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ABSTRACT 

Site-specific weed detection and management in agrarian lands is a crucial approach for 

crop productivity management and chemical contamination mitigation in precision 

agriculture. Traditional ways of executing this operation is expensive and labour 

intensive, as well as exposing personnel to the danger of exposure to hazardous chemicals. 

To create a more sustainable agricultural system, a program for automatically detecting 

agricultural weeds in a mixed farmland using the Faster RCNN inception v2 model and 

YOLOv5s neural network, was proposed. With the introduction of Unmanned Aerial 

Vehicles (UAV) and technological advancements in Deep Learning techniques in recent 

years, it has become possible to identify and classify weeds from crops at desired spatial 

and temporal resolution.  A DJI Phantom 4 UAV was used to simultaneously collect about 

254 image pairs of a mixed-crop farmland. The proposed approach for Faster RCNN 

involves labelling or annotating the images before uploading the dataset into an online 

Graphic Processing Unit (GPU) known as Google Colaboratory (Colab) which runs on a 

Python programming language, where the dataset were trained over five epochs (10,000, 

20,000, 100,000, 200,000, and 242,000) to get the maximum epoch where the model 

flattens out using Python programming codes and tested on the testing dataset for the 

automatic identification and classification of weeds. Also, the YOLO v5 neural network 

was trained over 100, 300, 500, 600, 700 and 1000 epochs and this was also implemented 

on Colab using python programming language. Both neural network algorithms identified 

and classified five classes which are as follows: sugarcane, spinach, banana, pepper and 

weeds. The utilized classifiers' overall classification accuracy differed widely. Faster 

RCNN exhibited the highest overall accuracies. Notably lower accuracies were observed 

using YOLOv5. The lowest accuracies were achieved at 10,000 epochs with an overall 

accuracy of 52%, weed precision of 50%, and weed recall of 8%, while the highest level 

of accuracies and saturation point were achieved at 200,000 epochs with 98% overall 

accuracy, 98% weed precision, and 99% weed recall. The minimum epoch of YOLOv5s 

classification at 100 epochs achieved the overall accuracy of 16 %, weed precision of 5 

% and 1% for the weed recall. Furthermore, the classifier achieved a maximum weed 

precision at 600 epochs with a weed precision of 78 %, weed recall of 34 % and an overall 

accuracy of 67 %. With only 16 % and 66% overall accuracy of YOLOv5s, the Faster 

RCNN Deep Learning exhibited a better classification output, making it a better classifier 

suitable for automatic weed identification and classification, and it is thus recommended. 

Further research should be carried out to further compare the performance of Faster 

RCNN inception v2 model with a few other recent powerful Deep Learning algorithms 

to increase or strengthen weed detection on small farmlands. Also, images should be taken 

at a flying height less than 30m and closer for smaller weeds so they appear larger in the 

image. 
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CHAPTER ONE 

1.0                                                  INTRODUCTION 

1.1 Background to the Study 

It is predicted that the world population will grow to an all-time high of 10 billion in the 

year 2050 according to Alexandratos & Bruinsma (2012), but due to the currently 

implemented agricultural production method and other environmental factors affecting 

production rate, it will be nearly impossible to achieve the predicted increase in 

agricultural produce demand. Hence, the need for the introduction of innovative ways and 

systems of boosting the production rate of agriculture while minimizing the effect of these 

environmental factors. One of such innovative systems is the Precision Agriculture.  

The idea of Precision Agriculture (PA), also known as smart farming, has been discussed 

in the agricultural sector as a management method since the middle of the 1980s. Later, 

throughout the last two decades, Precision Agriculture was ranked among the top 10 

agricultural sector breakthroughs (Crookston, 2006). Precision Agriculture is a systematic 

technique and also a management system of using the proper quantity of input (such as 

compost/fertilizer, water, and herbicides) at just the appropriate time and place to increase 

productivity and minimize chemical use in order to protect the environment from 

pollution (Zhang & Kovacs, 2012; Torres-Sánchez et al., 2013; Adekunle, 2013; Yao & 

Huang, 2013; Huang & Thomson, 2015). 

