local correlation originates. It

can be illustrated graphically in Figure 2.2.

Figure 2.2: Pattern of neuronal connectivity (Sornam et al., 2017)

CNN has inputs, outputs, and hidden layers in between, similar to the design of a normal

Neural Network (Sornam et al., 2017). These hidden layers carry out a task known as

feature identification and three various types of data computations, including convolution,

pooling, and rectifier linear unit (ReLu) (Albawi et al., 2017; Al-Saffar et al., 2017;

Sornam et al., 2017). By passing the input photograph via a number of convolutional

filters, the convolution layer is employed to activate a particular aspect of the photograph

(Srinivas et al., 2016). Several aspects of the photograph are enabled by each filter. By

streamlining the output via a nonlinear downsampling approach, the pooling layer aids in

23

reducing the amount of factors unrelated to the targeted problems (Sornam et al., 2017).

Rectified Linear Units accelerate learning as well as improve productivity by turning

negative values into zeros such that they can only be maintained as positive values (Tang

et al., 2018; Sornam et al., 2017).

In order for each layer to be capable of recognizing the various feature levels, these three

distinct procedures are continually done to tens or even thousands of layers. The CNN

architecture moved towards categorization after the feature identification was finished.

The network's capacity to forecast the amount of output classes, k, is represented by the

next-to-last layer, a fully connected layer which generates the K dimension vector, and

the last layer, a softmax layer, which produces the categorization output (Chen et al.,

2016). The component of the CNN is depicted in Figure 2.3.

Figure 2.3: Architecture of CNN (Sornam et al., 2017)

2.4.1.1 Convolution layers

Convolutional, Pooling, and Fully-Connected (FC) layers are the three categories of

layers which constitute the Convolutional Neural Network (Akbar et al., 2017). A CNN

model will be created after these layers are stacked. Convolutional layers' neuron

components first were calculated by convolution operations over small regional spots of

input, after which activation functions (tanh, sigmoid, ReLU, e.t.c.) are applied to create

24

a 2D feature chart, which is a crucial feature layer which distinguishes Convolutional

Neural Network (CNN) from other conventional Neural Networks (3D feature map)

(Zhang et al.,2019).

Typically, we have that

Z j = ∑ 𝑋𝑖 ∗ 𝐾𝑖𝑗 + 𝐵𝑗,𝑖 (2.1)

A j = f (Z j), (2.2)

while Z j indicates the output from the convolution process, Xi is the input to the

convolutional layer, Kij is the convolution kernel, and Bj is the cumulative bias. In the

expression that follows, Aj is the output feature map of the convolutional layer and f (Zj)

is an activation function. Activation functions are computational processing on the input

that adds non-linearity into Neural Networks and aid in detecting non-linear patterns in

the input data (Sharma et al., 2017b). The terms "saturated functions" refer to sigmoid

and Tanh. According to their descriptions or charts, the output of Sigmoid and Tanh

saturates at 0 or 1 and -1 or 1, respectively, whenever the input is extremely tiny or

extremely big. In terms of saturation, there are two issues. It is challenging to converge

in the training phase because the gradients at saturated areas are nearly negative,

substantially reducing neurons' backpropagation (Zhang et al., 2019). Additionally,

weight initialization when employing saturated activation functions needs to be more

carefully considered else the Neural Networks may well not train at all. Numerous non-

saturated activations have been suggested to address the saturation issue, including the

Rectified Linear Unit (ReLU) (Nair & Hinton, 2010), Leaky ReLU (Maas et al., 2013),

Parametric ReLU (PReLU) (He et al., 2015b) and Randomized Leaky ReLU (RReLU)

(Xu et al., 2015).

25

In CNN, convolution is a crucial component. Contrarily, neurons within the same feature

map use the same variables thanks to weight sharing that significantly lowers the overall

amount of parameters (Indolia et al., 2018). The input may exhibit the same

characteristics, which include edges, points, angles, etc., at several spatial locations. The

CNN is less susceptible to position and moving because of weight sharing (Ghafoorian et

al., 2017). However, because each convolution process only considers a tiny portion of

the input, the recovered features retain the fundamental structure of the input, which aids

in pattern recognition. Figure 2.4 provides an Activation Function plot.

Figure 2.4: Activation function plot (Zhang et al., 2019)

2.4.1.2 Pooling layer or subsampling layer

In order to decrease the feature map resolution, convolutional layers are typically

accompanied by subsampling layers (LeCun & Bengio, 1995; Huang et al., 2015; He &

Sun, 2015). In line with this reduction in parameters, processing is likewise downsized.

Figure 2.5 shows a Max Pooling layer implemented a single slice of an input volume,

Z j = down (Xj), (2.3)

In which a subsampling strategy is represented by down(Xj).

26

Two common subsampling techniques, maximum operation and average operation, are

employed in CNNs (Alotaibi & Mahmood, 2017). In addition to max pooling and average

pooling, various techniques which are more effective in preventing overfitting issues in

CNN have been suggested, including mixed pooling (Yu et al., 2014), stochastic pooling

(Zeiler & Fergus, 2013), and Lp pooling (Sermanet et al., 2012). He et al. (2015a) suggest

a pooling technique known as spatial pyramids pooling (SPP), which may produce a

constant length feature map and hence handle different input photograph dimensions. Fast

Fourier Transform (FFT)-based CNNs can also use spectral pooling, a technique for

reducing dimensionality in frequencies that maintains better information than spatial

domain (Rippel et al., 2015). Whereas multi-scale orderless pooling, as described by

Gong et al. (2014), surpasses other approaches in high variability scene matching.

Contrary to convolution kernels, subsampling kernels are frequently chosen manually and

don't alter throughout training and inference. Subsampling is done for two major motives.

The first is that the size of the feature map is reduced by maximising or average over the

preceding feature map, whereas the other is that by subsampling, the resultant feature

map is much more resistant to distortions and mistakes of particular neuron units (Liu et

al., 2017).

Figure 2.5: Max pooling layer implimenting a single slice of an input volume. (Source:

Rana, 2020)

27

2.4.1.3 Fully connected layer

The Fully Connected (FC) layer, that links the neurons between two layers, is composed

of neuronal cells along with weights and biases (Dose et al., 2018; Viquerat & Hachem,

2020). These layers make up the final few levels of a CNN architecture and are often

positioned just before output layer. This compresses the input photograph from the earlier

stages and feeds it to the FC layer (Pu et al., 2019). The compressed vector is then sent

through some additional FC levels, in which the standard procedures on mathematical

operations happen. The categorization procedure starts to take effect at this point.

2.4.1.4 Rectified linear unit layer

ReLU stands for Rectified Linear Unit, that implements the non-saturating activation

function f(x) = max (0, x) (Ren et al., 2016; Pratama & Kang, 2021). Through assigning

negative values to zero, it essentially removes them from an activation map. Without

changing the receptive fields of the convolution layers, it creates nonlinearities to the

decision function and the entire network (Chi et al., 2019).

The saturating hyperbolic tangent f(x) = tanh (x), f(x) = |tanh (x)|, and the sigmoid

function (x) = (1+e-x)-1 are several other functions that may be employed to improve

nonlinearity (Vijayaprabakaran & Sathiyamurthy, 2020; Vargas et al., 2021). ReLU is

frequently used over other functions since it trains the neural network considerably more

quickly without significantly degrading generalization accuracy (Huang et al., 2020).

2.5 Faster RCNN Architecture

An object detection technique relying on the region proposal approach is known as the

Faster RCNN. The very earliest Region Proposal technique algorithm was region-based

CNN (R-CNN) (Girshick et al., 2015). But then again, it was computationally intensive

because each suggested zone required a CNN-based feature extraction. Sharing

28

convolutional features among area suggestions was suggested as a way to create a fast

RCNN and cut down on computation time (Girshick, 2015). Fully convolutional Region

Proposal Networks (RPN), which are taught to suggest accurate object areas, were

presented as a faster version of RCNN to increase speed (Ren et al., 2015). The four

components of the Faster RCNN model are classification, Region of Interest (RoI)

pooling, Region Proposal Network (RPN) and feature extractor.

This research utilized the Inception v2 convolutional layers for extraction of features.

The Inception v2 network has the benefit of being translation and scale-invariant because

of the utilization of broader networks having various kernel sizes in each layer of the

network (Veeranampalayam Sivakumar et al., 2020). For this, the region proposal layer's

feature map generated by the Inception v2 architecture is decreased in dimension.

Anchors or permanent bounding boxes at every position serve to define the RPN (Chen

et al., 2018). In order to allow the area proposal network to generate scale-invariant

proposals, anchors with various scales and aspect ratios are established at each point. A

convolutional filter on the feature chart is used by the region proposal layer to provide a

confidence score for the classifications of objects and backdrop (Suhail et al., 2020). It is

known as the objectness score. Additionally, anchor box regression offsets are produced

by the convolutional filter (Yi et al., 2021). As a result, if a region has k anchors, the

convolutional filter in the area proposal network produces 6k data, including 4k

coordinates and 2k scores. By this result, classification loss and bounding box regression

loss are computed. The feature map from feature extractor can then be blended with the

bounding box coordinates of anchors designated as objects. Bounding box areas with

various sizes and aspect ratios are adjusted to fixed size outputs in the RoI pooling layer

utilizing max pooling.

29

When there is maximal pooling, the down sampling is performed by the maximal number

of pixels. The pooling layer is a down sampling layer (Krizhevsky et al., 2012).

Following classification, the bounding box discrepancies with reference to the ground

truth boxes of the max-pooled feature map of a predetermined size that corresponds with

each output are regressed. As a result, two losses, the classification loss and the bounding

box regression loss are estimated at this output, just as they were in the region proposal

layer. Figure 2.6 shows the Faster RCNN architecture.

Figure 2.6: Faster RCNN architecture (Veeranampalayam Sivakumar et al., 2020)

2.5.1 Inception v2 architecture

CNN architecture's "inception architecture" modifies the feature extraction process (Khan

et al., 2020). The feature extraction section is where the difference may be found.

As can be seen in figure 2.11, the feature extraction part of Inception v2 employs base

layer and filter concat (Alamsyah et al., 2019). The enhanced usage of the computational

resources within the network is an attribute of Inception design (Chelghoum et al., 2020).

30

The main advantage of the Inception Design is that it outperforms shallower and less

broad networks while requiring just a slight improvement in processing resources, and it

is efficient despite not using context or implementing bounding box regression (Szegedy

et al., 2015). Utilizing clever factorization techniques, the inception design aims to

decrease the constraint and increase better performance in terms of computing

complexity. To increase computational performance, the 5x5 pixel convolution layer of

the Inception v2 architecture was categorized to a 3x3 pixel convolution (Szegedy et al.,

2016). Figure 2.7 shows the Inception v2 architecture.

Figure 2.7: Inception v2 architecture (Szegedy et al., 2015)

2.5.2 YOLO v5 architecture

Convolutional Neural Networks predicated on the "You Only Look Once" (YOLOv5)

framework family enable real-time object identification. The YOLO family was updated

with the publication of YOLOv5, by researcher Glenn and his colleagues, a month after

YOLOv4 was released (Thuan, 2021). Glenn Jocher is the CEO of Ultralystics LLC and

a researcher (Jocher et al., 2020). Alexey Bochkovsky built the YOLO models on top of

the bespoke framework Darknet, which is primarily coded in C (Thuan, 2021; Wang,

2021). The firm that adapts older itrations of YOLO onto PyTorch, among the most

popular Deep Learning frameworks built in Python, is called Ultralystic, which is a brand-

31

new Convolutional Neural Network that accurately recognises objects in real-time (Zhang

et al., 2022). In this approach, the whole imagery is processed by a single Neural

Network, after which it is divided into its component parts and bounding boxes and

probabilities are predicted for each one (Hemanth, 2022). The weighting of these

bounding boxes is based on the anticipated likelihood. The approach merely does a single

forward propagation loop through the Neural Network before making predictions, or

"only looking once" at the picture. Following non-max suppression, it provides

discovered objects that makes sure the object detection algorithm only recognizes each

object once.

According to Liu et al. (2019), YOLOv5 is premised upon this, YOLO detection designs

and utilizes the outstanding classifier optimization technique in the area of CNNs in recent

times, which includes automated bounding box anchor training, enhancing mosaic data,

and the cross-stage partial network, etc; which are in charge of various operations in

various parts of the YOLOv5 architecture. The input, backbone, neck, and output are the

four essential components of the YOLOv5 design. The data preparation, such as adaptive

picture filling and mosaic data augmentation Wu et al. (2017), is mostly contained in the

input terminal. YOLOv5 incorporates adaptive anchor frame computation on the input in

order to adapt to various data sets, and this can therefore autonomously determine the

starting anchor frame size as the data changes. By repeatedly convolution and pooling,

feature charts of varying sizes may be extracted from the input picture, the backbone

network mostly employs a Cross-Stage Partial network (CSP) Kim et al. (2019) and

Spatial Pyramid Pooling (SPP) (He et al., 2015c). Whereas the SPP design allows for the

realization of extracting features from various scales for same feature map and has the

ability to create three-scale feature charts, that increase recognition precision, to cut down

on the complexity of calculations, Bottleneck CSP is utilized and also speed up inference.

32

The feature pyramid architectures of FPN and PAN are applied to the neck network.

Robust semantic features are transmitted from the top feature charts into the bottom

feature charts utilizing the FPN structure (Liu et al., 2016b).

Additionally, the PAN structure transfers powerful localization features from lower

feature charts to higher feature charts (Wang et al., 2019). The collective strength of these

two systems improves the feature acquired from different network levels in Backbone

fusion, thus increasing the identification abilities. The head output is mostly utilized as

the last detection step to forecast targets of various sizes on feature maps. Four

architectures, known as YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x, make up the

YOLOv5 (Liu et al., 2021; Yan et al., 2021). Their primary distinction is the quantity of

feature extraction module and convolution kernels placed around particular points in the

network. Figure 2.8 displays the YOLO v5 network architecture.

Figure 2.8: The design of YOLO v5's network (Xu et al., 2021)

2.6 Training Epochs

Brownlee (2018) describes the number of epochs as a hyperparameter that specifies how

many times the learning algorithm will run across the whole training dataset. Each sample

33

in the training dataset has had one epoch, which indicates that the internal model

parameters have been updated. Each epoch is made up of one or more batches. For

instance, as previously stated, an epoch with one batch is referred to as the batch gradient

descent learning algorithm (Dogo et al., 2018). Consider a for-loop across the number of

epochs, with each loop traversing the training dataset. Another nested for-loop within this

for-loop iterates through each batch of samples, where each batch has the provided "batch

size" number of samples. Typically, the number of epochs is huge, frequently hundreds

or thousands, permitting the learning procedure to continue until the model error is

adequately minimised (Hu, 2021). Examples of the number of epochs set to 10, 100, 500,

1000, and larger can be found in the literature and tutorials. Line charts with epochs along

the x-axis as time and the model's error or skill on the y-axis are typical (Hoiem et al.,

2021). These charts are also known as learning curves. These charts can aid in

determining if the model has overlearned, underlearned, or is adequately fitted to the

training dataset.

2.7 Google Colaboratory

Jupyter Notebooks which is the innovation on which Google Colaboratory is built, is

introduced before Google Colaboratory. According to Perez & Granger (2007), Jupyter

is a free software web application that combines interpreted languages, libraries, and

visualization tools. Working locally or online is possible using a Jupyter notebook

(Mendez et al., 2019). Each document consists of a number of cells, with script or

markdown code in each cell and the output is embedded in the content. Text, tables,

graphs, and images are common outputs. Due to the experiments' and findings' self-

contained presentation, using this technology facilitates the sharing and replication of

scientific works (Randles et al., 2017). An initiative called Google Colaboratory,

sometimes known as Colab, aims to spread knowledge about Machine Learning research

34

and teaching (Colombo-Filho et al., 2020). Jupyter-based collaborative notebooks

function like a Google Document object, allowing users to work and interact on the same

notebook and share it with others (Carneiro et al., 2018). The crucial Machine Learning

and Artificial Intelligence libraries, including TensorFlow, Matplotlib and Keras, are

provided by Colaboratory in both Python 2 and 3 runtimes (Waheed et al., 2020; Suljovic

et al., 2022). All user data and customizations are lost when the Virtual Machine beneath

the runtime (VM) is disabled. Though the notebook is still there, it is also feasible to

upload things to the user's google drive account via the VM hard drive.

On a laptop, the complete model is trained and tested using Google Colaboratory and the

Python language. An entirely cloud-based, free Jupyter notebook environment is called

Colaboratory. It doesn't require any configuration and operates completely in the cloud

(Prashanth et al., 2021).

2.8 Software

Numerous software tools and strategies have been created to speed up data processing

because it may often be time-consuming. Table 2.1 provides an overview of the software

packages that have been used to process and speed up the data analyzing process in the

works assessed.

35

Table 2.1: Software packages utilized for image processing in the research.

Software Tool Summary

Python programming

v3.8

Simple, general purpose, high level, and object-oriented

programming language version 3.8.

Google Colaboratory

Free

K80 GPU, RAM 16GB, Runtime 12hours, Jupyter notebook

environment on google colabs.

Google Colaboratory

Pro

GPU- K80,T4 AND P100; RAM 32GB; Runtime 24hours;

cost 10$ per month; Jupyter notebook environment on google

colabs.

CNN is used by the majority of computer vision applications (Nanni et al., 2017;

Voulodimos et al., 2018; Bhatt et al., 2021; Wang et al., 2019; Islam et al., 2016).

Hardware for superior performance and excessive electricity usage of this hardware are

indeed two significant issues with CNN (Carneiro et al., 2018). Consequently, high-

performance hardware is necessary, such as the GPU from Colaboratory. CNN training

utilizing Colaboratory's enhanced runtime is 2.93 times quicker than with all of the

physical cores of a Linux server, on average (Carneiro et al., 2018).

36

2.9 Related Literatures on Weed Detection using Machine and Deep Learning

Algorithms

The spotlight has been drawn to methods centered on Machine Learning for spotting

weeds and crops (Murawwat et al., 2018). Support Vector Machine (SVM) classifier was

employed by Murawwat et al. (2018) to distinguish between carrot crops and weeds. With

72 training samples and 8 test samples, they were able to attain a classification accuracy

of more than 50%. The problem with the classic ML technique, such SVM or RF

classifiers, is that extraction of features is not automated and manually generated features

creation is a time-consuming stage. According to certain research, Deep Learning can

effectively cope with the drawbacks of manually created features for identifying weed

and crops by retrieving the features directly from the input data, in contrast to standard

Machine Learning techniques (Lee et al., 2015). Recent years have seen significant

advancements in the categorization of Remote Sensing data employing Deep Learning

for a variety of jobs, particularly agricultural ones.

Convolutional Neural Networks (CNNs) have been utilized in several research to classify

crops and identify weeds in agricultural applications (Mortensen et al., 2016; Potena et

al., 2017; Di Cicco et al., 2017). Utilizing mixed crops of an oil radish plot with barely,

weed, stump, grass, and background soil photographs, Mortensen et al. (2016) classified

weeds using the VGG-16 CNN model. A perceptual system that employs shallow and

deeper CNNs was developed by Potena et al. (2017) for the categorization of weed crops.

When classifying weeds and crops, the deeper CNN is employed, whereas the shallower

one is utilized to recognize vegetation. Using a SegNet, Di Cicco et al. (2017) generated

sizable synthetic training datasets programmatically while randomly distributing the

37

targeted environment's essential properties (i.e., crop and weed species, type of soil, light

conditions). The U-Net approach was used by Hashemi-Beni & Gebrehiwot (2020) to

identify and separate crops from weeds utilizing a small dataset. To enhance the

categorization outcomes, they used strategies like random cropping, random rotation, and

reflection on the data.

Additionally, techniques centered on Deep CNNs have shown successful weed

categorization and detection results. For instance, Yu et al. (2019), Olsen et al. (2019),

and Dyrmann et al. (2016) all employed similar techniques. Potena et al. (2017) used two

distinct CNNs to analyse RGB and NIR pictures in order to quickly and precisely detect

crops and weeds.

A shallow CNN was utilized to categorize the retrieved pixels into crops and weeds after

a lightweight CNN had quickly and robustly segmented the vegetation. Beeharry &

Bassoo (2020) assessed the effectiveness of ANN and AlexNet, two weed detection

algorithms based on UAV imagery. According to the experimental findings, AlexNet's

weed identification accuracy was greater than 99%, while ANN's accuracy on the same

dataset was just 48%.

A model for segmenting weeds in aerial images was developed by Ramirez et al. (2020),

who then compared it to SegNet and U-Net. The study's findings demonstrated that more

accurate experimental results were achieved through data balancing and improved spatial

semantic information. An enhanced Mask RCNN model was suggested by Patidar et al.

(2020) to extract early cranesbill seedlings. These weeds can be utilized as natural

rheumatoid arthritis treatments. The suggested technique made it possible to entirely

remove the weeds from the actual photograph in order to receive all of the nutrients and

enhance production. A Deep Neural Network-based (DNNs) semantic segmentation

38

strategy for weed crop detection was put out by You et al. (2020). In order to increase

segmentation accuracy, four more components were included, which improved

performance for weeds with random shapes in a complicated environment. These

techniques can autonomously gather meaningful feature information from pictures

without depending on image preprocessing or data conversion.

Predicated on Faster RCNN, Le et al. (2021) investigated the detection of weeds from

crops in difficult field environments. The outcomes showed that Faster RCNN

techniques, particularly the Faster RCNN model with Inception-ResNet-V2, may be used

to detect weeds in challenging field scenarios with changing weather, lighting, occlusion,

and growth phases. For plant-specific management in precision farming, Lottes et al.

(2018) combined crop-weed categorization with joint stem identification. Their method

made use of an end-to-end trainable fully convolutional network that concurrently trains

class-wise stem recognition and pixel-wise semantic segmentation while continuously

estimating stem locations and the total area of crops and weeds. Using convolutional

neural networks and convolutional neural network frameworks, Gothai et al. (2020)

conducted research on weed detection. Building algorithms like the VGG-16, ZFNet, and

ALEXNET with four, six, eight, or thirteen convolution layers, as well as other

architectures, was done in an effort to increase accuracy.

The research gaps from the reviewed literatures suggest that future works be executed in

the following aspect:

(i) Evaluating the effects of varying training epochs on the performance accuracy

of some Deep Learning algorithms utilizing UAV’s for the acquisition of aerial

data. This research project will focus on filling this gap.

39

(ii) Consideration of spectral and spatial resolutions to optimise the flight mission

to capture the size of the smaller weeds to be discriminated for better

performance accuracy is also unresolved.

(iii) Utilizing multispectral and hyperspectral imageries for the development of

improved classification algorithms for weed infestation assessments remains a

gap according to literature.

40

CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 The Research Design

This chapter’s layout contains the methodology that was adopted in conducting this

research. Furthermore, it decribes the method of the materials that were utilized and also

the data acquisition for the research, the data source, the preprocessing and processing

operations of the data, including the methodological workflow adopted to achieve the

desired aim of the research. Farmers suffer agricultural production losses due to

unchecked weed growths on agricultural fields as a result of practicing conventional weed

removal practices which are time consuming, labor intensive and have adverse effect on

the soil. Consequently, this chapter illuminates the application of Deep Learning

algorithms (Faster RCNN and YOLO v5) and Unmanned Aerial Vehicles in resolving the

current issues faced by farmers.

3.1.1 Hardware and materials used for this study

The hardware materials utilized for this study comprises the following:

i. The quadrotor (phantom 4) UAV

ii. Flight controller

iii. A battery

iv. A microcomputer

v. RGB sensor.

41

vi. A Laptop PC with 8GB RAM, processor speed of 2.6 GHz and an internal

memory of 1 TB.

3.1.2 Software and tools used

These are grouped into firmware and software. The firmware was executed on a

Tensorflow library with a python programming language version 3.8 on both Google

Colaboratory (Colab) free version which is accessible to all for free but having a RAM

size of 16 GB and a runtime usage of 12hours and Google Colaboratory pro with a RAM

size of 32 GB and a runtime usage of 24hours that attracts a fee of 9.99$. The python

codes aids the coding of the identification and classification network model used for the

training, testing and validation of the dataset. Furthermore, Pix4D mapper software was

used to create an orthomosaic of the study site.

3.2 Data Acquisition

On February 17, 2022, amidst clear skies, high-resolution UAV photograph data were

collected to assure comparable lighting conditions. A DJI Phantom 4, with an on-board

RGB sensor having a resolution of 12 megapixels and 5.74 mm focal length, was utilized

for the airborne survey. A 30 m height above ground level was selected for the flight

mission. This made it possible to traverse the study area with a flying duration of around

15 minutes and a spatial resolution of 0.5 cm.