The ability of any farmer to adopt any highest quality judgment at the appropriate moment 

for the best location of the farm depends on the ability to gather and interpret various 

types of information (Mulla, 2013). As a result, techniques such as GPS/GNSS devices 
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and Remote Sensing (RS) are being deployed both as information sources and as tools 

for carrying out various PA operations. For instance, RS technologies demonstrate a 

significant capacity to offer the farmer useful information by utilizing satellite or aerial 

vehicles for various imaging solutions. These technologies quickly capture photos over a 

vast region (Zhang & Kovacs, 2012). Farmers can therefore utilize the photographs 

gathered to assess crop strain, track crop yields, or forecast crop production. Although 

these imaging systems provide farmers a lot of knowledgeable power, their poor spatial 

resolution places restrictions on them. Therefore, to give greater in-depth picture data, 

terrestrial RS systems were deployed. Regrettably, these methods lack the time necessary 

to completely survey the vast agricultural areas. As a result, a different platform was 

required which could bridge the barrier amongst aerial and also terrestrial remote sensing 

systems. The Unmanned Aerial Vehicle (UAV) displayed a robust ability to fill this 

shortfall (Pena et al., 2013). 

UAVs have demonstrated their versatility over the last several years by serving as 

platforms for various sensors including lidar, GNSS cameras, RGB and thermal sensors 

(Nex & Remondino, 2014). Broadly speaking, the UAV imaging system is viewed as a 

more affordable substitute to traditional remote sensing platforms that rely on satellites 

or aircraft. Furthermore, due to the fact that UAVs fly at lower altitudes than satellites 

and other aerial platforms, their imaging systems can offer superior spatial resolution 

(Grenzdörffer et al., 2008).  Therefore, UAV imaging technologies can be employed for 

many precision agriculture operations such as plant health tracking (McCabe et al., 2015), 

weeds control (Hervás Martínez et al., 2015; Pena et al., 2015; Hassanein & El-sheimy, 

2017), and plant row identification (Slaughter et al., 2008).  
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Amongst the most common deployment of Unmanned Aerial Vehicles (UAVs) in PA is 

the mapping and controlling of weeds. Distinct methods for weed classification using 

UAV photographs platform have indeed been explored as they demonstrates the 

potentials of bridging the differences amongst terrestrial and aerial imaging platforms 

(Hassanein & El-Sheimy, 2017; Mulla, 2013; Hervás Martínez et al., 2015; Pena et al., 

2015; Torres-Sánchez et al., 2013).  Agricultural output and viability can be significantly 

impacted by biological hazards which could be bacteria, viruses, weeds, fungi, and 

insects. Weeds constitute the most serious issue amongst these, contributing to a 

significant damage to crops on a global scale (Esposito et al., 2021). In essence, weeds 

are uncultivated plants which thrives within agricultural fields as well as contend with 

agricultural crops for natural resources such as water, manure, growing spaces, and also 

sunshine (Hassanein & El-sheimy, 2017; Monteiro & Santos, 2022). Thus, it is critical to 

get rid of such weeds as promptly as humanly possible so that the planted vegetation may 

get the right quantity of nutrients to improve the output quality and quantity of the farm 

area.  

Nonetheless, one of most popular weed management techniques since the advent of 

agriculture have been human weeding, mechanized weeding, and herbicide sprays 

(Griepentrog & Dedousis, 2010; Bergin, 2011; Rueda-Ayala et al., 2011; Chauvel et al., 

2012). Medieval weed management techniques included hand pulling, chopping, or 

physically covering weeds (Young et al., 2014). Hand implements were fabricated across 

history to cultivate soils and eradicate weeds (Jabran et al., 2015). While these weed 

management techniques significantly increase agricultural output, they are not without 

their share of difficulties. The main difficulties in hand weeding include declining 

available labor, rising labor costs, and uneven weed management (Carballido et al., 2013; 

Gianessi, 2013). In a related manner, mechanical weed management necessitates 



4 
 

increased soil turnover, which can disrupt morphology of the soil and reduce nutrients of 

the soil (Smith et al., 2011). The effectiveness, cost, and longevity of mechanical weed 

management are not always good (Bond & Grundy, 2001). Also, Agrochemicals have 

been employed recently in cubbing the spread of weeds (Peterson et al., 2018). The main 

obstacles to routinely utilizing herbicides for weed management include herbicide-

resistant weeds, adverse health consequences, and ecological pollution (Annett et al., 

2014; Hoppin, 2014; Starling et al., 2014). It is crucial to diversify existing contemporary 

weed management techniques due to the difficulties regarding traditional weed control 

strategies, such as hand weeding, mechanical weed management and pesticides 

(Westwood et al., 2018).  

As a result, Agriculture has developed to use resources in a way that is considerably more 

productive and cost-effective. Hence, Site-Specific Weed Management (SSWM), a 

Precision Agricultural management system, was developed for efficient weed control 

(Pena-Barragán et al., 2012). The ability to accurately pinpoint and identify weeds is a 

necessary initial step in the development of an autonomous weed management system 

(Liu & Bruch, 2020). 

The four main processes of a standard weed detection system are image acquisition, pre-

processing of photographs, feature extraction, identification, and categorization of weed 

plants (Shanmugam et al., 2020). These phases have been completed by the use of several 

advancing technologies. The identification and classification of weeds is the phase that is 

most important. The automatic detection of weed species has been more popular in recent 

years as a result of the advancements in digital technology, notably in Graphics 

Processing Unit (GPU), the application of Machine Learning (ML) approaches and 

embedded processors (Gu et al., 2018; LeCun et al., 2015; Yu et al., 2019). 
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In subsequent times, Deep Learning models have developed as more precise and effective 

substitutes for conventional parametric algorithms, particularly for large and extremely 

complicated data (Rodriguez-Galiano et al., 2012). A key area of machine learning (ML) 

is Deep Learning (DL). DL models do have several benefits in comparison to 

conventional ML models for photograph categorization and object detection, such as the 

Support Vector Machine (SVM) classifier (Sabat-Tomala et al., 2020), Object Based 

Image Analysis (OBIA) (Torres-Sanchez et al., 2015), k-Nearest Neighbor (kNN) 

(Kramer, 2013), the Random Forest algorithm (RF) (Liu et al., 2012), considering crops 

and weeds can sometimes be identical, it can be challenging to extract and choose 

differentiating features using Machine Learning techniques. Premised on its extremely 

effective learning abilities, DL approaches can effectively solve this challenge. 

Convolutional Neural Networks (CNN) have been discovered to operate excellently well 

throughout vision - based applications ranging from categorization, forecasting, and 

object identification, thanks to advances in parallel computing as well as the utilization 

of larger datasets (Krizhevsky et al., 2012). The typical pixel-based technique requires 

pixel-level computational analysis and mainly focuses on spectral characteristics, 

ignoring the possibilities of geographical and textural variables to increase accuracy of 

the model (Blaschke, 2010). Convolutional Neural Networks, on the other hand, which 

consider spectral, textural, and spatial characteristics of pictures, have recently evolved, 

allowing for higher classification accuracy and with increase in computational power 

(especially Graphical Processing Units, GPUs) (Nogueira et al., 2017; Cevallos et al., 

2019; Sharma et al., 2017a). A Deep Neural Network with a convolutional structure is 

known as a Convolutional Neural Network. It basic premise is to include convolutional 

operations into neural networks in an attempt to solve the inadequacies of the original 
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neural networks with a large number of variables (Chang et al., 2016). Additionally, it 

may retrieve more detailed information and mitigate the issue of overfitting in typical 

neural networks. In this research; the Faster RCNN and the YOLO v5 algorithms were 

implemented and compared for performance accuracy. 

The methodology for detecting objects using the Faster RCNN is built upon a region 

proposal approach. The original region-based methodological framework was called the 

Region based Convolutional Neural Network (RCNN) (Girshick et al., 2015). Moreover, 

it required a lot of computing work because each suggested location required a CNN-

based feature extraction. Through distributing convolutional features across several area 

suggestions, a Fast RCNN was developed to cut down on computing time (Girshick, 

2015). Employing Fully Convolutional Region Proposal Networks (RPN), which are 

taught to suggest improved object regions, Faster Region-based Convolutional Neural 

Network was developed to increase speed (Ren et al., 2015).  