Eight field targets were distributed uniformly across the research site to be utilized as

ground control points (GCPs) for georeferencing. A differential GPS (bi-frequency GNSS

receiver) centered on the German SAPOS correction service was used to establish the

field target centers for precision positioning in Real-Time Kinematic (RTK) mode.

42

In order to minimize shadows, the mission was undertaken at midday. Using the built-in

three-axis gimbal, the sensor was mounted vertically at 900. About 254 photographs in all

were captured at a mapping speed of 7 mph having a side and front overlap of 75%,

correspondingly. With UAV weight (battery & propellers included) of 1380g and battery

capacity of 5350 mAh. Plate I - IX presents the images of the flight path and equipments

utilized in the acquisition of aerial images as well as GCP’s for georeferencing the dataset

while Table 3.1 presents the details of the flight plan.

Plate I: The flight path of the UAV

Plate II: Unmanned aerial vehicle DJI phantom 4

43

Plate III: Flight controller and the display screen

Plate IX: The DGPS instrument used for acquiring GCP’s

Table 3.1: Details of the Flight Plan

Parameters Value

Shooting angle At 900, in line with the main path

Capture mode Fly and capture

Flight direction -330

Speed 7mph

44

Altitude 30meters

Starting waypoint 1

Front overlap 75%

Side overlap 75%

3.3 Flow Chart for the Faster RCNN Algorithm

The Site Specific Weed Management was implemented employing a Faster Region based

Convolutional Neural Network which is a Deep Learning (DL) algorithm. This Deep

Learning algorithm will generalize on the testing set after being trained. Figure 3.1 shows

the flow of the methods employed in this study, data acquired and processing.

Figure 3.1: The workflow of the development and implementation of the faster

RCNN weed detection model

3.4 Pre-processing of Images

End

45

In order for the dataset to fit into the model architecture for training and classifications of

weed patches, the dataset were pre-processed utilizing the necessary software packages.

This section contains the pre-processes employed to achieve the desired results. These

processes are as follows:

i. Image Resizing

ii. Data Annotation

iii. Splitting of Data

3.4.1 Image resizing

The initial dimensions of the raw aerial photographs were quite enormous to fit in the

memory for processing so each raw aerial photographs of 4000 x 3000 mega pixels from

the dataset were then resized to 750 x 1000 mega pixels. In Python programming, an

adaptive interpolation technique is used to achieve the resize process. This was done to

reduce the large sizes of individual images.

3.4.2 Data annotation

Annotation is a machine learning method that labels data on photos that feature specified

items or objects by putting a bounding box around each crop in the field. The resized

images are labeled in order to pick the suggested region, that's comprised of the respective

crop. The weed regions in individual sub-images were labeled as rectangular bounding

boxes utilizing the python labelling imager program (LabelImg). Only five (5) annotators

were employed in the labeling procedure. The annotator was trained to outline rectangular

bounding boxes surrounding weed spots and the different crops on the farm.

3.4.3 Splitting data

46

Given that there is a considerable number of data, it is split into test sets and train sets. A

training set is a subset of data used to train the model. The test set is a subset of

information that may be examined using our qualified model. 254 sub-photographs in

totality were manually labeled and were subsequently splitted between 80% training

dataset and 20% test image. Figure 3.2 shows the pre-processing workflow.

Figure 3.2: Workflow for pre-processing

3.5 Supervised Learning for both the Faster RCNN and YOLO v5 Models

The labeling of the training and validation datasets results in supervised learning. The

aerial photograph and the associated annotations are part of the dataset supplied into the

convolutional neural network as input. Accordingly, during supervised learning, the

algorithm picks up knowledge from the labeled dataset on how to map a certain input to

a specific output.

3.6 Training the Model with Dataset

Image
Resizing

Image
Annotation

Data
Splitting

47

This suggested model was trained on Google Colab having a GPU (NVIDIA GeForce

GTX TITAN X (Linux)) employing Google Colaboratory Free with a GPU R-80 and

RAM 16GB and Google Colaboratory Pro with GPU K80,T4,P100 and RAM 32GB. The

runtime environment for Graphics Processing Units (GPUs) can considerably expedite

the training process for many Deep Learning models. Tensorflow and CUDA/CuDNN

are implemented to parallelize computations on the GPU. Python 3 programming

notebook was thus uploaded. Numpy 1.19.5 and Tensorflow version 1.15.2 were installed

on the virtual machine for compatibility and to do various mathematical operations, as

well as to determine which GPU was allocated. The dataset was then loaded into the

Google colab workspace, as well as into a "datalab folder," from where the photos,

annotated files, and separate test samples were obtained. The labels were entered into a

configuration file that defined all detectable classes ("sugarcane, spinach, pepper, banana,

and weed"). The file names for training and validation were again retrieved by iterating

through all image files. Bounding boxes were made employing the label imager

"LabelImg software," which was also built in Python. Boundaries inside crops are defined

by using coordinates of the bounding boxes in ".XML" formats via XML annotation files.

The following step was to construct labelled tensor matrices (tf_records). Tensorflow

Record files comprise the real input data for the machine learning process in binary

format, making training faster. After that, the dataset is divided into training and testing

data. 80% of the data was used for training, while the remaining 20% was used for testing.

To evaluate the performance of the training, a Tensor board was placed and loaded. Paths

and training parameters were set up to specify what files and model waypoints should be

utilized during the training process, for example. 5 classes were defined, having a learning

rate of 0.0002, a batch size of 32, and so forth. The training on GPU was then carried out

for 10,000 epochs (this reflects the number of iterations the Deep Learning model has

48

accomplished over the entire training dataset) took about 27.8minutes to fully complete

and subsequently, 20,000 epochs ran for 54minutes, 100,000 epochs ran for 3.6hours,

200,000 epochs ran for 7.9hours and 242,000 epochs took about 9.6hours to train. Then

the inference graph was exported. Inference means to apply the model to imagery which

have not been utilised for training. This is the testing dataset. Whenever the loss function

no longer converges and begins to idle about a given value, the training should be

terminated. Figure 3.3 presents the workflow of the training process.

Figure 3.3: The training process flowchat

3.7 Evaluation and Prediction for both Faster RCNN and YOLO v5 Models

Start

End

49

The trained network is tested utilising test samples, and its performance is assessed

utilizing metrics which include confusion matrix, precision, recall, and F1 score for

various IoU ranges. A confusion matrix is used to measure object identification accuracy.

3.7.1 Evaluation of performance

A confusion matrix is an overview of how many predictions a model performed were

accurate and inaccurate. It is beneficial to display both the model's faults and the many

kinds of errors that might occur when predicting an object's classification (Hasan et al.,

2021). Below are the terminologies used in describing the classification results (Maxwell

et al., 2021);

i. True Positives (TP) describes the number of instances that the model accurately

identified a positive sample as positive.

ii. True Negatives (TN) indicates a specific number of instances the classifier

correctly identified a negative sample as negative.

iii. False Positive (FP) describes the frequency with which a negative sample was

incorrectly categorized as a positive sample by the classifier.

iv. False Negative (FN) indicates the frequency with which a positive sample was

incorrectly categorized by the model as negative.

3.7.2 Accuracy metric

The algorithm's performance throughout all classes is often described by its accuracy

metric. It is determined by dividing the number of accurate predictions by the overall

number of predictions (Teimouri et al., 2018).

Accuracy=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3.1)

3.7.3 Precision metric

50

The precision is computed as the ratio of True Positives to both the total number of False

Positives and True Positives. The precision measures how effectively the model classifies

a sample as positive (Prashanth et al., 2020).

Precision =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (3.2)

The denominator rises and the accuracy becomes low whenever the model produces

numerous wrong Positive classifications or few accurate Positive classifications. On the

other side, the accuracy is higher when the model assigns more correctly classified

positives and assigns less incorrectly classified positives. The accuracy rating ranges from

zero (0) (no precision) to one (1) (complete or perfect precision).

3.7.4 Recall metric

Recall is measured as the proportion of positive samples that were actually accurately

identified as Positive samples to all positive samples. The recall gauges how well the

algorithm can identify positive samples. The greater the number of positive samples

detected, the greater the recall (Jiang et al., 2020).

Recall=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3.3)

Only the classification of the positive samples is important to the recall. This is unrelated

to the classification of the negative samples, such as for precision. The recall will indeed

be 100% if the algorithm properly identifies all positive samples as positive, even if all

negative samples are wrongly categorized as positive. The outcome is a number that

ranges from 0.0 for no recall to 1.0 for complete or ideal recall.

3.7.5 F1 score metric

The harmonic mean of recall and precision is the F1 score. It accounts for both false

positives and false negatives. This enables the combination of accuracy and recall into a

51

single metric that accounts for both characteristics. However neither Precision nor the

Recall by themselves provides the general overview. It is possible to have great recall

with poor precision or poor recall with superb precision. The F1 score offers a means of

expressing both issues with a single score. Once the values for the Precision and Recall

have been predicted, the macro average of both the Precision and Recall for the different

epochs will then be calculated as follows:

Average

Precision=
 P(Weeds) + P(Banana) + P(Sugarcane) + P(Spinach) + P(Pepper)

5
 (3.4)

Average

Recall=
R(Weeds) + R(Banana) + R(Sugarcane) + R(Spinach) + R(Pepper)

5
 (3.5)

 F1 Score =
2∗(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙)
 (3.6)

3.8 Flow Chart for the YOLO v5 Algorithm

The Site Specific Weed Management was implemented employing a YOLO v5 which is

a Deep Learning (DL) algorithm. This DL algorithm will evaluate on the validation set

then generalize on the testing set after being trained. Figure 3.4 presents the workflow for

the methodology of YOLOv5s processing, data acquired and processing.

52

 NO

 YES

Start

Pre-processing

Model Training and

Validation

Stable loss

function?

Performance

Evaluation

Model Testing

End

53

Figure 3.4: The workflow for the methodology of YOLO v5 processing

3.8.1 Pre-processing of images

The dataset were pre-processed to meet the dimensions that will properly fit into the

architecture of the YOLO v5 model and manually annotated. The following steps were

taken to achieve the desired results:

i. Image Resizing

ii. Data Annotation

iii. Splitting of Data

3.8.1.1 Image resizing

The initial dimensions of the raw aerial photographs were too large to match up the

memory for processing as a result, each raw photographs of 4000 x 3000 mega pixels

taken from the dataset were then resized into 416 x 416 pixels to fit into the architecture

of the Yolov5 model. With Python programming, an adaptive interpolation technique

performs the resizing action.

3.8.1.2 Data annotation

Annotation is a machine learning method that labels data on photographs that constitute

specified objects by putting a bounding box around each crop in the field. The images

that have been resized are labeled to pick the proposed region, which is made up of

separate crops. The weed regions in individual sub-images were labeled as rectangular

bounding boxes utilizing the python labelling imager program (LabelImg). Five (5)

annotators were employed in the labeling procedure. The annotator was trained to outline

rectangular bounding boxes surrounding weed spots and the different crops on the farm.

3.8.1.3 Splitting data

54

About 223 aerial photographs made up the dataset used to process the algorithm. This

dataset was subsequently divided into Training Set of 156 (70%), Validation Set of 45

(20%) and Test Set of 22 (10%) photographs. A training dataset is a subset of data used

to train the classifier. The test set is a subset of data that may be examined utilizing the

trained model and the validation set is used to assess the models’ performances. Despite

the fact that validation metrics are relatively low, the results of algorithms validated

utilizing an external validation dataset simply make the validation extra reliable for the

actual implementation in the field. Figure 3.5 presents the pre-processing workflow.

Figure 3.5: Workflow for pre-processing of YOLO v5 dataset

3.9 Training, Validation and Test of YOLO v5 Model

YOLOv5 uses a darknet framework. Google Colaboratory was employed to perform data

processing and analysis (Colab). Because training a neural network requires a virtual

computer to operate for 12 hours and requires little computing effort, Colab Free was

employed for this segment of the study. A GPU R-80 and 16GB of RAM were used for

learning and identification operations (NVIDIA GeForce GTX TITAN X). A workstation

running Ubuntu 18.04 with GPU acceleration served as the operating system for the

Data
Splitting

Image
Annotation

Image
Resizing

55

virtual machine employed in the current investigation. Python 3.8 programming was used

to code and complete all Colab analysis.

The dataset were assembled representing the images with labelled bounding boxes around

the weeds and crops that are to be detected. All dataset were exported in the YOLOv5s

format. In training the model, a number of arguments were passed such as defining the

image size of 416 x 416, because the model was more sophisticated, a batch size of 16

photographs was employed. The dataset was then sub-divided into a training set of 156,

Validation Set of 45 and a Testing Set of 22. Training epochs were set at 100, 300, 500,

600, 700 and 1000, 5 classes were set for the models classification, the dataset location

was set and the training process was carried out using the pre-trained weights that the

YOLO programmers made available. The information is initially uploaded into CSP

(Cross Stage Partial Network) to retrieve attributes of weeds and crops after being

submitted with all the image data. The Head component is ultimately utilized to report

data like class, grades, position, and object size. The focus module is used in the Backbone

stage to retrieve useful information features. In evaluating the YOLO v5 model

performance, training losses and performance metrics are saved to Tensorboard and

further to a logfile. Then inference is run with the trained weights on contents of

“test/images” folder or logfile (i.e. which is used for making real-world predictions and

classification). The expended time for 100 epochs was 4minute 62 seconds, 300 epochs

was 11minutes 88seconds, 500 epochs was 18minutes 48seconds, 600 epochs was

22minutes 92seconds, 700 epochs was 25minutes 86seconds, and 1000 epochs was

38minutes 22seconds. Figure 3.6 depicts a pictorial workflow of the YOLO v5 model.

56

Figure 3.6: Process flow of YOLOv5

CHAPTER FOUR

4.0 RESULTS AND DISCUSIONS

4.1 Results and Discussions for the Faster RCNN

This section presents the findings achieved while employing the Faster Region-based

Convolutional Neural Network with inception v2 model for weed detection and

classification in a mixed farm over 10,000, 20,000, 100,000, 200,000, 242,000 epochs are

addressed. The research was carried out on Google Colaboratory employing Python

programming, mostly utilizing the Tensorflow library.

4.1.1 Training loss graphs

Figures 4.1-4.5 show all of the usual training loss graphs together with the dataset, and

all the losses over all the the five (5) distinct epochs considerably decreased as the number

of training epochs increased all through the training process. The training loss represents

Pre-processing
and

hyperparameter
setting

Extraction of key
features using

CSP in the
Backbone

Creating Feature
Pyramids using

PANet(Path
Aggregation

Network) approach

Final detection using
anchor boxes to
construct final

output with
probabilities and
bounding boxes

Performance
evaluation

Run inference on
test/images folder

57

how effectively the algorithm matches the training data (Bontonou et al., 2019). The

steady drop in training losses from Figure 4.1 to Figure 4.5 merely shows that the model

kept learning throughout the training session with an increment in the number of epochs

to a maximum of 242,000, beyond which there was no more significant learning from the

training data. The training loss curves in Figure 4.1 were partially reduced, indicating that

the model was still learning. The training loss starts to decrease in Figure 4.2. Between

Figure 4.3 to 4.5, the training loss curves declined significantly and smoothed out at

242,000 epochs, where it stabilized at 0. The total loss values are represented on the y

axis, and the number of epochs is represented on the x axis (the number of epochs refers

to how many instances the learning algorithm will run over the full training dataset).

Figure 4.1 to Figure 4.5 were exported from a visualization tool-TensorBoard.

Additionally, the training time over the training epochs of 10,000, 20,000, 100,000,

200,000 and 242,000 were 27.8minutes, 54minutes, 3.6hours, 7.9hours and 9.6hours

using Google Colaboratory.

Figure 4.1: Total loss for 10,000 epochs

 Actual value

 Smoothed value

58

Figure 4.2: Total loss for 20,000 epochs

Figure 4.3: Total loss for 100,000 epochs

Actual value

Smoothed value

 Actual value

Smoothed value

59

Figure 4.4: Total loss for 200,000 epochs

Figure 4.5: Total loss for 242,000 epochs

4.2 Confusion Matrix for 10,000 Epochs

The confusion matrices which is an evaluation of precision in Convolutional Neural

Networks based Deep Learning as espunged by (Maxwell et al., 2021), was explored for

Weed, Sugarcane, Banana, Spinach, and Pepper identification using the Faster RCNN

Deep Learning model spanning five (5) different epochs have been shown in Table 4.1,

Table 4.3, Table 4.5, Table 4.7 and Table 4.9. The diagonal values depict the accurate

 Actual value

 Smoothed value

 Actual value

 Smoothed value

60

estimates. The maximum accuracy recorded was 98.4% after the model had been trained

with a batch sizes of 32 at 200,000 epochs. With respect to the hyperparameter value of

batch size of 32, with 10,000 epochs in Table 4.1, the model successfully classified 75 %

annotations of sugarcane out of 191 annotations of sugarcane and just 1 % annotation was

mis-classified whereas 24 % annotations remained unsorted. 90 % of the annotations of

spinach out of 145 spinach annotations were successfully classified and only 1 % was

misclassified while 9 % also remained unsorted. Also, 92 % annotations of pepper were

successfully classified out of a total of 204 annotations of pepper while 6 % remained

unsorted. Further, 88 % annotations of Banana out of 65 annotations of Banana were

correctly classified and just 3 % were not properly classified while 9 % remained

unsorted. Ultimately, the classifier accurately determined 8 % annotations of weed out of

372 annotations of weed and just 3 % annotations of weed were not properly classified

while 89 % annotations of weed remained unsorted.

Table 4.1: Confusion matrix at 10,000 epochs

 Sugarcane Spinach Pepper Banana Weed Unsorted Total

Sugarcane 144 0 2 0 0 45 191

Spinach 0 130 2 0 0 13 145

Pepper 0 0 187 0 0 17 204

Banana 1 0 1 57 0 6 65

Weed 7 0 5 1 29 330 372

61

Unsorted 52 13 77 9 29 0 180

Total 204 143 274 67 58 411 1157

4.2.1 Precision and recall values for 10,000 epochs

In Table 4.2, the precision and recall values for 10,000 epochs are shown. The Precision

value ranges from 0 (which means no precision) to 1 (which means perfect precision).

Spinach had the highest precision of all classes (around 0.909), followed by banana,

sugarcane, and pepper, whereas weed had the lowest precision (at approximately 0.500).

Similar to precision, the Recall value ranges from 0 to 1. In terms of recall, "pepper" had

the maximum value (about 0.917), followed by "spinach," "banana," "sugarcane," and

"weed" (around 0.789), that had the lowest score. This indicates that while the model

was able to identify positive samples of "spinach," "banana," "sugarcane," and "pepper,"

it could not identify as many positive samples of "weed".

Table 4.2: Precision and recall for 10,000 epochs

Category Precision Recall

Sugarcane 0.7058823529 0.7539267016

Spinach 0.9090909091 0.8965517241

Pepper 0.6824817518 0.9166666667

Banana 0.8507462687 0.8769230769

62

Weed 0.5000000000 0.0779569892

4.3 Confusion Matrix for 20,000 Epochs

Table 4.3 shows the confusion matrix that was generated for 20,000 epochs. The findings

demonstrates that the algorithm was capable of correctly classifying 88% annotations of

sugarcane out of 191 annotations of sugarcane, while 12% annotations of sugarcane

remained unsorted. Likewise, out of 145 annotations of spinach, 97% were accurately

classified, whereas the remaining 3% remained unsorted. In addition, out of 204

annotations of pepper, 95% were accurately classified, while 5% remained unsorted.

Furthermore, out of 65 annotations of banana, 97% were accurately classified, while the

remaining 3% remained unsorted. Ultimately, out of 372 annotations of weed, the

algorithm correctly identified 52% annotations of weed, and just 0.5% annotations of

weed were wrongly classified, leaving 47% of them unsorted. The accuracy of the weed

classification at this epoch is just slightly better in comparison to the accuracy at 10,000

epochs.

Table 4.3: Confusion matrix for 20,000 epochs

 Sugarcane Spinach Pepper Banana Weed Unsorted Total

Sugarcane 169 0 0 0 0 22 191

Spinach 0 141 0 0 0 4 145

Pepper 0 0 193 0 0 11 204

63

Banana 0 0 0 63 0 2 65

Weed 1 1 0 0 195 175 372

Unsorted 24 6 14 4 96 0 144

Total 194 148 207 67 291 214 1121

4.3.1 Precision and recall values for 20,000 epochs

Table 4.4 displays the precision and recall values that were derived for 20,000 epochs.

The Precision and Recall values for spinach were the maximal, coming in at roughly

0.952 and 0.972, correspondingly. This is closely preceded by “Banana”, “pepper”,

“sugarcane” and “weed”. This indicates that while the model was capable of detecting

positive samples for “sugarcane”, “spinach”, “pepper” and “banana”, it did so less

frequently for "weed".

Table 4.4: Shows the precision and recall for 20,000 epochs

Category Precision Recall

Sugarcane 0.8711340206 0.8848167539

Spinach 0.9527027027 0.9724137931

Pepper 0.9323671498 0.9460784314

Banana 0.9402985075 0.9692307692

Weed 0.6701030928 0.5241935484

64

4.4 Confusion Matrix for 100,000 Epochs

The confusion matrix and the precision and recall values generated when the model was

trained at 100,000 epochs, correspondingly, are shown in Tables 4.5 and 4.6. The outcome

demonstrates that of 191 annotations of sugarcane, the classifier was capable of

accurately classifying 100% of them. Additionally, 100% of the 204 annotations of

pepper and 100% of the 145 annotations of spinach were both accurately classified.

Similarly, out of 65 banana annotations, 100% were classified accurately. Ultimately, out

of 372 weed annotations, the model correctly identified 98% of them, whereas the

remaining 2% remained unsorted.

Table 4.5: Confusion matrix for 100,000 epochs

 Sugarcane Spinach Pepper Banana Weed Unsorted Total

Sugarcane 191 0 0 0 0 0 191

Spinach 0 145 0 0 0 0 145

Pepper 0 0 204 0 0 0 204

Banana 0 0 0 65 0 0 65

Weed 0 0 0 0 363 9 372

Unsorted 1 0 2 1 14 0 18

Total 192 145 206 66 377 9 995

65

4.4.1 Precision and recall values for 100,000 epochs

The class with the highest possible precision was "spinach," preceded by "pepper,"

"banana," and "weed," in that sequence, as shown by the results displayed in Table 4.6.

The classes containing the highest recall values are "sugarcane," "spinach," "pepper,"

"banana," and "weed," in that sequence. In spite of the fact that "weed" again produced

the lowest precision and recall values at this epoch, it was found that these values had

greatly improved particularly in comparison to the outcomes of the model's training at

20,000 epochs, reaching roughly 0.96 and 0.98, correspondingly. This indicates that the

classifier was successful in identifying weed-positive samples at this point in time and

that training tends to improve when more training epochs are added.

Table 4.6: Precision and recall values for 100,000 epochs

Category Precision Recall

Sugarcane 0.9947916667 1.0

Spinach 1.0 1.0

Pepper 0.9902912621 1.0

Banana 0.9848484848 1.0

Weed 0.9628647215 0.9758064516

4.5 Confusion Matrix for 200,000 Epochs

66

Table 4.7 shows the confusion matrix that was generated after the network was trained at

200,000 epochs, and Table 4.8 shows the precision and recall values that were also

generated at this epoch. At 200,000 epochs, the classifier was found to be 100% accurate

in classifying 191 annotations of sugarcane, 100% accurate in classifying 145 annotations

of spinach, and 100% accurate in classifying 204 annotations of pepper. Additionally, all

65 annotations of banana were accurately classified, making 100% of them bananas.

Ultimately, out of 372 weed annotations, the model correctly identified 99% of them, and

just 0.8% remained unsorted. The trend of the results demonstrates that though the model

has categorized all the annotated photographs of the different crops at 100,000 epochs

successfully, it continues to get better at classifying weed as the epoch advances.

Table 4.7: Shows the confusion matrix for 200,000 epochs

 Sugarcane Spinach Pepper Banana Weed Unsorted Total

Sugarcane 191 0 0 0 0 0 191

Spinach 0 145 0 0 0 0 145

Pepper 0 0 204 0 0 0 204

Banana 0 0 0 65 0 0 65

Weed 0 0 0 0 369 3 372

Unsorted 2 0 3 1 7 0 13

67

Total 193 145 207 66 376 3 990

4.5.1 Precision and recall values for 200,000 epochs

Based on the precision values found in Table 4.8, it was determined that the classes with

the highest precision were "spinach" and "banana," then "sugarcane," "pepper," and

finally "weed," that had increased to 0.98. Additionally, the classes having the best recall

were "sugarcane," "spinach," "pepper," "banana," and finally "weed," which also

considerably improved to 0.9919, showing the classifier was capable of detecting positive

samples of "weed" over time.

Table 4.8: Precision and recall for 200,000 epochs

Category Precision Recall

Sugarcane 0.9896373057 1.0

Spinach 1.0 1.0

Pepper 0.9855072464 1.0

Banana 1.0 1.0

Weed 0.9813829787 0.9919354839

4.6 Confusion Matrix for 242,000 Epochs

68

Tables 4.9 and 4.10 exhibit the outcome of the model's training at 242,000 epochs. The

classifier flattened out and the weeds' precision started declining at 242,000 epochs. This

meant that the classifier was no longer picking up new information from the training

dataset, hence it was not necessary to go beyond 242,000 epochs. The confusion matrix

is shown in Table 4.9, whereas Table 4.10 displays the precision and recall figures. With

the exception of weed, all of the annotated crops could be effectively classified by the

classifier at this time. Of the 372 annotations of weed, the model correctly identified 99%,

meaning that 0.5% of the weed annotations were misclassified.

Table 4.9: Confusion matrix for 242,000 epochs

 Sugarcane Spinach Pepper Banana Weed Unsorted Total

Sugarcane 191 0 0 0 0 0 191

Spinach 0 145 0 0 0 0 145

Pepper 0 0 204 0 0 0 204

Banana 0 0 0 65 0 0 65

Weed 0 0 0 0 370 2 372

Unsorted 3 1 3 1 18 0 26

69

Total 194 146 207 66 388 2 1003

4.6.1 Precision and recall values for 242,000 epochs

Table 4.10's precision and recall values show that the classifier was starting to flatten out

since the accuracy values started to decline, with the exception of "banana," that remained

relatively stable. Although the recall value only slightly increased from 0.991 to 0.995,

the precision value of "weed" decreased from 0.98 to 0.95, indicating that the training for

classification and detection had achieved a saturation point during which moment the loss

curve flattened out. This suggests that adding more epochs than 242,000 won't result in

any substantial improvements in the classification and detection of weeds.

Table 4.10: Precision and recall for 242,000 epochs

Category Precision Recall

Sugarcane 0.9845360824 1.0

Spinach 0.9931506849 1.0

Pepper 0.9855072464 1.0

Banana 1.0 1.0

Weed 0.9536082474 0.9946236559

4.7 Performance of Faster RCNN Model Showing the Cumulative Result from the

Accuracy Metrics.

70

The overall accuracy was 52.6 %, 67.9 %, 97.3 %, 98.4 %, and 97 % for 10,000 epochs,

20,000 epochs, 100,000 epochs, 200,000 epochs, and 242,000 epochs, respectively. This

indicates that significant improvements in the network's performance have been

continuous as it trained with increment in epochs, particularly when the training epochs

were extended gradually from 10,000 to 200,000 even as the batch size for the algorithm

remained constant. The number of instances the learning algorithm will cycle through the

full training dataset is known as an epoch (Brownlee, 2018).

The cumulative performance was then reported at 10,000 epochs with an average

precision of 73 %, an average recall of 70.4 %, and an F1 score of 71.7 %, and at 20,000

epochs with an average precision of 87.3 %, an average recall of 85.9 %, and an F1 score

of 86.6 %. When the training epoch was changed to 100,000, it was found that the average

average precision was 98.7 %, the average recall was 99.5 %, and the F1 score was 99.1

%; however, when the training epoch was changed to 200,000, the average precision was

99.1 %, the average recall was 99.8 %, and the F1 score was 99.4 %. Lastly, when the

training epoch was raised to 242,000, the average precision, average recall, and F1 score

were generated and are displayed in Table 4.11 to be 98 %, 99.9 %, and 99.1%,

correspondingly. The corresponding times for 10,000 epochs, 20,000 epochs, 100,000

epochs, 200,000 epochs and 242,000 epochs were 27.8minutes, 54minutes, 3.6hours,

7.9hours and 9.6hours.

Table 4.11: Performance of faster RCNN inception v2 model showing the cumulative

result from the accuracy metrics.

Epochs Accuracy Average

Precision

Average

Recall

F1 score

71

10,000 0.5259615385 0.7296402565 0.7044050317 0.7168006091

20,000 0.6788581624 0.8733210947 0.8593466592 0.8662175648

100,000 0.9728643216 0.986559227 0.9951612903 0.9908415891

200,000 0.9838383838 0.9913055062 0.9983870968 0.9948336993

242,000 0.9720837488 0.9833604522 0.9989247312 0.9910814888

The accuracy, precision, F1 score and recall for the five epochs are compared in Table

4.11. Once contrasted to other epochs, the precision, accuracy, and F1 scores of

inceptionV2 at 200,000 epochs and 32 batch size produced the best results, which makes

it the perfect training epoch for accurate weed and crop identification. Using random

testing photographs, the same InceptionV2 model was evaluated, and the outcomes are

depicted in Plate V down to Plate IX. The findings collected indicate that the classifier

had a very high degree of confidence in its ability to effectively detect the weed even

amongst the sugarcane, spinach, pepper, and banana.

Additionally, the performance of weed detection and classification outcomes was also

examined. The classification accuracy of the deployed model for 10,000 epochs was 52.5

%, the "weed precision achieved 50 %", the "weed recall achieved 7.7 %", and the "F1

score also achieved 71.6 %". Furthermore, the model achieved a "classification accuracy

of 67.8%", "weed precision of 67%," "weed recall of 52.4%," and an F1 score of 85.9%

over 20,000 epochs. Likewise, 100,000 epochs produced "classification accuracy results

of 97.2 %", "weed precision" results of 96.2 % was achieved, "weed recall" results of

97.5 % was achieved, and an F1 score of 99 % was also achieved, whereas 200,000

epochs produced "classification accuracy results of 98.3 %", "weed precision" results of

72

98.1 % was achieved, "weed recall" results of 99.1 % was achieved, and an F1 score of

99.4 % was also achieved. Lastly, 242,000 epochs produced "classification accuracy

results of 97 %","weed precision of 95 % was achieved, "weed recall of 99 % was

achieved and a F1 scores of 99 % was also achieved over the metrics.

In addition, it was identified that the automatic "weed" classifier had the maximum

precision (98.4%) at 200,000 epochs before accuracy began to decline at 242,000 epochs

and fell to 97%, whereas the "weed" precision likewise reduced from 0.98 at 200,000

epochs to 0.95 at 242,000 epochs.

4.8 Classification on Testing Dataset

The Faster Region based Convolutional Neural Network model was used to identify and

categorize crop images over 10,000, 20,000, 100,000, 200,000, and 242,000 epochs.

Examples of typical photographic outcomes of the classifier are shown in Plates V to IX,

demonstrating the model's capability to detect and categorize weeds from several other

crops for each testing image on the test set. A predicted bounding box of weeds and

sugarcane crops is shown in Plate V at 10,000 epochs. Weeds here were likewise only

partly detected in the photograph using predicted bounding boxes and an accuracy of 62%

due to their tiny size and the overlap of sugarcane leaves. The percentages of weeds,

spinach, banana crops, and sugarcane within 20,000 epochs are displayed in Plate VI. The

accuracy for banana crop is 99 %, spinach is 99 %, and sugarcane was about 97%. In the

case where the weeds were apparent, the model correctly identified the annotated weeds

in the farm photograph with 99% accuracy. At 100,000 epochs in Plate VII, the classifier

had a weed detection rate of almost 98%. The classifier demonstrated its ability to detect

the weeds in the sugarcane regions to a high degree of 99% in the following plots, which

is displayed at 200,000 epochs in Plate VIII, and this was largely facilitated by the

73

classifier's learning ability with increase in the number of epochs. The detection and

classification of weeds began to become less accurate in Plate IX at 242,000 epochs, and

it was recognized that the model had achieved a saturated state. The accuracy decreased

from 99% at 200,000 epochs to 96% at 242,000 epochs. When evaluated with crops in a

mixed farm, the classifier is capable of constructing a decision boundary to accurately

identify weeds from crops with a low frequency of misclassifications.

Plate V: The classifier’s confidence in detecting and classifying weed classes was 62 %

in accuracy at 10,000 epochs from the image

74

Plate VI: The classifier’s confidence in detecting and classifying weed classes was 67 %

in accuracy at 20,000 epochs from the image

75

Plate VII: The classifier’s confidence in detecting and classifying weed classes was 98

% in accuracy at 100,000 epochs from the image

76

Plate VIII: The classifier’s confidence in detecting and classifying weed classes was 99

% in accuracy at 200,000 epochs from the image

77

Plate IX: The classifier’s confidence in detecting and classifying weed classes was 96 %

in accuracy at 242,000 epochs from the image

4.9 Results and Discussions for the YOLO v5

In this section, the results obtained using the YOLO V5 architecture for classification of

weeds in a mixed irrigation farm over 100, 300, 500, 600, 700 and 1000 epochs are

addressed. Python programming was used to conduct the investigations on Google Colab,

mostly utilizing the Darknet framework.

The dataset were assembled representing the images with labelled bounding boxes around

the weeds and crops that are to be detected. All dataset were exported in the YOLOv5s

format. In training the Yolov5 model, a number of arguments were passed such as

defining the image size of 416 x 416 and employing a batch size of 16 photographs due

to the complexity of the model. The dataset were splitted into a training set made up of

78

70 % of the dataset, a validation set made up of 20 %, and a testing set made up of 10 %.

Training epochs were set at 100, 300, 500, 600, 700 and 1000, 5 classes were set for the

models classification, the dataset location was set and the training applied to the pre-

trained weights made available by the YOLO developers. The expended time for 100

epochs was 4minute 62 seconds, 300 epochs was 11minutes 88seconds, 500 epochs was

18minutes 48seconds, 600 epochs was 22minutes 92seconds, 700 epochs was 25minutes

86seconds, and 1000 epochs was 38minutes 22seconds.

4.9.1 Training loss graphs from YOLOv5

The training loss per network epoch was determined so as to evaluate how well the

network training process performed. The network went through 100, 300, 500, 600, 700

and 1000 epochs, it can be seen that the training losses decreased all through from Figure

4.6 down to Figure 4.11 meaning that the model was learning. The model keeps learning

as it goes through even more epochs, which leads to less training loss in later epochs. In

Figure 4.6, the loss curve started declining at a considerable rate. From 300 epochs in

Figure 4.7, the author observed a loss that is mostly constant from Figure 4.7 to Figure

4.11. This indicates however that the network is learning with increasing accuracy, which

shows that the training loss was presumably minimal, as illustrated graphically in Figure

4.7 to Figure 4.11. From Figure 4.9 to Figure 4.10, the loss curve had no significant

improvement meaning the training curve flattened out at 600 epochs in Figure 4.9. The

lower the loss becomes, the better the model performance will be. The number of epochs

is shown on the x-axis, while the loss value is shown on the y-axis. The graphs were

extracted from Tensorboard Visualization.

79

Figure 4.6: The train/classification loss for 100 epochs

Figure 4.7: The train/classification loss for 300 epochs

80

Figure 4.8: The train/classification loss for 500 epochs

Figure 4.9: The train/classification loss for 600 epochs

81

Figure 4.10: The train/classification loss for 700 epochs

Figure 4.11: The train/classification loss for 1000 epochs

4.9.2 Validation graphs from YOLO v5

The developed model's performance was evaluated using the validation dataset. The step

by step validation losses of the model are shown in Figure 4.12 to Figure 4.17. As

observed from the plots, the models converge gradually and poorly at 100 epochs in

Figure 4.12, but converge better as the loss function diminishes while it trains in Figure

15 and remain constant down to Figure 4.17. This is in line with the theory that the model

82

is constantly tweaking its parameters and picking up relevant feature of the crops and

weeds without “overfitting” when the network learns the training data well, but performs

poorly on the generated data and “underfitting” when the algorithm is not able to model

either the training data or testing data. Figure 4.12 to Figure 4.17 indicates a possible

optimal case. The number of epochs is represented on the x-axis and y-axis represents the

validation loss values.

Figure 4.12: Validation loss for 100 epochs

Figure 4.13: Validation loss for 300 epochs

83

Figure 4.14: Validation loss for 500 epochs

Figure 4.15: Validation loss for 600 epochs

84

Figure 4.16: Validation loss for 700 epochs

Figure 4.17: Validation loss for 1000 epochs

4.10 Confusion Matrix for 100 Epochs

The Confusion Matrix for multi - class classification is shown in Figure 4.18 (in this case,

5 classes). The number of TP elements for each class is displayed on the diagonal (top

left to bottom right) as follows: 53% of all objects in the class of banana trees, 32% of all

objects in the class of spinach, 10% of all objects in the class of sugarcane, and 1% of all

objects in the class of weeds were properly categorized. Additionally, 13% of all banana-

85

class objects were mistakenly predicted as sugarcane-class objects, another 33 % of

objects of the weed class were tagged as unidentified by YOLO (unsorted). 3 % of all

objects of spinach class were misclassified as sugarcane and 65% were classified as

unknown. 5 % of all objects of sugarcane class were misclassified as spinach while 86 %

were classified as unknown, and 99 % of all objects of the weed class was classified as

unknown and were not categorized into any class by the classifier.

Figure 4.18: Confusion matrix for 100 epochs

4.10.1 Precision and recall values and graphs for 100 epochs

In Table 4.12, the value of Precision is within 0 (absence of precision) and 1.0 (ideal

precision). The most precise class was ‘pepper’ (an approximate of 0.947) preceded with

86

‘spinach’, ‘banana crop’, ‘sugarcane crop’ and ‘weed plants’ (at approximately 0.0504)

as the least. The Recall value ranges from 0 (absence of precision) to 1.0 (ideal precision).

The class with the best Recall was ‘banana’ (an approximate of 0.615) preceded with

‘spinach’, ‘sugarcane crop’, ‘weed’ and ‘pepper crop’(at approximately 0.0167) as the

least indicating that less positive samples of "weed" and "pepper" were found, but the

classifier was capable of identifying positive samples of "spinach crops," "banana crops,"

and "sugarcane crops".

Table 4.12: Precision and recall for 100 epochs

Category Precision Recall

Sugarcane 0.141 0.116

Spinach 0.378 0.375

Pepper 0.947 0.0167

Banana 0.156 0.615

Weed 0.0504 0.013

Figure 4.19, depicts the models precision curve metric that estimates the proportion of

accurate bounding box predictions. While Figure 4.20 depicts the recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.19, the model began improving swiftly from around 40 epochs all through to 98

epochs where it slightly dropped in precision on the precision curve while in Figure 4.20,

the recall curve also improved from 15 epochs which means the model is gradually

learning. The y-axis demonstrates the value of precision for Figure 4.19 and the x-axis

87

displays the different ranges of epochs while the y-axis depicts the recall value for Figure

4.20 and x-axis displays the different ranges of epochs.

Figure 4.19: Depicts the precision metrics curve at 100 epochs

Figure 4.20: Depicts the recall metrics curve at 100 epochs

4.11 Confusion Matrix for 300 Epochs

The Confusion Matrix for multiclass classification is displayed in Figure 4.21 (in this

case, 5 classes). The number of TP combinations for every class is displayed on the

diagonal, from top left to bottom right: 92% of all objects in the class of banana trees,

88

70% of all objects in the class of peppers, 97% of all objects in the class of spinach, 84%

of all objects in the class of sugarcane, and 45% of all objects in the class of weed were

properly categorized. Also, 8 % of all objects of the banana class were found by YOLO

as unknown, another 2 % of all objects of the pepper class were misclassified spinach and

28 % were found by YOLO as unknown. 3 % of all objects of spinach was found by

YOLO as unknown, 16 % of all objects of sugarcane class were categorized as unknown.

55 % of all the objects of weed class were classified as unknown and were not categorized

by the classifier into any class.

Figure 4.21: Confusion matrix for 300 epochs

4.11.1 Precision and recall values and graphs for 300 epochs

The precision and recall values are displayed in Table 4.13. The value of Precision ranges

from 0 (absence of precision) to 1.0 (for an ideal precision). The most accurate class in

terms of Precision and Recall was ‘spinach’ (at an approximate of 0.809 and 0.927)

89

correspondingly. Preceded with “banana crop”, “sugarcane”, “pepper crop” and “weed

plant” with Precision and Recall (at approximately 0.458 and 0.319) as the least. This

indicated that while the classifier was capable of identifying positive samples of

"spinach," "banana," and "sugarcane", it did not identify as many positive samples of

"weed".

Table 4.13: Precision and recall for 300 epochs

Category Precision Recall

Sugarcane 0.653 0.721

Spinach 0.809 0.927

Pepper 0.541 0.650

Banana 0.685 0.923

Weed 0.458 0.319

Figure 4.22, depicts the models precision curve metric that determines the proportion of

accurate bounding box predictions. While Figure 4.23 depicts the recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.22, the model began improving swiftly from around 100 epochs all through to

300 epochs on the precision curve and in Figure 4.23, the recall curve also improved

swiftly all the way to 300 epochs which means the model was learning. The precision and

recall capture the model performance, so the higher they are the better the model becomes.

The y-axis demonstrates the value of precision for Figure 4.22 and the x-axis displays the

90

different ranges of epochs while the y-axis depicts the recall value for Figure 4.23 and x-

axis shows the different ranges of epochs.

Figure 4.22: Depicts the precision metrics curve at 300 epochs

Figure 4.23: Depicts the recall metrics curve at 300 epochs

91

4.12 Confusion Matrix for 500 Epochs

The Confusion Matrix for multi - class classification is shown in Figure 4.24 (in this case,

5 classes). The number of TP elements for each class is displayed on the diagonal (top

left to bottom right) as follows: 85% of all items in the class of banana trees, 77% of all

objects in the class of pepper, 94% of all objects in the class of spinach, 83% of all objects

in the class of sugarcane, and 54% of all objects in the class of weed were properly

categorized. Additionally, 15 % of all objects of the banana class were found by YOLO

as unknown, another 23 % of all objects of the pepper class were found by YOLO as

unknown. 6 % of all objects of the spinach class were discovered by YOLO as

unidentified, 17 % of all objects of sugarcane class were categorized as unknown. 1 % of

all the objects of weed class were classified as sugarcane and 45 % of all objects of weed

class were found by YOLO as unknown and had not been categorized into any class by

the classifier.

92

Figure 4.24: Confusion matrix for 500 epochs

4.12.1 Precision and recall values and graphs for 500 epochs

As observed in Table 4.14, the most accurate class in terms of Precision and Recall was

observed to be ‘spinach’ (at an approximate of 0.902 and 0.875) followed by ‘sugarcane’,

‘weed’, ‘banana’ and ‘pepper’ (at approximately 0.560) as the least. Then the Recall

values followed in the order of ‘sugarcane’, ‘banana’, ‘pepper’ and ‘weed’ (at

approximately 0.269) as the least meaning that the classifier was capable of identifying

Positive samples for “spinach crops”, “banana crops” and “sugarcane crops” but it did

not identify many positive samples of “weed plants” but with great improvement in

“weed” Precision initially from ‘0.458’ at 300 epochs to ‘0.747’ at 500 epochs.

93

Table 4.14: Precision and recall for 500 epochs

Category Precision Recall

Sugarcane 0.876 0.825

Spinach 0.902 0.875

Pepper 0.560 0.483

Banana 0.734 0.769

Weed 0.747 0.269

Figure 4.25, depicts the models precision curve metric that determines the proportion of

accurate bounding box predictions. While Figure 4.26 depicts the recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.25, the model began improving swiftly from around 100 epochs all through to

500 epochs on the precision curve and in Figure 4.26, the recall curve also improved

swiftly all the way to 500 epochs which means the model was learning. The precision and

recall capture the model performance, so the higher they are the better the model becomes.

The y-axis demonstrates the value of precision for Figure 4.25 and the x-axis displays the

different ranges of epochs while the y-axis depicts the recall value for Figure 4.26 and x-

axis displays the different ranges of epochs.

94

Figure 4.25: Depicts the precision metrics curve at 500 epochs

Figure 4.26: Depicts the recall metrics curve at 500 epochs

4.13 Confusion Matrix for 600 Epochs

The Confusion Matrix for multi - class classification is displayed in Figure 4.27 (in this

case, 5 classes). The number of TP combinations for each class is displayed on the

diagonal, from top left to bottom right: 100% of all items in the banana tree class, 72% of

all objects in the pepper class, 94% of all objects in the spinach class, 81% of all objects

in the sugarcane class, and 56% of all objects in the weed class were properly categorized.

95

Also 28 % of all objects of the pepper class were found by YOLO as unknown. 6 % of

all objects of the spinach class were found by YOLO as unknown, 19 % of all objects of

sugarcane class were classified as unknown and 44 % of all objects of weed class were

found by YOLO as unknown and could not be categorized into any class by the classifier.

Figure 4.27: Confusion matrix for 600 epochs

4.13.1 Precision and recall values and graphs for 600 epochs

From the Precision and the Recall values presented in Table 4.15, it can be observed that

the most accurate class in terms of Precision was “spinach” (at an approximate of 0.932)

Preceded with “banana crops”, “sugarcane crops”, “weed plants” which improved to

‘0.782’ and then “pepper” as the least. Also, the most accurate class in terms of Recall

was “banana crops” (at 1.000) preceded with “spinach crops”, “sugarcane crops”, “pepper

crops” and “weed plants” (at an approximate of 0.338) that also improved from ‘0.269’

96

at 500 epochs indicating that the classifier could slowly but steadily recognize positive

samples of "weed".

Table 4.15: Precision and recall for 600 epochs

Category Precision Recall

Sugarcane 0.814 0.674

Spinach 0.932 0.906

Pepper 0.700 0.544

Banana 0.891 1.000

Weed 0.782 0.338

Figure 4.28, depicts the models precision curve metric that determines the proportion of

accurate bounding box predictions. While Figure 4.29 depicts the recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.28, the model began improving swiftly from around 100 epochs all through to

600 epochs on the precision curve and in Figure 4.29, the recall curve also improved

swiftly all the way to 600 epochs which means the model was learning. The precision and

recall capture the model performance, so the higher they are the better the model becomes.

The y-axis demonstrates the value of precision for Figure 4.28 and the x-axis displays the

different ranges of epochs while the y-axis depicts the recall value for Figure 4.29 and x-

axis demonstrates the different ranges of epochs.

97

Figure 4.28: Depicts the precision metrics curve at 600 epochs

Figure 4.29: Depicts the recall metrics curve at 600 epochs

4.14 Confusion Matrix for 700 Epochs

The Confusion Matrix for multi - class classification is shown in Figure 4.30 (in this case,

5 classes). The number of TP elements for every class is displayed on the diagonal (top

left to bottom right) as follows: 92% of all items in the "banana trees" class, 73% in the

98

"pepper" class, 94% in the "spinach" class, 81% in the "sugarcane" class, and 52% in the

"weed" class were properly categorized. Also, 8 % of all objects of banana class were

found by YOLO as unknown, 27 % of all objects of the pepper class were found by YOLO

as unknown. 6 % of all objects of the spinach class were identified as unknown by YOLO,

19 % of all objects of sugarcane class were classified as unknown and 48 % of all objects

of weed class were found by YOLO as unknown and could not be categorized by the

classifier into any class.

Figure 4.30: Confusion matrix for 700 epochs

4.14.1 Precision and recall values and graphs for 700 epochs

From the Precision and the Recall values displayed in Table 4.16, The classifier appeared

to be flattening out as the precision values started to decline with an exception for

‘spinach’ that slightly increased with a ‘0.001’ margin. The value of Precision of “weed

99

plants” reduced from ‘’0.782’ to ‘0.433’ although the value of Recall increased slightly

from ‘0.338’ to ‘0.429’ this indicates that the loss curve flattened at this epoch, indicating

that the model training has achieved a saturation level. This suggests that adding more

epochs than 700 won't result in any substantial improvements in the classification and

detection of weeds.

Table 4.16: Precision and recall for 700 epochs

Category Precision Recall

Sugarcane 0.688 0.744

Spinach 0.933 0.938

Pepper 0.654 0.650

Banana 0.672 0.769

Weed 0.433 0.429

Figure 4.31, depicts the models precision curve metric that determines the proportion of

accurate bounding box predictions. While Figure 4.32 depicts the recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.31, the model began improving swiftly from around 100 epochs all through to

700 epochs on the precision curve and in Figure 4.32, the recall curve also improved

swiftly all the way to 700 epochs which means the model was learning. The precision and

recall capture the model performance, so the higher they are the better the model becomes.

The y-axis demonstrates the value of precision for Figure 4.31 and the x-axis displays the

100

different ranges of epochs while the y-axis depicts the recall value for Figure 4.32 and x-

axis demonstrates the different ranges of epochs.