Secondly, YOLO is an abbreviation for "You Only Look Once" in English. YOLO 

version 5 is a newer version of the You Only Look Once class algorithm, which is an 

advanced object detector that does exceptional real time object identification (Malta et 

al., 2021; Francies et al., 2022; Thuan, 2021; Reddy & Panicker, 2021). This can 

categorize any imagery into a group as well as identify many objects inside a picture 

(Jabir & Falih, 2022; Yang et al., 2021). This is among the fastest possible algorithms 

which employs Convolutional Neural Network (CNN) for object identification integrated 

bounding box predictions and object recognition into a unified end-to-end discrete 

network. 

The aforementioned CNN architectures (YOLO V5 and Faster RCNN with inception v2) 

were implemented on the images of a mixed cropping farm for an automated 
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identification and classification of weeds from four (4) different crop classes taking into 

consideration the significant influence of various training iterations or epochs on the 

overall performance evaluation of the weed identification and classification scheme and 

also defining the optimum and minimal training epoch for the classification algorithm. 

Five varying epochs were tried to determine the ideal training epoch for the Faster RCNN 

model, that indicates the maximal point of the training phase in which the model tends to 

flatten out: 10,000, 20,000, 100,000, 200,000, and 242,000. For YOLOv5 model, six 

varying epochs were also tested which includes 100, 300, 500, 600, 700 and 1000 epochs. 

1.2 Statement of Research Problem 

To fulfill the needs of an ever-increasing population, Agricultural production will need 

to increase food production from subsistence Agriculture in the next decade via more 

effective utilisation of natural resources with little environmental damage (Hobbs et al., 

2008). 

According to the Food and Agricultural Organization (FAO), food productivity must 

increase by 70%, with the majority of this coming from improved yields per hectare of 

Agricultural land (McFadyen, 2012). Reduced output losses due to pests, namely weeds, 

are a serious concern for agricultural output (Popp et al., 2013).  

Worldwide, 40% agricultural productivity losses are attributed to weeds, despite farmer 

control methods (Vila et al., 2004). The damages would be total when no intervention is 

done to safeguard crops against weeds (Chauhan, 2020). In the developed countries, 

weeds account for about 5% loss in agricultural production, while it accounts for 10% 

and 25% in less developed and least developed countries (Vissoh et al., 2004). 

Agricultural farmers in developed countries devote more resources on weed management 

compared to any other pest (Akobundu, 1987). 
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Subsistence farming is the most common type of agriculture in underdeveloped countries, 

and weeds are typically controlled by hand-weeding. Hand implements were fabricated 

across history to cultivate soils and eradicate weeds (Jabran et al., 2015). However, due 

to expanding urban development, rising labor expenses, and a shrinking Agricultural 

manpower, many are turning to herbicides to control weeds. 

As a result, the indiscriminate utilization of pesticides for weed management in 

subsistence farming operations has increased, raising health and environmental problems 

(Tirado et al., 2008; Gianessi, 2013). Also, the mechanical weed management 

necessitates increased soil turnover, which can disrupt morphology of the soil and reduce 

nutrients of the soil (Smith et al., 2011). 

It is crucial to diversify existing contemporary weed management techniques due to the 

difficulties regarding traditional weed control strategies, such as hand weeding, 

mechanical weed management and pesticides to a more robust and real-time system 

(Westwood et al., 2018).  