Figure 4.31: Depicts the precision metrics curve at 700 epochs

Figure 4.32: Depicts the recall metrics curve at 700 epochs

4.15 Confusion Matrix for 1000 Epochs

The Confusion Matrix for multi - class classification is shown in Figure 4.33 (in this case,

5 classes). The number of TP elements for every class is displayed on the diagonal (top

left to bottom right) as follows: 97% of all items in the spinach class, 86% of all objects

101

in the sugarcane class, 73% of all objects in the pepper class, 85% of all objects in the

banana tree class, and 47% of all objects in the weed class were properly categorized.

Also, 15 % of all objects of banana class were found by YOLO as unknown, 27 % of all

objects of the pepper class were found by YOLO as unknown. 3 % of all objects of the

spinach class was classed as unidentified by YOLO, 14 % of all objects of sugarcane class

were classified as unknown and 53 % of all objects of weed class were found by YOLO

as unknown and could not be categorized into any class by the classifier.

Figure 4.33: Confusion matrix for 1000 epochs

102

4.15.1 Precision and recall values and graphs for 1000 epochs

As observed in table 4.17, the “weed” Precision marginally improved from ‘0.433’ to

‘0.449’. The value of Recall dropped from 0.429 to 0.403 of which is a direct implication

that the classifier had already achieved a saturated level. At this point, there was no need

to proceed further for the iteration.

Table 4.17: Precision and recall for 1000 epochs

Category Precision Recall

Sugarcane 0.697 0.767

Spinach 0.911 0.957

Pepper 0.710 0.654

Banana 0.791 0.846

Weed 0.449 0.403

Figure 4.34, depicts the models precision curve metric that determines the proportion of

accurate bounding box predictions. While Figure 4.35 depicts the Recall curve metric that

determines the percentage of the actual bounding box that was successfully predicted. In

Figure 4.34, the model began improving swiftly from around 100 epochs all through to

1000 epochs on the precision curve and in Figure 4.35, the Recall curve also improved

swiftly all the way to 1000 epochs which means the model was learning. The Precision

and Recall capture the model performance, so the higher they are the better the model

becomes. The y-axis displays the precision value for Figure 4.34 and the recall value for

103

Figure 4.35, whereas the x-axis displays the different ranges of epochs for both Figure

4.34 and Figure 4.35.

Figure 4.34: Depicts the precision metrics curve at 1000 epochs

Figure 4.35: Depicts the recall metrics curve at 1000 epochs

4.16 Cumulative Accuracy Metric Values

The overall accuracy obtained for 100 epochs was 16 %, 300 epochs was 65 %, 500

epochs was 66 %, 600 epochs was 67 %, 700 epochs was 65 % and 1000 epochs was 64

%. Thus there was steady improvement in the accuracies which was observed while

increasing the number of epochs from 100 to 600 as the batches size for the YOLO v5

remains the same.

104

At 100 epochs, the observed average Precision was 33%, average of Recall of 19% and

also, the F1 score of 24%. As soon as the epoch reached 300 epochs, the observed average

Precision was 63%, average of Recall was 71% and an F1 score of 67%. Also, 500 epochs,

the observed average Precision was 76%, average of Recall achieved 64% and a F1 score

of 69%. Subsequently, when increased to 600 epochs, the observed average Precision was

82%, average of Recall achieved 69% and a F1 score of 75%. At 700 epochs, the observed

average Precision was 67%, average of Recall achieved 70% and a F1 score of 69%.

Finally, at 1000 epochs, the observed average Precision was 71%, average of Recall

achieved 72% and a F1 score of 71% as shown in Table 4.18. Also, all epochs were

processed on Colab Free having a GPU of K80, RAM of 16GB and runtime of 12hours.

The expended time for 100 epochs was 4minute 62 seconds, 300 epochs was 11minutes

88seconds, 500 epochs was 18minutes 48seconds, 600 epochs was 22minutes 92seconds,

700 epochs was 25minutes 86seconds, and 1000 epochs was 38minutes 22seconds.

Table 4.18 compares and contrasts each one of the epochs' Accuracies, average

Precisions, average Recalls, and then the F1 scores. When contrasted to other epochs,

YOLO v5 model at 600 epochs and batch size of 32, exhibited the best Precision,

Accuracy, Recall and F1 score outcomes, indicating it to be the best training epoch for

accurate weed and crop recognition.

105

Table 4.18: Showing the cumulative accuracy metrics of YOLO v5

Epochs Accuracy Average

Precision

Average

Recall

F1 score

100 0.160 0.334 0.190 0.242

300 0.646 0.629

0.708 0.666

500 0.655 0.764 0.644 0. 699

600 0.671 0.823

0.692

0. 752

700 0.653 0.676 0.706 0.691

1000 0.648 0.712

0.725

0.718

The accuracy of the categorization estimates for weed performance for the automatic

weed categorization was evaluated and the result from 100 epochs yielded a 16 % in

classification accuracy, Precision of weed was 5 % and a Recall of weed was 13 %. For

300 epochs, the classification accuracy of 65 % was gotten; Precision of weed was

observed to be 46 % and the Recall for weed was achieved at 32 %. For 500 epochs, a

classification accuracy having 66 % was achieved; with a Precision of weed at 75 % and

an observed Recall of weed at 27 %. At 600 epochs, it also yielded a 67 % in classification

106

accuracy; a Precision of weed at 78 % and a Recall of weed at 34 % was achieved. At

700 epochs, 65 % of classification accuracy was achieved; including a Precision weed of

43 % and a Recall of weed at 43 %. Finally, at 1000 epochs, the classification accuracy

of 65 % was achieved; with a Precision of weed at 45 % and also a Recall of weed at 40

% was achieved over the evaluation metrics.

In addition, it was discovered that the autonomous weed classification classifier's

maximum weed precision (78%) was attained at 600 epochs, whereas the weed accuracy

began to decline at 700 epochs, when it fell to (43%). Also, there was no significant

improvement above 1000 epochs in the accuracy of weeds after increasing the epochs

from 600 through to 1000 epochs.

4.17 Output of the Model on the Testing Dataset

The weed pattern visualization outcomes displayed in Plate X down to Plate XV which

was done to observe the weeds of various sizes that have been identified within the mixed

cropping farm containing sugarcane, pepper, banana and spinach crops. In Plate X at 100

epochs, the yolov5s model was able to identify and classify weeds within the irrigated

farm at approximately 63 % in precision. This was due to the fact that epoch used was

too small for the model to completely learn. Plate XI at 300 epochs, the algorithm was

able to classify weeds to a precision of 63 %. In Plate XII at 500 epochs, the model

classified weeds to a precision of 74 %. At 600 epochs in Plate XIII, weeds were classified

to a precision of 78 % within the farm. Furthermore, weed class was identified and

classified to a precision of approximately 63 % in Plate XIV at 700 epochs and finally at

1000 epochs in Plate XV, weeds were classified with an accuracy of 51 %. From the

different epochs employed during training of the model, it was observed that at 600

epochs, the precision of weed reached it maximum state of 78 % and began to decline

107

with increase in the numbers of epochs from 600 epochs to 700 epochs at 63 % and finally

to 51 % at 1000 epochs. This implies that the model can indeed predict weeds more

accurately at 600 epochs, which is crucial for agricultural weed identification and

classification purposes.

Plate X: Weed classification results on test images at 100 epochs

108

Plate XI: Weed classification results on test images at 300 epochs

109

Plate XII: Weed classification results on test images at 500 epochs

110

Plate XIII: Weed classification results on test images at 600 epochs

111

Plate XIV: Weed classification results on test images at 700 epochs

112

Plate XV: Weed classification results on test images at 1000 epochs

113

4.18 Comparing the Performance of Faster RCNN and YOLO v5 Based on

Results Obtained from the Overall Classification Accuracies, Weed Precision and

Weed Recall

The classifiers utilized have varying degrees of overall classification accuracy (Faster

RCNN and YOLOv5s). As shown in Table 4.19, Faster RCNN exhibited the highest

overall accuracies. Notably lower accuracies were observed using YOLOv5s. Using the

Faster RCNN classifier, the lowest accuracies were realised at 10,000 epochs with an

overall accuracy of 52%, weed precision of 50% and weed recall of 8% while the at

200,000 epoch, the highest level of accuracies and saturated point were achieved with

98% 0verall accuracy, 98% weed precision and 99% weed recall. While the minimum

epoch of YOLOv5s classification at 100 epochs achieved the overall accuracy of 16%,

weed precision of 5% and 1% for the weed recall. Furthermore, the classifier achieved a

maximum weed precision at 600 epochs with a weed precision of 78%, weed recall of

34% and an overall accuracy of 67%. With only 5 % for the lowest weed precision and

of 78% for the highest weed precision of YOLOv5s, this exhibited by far a lesser

accuracy. The Faster RCNN Deep Learning exhibited a better classification output

making it the best classifier suitable for automatic weed identification and classification.

114

Table 4.19: Accuracy comparison of the minimal and maximal achievable accuracy

epochs of both classifiers

Classifier Epochs Overall

accuracy

Weed

precision

Weed

recall

Faster RCNN 10,000 (MIN) 0.526 0.500 0.078

200,000 (MAX) 0.984 0.981

0.992

YOLOv5s 100 (MIN) 0.160 0.0504 0. 013

600 (MAX) 0.671 0. 782 0. 338

4.18.1 Processing time

Time complexity varies significantly depending on the classifier and the number of

observations. The model that required the most time to train, with an average of 27.8

minutes (min) and 7.9 hours (max) per classification, was the Faster Region based

Convolutional Neural Network algorithm this was due to the number of epochs, the model

architecture, layers and parameters used which made the Faster RCNN take longer time.

With YOLOv5, having a less complex architecture and lesser hyperparameters, the

calculation times was shorter at 4minute 62 seconds and 18minutes 48seconds. Table 4.20

depicts the minimum and maximum processing time for training both Deep Learning

models.

115

Table 4.20: The minimum and maximum processing time for training the selected

deep learning algorithms

Classifiers Epochs Training time per

classification

Faster RCNN 10,000 (MIN) 27minutes 8seconds

200,000 (MAX) 7hours 9minutes

YOLOv5s 100 (MIN) 5minute 2seconds

500 (MAX) 23minutes 38seconds

In this research, YOLOv5 was discovered as being the least satisfactory classifier

amongst the other deep-learning approach. With minimal computation times and no

parameters that need to be tuned, Deep Learning delivers the most convenient usage.

Notwithstanding, the poor categorization performance outweighs these benefits

especially when classifying weeds that are small due to only two anchor boxes in a grid

predicting only one class of object. Faster RCNN in comparison it is simple to apply, as

just one variable is required to be set by the user and it can detect smaller weeds well

since it has nine anchors in a single grid. After weighing every factor, including

classification accuracy, robustness, calculation complexity, and intuitiveness, Faster

RCNN was shown to be the better option for leveraging data supplied by UAVs to classify

weeds and other crop kinds. Comparing this strategy to the YOLOv5s model, it performed

better and was more robust in categorization.

116

CHAPTER FIVE

5.0 Conclusion and Recommendations

5.1 Summary of Findings

This research explored the performance of two models in weed classification which are

the Faster RCNN inception v2 model and YOLOv5s architecture making use of

Unmanned Aerial Vehicle imagery to automatically distinguish and classify weed plants

from crops within an irrigated farm in Minna the state capital of Niger State.

After the implementation of the classification models (Faster RCNN and YOLO v5) for

the identification and classification of weeds, the following findings were generated:

(i) It was discovered that the accuracy of the models increased with increase in

training epochs until the models were saturated.

(ii) YOLO v5 was discovered to be the fastest in terms of runtime as compared to the

Faster RCNN model which took greater time to complete its classification.

(iii) It was also discovered that the Faster RCNN out-performed the YOLO v5

classifier in aspects of performance accuracy in the development of the UAV

based automatic crop type classification and weed detection scheme.

 5.2 Conclusion

Better accuracy in numerous real-time applications has been made possible by the

enormous advances in Deep Learning techniques. This study has demonstrated the

usability of Deep Learning strategies, specifically, Faster RCNN and YOLO v5

algorithms, for weed identification and classification. The effectiveness of the Faster

Region based Convolutional Neural Network applied and the YOLO v5 were assessed

117

employing metrics which include accuracy, the precision, the recall, and a F1 score and

demonstrated to be exceptionally competent of autonomously recognizing and classifying

weed plants in a mixed farmland from UAV data with the use of the documented loss

function and confusion matrix.

In summary, YOLOv5 showed advantages in fast computation times while achieving

comparable detection accuracies in the identification and categorisation of weeds from a

mixed farm as compare to Faster RCNN. Also, after assessing every metric, notably

classification accuracy, the Precision, the Recall and a F1 score, Faster RCNN

architecture appeared to be the most effective and accurate classification approach of

weeds from various crop kinds employing Unmanned Aerial Vehicle imagery.

Subsequently, it was also observed that the increase in epochs influences the accuracy of

the classification model. With this, the aim of the research of implementing and

evaluating the performance of the Deep Learning algorithms investigated was achieved.

5.3 Recommendations

From the findings of this research, it is recommended that spectral and spatial resolutions

to optimise the flight mission to capture the size of the smaller weeds to be discriminated

for better performance accuracy and also, it is recommended in Faster RCNN not to go

above a maximum training of 200,000 epochs and below a minimum training of 10,000

epochs for accurate performance and for the YOLO v5, it is advised not to exceed a

maximum training epoch of 600 and a minimum training epoch of 100 for a good

performance output. Hyper-parameter tunning and data augmentation (artificially

increasing the training set by creating modified copies of a dataset using existing data)

could be done to observe how they affect the models accuracy.

118

5.4 Contributions to Knowledge

i. Performance accuracy increases with increase in training epochs for the selected

Deep Learning models.

ii. The Faster Region-based Convolutional Neural Network out performs the YOLO

v5 algorithm in terms of Accuracy, average Precision, average Recall and F1

score.

iii. This research have made the application of the right quantity of farm inputs

(water, manure/fertilizers and herbicides) more precise and also mitigated

excessive chemical use.

5.5 Future Work

Further research should be carried out to further compare the effectiveness of Faster

Region based Convolutional Neural Network model with a few other powerful Deep

Learning methods to discover faster and more accurate models for weed detection on

small farmlands while taking images at a distance less than 30m and closer for smaller

weeds so they appear larger in the image.

119

REFERENCES

Adamchuk, V. I., Bernards, M. L., & Meyer, G. E. (2008). EC08-708 Precision

Agriculture: Weed Targeting Herbicide Management. Historical Materials from

University of Nebraska-Lincoln Extension, 4871.

Adekunle, I. O. (2013). Precision agriculture: Applicability and opportunities for

Nigerian agriculture. Middle-East Journal of Scientific Research, 13(9), 1230-

1237, doi: 10.5829/idosi.mejsr.2013.13.9.1004

Akbar, S., Peikari, M., Salama, S., Nofech-Mozes, S., & Martel, A. (2017). Transitioning

between convolutional and fully connected layers in neural networks. In Deep

Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support (pp. 143-150), doi: 10.1007/978-3-319-67558-9_17

Akobundu, I. O. (1987). Weed science in the tropics. Principles and practices. (p. 522).

John Wiley. https://doi.org/19880711194

Alamsyah, A., Saputra, M. A. A., & Masrury, R. A. (2019). Object detection using

convolutional neural network to identify popular fashion product. In Journal of

Physics: Conference Series, 1192(1), 012040, doi: 10.1088/1742-

6596/1192/1/012040

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional

neural network. In 2017 international conference on engineering and technology

(ICET) (pp. 1-6), doi: 10.1109/ICEngTechnol.2017.8308186

Alexandratos, N. & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012

revision. ESA Working paper, No. 12-03. Rome, FAO, doi

10.22004/ag.econ.288998

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., & Asari,

V. K. (2019). A state-of-the-art survey on Deep Learning theory and architectures.

Electronics, 8(3), 292, https://doi.org/10.3390/electronics8030292

Alotaibi, M., & Mahmood, A. (2017). Improved gait recognition based on specialized

deep convolutional neural network. Computer Vision and Image Understanding,

164, 103-110, https://doi.org/10.1016/j.cviu.2017.10.004

Al-Saffar, A.A.M., Tao, H., & Talab, M.A. (2017). Review of deep convolution neural

network in image classification, in: Radar, Antenna, Microwave, Electronics, and

Telecommunications (ICRAMET), 2017 International Conference on, IEEE, (pp.

26–31), doi: 10.1109/ICRAMET.2017.8253139

Annett, R., Habibi, H.R., & Hontela, A., (2014). Impact of glyphosate and glyphosate-

based herbicides on the freshwater environment. Journal of Applied Toxicology,

34, 458-479, https://doi.org/10.1002/jat.2997

https://doi.org/19880711194
https://doi.org/10.1109/ICEngTechnol.2017.8308186
http://dx.doi.org/10.22004/ag.econ.288998
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1016/j.cviu.2017.10.004
https://doi.org/10.1109/ICRAMET.2017.8253139
https://doi.org/10.1002/jat.2997

120

Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020).

Deep Learning techniques for estimation of the yield and size of citrus fruits using

a UAV. European Journal of Agronomy, 115, 126030,

https://doi.org/10.1016/j.eja.2020.126030

Azizah, L. M. R., Umayah, S. F., Riyadi, S., Damarjati, C., & Utama, N. A. (2017). Deep

Learning implementation using convolutional neural network in mangosteen

surface defect detection. In 2017 7th IEEE international conference on control

system, computing and engineering (ICCSCE) (pp. 242-246), doi:

10.1109/ICCSCE.2017.8284412

Bah, M. D., Dericquebourg, E., Hafiane, A., & Canals, R. (2018a). Deep Learning based

classification system for identifying weeds using high-resolution UAV imagery. In

Science and Information Conference (pp. 176-187), doi: 10.1007/978-3-030-

01177-2_13

Bah, M.D., Hafiane, A., Canals, R. (2018b). Deep Learning with Unsupervised Data

Labeling forWeed Detection in Line Crops in UAV Images. Remote Sensing, 10,

1690, https://doi.org/10.3390/rs10111690

Bajwa, A. A. (2014). Sustainable weed management in conservation agriculture. Crop

protection, 65, 105-113, https://doi.org/10.1016/j.cropro.2014.07.014

Batte, M., & Van-Buren, R. (1999). Precision farming: A factor influencing productivity.

Paper presented at the Northern Ohio Crops Day Meeting. Woody County OH,

Ohio, USA.

Beeharry, Y., & Bassoo, V. (2020). Performance of ANN and AlexNet for weed detection

using UAV-based images. In 2020 3rd International Conference on Emerging

Trends in Electrical, Electronic and Communications Engineering (ELECOM) (pp.

163-167), doi: 10.1109/ELECOM49001.2020.9296994

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends in

Machine Learning, 2(1), 1-127, http://dx.doi.org/10.1561/2200000006

Bergin, D., (2011). Weed Control Options for Coastal Sand Dunes: a Review. New

Zealand Forest Research Institute LTD, (pp. 5-13).

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., & Ghayvat, H. (2021).

CNN Variants for Computer Vision: History, Architecture, Application, Challenges

and Future Scope. Electronics, 10(20), 2470,

https://doi.org/10.3390/electronics10202470

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of

photogrammetry and remote sensing, 65(1), 2-16,

https://doi.org/10.1016/j.isprsjprs.2009.06.004

Bond, W., & Grundy, A. C. (2001). Non‐chemical weed management in organic farming

systems. Weed research, 41(5), 383-405, https://doi.org/10.1046/j.1365-

3180.2001.00246.x

https://doi.org/10.1016/j.eja.2020.126030
https://doi.org/10.1109/ICCSCE.2017.8284412
https://doi.org/10.3390/rs10111690
https://doi.org/10.1016/j.cropro.2014.07.014
https://doi.org/10.1109/ELECOM49001.2020.9296994
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1046/j.1365-3180.2001.00246.x
https://doi.org/10.1046/j.1365-3180.2001.00246.x

121

Bonotis, P.A., Tsouros, D.C., Smyrlis, P.N., Tzallas, A.T., Giannakeas, N., Evripidis, G.,

& Tsipouras, M.G. (2019). Automated Assesment of Pain Intensity based on EEG

Signal Analysis. In Proceedings of the IEEE 19th International Conference on

BioInformatics and BioEngineering, doi: 10.1109/BIBE.2019.00111

Bontonou, M., Lassance, C., Hacene, G. B., Gripon, V., Tang, J., & Ortega, A. (2019).

Introducing graph smoothness loss for training deep learning architectures. In 2019

IEEE Data Science Workshop (DSW) (pp. 160-164). IEEE.

Brejda, J.J., Moorman, T. B., Smith, J.L., Karlen, D.L., Allan, D.L. & Dao, T.H. (2000).

Distribution and variability of surface soil properties at a regional scale. Soil

Science Society of American Journal, 64(3), 974-982,

https://doi.org/10.13140/RG.2.2.19360.79362

Browne, M., Ghidary, S. S., & Mayer, N. M. (2008). Convolutional neural networks for

image processing with applications in mobile robotics. In Speech, Audio, Image and

Biomedical Signal Processing using Neural Networks (pp. 327-349),

https://doi.org/10.1007/978-3-540-75398-8_15

Brownlee, J. (2018). What is the Difference between a Batch and an Epoch in a Neural

Network. Machine Learning Mastery, 20. Retrieved from:

https://deeplearning.lipingyang.org/wp-content/uploads/2018/07/What-is-the-

Difference-Between-a-Batch-and-an-Epoch-in-a-Neural-Network_.pdf

Carballido, J., Rodríguez-Lizana, A., Agüera, J., & Perez-Ruiz, M. (2013). Field sprayer

for inter and intra-row weed control: performance and labor savings. Spanish

Journal of Agricultural Research, 11, 642-651,

http://dx.doi.org/10.5424/sjar/2013113-3812

Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T., Bian, G. B., De Albuquerque, V.

H. C., & Reboucas-Filho, P. P. (2018). Performance analysis of google colaboratory

as a tool for accelerating Deep Learning applications. IEEE Access, 6, 61677-

61685, doi: 10.1109/ACCESS.2018.2874767

Cevallos, J. C., Villagomez, J. A., & Andryshchenko, I. S. (2019). Convolutional neural

network in the recognition of spatial images of sugarcane crops in the troncal region

of the coast of Ecuador. Procedia Computer Science, 150, 757-763,

https://doi.org/10.1016/j.procs.2019.02.001

Champ, J., Mora‐Fallas, A., Goëau, H., Mata‐Montero, E., Bonnet, P., & Joly, A. (2020).

Instance segmentation for the fine detection of crop and weed plants by precision

agricultural robots. Applications in plant sciences, 8(7), e11373,

https://doi.org/10.1002/aps3.11373

Chang, L., Deng, X., Zhou, M., Wu, Z., Yuan, Y., Yang, S., & Wang, H. (2016).

Convolution neural network in image understanding. ACTA automatic sinica,

42(09), 1300-1312.

Chauhan, B. S. (2020). Grand challenges in weed management. Frontiers in Agronomy,

1, 3, https://doi.org/10.3389/fagro.2019.00003

https://doi.org/10.1109/BIBE.2019.00111
https://doi.org/10.13140/RG.2.2.19360.79362
http://dx.doi.org/10.5424/sjar/2013113-3812
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.1016/j.procs.2019.02.001
https://doi.org/10.3389/fagro.2019.00003

122

Chauvel, B., Guillemin, J. P., Gasquez, J., & Gauvrit, C. (2012). History of chemical

weeding from 1944 to 2011 in France: Changes and evolution of herbicide

molecules. Crop Protection, 42, 320-326,

https://doi.org/10.1016/j.cropro.2012.07.011

Chelghoum, R., Ikhlef, A., Hameurlaine, A., & Jacquir, S. (2020). Transfer learning using

convolutional neural network architectures for brain tumor classification from MRI

images. In IFIP International Conference on Artificial Intelligence Applications

and Innovations (pp. 189-200).

Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., Huang, Y. M. (2021a).

Identification of Fruit Tree Pests with Deep Learning on Embedded Drone to

Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997, doi:

10.1109/ACCESS.2021.3056082

Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021b). Review of Image

Classification Algorithms Based on Convolutional Neural Networks. Remote

Sensing, 13(22), 4712, https://doi.org/10.3390/rs13224712

Chen, S., Wang, H., Xu, F., & Jin, Y. Q. (2016). Target classification using the deep

convolutional networks for SAR images. IEEE transactions on geoscience and

remote sensing, 54(8), 4806-4817, doi: 10.1109/TGRS.2016.2551720

Chen, Y. P., Li, Y., Wang, G., & Xu, Q. (2018). A multi-strategy region proposal network.

Expert Systems with Applications, 113, 1-17,

https://doi.org/10.1016/j.eswa.2018.06.043

Chen, Y. Q., Peng, S. U. I., Chen, L. U. A. N., & SHI, X. P. (2012). Xanthium suppression

under maize|| sunflower intercropping system. Journal of Integrative Agriculture,

11(6), 1026-1037, https://doi.org/10.1016/S2095-3119(12)60095-1

Chen, Y., Lee, W.S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019).

Strawberry Yield Prediction Based on a Deep Neural Network Using High-

Resolution Aerial Orthoimages. Remote Sensing, 11, 1584,

https://doi.org/10.3390/rs11131584

Chi, Z., Li, Y., & Chen, C. (2019). Deep convolutional neural network combined with

concatenated spectrogram for environmental sound classification. In 2019 IEEE 7th

International Conference on Computer Science and Network Technology (ICCSNT)

(pp. 251-254).

Colombo-Filho, M. E., Mello Galliez, R., Andrade Bernardi, F., Oliveira, L. L. D.,

Kritski, A., Koenigkam Santos, M., & Alves, D. (2020). Preliminary results on

pulmonary tuberculosis detection in chest x-ray using convolutional neural

networks. In International Conference on Computational Science (pp. 563-576).

Combarnous, Y. (2017). Endocrine Disruptor Compounds (EDCs) and agriculture: The

case of pesticides. Comptes Rendus Biologies, 340(9-10), 406-409,

https://doi.org/10.1016/j.crvi.2017.07.009

https://doi.org/10.1016/j.cropro.2012.07.011
https://doi.org/10.1109/ACCESS.2021.3056082
https://doi.org/10.3390/rs13224712
https://doi.org/10.1109/TGRS.2016.2551720
https://doi.org/10.1016/j.eswa.2018.06.043
https://doi.org/10.1016/S2095-3119(12)60095-1

123

Crookston, R. K. (2006). A top 10 list of developments and issues impacting crop

management and ecology during the past 50 years. Crop science, 46(5), 2253-2262,

https://doi.org/10.2135/cropsci2005.11.0416gas

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018). Identification of

Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural

Networks. Drones, 2, 39, https://doi.org/10.3390/drones2040039

Cui, D., & Curry, D. (2005). Prediction in marketing using the support vector machine.

Marketing Science, 24(4), 595-615, https://doi.org/10.1287/mksc.1050.0123

Da Costa Lima, A., & Mendes, K. F. (2020). Variable rate application of herbicides for

weed management in pre-and postemergence. In Pests, weeds and diseases in

agricultural crop and animal husbandry production, doi:

https://dx.doi.org/10.5772/intechopen.93558

Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A survey of Deep Learning

and its applications: a new paradigm to machine learning. Archives of

Computational Methods in Engineering, 27(4), 1071-1092,

https://doi.org/10.1007/s10462-018-9633-3

De Camargo, T., Schirrmann, M., Landwehr, N., Dammer, K. H., & Pflanz, M. (2021).

Optimized Deep Learning model as a basis for fast UAV mapping of weed species

in winter wheat crops. Remote Sensing, 13(9), 1704,

https://doi.org/10.3390/rs13091704

De Castro, A. I., Jurado-Expósito, M., Peña-Barragán, J. M., & López-Granados, F.

(2012). Airborne multi-spectral imagery for mapping cruciferous weeds in cereal

and legume crops. Precision Agriculture, 13(3), 302-321,

https://doi.org/10.1007/s11119-011-9247-0

De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., &

López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early

weed mapping between and within crop rows using UAV imagery. Remote Sensing,

10(2), 285, doi.org/10.3390/rs10020285

Di Cicco, M., Potena, C., Grisetti, G., & Pretto, A. (2017). Automatic model based dataset

generation for fast and accurate crop and weeds detection. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (pp. 5188-

5195).

Di-Tomaso, J. M., Monaco, T. A., James, J. J., & Firn, J. (2017). Invasive plant species

and novel rangeland systems. In Rangeland systems, (pp. 429-465), doi:

10.1007/978-3-319-46709-2

Dogo, E. M., Afolabi, O. J., Nwulu, N. I., Twala, B., & Aigbavboa, C. O. (2018). A

comparative analysis of gradient descent-based optimization algorithms on

convolutional neural networks. In 2018 international conference on computational

techniques, electronics and mechanical systems (CTEMS) (pp. 92-99),

https://doi.org/10.1109/CTEMS.2018.8769211

https://doi.org/10.3390/drones2040039
https://doi.org/10.3390/rs13091704
https://doi.org/10.1007/s11119-011-9247-0

124

Dose, H., Møller, J. S., Iversen, H. K., & Puthusserypady, S. (2018). An end-to-end Deep

Learning approach to MI-EEG signal classification for BCIs. Expert Systems with

Applications, 114, 532-542, https://doi.org/10.1016/j.eswa.2018.08.031

Du, J. (2018). Understanding of object detection based on CNN family and YOLO. In

Journal of Physics: Conference Series, 1004(1), 012029. IOP Publishing, doi:

10.1088/1742-6596/1004/1/012029

Dwivedi, A., Naresh, R., Kumar, R., Yadav, R.S. & Kumar, R. (2017). Precision

Agriculture. In Promoting Agri-Hortucultural, Technological Innovations, (pp. 83-

105).

Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using

deep convolutional neural network. Biosystems engineering, 151, 72-80,

https://doi.org/10.1016/j.biosystemseng.2016.08.024

Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., & Maggio, A. (2021). Drone and

sensor technology for sustainable weed management: A review. Chemical and

Biological Technologies in Agriculture, 8(1), 1-11, https://doi.org/10.1186/s40538-

021-00217-8

Everingham, M., Eslami, S. M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman,

A. (2015). The pascal visual object classes challenge: A retrospective. International

journal of computer vision, 111(1), 98-136, https://doi.org/10.1007/s11263-014-

0733-5

Farooq, O., Mubeen, K., Ali, H. H., & Ahmad, S. (2019). Non-chemical Weed

Management for Field Crops. In Agronomic Crops, (pp. 317-348), doi:

10.1007/978-981-32-9783-8_16

Francies, M. L., Ata, M. M., & Mohamed, M. A. (2022). A robust multiclass 3D object

recognition based on modern YOLO Deep Learning algorithms. Concurrency and

Computation: Practice and Experience, 34(1), e6517,

https://doi.org/10.1002/cpe.6517

Gemtos, T., Fountas, S., Tagarakis, A., & Liakos, V. (2013). Precision agriculture

application in fruit crops: Experience in handpicked fruits. Procedia Technology,

8, 324-332, https://doi.org/10.1016/j.protcy.2013.11.043

Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I. W., Sanchez, C. I., Litjens,

G., & Platel, B. (2017). Location sensitive deep convolutional neural networks for

segmentation of white matter hyperintensities. Scientific Reports, 7(1), 1-12,

https://doi.org/10.1038/s41598-017-05300-5

Gianessi, L. P. (2013). The increasing importance of herbicides in worldwide crop

production. Pest management science, 69(10), 1099-1105,

https://doi.org/10.1002/ps.3598

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, (pp. 1440-1448).

https://doi.org/10.1016/j.biosystemseng.2016.08.024
https://doi.org/10.1186/s40538-021-00217-8
https://doi.org/10.1186/s40538-021-00217-8
https://doi.org/10.1016/j.protcy.2013.11.043
https://doi.org/10.1038/s41598-017-05300-5

125

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2015). Region-based convolutional

networks for accurate object detection and segmentation. IEEE transactions on

pattern analysis and machine intelligence, 38(1), 142-158, doi:

10.1109/TPAMI.2015.2437384

Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014). Multi-scale orderless pooling of

deep convolutional activation features. In European conference on computer vision,

(pp. 392-407).

Gothai, E., Natesan, P., Aishwariya, S., Aarthy, T. B., & Singh, G. B. (2020). Weed

Identification using Convolutional Neural Network and Convolutional Neural

Network Architectures. In 2020 Fourth International Conference on Computing

Methodologies and Communication (ICCMC), (pp. 958-965).

Grenzdörffer, G. J., Engel, A., & Teichert, B. (2008). The photogrammetric potential of

low-cost UAVs in forestry and agriculture. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 1207-

1214.

Griepentrog, H. W., & Dedousis, A. P. (2010). Mechanical weed control. In Soil

Engineering, 171-179, doi: 10.1007/978-3-642-03681-1_11

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., & Chen, T. (2018). Recent

advances in convolutional neural networks. Pattern recognition, 77, 354-377.

Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., Jones, & M. G. (2021). A survey of

Deep Learning techniques for weed detection from images. Computers and

Electronics in Agriculture, 184, 106067.

https://doi.org/10.1016/j.compag.2021.106067

Hashemi-Beni, L., & Gebrehiwot, A. (2020). Deep Learning for remote sensing image

classification for agriculture applications. The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 51-54,

https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-51-2020

Hassanein, M., & El-sheimy, N. (2017). Efficient Weed Detection Using Low-Cost UAV

System. In Proceedings of the 10th International Conference for Mobile Mapping

Technology.

He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

(pp. 5353-5360).

He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Spatial pyramid pooling in deep

convolutional networks for visual recognition. IEEE transactions on pattern

analysis and machine intelligence, 37(9), 1904-1916,

https://doi.org/10.1109/TPAMI.2015.2389824

He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification, in: IEEE International

Conference on Computer Vision (ICCV), (pp. 1026–1034).

https://doi.org/10.1109/TPAMI.2015.2437384

126

Hemanth, A. S. (2022). Face Mask Detection Using YOLO v5. IJNRD-International

Journal of Novel Research and Development (IJNRD), 7(5), 390-395.

Hervás Martínez, C., Pérez Ortiz, M., Peña Barragán, J. M., Gutiérrez, P. A., Torres

Sánchez, J., & López Granados, F. (2015). A weed monitoring system using UAV-

imagery and the Hough transform. In XV Congress of the Spanish Society of

Malherbology: Malherbology and technology transfer: Seville, October 19-22,

2015, (pp. 233-239).

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in

sustainable agriculture. Philosophical Transactions of the Royal Society B:

Biological Sciences, 363(1491), 543-555, https://doi.org/10.1098/rstb.2007.2169

Hoiem, D., Gupta, T., Li, Z., & Shlapentokh-Rothman, M. (2021). Learning curves for

analysis of deep networks. In International conference on machine learning (pp.

4287-4296). PMLR.

Hoppin, J. A. (2014). Pesticides and respiratory health: where do we go from here?

Occupational and environmental medicine, 71(2), 80-80,

http://dx.doi.org/10.1136/oemed-2013-101876

Hu, G., Yin, C., Wan, M., Zhang, Y., & Fang, Y. (2020). Recognition of diseased Pinus

trees in UAV images using Deep Learning and AdaBoost classifier. Biosystems

Engineering, 194, 138-151, https://doi.org/10.1016/j.biosystemseng.2020.03.021

Hu, Y. (2021). Traffic Fatality Rate Prediction Based on Deep Neural Network and

Bayesian Neural Network (Doctoral dissertation, Northern Illinois University).

Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., & Zhang, L. (2018). A fully

convolutional network for weed mapping of unmanned aerial vehicle (UAV)

imagery. PloS one, 13(4), e0196302.

Huang, H., Deng, J., Lan, Y., Yang, A., Zhang, L., Wen, S., & Deng, Y. (2019). Detection

of helminthosporium leaf blotch disease based on UAV imagery. Applied Sciences,

9(3), 558, https://doi.org/10.3390/app9030558

Huang, J., Zhou, W., Li, H., & Li, W. (2015). Sign language recognition using 3d

convolutional neural networks. In 2015 IEEE international conference on

multimedia and expo (ICME), (pp. 1-6).

Huang, N. F., Chou, D. L., Lee, C. A., Wu, F. P., Chuang, A. C., Chen, Y. H., & Tsai, Y.

C. (2020). Smart agriculture: real-time classification of green coffee beans by using

a convolutional neural network. IET Smart Cities, 2(4), 167-172,

https://doi.org/10.1049/iet-smc.2020.0068

Huang, Y., & Thomson, S. J. (2015). Remote sensing for cotton farming. Cotton, 57, 439-

464, https://doi.org/10.2134/agronmonogr57.2013.0030

Ide, H., & Kurita, T. (2017). Improvement of learning for CNN with ReLU activation by

sparse regularization. In 2017 International Joint Conference on Neural Networks

(IJCNN), (pp. 2684-2691).

127

Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual understanding

of convolutional neural network-a Deep Learning approach. Procedia computer

science, 132, 679-688, https://doi.org/10.1016/j.procs.2018.05.069

Islam, S. S., Rahman, S., Rahman, M. M., Dey, E. K., & Shoyaib, M. (2016). Application

of Deep Learning to computer vision: A comprehensive study. In 2016 5th

international conference on informatics, electronics and vision (ICIEV) (pp. 592-

597).

Jabir, B., & Falih, N. (2022). Deep Learning-based decision support system for weeds

detection in wheat fields. International Journal of Electrical and Computer

Engineering, 12(1), 816, doi: 10.11591/ijece.v12i1.pp816-825

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed

control in agricultural systems. Crop protection, 72, 57-65,

https://doi.org/10.1016/j.cropro.2015.03.004

Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., & Song, C. (2020). CNN feature

based graph convolutional network for weed and crop recognition in smart farming.

Computers and Electronics in Agriculture, 174, 105450,

https://doi.org/10.1016/j.compag.2020.105450

Jocher, G., Nishimura, K., Mineeva, T., & Vilariño, R. (2020). YOLOv5 (2020).

Retrieved from GitHub repository: https://github.com/ultralytics/yolov5

Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric

spaces and vegetation indices for vine diseases detection in UAV images.

Computers and electronics in agriculture, 155, 237-243,

https://doi.org/10.1016/j.compag.2018.10.006

Kerkech, M., Hafiane, A., & Canals, R. (2020). VddNet: Vine Disease Detection Network

Based on Multispectral Images and Depth Map. Remote Sensing, 12(20), 3305,

https://doi.org/10.3390/rs12203305

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent

architectures of deep convolutional neural networks. Artificial intelligence review,

53(8), 5455-5516.

Kilichan, R., & Yilmaz, M. (2020). Artificial intelligence and robotic technologies in

tourism and hospitality industry. Erciyes University Journal of Social Sciences

Institute, (50), 353-380, https://doi.org/10.48070/erusosbilder.838193

Kim, D., Park, S., Kang, D., & Paik, J. (2019). Improved center and scale prediction-

based pedestrian detection using convolutional block. In 2019 IEEE 9th

International Conference on Consumer Electronics (ICCE-Berlin) (pp. 418-419).

Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: revisiting data

analysis. Weed Science, 63(SP1), 188-202, https://doi.org/10.1614/WS-D-14-

00035.1

https://github.com/ultralytics/yolov5
https://doi.org/10.1614/WS-D-14-00035.1
https://doi.org/10.1614/WS-D-14-00035.1

128

Kramer, O. (2013). K-nearest neighbors. In Dimensionality reduction with unsupervised

nearest neighbors (pp. 13-23). Springer, Berlin, Heidelberg,

https://doi.org/10.1007/978-3-642-38652-7

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep

convolutional neural networks. In Proceedings of the Advances in Neural

Information Processing Systems, Lake Tahoe, NV, USA, (pp. 1097–1105).

Kumar, S., Karaliya, S.K. & Chaudhary, S. (2017). Precision Farming Technologies

towards Enhancing Productivity and Sustainability of Rice-Wheat Cropping

System. International Journal of Current Microbiology and Applied Sciences, 6(3),

142-151, https://doi.org/10.20546/ijcmas.2017.603.016

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. H. (2019).

Nano-based smart pesticide formulations: Emerging opportunities for agriculture.

Journal of Controlled Release, 294, 131-153,

https://doi.org/10.1016/j.jconrel.2018.12.012

Lati, R. N., Rasmussen, J., Andujar, D., Dorado, J., Berge, T. W., Wellhausen, C., &

Christensen, S. (2021). Site‐specific weed management—constraints and

opportunities for the weed research community: Insights from a workshop. Weed

Research, 61(3), 147-153.

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-

444, https://doi.org/10.1038/nature14539.

Le, V. N. T., Truong, G., & Alameh, K. (2021). Detecting weeds from crops under

complex field environments based on faster RCNN. In_2020 IEEE eighth

international conference on communications and electronics (ICCE) (pp.350-355).

IEEE.

Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P., (2015). Deep-plant: Plant

identification with convolutional neural networks. In 2015 IEEE international

conference on image processing (ICIP), IEEE, (pp. 452-456).

Li, F., Liu, Z., Shen, W., Wang, Y., Wang, Y., Ge, C., & Lan, P. (2021). A remote sensing

and airborne edge-computing based detection system for pine wilt disease. IEEE

Access, 9, 66346-66360, doi: 10.1109/ACCESS.2021.3073929

Liu, B., & Bruch, R. (2020). Weed detection for selective spraying: A review. Current

Robotics Reports, 1(1), 19-26.

Liu, K., Tang, H., He, S., Yu, Q., Xiong, Y., & Wang, N. (2021). Performance validation

of YOLO variants for object detection. In Proceedings of the 2021 International

Conference on Bioinformatics and Intelligent Computing (pp. 239-243).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.

(2016b). Ssd: Single shot multibox detector. In European conference on computer

vision (pp. 21-37).

https://doi.org/10.20546/ijcmas.2017.603.016
https://doi.org/10.1016/j.jconrel.2018.12.012
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ACCESS.2021.3073929

129

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep

neural network architectures and their applications. Neurocomputing, 234, 11-26,

https://doi.org/10.1016/j.neucom.2016.12.038

Liu, X. P., Li, G., Liu, L., & Wang, Z. (2019). Improved YOLOV3 target recognition

algorithm based on adaptive eged optimization. Microelectronics and Computer,

36(7), 59-64.

Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest.

In International Conference on Information Computing and Applications (pp. 246-

252).

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., & Stachniss, C. (2018). Joint stem

detection and crop-weed classification for plant-specific treatment in precision

farming. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (pp. 8233-8238).

Luo, X., Li, S., & Xu, H. (2016). Results of real-time kinematic positioning based on real

GPS L5 data. IEEE Geoscience and Remote Sensing Letters, 13(8), 1193-1197.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier Nonlinearities Improve Neural

Network Acoustic Models. Proceedings of the 30th International Conference on

Machine Learning, Atlanta, Georgia, USA, 30(1), 3.

Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., & Gerhards, R. (2020).

Sensor-based mechanical weed control: Present state and prospects. Computers and

electronics in agriculture, 176, 105638,

https://doi.org/10.1016/j.compag.2020.105638

Magomadov, V. S. (2019). Deep Learning and its role in smart agriculture. In Journal of

Physics: Conference Series, 1399(4), 044109, doi: 10.1088/1742-

6596/1399/4/044109

Malta, A., Mendes, M., & Farinha, T. (2021). Augmented reality maintenance assistant

using yolov5. Applied Sciences, 11(11), 4758,

https://doi.org/10.3390/app11114758

Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy assessment in

convolutional neural network-based Deep Learning remote sensing studies—part

1: Literature review. Remote Sensing, 13(13), 2450.

Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., & Gay, P. (2020). UAV and machine

learning based refinement of a satellite-driven vegetation index for precision

agriculture. Sensors, 20(9), 2530, https://doi.org/10.3390/s20092530

McCabe, M.F., Houborg, R., & Rosas, J., (2015). The potential of unmanned aerial

vehicles for providing information on vegetation health, in: Proceedings of the 21st

International Congress on Modelling and Simulation. Gold Coast, Australia, (pp.

1399–1405).

McFadyen, R. E. (2012). Food security for a 9 billion population: more R&D for weed

control will be critical. In Proc. 18th Australasian Weeds Conference (pp. 306-309).

https://doi.org/10.1016/j.compag.2020.105638

130

Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward

collaborative open data science in metabolomics using Jupyter Notebooks and

cloud computing. Metabolomics, 15(10), 1-16, https://doi.org/10.1007/s11306-

019-1588-0

Meyer, G. E., & Mulliken, J. A. (2008). Weed Targeting Herbicide Management.

Historical Materials from University of Nebraska-Lincoln Extension, 4871,

https://digitalcommons.unl.edu/extensionhist/4871

Monteiro, A., & Santos, S. (2022). Sustainable Approach to Weed Management: The

Role of Precision Weed Management. Agronomy, 12(1), 118,

https://doi.org/10.3390/agronomy12010118

Mora-Fallas, A., Goëau, H., Joly, A., Bonnet, P., & Mata-Montero, E. (2020). Instance

segmentation for automated weeds and crops detection in farmlands. A first

approach to Acoustic Characterization of Costa Rican Children’s Speech. Retrieved

from:

https://www.academia.edu/44819282/A_first_approach_to_Acoustic_Characteriz

ation_of_Costa_Rican_Children_s_Speech

Moran, M., Inoue, Y. & Barnes, E. (1997). Opportunities and limitations for image-based

remote sensing in precision crop management. Remote Sensing of Environment,

61(3), 319-346, https://doi.org/10.1016/S0034-4257(97)00045-X

Mortensen, A. K., Dyrmann, M., Karstoft, H., Jørgensen, R. N., & Gislum, R. (2016).

Semantic segmentation of mixed crops using deep convolutional neural network.

In CIGR-Agricultural Engineering conference (pp. 26-29).

Mulla, D. J., (2013). Twenty five years of remote sensing in precision agriculture: Key

advances and remaining knowledge gaps. Biosystems Engineering. 114, 358–371,

https://doi.org/10.1016/j.biosystemseng.2012.08.009

Murawwat, S., Qureshi, A., Ahmad, S., & Shahid, Y., (2018). Weed Detection Using

SVMs. Engineering, Technology & Applied Science Research, 8(1), 2412-2416.

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines, in: International Conference on Machine Learning (ICML), 2010, (pp.

807–814).

Nanni, L., Ghidoni, S., & Brahnam, S. (2017). Handcrafted vs. non-handcrafted features

for computer vision classification. Pattern Recognition, 71, 158-172,

https://doi.org/10.1016/j.patcog.2017.05.025

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied

geomatics, 6(1), 1-15, https://doi.org/10.1007/s12518-013-0120-x

Nogueira, K., Penatti, O. A., & Dos Santos, J. A. (2017). Towards better exploiting

convolutional neural networks for remote sensing scene classification. Pattern

Recognition, 61, 539-556, https://doi.org/10.1016/j.patcog.2016.07.001

Olsen, A., Konovalov, D. A., Philippa, B., Ridd, P., Wood, J. C., Johns, J., & White, R.

D. (2019). DeepWeeds: A multiclass weed species image dataset for Deep

https://doi.org/10.1016/S0034-4257(97)00045-X
https://doi.org/10.1016/j.patcog.2016.07.001

131

Learning. Scientific reports, 9(1), 1-12, https://doi.org/10.1038/s41598-018-38343-

3

Onishi, M., & Ise, T. (2018). Automatic classification of trees using a UAV onboard

camera and Deep Learning. Computer and information sciences,

https://doi.org/10.48550/arXiv.1804.07437

Osco, L. P., Nogueira, K., Marques Ramos, A. P., Faita Pinheiro, M. M., Furuya, D. E.

G., Gonçalves, W. N., & dos Santos, J. A. (2021). Semantic segmentation of citrus-

orchard using deep neural networks and multispectral UAV-based imagery.

Precision Agriculture, 22(4), 1171-1188, https://doi.org/10.1007/s11119-020-

09777-5

Patidar, S., Singh, U., & Sharma, S. K. (2020, July). Weed seedling detection using mask

regional convolutional neural network. In 2020 International Conference on

Electronics and Sustainable Communication Systems (ICESC) (pp. 311-316).

Patil-Shirish, S., & Bhalerao, S. A. (2013). Precision farming: the most scientific and

modern approach to sustainable agriculture. International Research Journal of

Science and Engineering, 1(2), 21-30.

Pena, J. M., Torres-Sánchez, J., De Castro, A. I., Kelly, M., & López-Granados, F. (2013).

Weed mapping in early-season maize fields using object-based analysis of

unmanned aerial vehicle (UAV) images. PloS one, 8(10), e77151,

https://doi.org/10.1371/journal.pone.0077151

Pena, J.M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A.I., & López-Granados,

F. (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV)

technology for weed seedling detection as affected by sensor resolution. Sensors

15, 5609–5626, https://doi.org/10.3390/s150305609

Pena-Barragán, J. M., Kelly, M., De-Castro, A. I., & López-Granados, F. (2012).

Discrimination of Crop Rows using Object-Based Analysis in UAV Images for

early Site-Specific Weed Management in Maize Fields. In Proceedings of the First

International Conference on Robotics and Associated High-technologies and

Equipment for Agriculture. Applications of automated systems and robotics for

crop protection in sustainable precision agriculture,(RHEA-2012) Pisa, Italy-

September 19-21, 2012 (pp. 249-254).