Subsequently, Deep Learning models have developed as a more precise and effective 

substitutes for conventional parametric algorithms, particularly for large and extremely 

complicated data (Rodriguez-Galiano et al., 2012). A key area of Machine Learning (ML) 

is Deep Learning (DL). DL models do have several benefits compared to conventional 

ML techniques for the classification of imagery, object identification and recognition, and 

these ML algorithms includes the Support Vector Machine (SVM) classifier (Sabat-

Tomala et al., 2020), Object Based Image Analysis (OBIA) (Torres-Sanchez et al., 2015), 

k-Nearest Neighbor (kNN) (Kramer, 2013), the Random Forest algorithm (RF) (Liu et 

al., 2012). Considering crops and weeds can sometimes be identical, it can be challenging 

to extract and choose differentiating features using Machine Learning techniques. 
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To diversify this existing contemporary method, this project research incorporates the use 

of Unmanned Aerial Vehicle (UAV) automation and Deep Learning algorithms (Faster 

RCNN and YOLO). Hence, the need to evaluate the two Deep Learning algorithms since 

the performance accuracy depends on the choice of algorithm utilized. 

1.3 Research Questions 

Consequent upon the objectives, this study will provide answers to the following 

questions: 

1. What method is used to define the spatial extent of the study area? 

2. What is the measure of accuracy obtainable from the Faster RCNN algorithm in

 automatic weed detection? 

3. What is the classification performance of YOLO v5 algorithm on weed     

detection? 

4. How efficient is the FRCNN compared to YOLO v5 in automatic weed detection? 

1.4 Aim and Objectives of the Study 

The aim of this research is to evaluate the performance of Faster RCNN and YOLO v5 

algorithms in precision weed mapping utilizing photographs taken by an Unmanned 

Aerial Vehicle (UAV). In achieving the identified aim, the objectives to be pursued are: 

1. UAV mapping of the mixed-crop farmland. 

2. To implement Faster Region based Convolutional Neural Network algorithm for

 automatic weed classification. 

3. To implement YOLO v5 algorithm for automatic weed classification.  

4. To carryout a perfomance evaluation of the results obtained from varying training

 epochs in objective 2 and objective 3. 
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1.5 Scope of Study 

This research focuses mainly on the use of a phantom 4 UAV having a Red Green Blue 

sensor for acquiring data over a mixed crop farmland located in Lapan Gwari under Bosso 

Local Government Area of Niger State, which aided the automatic detection of weeds. 

The dataset acquired from the UAV shall cover the entire farm and the processes involved 

in preprocessing and processing shall be covered. 

This research further covers the implementation of the Faster Region Based 

Convolutional Neural Network and You Only Look Once algorithms as well as the 

training, testing, and validation of the developed model utilizing python programming 

language codes on the google colaboratory interface. Finally, the performance of the 

selected Deep Learning algorithms were evaluated. 

1.6 Limitations 

Due to the fact that this research was conducted during the dry season, it was a little bit 

difficult getting an irrigated farm having a substantial amount of weed density. Also, the 

successful processing and training of the Deep Learning models largely depended on the 

properties of the Central Processing Unit (CPU) of the computer system. The CPU of the 

system which was available to the author was inadequate to fully and successfully run the 

model hence the switch to an online Graphic Processing Unit (GPU) on Google 

Colaboratory pro with a RAM size of 32 GB and a runtime usage of 24hours that attracts 

a fee of 9.99$. 

1.7 Significance of Study 

The findings of this study will aid farmers to identify or determine the locations of weed 

clusters in the agricultural field and subsequently give the farmer a chart of the weed sites 

gotten from the comparism of Faster RCNN and YOLO v5 algorithms. UAVs can map 
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the farm and provide information about weed patches by instantly surveying wide swaths 

of farm land. The capacity to gather and evaluate this data in real time will result in higher 

crop yields, less money spent on weeds herbicides and pesticides, and better management 

decisions overall. 

As UAVs fly at a relatively low height than satellites as well as other aerial operating 

systems, they produce images with a better spatial resolution. Additionally, Unmanned 

Aerial Vehicle systems enable users to gather visual data having excellent temporal 

resolution that can increase the adaptability of the data collecting processes. 

Faster RCNN and YOLO v5 algorithms can recognize and categorize weeds in a non-

destructive manner which will aid in site specific weed management and will allow 

farmers to be more aware of weed growth and distribution around the farmland while also 

arming them with site specific knowledge pertaining to weed development, control and 

mitigation.  This is significant because, if the locations of weed patches are identified, 

they can be managed precisely and effectively. 