Perez, F., & Granger, B. E. (2007). IPython: a system for interactive scientific computing.

Computing in science & engineering, 9(3), 21-29,

https://doi.org/10.1109/MCSE.2007.53

Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., & Walsh, M. J. (2018). The

challenge of herbicide resistance around the world: a current summary. Pest

management science, 74(10), 2246 -2259, https://doi.org/10.1002/ps.4821

Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review.

Agronomy for sustainable development, 33(1), 243-255,

https://doi.org/10.1007/s13593-012-0105-x

https://doi.org/10.1007/s11119-020-09777-5
https://doi.org/10.1007/s11119-020-09777-5
https://doi.org/10.1002/ps.4821
https://doi.org/10.1007/s13593-012-0105-x

132

Potena, C., Nardi, D., & Pretto, A. (2017). Fast and accurate crop and weed identification

with summarized train sets for precision agriculture. In International Conference

on Intelligent Autonomous Systems, (pp. 105-121), doi: 10.1007/978-3-319-48036-

7_9

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., & Iyengar, S. S. (2018).

A survey on Deep Learning: Algorithms, techniques, and applications. ACM

Computing Surveys (CSUR), 51(5), 1-36, https://doi.org/10.1145/3234150

Prashanth, B., Mendu, M., & Thallapalli, R. (2021). Cloud based Machine learning with

advanced predictive Analytics using Google Colaboratory. Materials Today:

Proceedings, https://doi.org/10.1016/j.matpr.2021.01.800

Prashanth, D. S., Mehta, R. V. K., & Sharma, N. (2020). Classification of handwritten

Devanagari number–an analysis of pattern recognition tool using neural network

and CNN. Procedia Computer Science, 167, 2445-2457,

https://doi.org/10.1016/j.procs.2020.03.297

Pratama, K., & Kang, D. K. (2021). Trainable activation function with differentiable

negative side and adaptable rectified point. Applied Intelligence, 51(3), 1784-1801,

https://doi.org/10.1007/s10489-020-01885-z

Pu, Y., Apel, D. B., Szmigiel, A., & Chen, J. (2019). Image recognition of coal and coal

gangue using a convolutional neural network and transfer learning. Energies, 12(9),

1735, https://doi.org/10.3390/en12091735

Ramirez, W., Achanccaray, P., Mendoza, L. F., & Pacheco, M. A. C. (2020). Deep

convolutional neural networks for weed detection in agricultural crops using optical

aerial images. In 2020 IEEE Latin American GRSS & ISPRS Remote Sensing

Conference (LAGIRS) (pp. 133-137).

Rana, K. (2020). Pooling Layer — Short and Simple. Retrieved from plainenglish:

https://ai.plainenglish.io/pooling-layer-beginner-to-intermediate-fa0dbdce80eb

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the

Jupyter notebook as a tool for open science: An empirical study. In 2017

ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 1-2).

Reddy, R. R., & Panicker, M. R. (2021). Hand-Drawn Electrical Circuit Recognition

using Object Detection and Node Recognition. Computer and information sciences,

https://doi.org/10.48550/arXiv.2106.11559

Regnier, E. E., & Janke, R. R. (2020). Evolving strategies for managing weeds. In

Sustainable agricultural systems (pp. 174-202).

Ren, A., Li, Z., Wang, Y., Qiu, Q., & Yuan, B. (2016). Designing reconfigurable large-

scale Deep Learning systems using stochastic computing. In 2016 IEEE

International Conference on Rebooting Computing (ICRC) (pp. 1-7).

https://doi.org/10.1016/j.procs.2020.03.297
https://ai.plainenglish.io/pooling-layer-beginner-to-intermediate-fa0dbdce80eb

133

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster RCNN: Towards real-time object

detection with region proposal networks. Advances in neural information

processing systems, 28, https://doi.org/10.1109/TPAMI.2016.2577031

Renard, D., Iriarte, J., Birk, J. J., Rostain, S., Glaser, B., & McKey, D. (2012). Ecological

engineers ahead of their time: The functioning of pre-Columbian raised-field

agriculture and its potential contributions to sustainability today. Ecological

Engineering, 45, 30-44, https://doi.org/10.1016/j.ecoleng.2011.03.007

Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional

neural networks. Advances in neural information processing systems, 28.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J.

P. (2012). An assessment of the effectiveness of a random forest classifier for land-

cover classification. ISPRS journal of photogrammetry and remote sensing, 67, 93-

104, https://doi.org/10.1016/j.isprsjprs.2011.11.002

Rueda‐Ayala, V. P., Rasmussen, J., Gerhards, R., & Fournaise, N. E. (2011). The

influence of post‐emergence weed harrowing on selectivity, crop recovery and crop

yield in different growth stages of winter wheat. Weed Research, 51(5), 478-488,

https://doi.org/10.1111/j.1365-3180.2011.00873.x

Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., & Siegwart, R. (2018).

WeedMap: A large-scale semantic weed mapping framework using aerial

multispectral imaging and deep neural network for precision farming. Remote

Sensing, 10(9), 1423, https://doi.org/10.3390/rs10091423

Sabat-Tomala, A., Raczko, E., & Zagajewski, B. (2020). Comparison of support vector

machine and random forest algorithms for invasive and expansive species

classification using airborne hyperspectral data. Remote Sensing, 12(3), 516.

https://doi.org/10.3390/rs12030516

Sahu, B., Chatterjee, S., Mukherjee, S., & Sharma, C. (2019). Tools of precision agri-

culture: A review. International Journal of Chemical Studies, 7, 2692-2696.

Savalia, S., & Emamian, V. (2018). Cardiac arrhythmia classification by multi-layer

perceptron and convolution neural networks. Bioengineering, 5(2), 35,

https://doi.org/10.3390/bioengineering5020035

Scavo, A., & Mauromicale, G. (2020). Integrated weed management in herbaceous field

crops. Agronomy, 10(4), 466, https://doi.org/10.3390/agronomy10040466

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural

networks, 61, 85-117, https://doi.org/10.1016/j.neunet.2014.09.003

Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied

to house numbers digit classification. In Proceedings of the 21st international

conference on pattern recognition (ICPR2012) (pp. 3288-3291).

Shanmugam, S., Assunção, E., Mesquita, R., Veiros, A., & Gaspar, P. D. (2020).

Automated weed detection systems: A review. KnE Engineering, 5(6), 271–284.

https://doi.org/10.18502/keg.v5i6.7046

https://doi.org/10.1111/j.1365-3180.2011.00873.x

134

Sharma, A., Liu, X., Yang, X., & Shi, D. (2017a). A patch-based convolutional neural

network for remote sensing image classification. Neural Networks, 95, 19-28,

https://doi.org/10.1016/j.neunet.2017.07.017

Sharma, S., Sharma, S., & Athaiya, A. (2017b). Activation functions in neural networks.

Towards data science, 6(12), 310-316.

Shirzadifar, A. M., Loghavi, M., & Raoufat, M. H. (2015). Development and evaluation

of a real time site-specific inter-row weed management system. Iran Agricultural

Research, 32(2), 39-54, doi: 10.22099/iar.2015.2004

Shrestha, M., & Khanal, S. (2020). Future prospects of precision agriculture in Nepal.

Archives of Agriculture and Environmental Science, 5(3), 397-405,

https://dx.doi.org/10.26832/24566632.2020.0503023

Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control

systems: A review. Computers and electronics in agriculture, 61(1), 63-78,

https://doi.org/10.1016/j.compag.2007.05.008

Smith, P. (2018). Drones in Precision Agriculture. Retrieved from dronebelow:

https://dronebelow.com/2018/07/19/drones-in-precision-agriculture

Smith, R. G., Ryan, M. R., & Menalled, F. D. (2011). Direct and indirect impacts of weed

management practices on soil quality. Soil management: Building a stable base for

agriculture, 275-286, https://doi.org/10.2136/2011.soilmanagement.c18

Soltys, D., Krasuska, U., Bogatek, R., & Gniazdowska, A. (2013). Allelochemicals as

bioherbicides—Present and perspectives. London, UK: IntechOpen limited, doi:

10.5772/56185

Sornam, M., Muthusubash, K., & Vanitha, V. (2017). A survey on image classification

and activity recognition using deep convolutional neural network architecture. In

2017 ninth international conference on advanced computing (ICoAC) (pp. 121-

126).

Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., &

Babu, R. V. (2016). A taxonomy of deep convolutional neural nets for computer

vision. Frontiers in Robotics and AI, 2, 36,

https://doi.org/10.3389/frobt.2015.00036

Starling, A. P., Umbach, D. M., Kamel, F., Long, S., Sandler, D. P., & Hoppin, J. A.

(2014). Pesticide use and incident diabetes among wives of farmers in the

Agricultural Health Study. Occupational and environmental medicine, 71(9), 629-

635, http://dx.doi.org/10.1136/oemed-2013-101659

Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., &

Gore, M. A. (2019). Quantitative phenotyping of Northern Leaf Blight in UAV

images using Deep Learning. Remote Sensing, 11(19), 2209,

https://doi.org/10.3390/rs11192209

https://dronebelow.com/2018/07/19/drones-in-precision-agriculture
https://doi.org/10.2136/2011.soilmanagement.c18
https://doi.org/10.3389/frobt.2015.00036
http://dx.doi.org/10.1136/oemed-2013-101659

135

Suhail, A., Jayabalan, M., & Thiruchelvam, V. (2020). Convolutional neural network

based object detection: A review. Journal of critical reviews, 7(11), 786-792,

https://doi.org/10.1002/9781119681328.ch6

Suljović, A., Čakić, S., Popović, T., & Šandi, S. (2022, March). Detection of Plant

Diseases Using Leaf Images and Machine Learning. In 2022 21st International

Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-4).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 1-9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference

on computer vision and pattern recognition (pp. 2818-2826).

Tang, Z., Luo, L., Peng, H., & Li, S. (2018). A joint residual network with paired ReLUs

activation for image super-resolution. Neurocomputing, 273, 37-46,

https://doi.org/10.1016/j.neucom.2017.07.061

Tarca, A. L., Carey, V. J., Chen, X. W., Romero, R., & Drăghici, S. (2007). Machine

learning and its applications to biology. PLoS computational biology, 3(6), e116,

https://doi.org/10.1371/journal.pcbi.0030116

Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., &

Jørgensen, R. N. (2018). Weed growth stage estimator using deep convolutional

neural networks. Sensors, 18(5), 1580, https://doi.org/10.3390/s18051580

Thuan, D. (2021). Evolution of yolo algorithm and yolov5: the state-of-the-art object

detection algorithm (Bachelor’s Thesis, Oulu University of Applied Sciences).

Retrieved from: https://www.theseus.fi/handle/10024/452552

Tirado, R., Englande, A. J., Promakasikorn, L., & Novotny, V. (2008). Use of

agrochemicals in Thailand and its consequences for the environment. Greenpeace

Research Laboratories Technical. Bangkok, Thailand.

Toda, Y., Okura, F., Ito, J., Okada, S., Kinoshita, T., Tsuji, H., & Saisho, D. (2020).

Training instance segmentation neural network with synthetic datasets for crop seed

phenotyping. Communications biology, 3(1), 1-12, https://doi.org/10.1038/s42003-

020-0905-5

Torres-Sánchez, J., López-Granados, F., & Pena, J. M. (2015). An automatic object-based

method for optimal thresholding in UAV images: Application for vegetation

detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43-

52, https://doi.org/10.1016/j.compag.2015.03.019

Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013).

Configuration and specifications of an unmanned aerial vehicle (UAV) for early

site specific weed management. PloS one, 8(3), e58210,

https://doi.org/10.1371/journal.pone.0058210

Tsouros, D. C., Smyrlis, P. N., Tsipouras, M. G., Tsalikakis, D. G., Giannakeas, N.,

Tzallas, A. T., & Manousou, P. (2017). Automated collagen proportional area

https://www.theseus.fi/handle/10024/452552

136

extraction in liver biopsy images using a novel classification via clustering

algorithm. In 2017 IEEE 30th International Symposium on Computer-Based

Medical Systems (CBMS) (pp. 30-34).

Ukaegbu, U., Tartibu, L., Okwu, M., & Olayode, I. (2021). Development of a Light-

Weight Unmanned Aerial Vehicle for Precision Agriculture. Sensors, 21, 4417,

https://doi.org/10.3390/s21134417

Valente, J., Doldersum, M., Roers, C., & Kooistra, L. (2019). Detecting Rumex

Obtusifolius Weed Plants in Grasslands from UAV RGB Imagery using Deep

Learning. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial

Information Sciences, 4.

Vargas, V. M., Gutiérrez, P. A., Barbero-Gómez, J., & Hervás-Martínez, C. (2021).

Activation Functions for Convolutional Neural Networks: Proposals and

Experimental Study. IEEE Transactions on Neural Networks and Learning

Systems. Retrieved from: https://ieeexplore.ieee.org/document/9521668/

Veeranampalayam Sivakumar, A. N., Li, J., Scott, S., Psota, E., J. Jhala, A., Luck, J. D.,

& Shi, Y. (2020). Comparison of object detection and patch-based classification

Deep Learning models on mid-to late-season weed detection in UAV imagery.

Remote Sensing, 12(13), 2136, https://doi.org/10.3390/rs12132136

Vijayaprabakaran, K., & Sathiyamurthy, K. (2020). Towards activation function search

for long short-term model network: a differential evolution based approach. Journal

of King Saud University-Computer and Information Sciences. Retrieved from:

https://www.sciencedirect.com/science/article/pii/S1319157820303505

Vilà, M., Williamson, M., & Lonsdale, M. (2004). Competition experiments on alien

weeds with crops: lessons for measuring plant invasion impact? Biological

invasions, 6(1), 59-69, https://doi.org/10.1023/B:BINV.0000010122.77024.8a

Viquerat, J., & Hachem, E. (2020). A supervised neural network for drag prediction of

arbitrary 2D shapes in laminar flows at low Reynolds number. Computers & Fluids,

210, 104645, https://doi.org/10.1016/j.compfluid.2020.104645

Vissoh, P. V., Gbèhounou, G., Ahanchédé, A., Kuyper, T. W., & Röling, N. G. (2004).

Weeds as agricultural constraint to farmers in Benin: results of a diagnostic study.

NJAS-Wageningen Journal of Life Sciences, 52(3-4), 305-329,

https://doi.org/10.1016/S1573-5214(04)80019-8

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep

Learning for computer vision: A brief review. Computational intelligence and

neuroscience, 2018. Retrieved from:

https://www.hindawi.com/journals/CIN/2018/7068349/

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., & Pandey, H. M.

(2020). An optimized dense convolutional neural network model for disease

recognition and classification in corn leaf. Computers and Electronics in

Agriculture, 175, 105456, https://doi.org/10.1016/j.compag.2020.105456

https://doi.org/10.3390/rs12132136
https://www.sciencedirect.com/science/article/pii/S1319157820303505
https://www.hindawi.com/journals/CIN/2018/7068349/
https://doi.org/10.1016/j.compag.2020.105456

137

Wang, L., Li, Z., Zhao, J., Zhou, K., Wang, Z., & Yuan, H. (2016). Smart device-

supported BDS/GNSS real-time kinematic positioning for sub-meter-level

accuracy in urban location-based services. Sensors, 16(12), 2201,

https://doi.org/10.3390/s16122201

Wang, W., Xie, E., Song, X., Zang, Y., Wang, W., Lu, T., & Shen, C. (2019). Efficient

and accurate arbitrary-shaped text detection with pixel aggregation network. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.

8440-8449).

Wang, Y. (2021). A Ros-Based Toy-Car Detect-And-Place Domestic Robot (Master's

thesis, California State Polytechnic University, Pomona).

Westwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter,

D. C., & Zollinger, R. (2018). Weed management in 2050: Perspectives on the

future of weed science. Weed science, 66(3), 275-285, doi:10.1017/wsc.2017.78

Wikipedia Contributors. (2020). Real-time Kinematic. Retrieved from Wikipedia, The

Free Encyclopedia: https://en.wikipedia.org/w/index.php?title=Real-

time_kinematic&id=959795335

Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of remote sensing

methods in agriculture. Communications in Biometry and Crop Science, 11(1), 31-

50.

Wu, C., Wen, W., Afzal, T., Zhang, Y., & Chen, Y. (2017). A compact dnn: approaching

googlenet-level accuracy of classification and domain adaptation. In Proceedings

of the IEEE conference on computer vision and pattern recognition (pp. 5668-

5677).

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations

in convolutional network. In International Conference on Machine Learning

Workshop, https://doi.org/10.48550/arXiv.1505.00853

Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based

on ensemble learning. Forests, 12(2), 217, https://doi.org/10.3390/f12020217

Xu, W., Yang, W., Chen, S., Wu, C., Chen, P., & Lan, Y. (2020). Establishing a model

to predict the single boll weight of cotton in northern Xinjiang by using high

resolution UAV remote sensing data. Computers and Electronics in Agriculture,

179, 105762, https://doi.org/10.1016/j.compag.2020.105762

Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A real-time apple targets detection

method for picking robot based on improved YOLOv5. Remote Sensing, 13(9),

1619, https://doi.org/10.3390/rs13091619

Yang, Z., Sinnott, R., Ke, Q., & Bailey, J. (2021). Individual Feral Cat Identification

through Deep Learning. In 2021 IEEE/ACM 8th International Conference on Big

Data Computing, Applications and Technologies (BDCAT'21) (pp. 101-110),

https://doi.org/10.1145/3492324.3494168

https://en.wikipedia.org/w/index.php?title=Real-time_kinematic&id=959795335
https://en.wikipedia.org/w/index.php?title=Real-time_kinematic&id=959795335
https://doi.org/10.3390/f12020217
https://doi.org/10.3390/rs13091619

138

Yao, H., & Huang, Y. (2013). Remote sensing applications to precision farming. Remote

sensing of natural resources, (pp. 333-352), https://doi.org/10.1201/b15159

Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., & Metaxas, D. (2021). Oriented object

detection in aerial images with box boundary-aware vectors. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2150-

2159).

You, J., Liu, W., & Lee, J. (2020). A DNN-based semantic segmentation for detecting

weed and crop. Computers and Electronics in Agriculture, 178, 105750,

https://doi.org/10.1016/j.compag.2020.105750

Young, S. L., Pierce, F. J., & Nowak, P. (2014). Introduction: Scope of the problem rising

costs and demand for environmental safety for weed control. In Automation: The

future of weed control in cropping systems (pp. 1-8), https://doi.org/10.1007/978-

94-007-7512-1_1

Yousefi, M. R., & Razdari, A. M. (2015). Application of GIS and GPS in precision

agriculture (a review). International Journal of Advanced Biological and

Biomedical Research, 3(1), 7-9.

Yu, D., Wang, H., Chen, P., & Wei, Z. (2014). Mixed pooling for convolutional neural

networks. In International conference on rough sets and knowledge technology (pp.

364-375), https://doi.org/10.1007/978-3-319-11740-9_34

Yu, J., Sharpe, S. M., Schumann, A. W., & Boyd, N. S. (2019). Deep Learning for image-

based weed detection in turfgrass. European journal of agronomy, 104, 78-84,

https://doi.org/10.1016/j.eja.2019.01.004

Zahara, L., Musa, P., Wibowo, E. P., Karim, I., & Musa, S. B. (2020). The facial emotion

recognition (FER-2013) dataset for prediction system of micro-expressions face

using the convolutional neural network (CNN) algorithm based Raspberry Pi. In

2020 Fifth international conference on informatics and computing (ICIC) (pp. 1-

9).

Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep

convolutional neural networks. Computer and information sciences,

https://doi.org/10.48550/arXiv.1301.3557

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for

precision agriculture: a review. Precision agriculture, 13(6), 693-712, doi:

10.1007/s11119-012-9274-5

Zhang, J., Xie, T., Yang, C., Song, H., Jiang, Z., Zhou, G., & Xie, J. (2020a). Segmenting

purple rapeseed leaves in the field from UAV RGB imagery using Deep Learning

as an auxiliary means for nitrogen stress detection. Remote Sensing, 12(9), 1403,

https://doi.org/10.3390/rs12091403

https://doi.org/10.1201/b15159
https://doi.org/10.1016/j.compag.2020.105750

139

Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., & Yu, B. (2019). Recent advances in

convolutional neural network acceleration. Neurocomputing, 323, 37-51,

https://doi.org/10.1016/j.neucom.2018.09.038

Zhang, Z. D., Tan, M. L., Lan, Z. C., Liu, H. C., Pei, L., Yu, W. X. (2022). CDNet: a real-

time and robust crosswalk detection network on Jetson nano based on YOLOv5.

Neural Computing and Applications, (pp. 1-12), https://doi.org/10.1007/s00521-

022-07007-9

Zhang, Z., Flores, P., Igathinathane, C., L. Naik, D., Kiran, R., & Ransom, J. K. (2020).

Wheat lodging detection from UAS imagery using machine learning algorithms.

Remote Sensing, 12(11), 1838, doi:10.3390/rs12111838

Zhao, J., Zhong, Y., Hu, X., Wei, L., & Zhang, L. (2020). A robust spectral-spatial

approach to identifying heterogeneous crops using remote sensing imagery with

high spectral and spatial resolutions. Remote Sensing of Environment, 239, 111605,

https://doi.org/10.1016/j.rse.2019.111605

Zhu, P., Wen, L., Bian, X., Ling, H., & Hu, Q. (2018). Vision meets drones: A challenge.

Computer and information sciences, https://doi.org/10.48550/arXiv.1804.07437

Zou, K., Chen, X., Zhang, F., Zhou, H., & Zhang, C. (2021). A field weed density

evaluation method based on UAV imaging and modified U-Net. Remote Sensing,

13(2), 310, https://doi.org/10.3390/rs13020310

https://doi.org/10.1016/j.neucom.2018.09.038
https://doi.org/10.1007/s00521-022-07007-9
https://doi.org/10.1007/s00521-022-07007-9
https://doi.org/10.48550/arXiv.1804.07437

140

Appendix A

Ground Control Points (GCP’s)

S/N Station ID Control

Category

Coordinates (m) Height

 Northing Easting

0. CSN 128P

Primary 1056599.017 222702.652 245.519

1. JA01 Secondary 1053910 225665.4 209.9429

2. JA02 Secondary 1053950 225650.8 209.6335

3. JA03 Secondary 1053993 225697.0 209.7679

4. JA04 Secondary 1054008

225727.8 209.6353

5. JA05 Secondary 1054005 225779.2 209.186

6. JA06 Secondary 1053948 225758.6 209.1649

7. JA07 Secondary 1053914 225713.8 211.1355

8. JA08 Secondary 1053945 225706.5 210.6092

141

Appendix B

Training codes for Faster RCNN

import functools

import json

import os

import tensorflow as tf

from object_detection import trainer

from object_detection.builders import input_reader_builder

from object_detection.builders import model_builder

from object_detection.utils import config_util

tf.logging.set_verbosity(tf.logging.INFO)

flags = tf.app.flags

flags.DEFINE_string('master', '', 'Name of the TensorFlow master to

use.')

flags.DEFINE_integer('task', 0, 'task id')

flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy

per worker.')

flags.DEFINE_boolean('clone_on_cpu', False,

 'Force clones to be deployed on CPU. Note

that even if '

 'set to False (allowing ops to run on gpu),

some ops may '

 'still be run on the CPU if they have no GPU

kernel.')

flags.DEFINE_integer('worker_replicas', 1, 'Number of

worker+trainer '

 'replicas.')

flags.DEFINE_integer('ps_tasks', 0,

 'Number of parameter server tasks. If None,

does not use '

 'a parameter server.')

flags.DEFINE_string('train_dir', '',

 'Directory to save the checkpoints and training

summaries.')

flags.DEFINE_string('pipeline_config_path', '',

 'Path to a pipeline_pb2.TrainEvalPipelineConfig

config '

 'file. If provided, other configs are ignored')

flags.DEFINE_string('train_config_path', '',

 'Path to a train_pb2.TrainConfig config file.')

flags.DEFINE_string('input_config_path', '',

 'Path to an input_reader_pb2.InputReader config

file.')

flags.DEFINE_string('model_config_path', '',

 'Path to a model_pb2.DetectionModel config

file.')

FLAGS = flags.FLAGS

def main(_):

142

 assert FLAGS.train_dir, '`train_dir` is missing.'

 if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir)

 if FLAGS.pipeline_config_path:

 configs = config_util.get_configs_from_pipeline_file(

 FLAGS.pipeline_config_path)

 if FLAGS.task == 0:

 tf.gfile.Copy(FLAGS.pipeline_config_path,

 os.path.join(FLAGS.train_dir,

'pipeline.config'),

 overwrite=True)

 else:

 configs = config_util.get_configs_from_multiple_files(

 model_config_path=FLAGS.model_config_path,

 train_config_path=FLAGS.train_config_path,

 train_input_config_path=FLAGS.input_config_path)

 if FLAGS.task == 0:

 for name, config in [('model.config',

FLAGS.model_config_path),

 ('train.config',

FLAGS.train_config_path),

 ('input.config',

FLAGS.input_config_path)]:

 tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name),

 overwrite=True)

 model_config = configs['model']

 train_config = configs['train_config']

 input_config = configs['train_input_config']

 model_fn = functools.partial(

 model_builder.build,

 model_config=model_config,

 is_training=True)

 create_input_dict_fn = functools.partial(

 input_reader_builder.build, input_config)

 env = json.loads(os.environ.get('TF_CONFIG', '{}'))

 cluster_data = env.get('cluster', None)

 cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else

None

 task_data = env.get('task', None) or {'type': 'master', 'index':

0}

 task_info = type('TaskSpec', (object,), task_data)

 # Parameters for a single worker.

 ps_tasks = 0

 worker_replicas = 1

 worker_job_name = 'lonely_worker'

 task = 0

 is_chief = True

 master = ''

 if cluster_data and 'worker' in cluster_data:

 # Number of total worker replicas include "worker"s and the

"master".

 worker_replicas = len(cluster_data['worker']) + 1

 if cluster_data and 'ps' in cluster_data:

143

 ps_tasks = len(cluster_data['ps'])

 if worker_replicas > 1 and ps_tasks < 1:

 raise ValueError('At least 1 ps task is needed for distributed

training.')

 if worker_replicas >= 1 and ps_tasks > 0:

 # Set up distributed training.

 server = tf.train.Server(tf.train.ClusterSpec(cluster),

protocol='grpc',

 job_name=task_info.type,

 task_index=task_info.index)

 if task_info.type == 'ps':

 server.join()

 return

 worker_job_name = '%s/task:%d' % (task_info.type,

task_info.index)

 task = task_info.index

 is_chief = (task_info.type == 'master')

 master = server.target

 trainer.train(create_input_dict_fn, model_fn, train_config,

master, task,

 FLAGS.num_clones, worker_replicas,

FLAGS.clone_on_cpu, ps_tasks,

 worker_job_name, is_chief, FLAGS.train_dir)

if __name__ == '__main__':

 tf.app.run()

Testing Codes for Faster RCNN

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from distutils.version import StrictVersion

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

from PIL import Image

This is needed since the notebook is stored in the object_detecti

on folder.

sys.path.append("..")

from object_detection.utils import ops as utils_ops

from object_detection.utils import label_map_util

144

from object_detection.utils import visualization_utils as vis_util

Model preparation variable

MODEL_NAME = 'trained_inference_graph'

PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

PATH_TO_LABELS = 'training/labelmap.pbtxt'

NUM_CLASSES = 5 #remember number of objects you are training? cool.

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:

 serialized_graph = fid.read()

 od_graph_def.ParseFromString(serialized_graph)

 tf.import_graph_def(od_graph_def, name='')

###Loading label map

category_index = label_map_util.create_category_index_from_labelmap

(PATH_TO_LABELS)

Load image into numpy function

def load_image_into_numpy_array(image):

 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape(

 (im_height, im_width, 3)).astype(np.uint8)

###STATING THE PATH TO IMAGES TO BE TESTED

PATH_TO_TEST_IMAGES_DIR = 'test_images/'

TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}

.jpg'.format(i)) for i in range(1, 5)]

IMAGE_SIZE = (12, 8)

Function to run inference on a single image which will later be

 used in an iteration

def run_inference_for_single_image(image, graph):

 with graph.as_default():

145

 with tf.Session() as sess:

 # Get handles to input and output tensors

 ops = tf.get_default_graph().get_operations()

 all_tensor_names = {output.name for op in ops for output in o

p.outputs}

 tensor_dict = {}

 for key in [

 'num_detections', 'detection_boxes', 'detection_scores',

 'detection_classes', 'detection_masks'

]:

 tensor_name = key + ':0'

 if tensor_name in all_tensor_names:

 tensor_dict[key] = tf.get_default_graph().get_tensor_by_n

ame(

 tensor_name)

 if 'detection_masks' in tensor_dict:

 # The following processing is only for single image

 detection_boxes = tf.squeeze(tensor_dict['detection_boxes']

, [0])

 detection_masks = tf.squeeze(tensor_dict['detection_masks']

, [0])

 # Reframe is required to translate mask from box coordinate

s to image coordinates and fit the image size.

 real_num_detection = tf.cast(tensor_dict['num_detections'][

0], tf.int32)

 detection_boxes = tf.slice(detection_boxes, [0, 0], [real_n

um_detection, -1])

 detection_masks = tf.slice(detection_masks, [0, 0, 0], [rea

l_num_detection, -1, -1])

 detection_masks_reframed = utils_ops.reframe_box_masks_to_i

mage_masks(

 detection_masks, detection_boxes, image.shape[1], image

.shape[2])

 detection_masks_reframed = tf.cast(

 tf.greater(detection_masks_reframed, 0.5), tf.uint8)

 # Follow the convention by adding back the batch dimension

 tensor_dict['detection_masks'] = tf.expand_dims(

 detection_masks_reframed, 0)

 image_tensor = tf.get_default_graph().get_tensor_by_name('ima

ge_tensor:0')

 # Run inference

 output_dict = sess.run(tensor_dict,

 feed_dict={image_tensor: image})

 # all outputs are float32 numpy arrays, so convert types as a

ppropriate

 output_dict['num_detections'] = int(output_dict['num_detectio

ns'][0])

146

 output_dict['detection_classes'] = output_dict[

 'detection_classes'][0].astype(np.int64)

 output_dict['detection_boxes'] = output_dict['detection_boxes

'][0]

 output_dict['detection_scores'] = output_dict['detection_scor

es'][0]

 if 'detection_masks' in output_dict:

 output_dict['detection_masks'] = output_dict['detection_mas

ks'][0]

 return output_dict

To iterate on each image in the test image path defined

NB define the range of numbers and let it match the number of i

mAGES IN TEST FOLDER +1

for image_path in TEST_IMAGE_PATHS:

 image = Image.open(image_path)

 # the array based representation of the image will be used later

in order to prepare the

 # result image with boxes and labels on it.

 image_np = load_image_into_numpy_array(image)

 # Expand dimensions since the model expects images to have shape:

 [1, None, None, 3]

 image_np_expanded = np.expand_dims(image_np, axis=0)

 # Actual detection.

 output_dict = run_inference_for_single_image(image_np_expanded, d

etection_graph)

 # Visualization of the results of a detection.

 vis_util.visualize_boxes_and_labels_on_image_array(

 image_np,

 output_dict['detection_boxes'],

 output_dict['detection_classes'],

 output_dict['detection_scores'],

 category_index,

 instance_masks=output_dict.get('detection_masks'),

 use_normalized_coordinates=True,

 line_thickness=1)

 display(Image.fromarray(image_np))

147

Appendix C

Training codes for YOLO v5

import argparse

import logging

import math

import os

import random

import time

from copy import deepcopy

from pathlib import Path

from threading import Thread

import numpy as np

import torch.distributed as dist

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torch.optim.lr_scheduler as lr_scheduler

import torch.utils.data

import yaml

from torch.cuda import amp

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.tensorboard import SummaryWriter

from tqdm import tqdm

import test # import test.py to get mAP after each epoch

from models.experimental import attempt_load

from models.yolo import Model

from utils.autoanchor import check_anchors

from utils.datasets import create_dataloader

from utils.general import labels_to_class_weights, increment_path,

labels_to_image_weights, init_seeds, \

 fitness, strip_optimizer, get_latest_run, check_dataset, check_

file, check_git_status, check_img_size, \

 check_requirements, print_mutation, set_logging, one_cycle, col

orstr

from utils.google_utils import attempt_download

from utils.loss import ComputeLoss

from utils.plots import plot_images, plot_labels, plot_results, plo

t_evolution

from utils.torch_utils import ModelEMA, select_device, intersect_di

cts, torch_distributed_zero_first, is_parallel

logger = logging.getLogger(__name__)

148

def train(hyp, opt, device, tb_writer=None, wandb=None):

 logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}

' for k, v in hyp.items()))

 save_dir, epochs, batch_size, total_batch_size, weights, rank =

 \

 Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_b

atch_size, opt.weights, opt.global_rank

 # Directories

 wdir = save_dir / 'weights'

 wdir.mkdir(parents=True, exist_ok=True) # make dir

 last = wdir / 'last.pt'

 best = wdir / 'best.pt'

 results_file = save_dir / 'results.txt'

 # Save run settings

 with open(save_dir / 'hyp.yaml', 'w') as f:

 yaml.dump(hyp, f, sort_keys=False)

 with open(save_dir / 'opt.yaml', 'w') as f:

 yaml.dump(vars(opt), f, sort_keys=False)

 # Configure

 plots = not opt.evolve # create plots

 cuda = device.type != 'cpu'

 init_seeds(2 + rank)

 with open(opt.data) as f:

 data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data di

ct

 with torch_distributed_zero_first(rank):

 check_dataset(data_dict) # check

 train_path = data_dict['train']

 test_path = data_dict['val']

 nc = 1 if opt.single_cls else int(data_dict['nc']) # number of

 classes

 names = ['item'] if opt.single_cls and len(data_dict['names'])

!= 1 else data_dict['names'] # class names

 assert len(names) == nc, '%g names found for nc=%g dataset in %

s' % (len(names), nc, opt.data) # check

 # Model

 pretrained = weights.endswith('.pt')

 if pretrained:

 with torch_distributed_zero_first(rank):

 attempt_download(weights) # download if not found loca

lly

 ckpt = torch.load(weights, map_location=device) # load che

ckpoint

 model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, a

nchors=hyp.get('anchors')).to(device) # create

149

 exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and

 not opt.resume else [] # exclude keys

 state_dict = ckpt['model'].float().state_dict() # to FP32

 state_dict = intersect_dicts(state_dict, model.state_dict()

, exclude=exclude) # intersect

 model.load_state_dict(state_dict, strict=False) # load

 logger.info('Transferred %g/%g items from %s' % (len(state_

dict), len(model.state_dict()), weights)) # report

 else:

 model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchor

s')).to(device) # create

 # Freeze

 freeze = [] # parameter names to freeze (full or partial)

 for k, v in model.named_parameters():

 v.requires_grad = True # train all layers

 if any(x in k for x in freeze):

 print('freezing %s' % k)

 v.requires_grad = False

 # Optimizer

 nbs = 64 # nominal batch size

 accumulate = max(round(nbs / total_batch_size), 1) # accumulat

e loss before optimizing

 hyp['weight_decay'] *= total_batch_size * accumulate / nbs # s

cale weight_decay

 logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

 pg0, pg1, pg2 = [], [], [] # optimizer parameter groups

 for k, v in model.named_modules():

 if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):

 pg2.append(v.bias) # biases

 if isinstance(v, nn.BatchNorm2d):

 pg0.append(v.weight) # no decay

 elif hasattr(v, 'weight') and isinstance(v.weight, nn.Param

eter):

 pg1.append(v.weight) # apply decay

 if opt.adam:

 optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['mome

ntum'], 0.999)) # adjust beta1 to momentum

 else:

 optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['mom

entum'], nesterov=True)

 optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['

weight_decay']}) # add pg1 with weight_decay

 optimizer.add_param_group({'params': pg2}) # add pg2 (biases)

150

 logger.info('Optimizer groups: %g .bias, %g conv.weight, %g oth

er' % (len(pg2), len(pg1), len(pg0)))

 del pg0, pg1, pg2

 # Scheduler https://arxiv.org/pdf/1812.01187.pdf

 # https://pytorch.org/docs/stable/_modules/torch/optim/lr_sched

uler.html#OneCycleLR

 if opt.linear_lr:

 lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf'])

+ hyp['lrf'] # linear

 else:

 lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1-

>hyp['lrf']

 scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

 # plot_lr_scheduler(optimizer, scheduler, epochs)

 # Logging

 if rank in [-1, 0] and wandb and wandb.run is None:

 opt.hyp = hyp # add hyperparameters

 wandb_run = wandb.init(config=opt, resume="allow",

 project='YOLOv5' if opt.project == '

runs/train' else Path(opt.project).stem,

 name=save_dir.stem,

 entity=opt.entity,

 id=ckpt.get('wandb_id') if 'ckpt' in

 locals() else None)

 loggers = {'wandb': wandb} # loggers dict

 # EMA

 ema = ModelEMA(model) if rank in [-1, 0] else None

 # Resume

 start_epoch, best_fitness = 0, 0.0

 if pretrained:

 # Optimizer

 if ckpt['optimizer'] is not None:

 optimizer.load_state_dict(ckpt['optimizer'])

 best_fitness = ckpt['best_fitness']

 # EMA

 if ema and ckpt.get('ema'):

 ema.ema.load_state_dict(ckpt['ema'].float().state_dict(

))

 ema.updates = ckpt['updates']

 # Results

 if ckpt.get('training_results') is not None:

 results_file.write_text(ckpt['training_results']) # wr

ite results.txt

151

 # Epochs

 start_epoch = ckpt['epoch'] + 1

 if opt.resume:

 assert start_epoch > 0, '%s training to %g epochs is fi

nished, nothing to resume.' % (weights, epochs)

 if epochs < start_epoch:

 logger.info('%s has been trained for %g epochs. Fine-

tuning for %g additional epochs.' %

 (weights, ckpt['epoch'], epochs))

 epochs += ckpt['epoch'] # finetune additional epochs

 del ckpt, state_dict

 # Image sizes

 gs = max(int(model.stride.max()), 32) # grid size (max stride)

 nl = model.model[-

1].nl # number of detection layers (used for scaling hyp['obj'])

 imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_siz

e] # verify imgsz are gs-multiples

 # DP mode

 if cuda and rank == -1 and torch.cuda.device_count() > 1:

 model = torch.nn.DataParallel(model)

 # SyncBatchNorm

 if opt.sync_bn and cuda and rank != -1:

 model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model

).to(device)

 logger.info('Using SyncBatchNorm()')

 # Trainloader

 dataloader, dataset = create_dataloader(train_path, imgsz, batc

h_size, gs, opt,

 hyp=hyp, augment=True,

cache=opt.cache_images, rect=opt.rect, rank=rank,

 world_size=opt.world_si

ze, workers=opt.workers,

 image_weights=opt.image

_weights, quad=opt.quad, prefix=colorstr('train: '))

 mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max labe

l class

 nb = len(dataloader) # number of batches

 assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible

class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

 # Process 0

 if rank in [-1, 0]:

152

 testloader = create_dataloader(test_path, imgsz_test, batch

_size * 2, gs, opt, # testloader

 hyp=hyp, cache=opt.cache_ima

ges and not opt.notest, rect=True, rank=-1,

 world_size=opt.world_size, w

orkers=opt.workers,

 pad=0.5, prefix=colorstr('va

l: '))[0]

 if not opt.resume:

 labels = np.concatenate(dataset.labels, 0)

 c = torch.tensor(labels[:, 0]) # classes

 # cf = torch.bincount(c.long(), minlength=nc) + 1. # f

requency

 # model._initialize_biases(cf.to(device))

 if plots:

 plot_labels(labels, save_dir, loggers)

 if tb_writer:

 tb_writer.add_histogram('classes', c, 0)

 # Anchors

 if not opt.noautoanchor:

 check_anchors(dataset, model=model, thr=hyp['anchor

_t'], imgsz=imgsz)

 model.half().float() # pre-reduce anchor precision

 # DDP mode

 if cuda and rank != -1:

 model = DDP(model, device_ids=[opt.local_rank], output_devi

ce=opt.local_rank)

 # Model parameters

 hyp['box'] *= 3. / nl # scale to layers

 hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers

 hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image si

ze and layers

 model.nc = nc # attach number of classes to model

 model.hyp = hyp # attach hyperparameters to model

 model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)

 model.class_weights = labels_to_class_weights(dataset.labels, n

c).to(device) * nc # attach class weights

 model.names = names

 # Start training

 t0 = time.time()

 nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of w

armup iterations, max(3 epochs, 1k iterations)

 # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup

 to < 1/2 of training

153

 maps = np.zeros(nc) # mAP per class

 results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-

.95, val_loss(box, obj, cls)

 scheduler.last_epoch = start_epoch - 1 # do not move

 scaler = amp.GradScaler(enabled=cuda)

 compute_loss = ComputeLoss(model) # init loss class

 logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'

 f'Using {dataloader.num_workers} dataloader workers

\n'

 f'Logging results to {save_dir}\n'

 f'Starting training for {epochs} epochs...')

 for epoch in range(start_epoch, epochs): # epoch -------------

 model.train()

 # Update image weights (optional)

 if opt.image_weights:

 # Generate indices

 if rank in [-1, 0]:

 cw = model.class_weights.cpu().numpy() * (1 - maps)

 ** 2 / nc # class weights

 iw = labels_to_image_weights(dataset.labels, nc=nc,

 class_weights=cw) # image weights

 dataset.indices = random.choices(range(dataset.n),

weights=iw, k=dataset.n) # rand weighted idx

 # Broadcast if DDP

 if rank != -1:

 indices = (torch.tensor(dataset.indices) if rank ==

 0 else torch.zeros(dataset.n)).int()

 dist.broadcast(indices, 0)

 if rank != 0:

 dataset.indices = indices.cpu().numpy()

 # Update mosaic border

 # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) /

/ gs * gs)

 # dataset.mosaic_border = [b - imgsz, -

b] # height, width borders

 mloss = torch.zeros(4, device=device) # mean losses

 if rank != -1:

 dataloader.sampler.set_epoch(epoch)

 pbar = enumerate(dataloader)

 logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box

', 'obj', 'cls', 'total', 'targets', 'img_size'))

 if rank in [-1, 0]:

 pbar = tqdm(pbar, total=nb) # progress bar

 optimizer.zero_grad()

154

 for i, (imgs, targets, paths, _) in pbar: # batch --------

 ni = i + nb * epoch # number integrated batches (since

 train start)

 imgs = imgs.to(device, non_blocking=True).float() / 255

.0 # uint8 to float32, 0-255 to 0.0-1.0

 # Warmup

 if ni <= nw:

 xi = [0, nw] # x interp

 # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou l

oss ratio (obj_loss = 1.0 or iou)

 accumulate = max(1, np.interp(ni, xi, [1, nbs / tot

al_batch_size]).round())

 for j, x in enumerate(optimizer.param_groups):

 # bias lr falls from 0.1 to lr0, all other lrs

rise from 0.0 to lr0

 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_l

r'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])

 if 'momentum' in x:

 x['momentum'] = np.interp(ni, xi, [hyp['war

mup_momentum'], hyp['momentum']])

 # Multi-scale

 if opt.multi_scale:

 sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs

) // gs * gs # size

 sf = sz / max(imgs.shape[2:]) # scale factor

 if sf != 1:

 ns = [math.ceil(x * sf / gs) * gs for x in imgs

.shape[2:]] # new shape (stretched to gs-multiple)

 imgs = F.interpolate(imgs, size=ns, mode='bilin

ear', align_corners=False)

 # Forward

 with amp.autocast(enabled=cuda):

 pred = model(imgs) # forward

 loss, loss_items = compute_loss(pred, targets.to(de

vice)) # loss scaled by batch_size

 if rank != -1:

 loss *= opt.world_size # gradient averaged bet

ween devices in DDP mode

 if opt.quad:

 loss *= 4.

 # Backward

 scaler.scale(loss).backward()

 # Optimize

155

 if ni % accumulate == 0:

 scaler.step(optimizer) # optimizer.step

 scaler.update()

 optimizer.zero_grad()

 if ema:

 ema.update(model)

 # Print

 if rank in [-1, 0]:

 mloss = (mloss * i + loss_items) / (i + 1) # updat

e mean losses

 mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9

 if torch.cuda.is_available() else 0) # (GB)

 s = ('%10s' * 2 + '%10.4g' * 6) % (

 '%g/%g' % (epoch, epochs - 1), mem, *mloss, tar

gets.shape[0], imgs.shape[-1])

 pbar.set_description(s)

 # Plot

 if plots and ni < 3:

 f = save_dir / f'train_batch{ni}.jpg' # filena

me

 Thread(target=plot_images, args=(imgs, targets,

 paths, f), daemon=True).start()

 # if tb_writer:

 # tb_writer.add_image(f, result, dataformat

s='HWC', global_step=epoch)

 # tb_writer.add_graph(model, imgs) # add m

odel to tensorboard

 elif plots and ni == 10 and wandb:

 wandb.log({"Mosaics": [wandb.Image(str(x), capt

ion=x.name) for x in save_dir.glob('train*.jpg')

 if x.exists()]}, commit=

False)

 # end batch ---

 # end epoch ---

 # Scheduler

 lr = [x['lr'] for x in optimizer.param_groups] # for tenso

rboard

 scheduler.step()

 # DDP process 0 or single-GPU

 if rank in [-1, 0]:

 # mAP

156

 ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'g

r', 'names', 'stride', 'class_weights'])

 final_epoch = epoch + 1 == epochs

 if not opt.notest or final_epoch: # Calculate mAP

 results, maps, times = test.test(opt.data,

 batch_size=batch_s

ize * 2,

 imgsz=imgsz_test,

 model=ema.ema,

 single_cls=opt.sin

gle_cls,

 dataloader=testloa

der,

 save_dir=save_dir,

 verbose=nc < 50 an

d final_epoch,

 plots=plots and fi

nal_epoch,

 log_imgs=opt.log_i

mgs if wandb else 0,

 compute_loss=compu

te_loss)

 # Write

 with open(results_file, 'a') as f:

 f.write(s + '%10.4g' * 7 % results + '\n') # appen

d metrics, val_loss

 if len(opt.name) and opt.bucket:

 os.system('gsutil cp %s gs://%s/results/results%s.t

xt' % (results_file, opt.bucket, opt.name))

 # Log

 tags = ['train/box_loss', 'train/obj_loss', 'train/cls_

loss', # train loss

 'metrics/precision', 'metrics/recall', 'metrics

/mAP_0.5', 'metrics/mAP_0.5:0.95',

 'val/box_loss', 'val/obj_loss', 'val/cls_loss',

 # val loss

 'x/lr0', 'x/lr1', 'x/lr2'] # params

 for x, tag in zip(list(mloss[:-

1]) + list(results) + lr, tags):

 if tb_writer:

 tb_writer.add_scalar(tag, x, epoch) # tensorbo

ard

 if wandb:

 wandb.log({tag: x}, step=epoch, commit=tag == t

ags[-1]) # W&B

 # Update best mAP

157

 fi = fitness(np.array(results).reshape(1, -

1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]

 if fi > best_fitness:

 best_fitness = fi

 # Save model

 if (not opt.nosave) or (final_epoch and not opt.evolve)

: # if save

 ckpt = {'epoch': epoch,

 'best_fitness': best_fitness,

 'training_results': results_file.read_text(

),

 'model': deepcopy(model.module if is_parall

el(model) else model).half(),

 'ema': deepcopy(ema.ema).half(),

 'updates': ema.updates,

 'optimizer': optimizer.state_dict(),

 'wandb_id': wandb_run.id if wandb else None

}

 # Save last, best and delete

 torch.save(ckpt, last)

 if best_fitness == fi:

 torch.save(ckpt, best)

 del ckpt

 # end epoch ---

 # end training

 if rank in [-1, 0]:

 # Strip optimizers

 final = best if best.exists() else last # final model

 for f in last, best:

 if f.exists():

 strip_optimizer(f)

 if opt.bucket:

 os.system(f'gsutil cp {final} gs://{opt.bucket}/weights

') # upload

 # Plots

 if plots:

 plot_results(save_dir=save_dir) # save as results.png

 if wandb:

 files = ['results.png', 'confusion_matrix.png', *[f

'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]

 wandb.log({"Results": [wandb.Image(str(save_dir / f

), caption=f) for f in files

158

 if (save_dir / f).exists()]}

)

 if opt.log_artifacts:

 wandb.log_artifact(artifact_or_path=str(final),

 type='model', name=save_dir.stem)

 # Test best.pt

 logger.info('%g epochs completed in %.3f hours.\n' % (epoch

 - start_epoch + 1, (time.time() - t0) / 3600))

 if opt.data.endswith('coco.yaml') and nc == 80: # if COCO

 for m in (last, best) if best.exists() else (last): #

speed, mAP tests

 results, _, _ = test.test(opt.data,

 batch_size=batch_size * 2

,

 imgsz=imgsz_test,

 conf_thres=0.001,

 iou_thres=0.7,

 model=attempt_load(m, dev

ice).half(),

 single_cls=opt.single_cls

,

 dataloader=testloader,

 save_dir=save_dir,

 save_json=True,

 plots=False)

 else:

 dist.destroy_process_group()

 wandb.run.finish() if wandb and wandb.run else None

 torch.cuda.empty_cache()

 return results

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--

weights', type=str, default='yolov5s.pt', help='initial weights pat

h')

 parser.add_argument('--

cfg', type=str, default='', help='model.yaml path')

 parser.add_argument('--

data', type=str, default='data/coco128.yaml', help='data.yaml path'

)

 parser.add_argument('--

hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparamet

ers path')

 parser.add_argument('--epochs', type=int, default=300)

159

 parser.add_argument('--batch-

size', type=int, default=16, help='total batch size for all GPUs')

 parser.add_argument('--img-

size', nargs='+', type=int, default=[640, 640], help='[train, test]

 image sizes')

 parser.add_argument('--

rect', action='store_true', help='rectangular training')

 parser.add_argument('--

resume', nargs='?', const=True, default=False, help='resume most re

cent training')

 parser.add_argument('--

nosave', action='store_true', help='only save final checkpoint')

 parser.add_argument('--

notest', action='store_true', help='only test final epoch')

 parser.add_argument('--

noautoanchor', action='store_true', help='disable autoanchor check'

)

 parser.add_argument('--

evolve', action='store_true', help='evolve hyperparameters')

 parser.add_argument('--

bucket', type=str, default='', help='gsutil bucket')

 parser.add_argument('--cache-

images', action='store_true', help='cache images for faster trainin

g')

 parser.add_argument('--image-

weights', action='store_true', help='use weighted image selection f

or training')

 parser.add_argument('--

device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

 parser.add_argument('--multi-

scale', action='store_true', help='vary img-size +/- 50%%')

 parser.add_argument('--single-

cls', action='store_true', help='train multi-class data as single-

class')

 parser.add_argument('--

adam', action='store_true', help='use torch.optim.Adam() optimizer'

)

 parser.add_argument('--sync-

bn', action='store_true', help='use SyncBatchNorm, only available i

n DDP mode')

 parser.add_argument('--local_rank', type=int, default=-

1, help='DDP parameter, do not modify')

 parser.add_argument('--log-

imgs', type=int, default=16, help='number of images for W&B logging

, max 100')

 parser.add_argument('--log-

artifacts', action='store_true', help='log artifacts, i.e. final tr

ained model')

160

 parser.add_argument('--

workers', type=int, default=8, help='maximum number of dataloader w

orkers')

 parser.add_argument('--

project', default='runs/train', help='save to project/name')

 parser.add_argument('--

entity', default=None, help='W&B entity')

 parser.add_argument('--

name', default='exp', help='save to project/name')

 parser.add_argument('--exist-

ok', action='store_true', help='existing project/name ok, do not in

crement')

 parser.add_argument('--

quad', action='store_true', help='quad dataloader')

 parser.add_argument('--linear-

lr', action='store_true', help='linear LR')

 opt = parser.parse_args()

 # Set DDP variables

 opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE'

in os.environ else 1

 opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.envir

on else -1

 set_logging(opt.global_rank)

 if opt.global_rank in [-1, 0]:

 check_git_status()

 check_requirements()

 # Resume

 if opt.resume: # resume an interrupted run

 ckpt = opt.resume if isinstance(opt.resume, str) else get_l

atest_run() # specified or most recent path

 assert os.path.isfile(ckpt), 'ERROR: --

resume checkpoint does not exist'

 apriori = opt.global_rank, opt.local_rank

 with open(Path(ckpt).parent.parent / 'opt.yaml') as f:

 opt = argparse.Namespace(**yaml.load(f, Loader=yaml.Saf

eLoader)) # replace

 opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.globa

l_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apr

iori # reinstate

 logger.info('Resuming training from %s' % ckpt)

 else:

 # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights

else 'hyp.scratch.yaml')

 opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_fi

le(opt.cfg), check_file(opt.hyp) # check files

 assert len(opt.cfg) or len(opt.weights), 'either --cfg or -

-weights must be specified'

161

 opt.img_size.extend([opt.img_size[-

1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)

 opt.name = 'evolve' if opt.evolve else opt.name

 opt.save_dir = increment_path(Path(opt.project) / opt.name,

 exist_ok=opt.exist_ok | opt.evolve) # increment run

 # DDP mode

 opt.total_batch_size = opt.batch_size

 device = select_device(opt.device, batch_size=opt.batch_size)

 if opt.local_rank != -1:

 assert torch.cuda.device_count() > opt.local_rank

 torch.cuda.set_device(opt.local_rank)

 device = torch.device('cuda', opt.local_rank)

 dist.init_process_group(backend='nccl', init_method='env://

') # distributed backend

 assert opt.batch_size % opt.world_size == 0, '--batch-

size must be multiple of CUDA device count'

 opt.batch_size = opt.total_batch_size // opt.world_size

 # Hyperparameters

 with open(opt.hyp) as f:

 hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps

 # Train

 logger.info(opt)

 try:

 import wandb

 except ImportError:

 wandb = None

 prefix = colorstr('wandb: ')

 logger.info(f"{prefix}Install Weights & Biases for YOLOv5 l

ogging with 'pip install wandb' (recommended)")

 if not opt.evolve:

 tb_writer = None # init loggers

 if opt.global_rank in [-1, 0]:

 logger.info(f'Start Tensorboard with "tensorboard --

logdir {opt.project}", view at http://localhost:6006/')

 tb_writer = SummaryWriter(opt.save_dir) # Tensorboard

 train(hyp, opt, device, tb_writer, wandb)

 # Evolve hyperparameters (optional)

 else:

 # Hyperparameter evolution metadata (mutation scale 0-

1, lower_limit, upper_limit)

 meta = {'lr0': (1, 1e-5, 1e-

1), # initial learning rate (SGD=1E-2, Adam=1E-3)

 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning

 rate (lr0 * lrf)

162

 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam

beta1

 'weight_decay': (1, 0.0, 0.001), # optimizer weigh

t decay

 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (f

ractions ok)

 'warmup_momentum': (1, 0.0, 0.95), # warmup initia

l momentum

 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial

bias lr

 'box': (1, 0.02, 0.2), # box loss gain

 'cls': (1, 0.2, 4.0), # cls loss gain

 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_we

ight

 'obj': (1, 0.2, 4.0), # obj loss gain (scale with

pixels)

 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_we

ight

 'iou_t': (0, 0.1, 0.7), # IoU training threshold

 'anchor_t': (1, 2.0, 8.0), # anchor-

multiple threshold

 'anchors': (2, 2.0, 10.0), # anchors per output gr

id (0 to ignore)

 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (eff

icientDet default gamma=1.5)

 'hsv_h': (1, 0.0, 0.1), # image HSV-

Hue augmentation (fraction)

 'hsv_s': (1, 0.0, 0.9), # image HSV-

Saturation augmentation (fraction)

 'hsv_v': (1, 0.0, 0.9), # image HSV-

Value augmentation (fraction)

 'degrees': (1, 0.0, 45.0), # image rotation (+/- d

eg)

 'translate': (1, 0.0, 0.9), # image translation (+

/- fraction)

 'scale': (1, 0.0, 0.9), # image scale (+/- gain)

 'shear': (1, 0.0, 10.0), # image shear (+/- deg)

 'perspective': (0, 0.0, 0.001), # image perspectiv

e (+/- fraction), range 0-0.001

 'flipud': (1, 0.0, 1.0), # image flip up-

down (probability)

 'fliplr': (0, 0.0, 1.0), # image flip left-

right (probability)

 'mosaic': (1, 0.0, 1.0), # image mixup (probabilit

y)

 'mixup': (1, 0.0, 1.0)} # image mixup (probability

)

163

 assert opt.local_rank == -

1, 'DDP mode not implemented for --evolve'

 opt.notest, opt.nosave = True, True # only test/save final

 epoch

 # ei = [isinstance(x, (int, float)) for x in hyp.values()]

 # evolvable indices

 yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save

 best result here

 if opt.bucket:

 os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket

) # download evolve.txt if exists

 for _ in range(300): # generations to evolve

 if Path('evolve.txt').exists(): # if evolve.txt exists

: select best hyps and mutate

 # Select parent(s)

 parent = 'single' # parent selection method: 'sing

le' or 'weighted'

 x = np.loadtxt('evolve.txt', ndmin=2)

 n = min(5, len(x)) # number of previous results to

 consider

 x = x[np.argsort(-

fitness(x))][:n] # top n mutations

 w = fitness(x) - fitness(x).min() # weights

 if parent == 'single' or len(x) == 1:

 # x = x[random.randint(0, n - 1)] # random sel

ection

 x = x[random.choices(range(n), weights=w)[0]]

weighted selection

 elif parent == 'weighted':

 x = (x * w.reshape(n, 1)).sum(0) / w.sum() # w

eighted combination

 # Mutate

 mp, s = 0.8, 0.2 # mutation probability, sigma

 npr = np.random

 npr.seed(int(time.time()))

 g = np.array([x[0] for x in meta.values()]) # gain

s 0-1

 ng = len(meta)

 v = np.ones(ng)

 while all(v == 1): # mutate until a change occurs

(prevent duplicates)

 v = (g * (npr.random(ng) < mp) * npr.randn(ng)

* npr.random() * s + 1).clip(0.3, 3.0)

 for i, k in enumerate(hyp.keys()): # plt.hist(v.ra

vel(), 300)

 hyp[k] = float(x[i + 7] * v[i]) # mutate

164

 # Constrain to limits

 for k, v in meta.items():

 hyp[k] = max(hyp[k], v[1]) # lower limit

 hyp[k] = min(hyp[k], v[2]) # upper limit

 hyp[k] = round(hyp[k], 5) # significant digits

 # Train mutation

 results = train(hyp.copy(), opt, device, wandb=wandb)

 # Write mutation results

 print_mutation(hyp.copy(), results, yaml_file, opt.buck

et)

 # Plot results

 plot_evolution(yaml_file)

 print(f'Hyperparameter evolution complete. Best results sav

ed as: {yaml_file}\n'

 f'Command to train a new model with these hyperparame

ters: $ python train.py --hyp {yaml_file}')

Testing code for YOLO v5

import argparse

import json

import os

from pathlib import Path

from threading import Thread

import numpy as np

import torch

import yaml

from tqdm import tqdm

from models.experimental import attempt_load

from utils.datasets import create_dataloader

from utils.general import coco80_to_coco91_class, check_dataset, ch

eck_file, check_img_size, check_requirements, \

 box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyx

y, set_logging, increment_path, colorstr

from utils.metrics import ap_per_class, ConfusionMatrix

from utils.plots import plot_images, output_to_target, plot_study_t

xt

from utils.torch_utils import select_device, time_synchronized

def test(data,

 weights=None,

165

 batch_size=32,

 imgsz=640,

 conf_thres=0.001,

 iou_thres=0.6, # for NMS

 save_json=False,

 single_cls=False,

 augment=False,

 verbose=False,

 model=None,

 dataloader=None,

 save_dir=Path(''), # for saving images

 save_txt=False, # for auto-labelling

 save_hybrid=False, # for hybrid auto-labelling

 save_conf=False, # save auto-label confidences

 plots=True,

 log_imgs=0, # number of logged images

 compute_loss=None):

 # Initialize/load model and set device

 training = model is not None

 if training: # called by train.py

 device = next(model.parameters()).device # get model devic

e

 else: # called directly

 set_logging()

 device = select_device(opt.device, batch_size=batch_size)

 # Directories

 save_dir = Path(increment_path(Path(opt.project) / opt.name

, exist_ok=opt.exist_ok)) # increment run

 (save_dir / 'labels' if save_txt else save_dir).mkdir(paren

ts=True, exist_ok=True) # make dir

 # Load model

 model = attempt_load(weights, map_location=device) # load

FP32 model

 gs = max(int(model.stride.max()), 32) # grid size (max str

ide)

 imgsz = check_img_size(imgsz, s=gs) # check img_size

 # Multi-

GPU disabled, incompatible with .half() https://github.com/ultralyt

ics/yolov5/issues/99

 # if device.type != 'cpu' and torch.cuda.device_count() > 1

:

 # model = nn.DataParallel(model)

 # Half

166

 half = device.type != 'cpu' # half precision only supported on

 CUDA

 if half:

 model.half()

 # Configure

 model.eval()

 is_coco = data.endswith('coco.yaml') # is COCO dataset

 with open(data) as f:

 data = yaml.load(f, Loader=yaml.SafeLoader) # model dict

 check_dataset(data) # check

 nc = 1 if single_cls else int(data['nc']) # number of classes

 iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector f

or mAP@0.5:0.95

 niou = iouv.numel()

 # Logging

 log_imgs, wandb = min(log_imgs, 100), None # ceil

 try:

 import wandb # Weights & Biases

 except ImportError:

 log_imgs = 0

 # Dataloader

 if not training:

 if device.type != 'cpu':

 model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_a

s(next(model.parameters()))) # run once

 path = data['test'] if opt.task == 'test' else data['val']

 # path to val/test images

 dataloader = create_dataloader(path, imgsz, batch_size, gs,

 opt, pad=0.5, rect=True,

 prefix=colorstr('test: ' if

opt.task == 'test' else 'val: '))[0]

 seen = 0

 confusion_matrix = ConfusionMatrix(nc=nc)

 names = {k: v for k, v in enumerate(model.names if hasattr(mode

l, 'names') else model.module.names)}

 coco91class = coco80_to_coco91_class()

 s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P',

 'R', 'mAP@.5', 'mAP@.5:.95')

 p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0.,

0., 0., 0.

 loss = torch.zeros(3, device=device)

 jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []

 for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(da

taloader, desc=s)):

 img = img.to(device, non_blocking=True)

167

 img = img.half() if half else img.float() # uint8 to fp16/

32

 img /= 255.0 # 0 - 255 to 0.0 - 1.0

 targets = targets.to(device)

 nb, _, height, width = img.shape # batch size, channels, h

eight, width

 with torch.no_grad():

 # Run model

 t = time_synchronized()

 out, train_out = model(img, augment=augment) # inferen

ce and training outputs

 t0 += time_synchronized() - t

 # Compute loss

 if compute_loss:

 loss += compute_loss([x.float() for x in train_out]

, targets)[1][:3] # box, obj, cls

 # Run NMS

 targets[:, 2:] *= torch.Tensor([width, height, width, h

eight]).to(device) # to pixels

 lb = [targets[targets[:, 0] == i, 1:] for i in range(nb

)] if save_hybrid else [] # for autolabelling

 t = time_synchronized()

 out = non_max_suppression(out, conf_thres=conf_thres, i

ou_thres=iou_thres, labels=lb, multi_label=True)

 t1 += time_synchronized() - t

 # Statistics per image

 for si, pred in enumerate(out):

 labels = targets[targets[:, 0] == si, 1:]

 nl = len(labels)

 tcls = labels[:, 0].tolist() if nl else [] # target cl

ass

 path = Path(paths[si])

 seen += 1

 if len(pred) == 0:

 if nl:

 stats.append((torch.zeros(0, niou, dtype=torch.

bool), torch.Tensor(), torch.Tensor(), tcls))

 continue

 # Predictions

 predn = pred.clone()

 scale_coords(img[si].shape[1:], predn[:, :4], shapes[si

][0], shapes[si][1]) # native-space pred

168

 # Append to text file

 if save_txt:

 gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # n

ormalization gain whwh

 for *xyxy, conf, cls in predn.tolist():

 xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)

) / gn).view(-1).tolist() # normalized xywh

 line = (cls, *xywh, conf) if save_conf else (cl

s, *xywh) # label format

 with open(save_dir / 'labels' / (path.stem + '.

txt'), 'a') as f:

 f.write(('%g ' * len(line)).rstrip() % line

 + '\n')

 # W&B logging

 if plots and len(wandb_images) < log_imgs:

 box_data = [{"position": {"minX": xyxy[0], "minY":

xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},

 "class_id": int(cls),

 "box_caption": "%s %.3f" % (names[cls]

, conf),

 "scores": {"class_score": conf},

 "domain": "pixel"} for *xyxy, conf, cl

s in pred.tolist()]

 boxes = {"predictions": {"box_data": box_data, "cla

ss_labels": names}} # inference-space

 wandb_images.append(wandb.Image(img[si], boxes=boxe

s, caption=path.name))

 # Append to pycocotools JSON dictionary

 if save_json:

 # [{"image_id": 42, "category_id": 18, "bbox": [258

.15, 41.29, 348.26, 243.78], "score": 0.236}, ...

 image_id = int(path.stem) if path.stem.isnumeric()

else path.stem

 box = xyxy2xywh(predn[:, :4]) # xywh

 box[:, :2] -= box[:, 2:] / 2 # xy center to top-

left corner

 for p, b in zip(pred.tolist(), box.tolist()):

 jdict.append({'image_id': image_id,

 'category_id': coco91class[int(p[

5])] if is_coco else int(p[5]),

 'bbox': [round(x, 3) for x in b],

 'score': round(p[4], 5)})

 # Assign all predictions as incorrect

 correct = torch.zeros(pred.shape[0], niou, dtype=torch.

bool, device=device)

 if nl:

169

 detected = [] # target indices

 tcls_tensor = labels[:, 0]

 # target boxes

 tbox = xywh2xyxy(labels[:, 1:5])

 scale_coords(img[si].shape[1:], tbox, shapes[si][0]

, shapes[si][1]) # native-space labels

 if plots:

 confusion_matrix.process_batch(predn, torch.cat

((labels[:, 0:1], tbox), 1))

 # Per target class

 for cls in torch.unique(tcls_tensor):

 ti = (cls == tcls_tensor).nonzero(as_tuple=Fals

e).view(-1) # prediction indices

 pi = (cls == pred[:, 5]).nonzero(as_tuple=False

).view(-1) # target indices

 # Search for detections

 if pi.shape[0]:

 # Prediction to target ious

 ious, i = box_iou(predn[pi, :4], tbox[ti]).

max(1) # best ious, indices

 # Append detections

 detected_set = set()

 for j in (ious > iouv[0]).nonzero(as_tuple=

False):

 d = ti[i[j]] # detected target

 if d.item() not in detected_set:

 detected_set.add(d.item())

 detected.append(d)

 correct[pi[j]] = ious[j] > iouv #

iou_thres is 1xn

 if len(detected) == nl: # all targ

ets already located in image

 break

 # Append statistics (correct, conf, pcls, tcls)

 stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:,

5].cpu(), tcls))

 # Plot images

 if plots and batch_i < 3:

 f = save_dir / f'test_batch{batch_i}_labels.jpg' # lab

els

 Thread(target=plot_images, args=(img, targets, paths, f

, names), daemon=True).start()

170

 f = save_dir / f'test_batch{batch_i}_pred.jpg' # predi

ctions

 Thread(target=plot_images, args=(img, output_to_target(

out), paths, f, names), daemon=True).start()

 # Compute statistics

 stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy

 if len(stats) and stats[0].any():

 p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, s

ave_dir=save_dir, names=names)

 ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95

 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.me

an()

 nt = np.bincount(stats[3].astype(np.int64), minlength=nc)

number of targets per class

 else:

 nt = torch.zeros(1)

 # Print results

 pf = '%20s' + '%12.3g' * 6 # print format

 print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

 # Print results per class

 if (verbose or (nc < 50 and not training)) and nc > 1 and len(s

tats):

 for i, c in enumerate(ap_class):

 print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i],

 ap[i]))

 # Print speeds

 t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz,

imgsz, batch_size) # tuple

 if not training:

 print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx

%g image at batch-size %g' % t)

 # Plots

 if plots:

 confusion_matrix.plot(save_dir=save_dir, names=list(names.v

alues()))

 if wandb and wandb.run:

 val_batches = [wandb.Image(str(f), caption=f.name) for

f in sorted(save_dir.glob('test*.jpg'))]

 wandb.log({"Images": wandb_images, "Validation": val_ba

tches}, commit=False)

 # Save JSON

 if save_json and len(jdict):

171

 w = Path(weights[0] if isinstance(weights, list) else weigh

ts).stem if weights is not None else '' # weights

 anno_json = '../coco/annotations/instances_val2017.json' #

 annotations json

 pred_json = str(save_dir / f"{w}_predictions.json") # pred

ictions json

 print('\nEvaluating pycocotools mAP... saving %s...' % pred

_json)

 with open(pred_json, 'w') as f:

 json.dump(jdict, f)

 try: # https://github.com/cocodataset/cocoapi/blob/master/

PythonAPI/pycocoEvalDemo.ipynb

 from pycocotools.coco import COCO

 from pycocotools.cocoeval import COCOeval

 anno = COCO(anno_json) # init annotations api

 pred = anno.loadRes(pred_json) # init predictions api

 eval = COCOeval(anno, pred, 'bbox')

 if is_coco:

 eval.params.imgIds = [int(Path(x).stem) for x in da

taloader.dataset.img_files] # image IDs to evaluate

 eval.evaluate()

 eval.accumulate()

 eval.summarize()

 map, map50 = eval.stats[:2] # update results (mAP@0.5:

0.95, mAP@0.5)

 except Exception as e:

 print(f'pycocotools unable to run: {e}')

 # Return results

 model.float() # for training

 if not training:

 s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels s

aved to {save_dir / 'labels'}" if save_txt else ''

 print(f"Results saved to {save_dir}{s}")

 maps = np.zeros(nc) + map

 for i, c in enumerate(ap_class):

 maps[c] = ap[i]

 return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tol

ist()), maps, t

if __name__ == '__main__':

 parser = argparse.ArgumentParser(prog='test.py')

 parser.add_argument('--

weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt

 path(s)')

172

 parser.add_argument('--

data', type=str, default='data/coco128.yaml', help='*.data path')

 parser.add_argument('--batch-

size', type=int, default=32, help='size of each image batch')

 parser.add_argument('--img-

size', type=int, default=640, help='inference size (pixels)')

 parser.add_argument('--conf-

thres', type=float, default=0.001, help='object confidence threshol

d')

 parser.add_argument('--iou-

thres', type=float, default=0.6, help='IOU threshold for NMS')

 parser.add_argument('--

task', default='val', help="'val', 'test', 'study'")

 parser.add_argument('--

device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

 parser.add_argument('--single-

cls', action='store_true', help='treat as single-class dataset')

 parser.add_argument('--

augment', action='store_true', help='augmented inference')

 parser.add_argument('--

verbose', action='store_true', help='report mAP by class')

 parser.add_argument('--save-

txt', action='store_true', help='save results to *.txt')

 parser.add_argument('--save-

hybrid', action='store_true', help='save label+prediction hybrid re

sults to *.txt')

 parser.add_argument('--save-

conf', action='store_true', help='save confidences in --save-

txt labels')

 parser.add_argument('--save-

json', action='store_true', help='save a cocoapi-

compatible JSON results file')

 parser.add_argument('--

project', default='runs/test', help='save to project/name')

 parser.add_argument('--

name', default='exp', help='save to project/name')

 parser.add_argument('--exist-

ok', action='store_true', help='existing project/name ok, do not in

crement')

 opt = parser.parse_args()

 opt.save_json |= opt.data.endswith('coco.yaml')

 opt.data = check_file(opt.data) # check file

 print(opt)

 check_requirements()

 if opt.task in ['val', 'test']: # run normally

 test(opt.data,

 opt.weights,

 opt.batch_size,

173

 opt.img_size,

 opt.conf_thres,

 opt.iou_thres,

 opt.save_json,

 opt.single_cls,

 opt.augment,

 opt.verbose,

 save_txt=opt.save_txt | opt.save_hybrid,

 save_hybrid=opt.save_hybrid,

 save_conf=opt.save_conf,

)

 elif opt.task == 'speed': # speed benchmarks

 for w in opt.weights:

 test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0

.45, save_json=False, plots=False)

 elif opt.task == 'study': # run over a range of settings and s

ave/plot

 # python test.py --task study --data coco.yaml --iou 0.7 --

weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt

 x = list(range(256, 1536 + 128, 128)) # x axis (image size

s)

 for w in opt.weights:

 f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt'

filename to save to

 y = [] # y axis

 for i in x: # img-size

 print(f'\nRunning {f} point {i}...')

 r, _, t = test(opt.data, w, opt.batch_size, i, opt.

conf_thres, opt.iou_thres, opt.save_json,

 plots=False)

 y.append(r + t) # results and times

 np.savetxt(f, y, fmt='%10.4g') # save

 os.system('zip -r study.zip study_*.txt')

 plot_study_txt(x=x) # plot