It is hoped that the findings of the research presented in this dissertation will help farmers 

understand the importance and the applicability of UAVs in Precision Agriculture in 

Nigeria. In general, greater production and cost savings will be realized through more 

efficient herbicides and fertilizer usage. 

1.8 Study Area 

The research was done during the dry season of 2022 within a mixed cropping farm. With 

a coverage of 2.8228 hectares, the privately owned farm land located at Lapan Gwari, 

Minna, Niger State located within geographical coordinates (9°31'33''N 6°30'02''E), 

(9º31'34''N 6º29'59''), (9º31'38''N 6º30'03''E) and (9º31'37''N 6º30'05''E), under Bosso 
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LGA area is situated at about 7km away from F.U.T Minna permanent site (Gidan Kwanu 

campus). The natives are Gwaris and they depend solely on agricultural practices such as 

crop cultivation and fish farming. The natives mostly practice mixed cropping such as, 

pepper, vegetables, sugarcane, rice maize and yams. The study site is generally made up 

of loamy soil, and it is connected to a pumping machine for proper supply of water, 

alongside the cultivation of spinach, pepper, banana and sugarcane. Figure 1.2 shows the 

map of Niger State extracted from the map of Nigeria, from which the bosso local 

government area under Minna is identified then finally, the site location map is displayed. 
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Figure 1.1: Geographic description of the study area 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 Precision Agriculture  

The precise implementation of Agricultural inputs in accordance with inherent spatial 

variability, soil and weather patterns, and crop prerequisites for improving crop yield, 

revenue growth, sustainable development, environmental preservation, and quality of 

products may be a more appropriate description of Precision Agriculture in the Nigerian 

context (Patil-Shirish & Bhalerao, 2013). It refers to the use of ICT (Information, 

Communication, and Technology) to control field variability (Gemtos et al., 2013). 

Precision Agriculture, as described by the International Society of Precision Agriculture, 

is a management approach which "collects, processes, and evaluates temporal, spatial, 

and individual data and intermixes it with additional information to support managerial 

decisions pertaining to estimated variability for improved resource use efficiency, 

productivity, quality, revenue growth, and sustainable development of agricultural 

production" (Shrestha & Khanal, 2020).  

2.1.1 Precision agriculture tools  

Using a wide range of implements, comprising software, hardware, and best management 

techniques, Precision Agriculture is a highly advanced agricultural method that 

necessitates technological proficiency (Shrestha & Khanal, 2020). The accompanying 

sections provides a basic description of these tools.   

2.1.1.1 Global positioning system (GPS)  

The primary idea behind Precision Agriculture is location specificity (Sahu et al., 2019). 

A satellite-based radio navigation system predominantly known as the Global Positioning 

System (GPS) delivers 3D location information (latitude, longitude, and elevation) having 
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precision ranging from 100 to 0.01 m at any time, in any condition, and at no cost. It is 

made up of a whole set of 24 satellites that are circling the earth in a planned sequence 

that is kept up by the US Department of Defense (DoD) (Yousefi & Razdari, 2015). 

According to Brejda et al. (2000), GPS enables farmers to keep a close eye on crop health, 

macro and micro-scale spatiotemporal heterogeneity of the soil, and to pinpoint the 

precise location of field features like the field boundaries, acreage for field crops, soil 

composition, pest presence, disease-affected areas and weed infestation. This enables the 

implementation of key inputs such as (seeds, fertilizers, pesticides, herbicides, water, etc.) 

depending on prior input data and effectiveness requirements (Batte & Van-Buren, 1999). 

2.1.1.2 Geographic information system (GIS)   

The heart of PA has been the Geographic Information System (GIS) (Kumar et al., 2017). 

The data evaluation using Global Positioning System (GPS) coordinates is the purpose of 

this program. It analyzes and maintains globally dispersed data that is scattered both 

spatially and temporally. New maps may be created using GIS data sets to show the 

geographical and temporal variability in a certain field. GIS data gathered over time may 

be utilized to retain records, discover relationships impacting output, and forecast how 

crops will react to inputs (Dwivedi et al., 2017). 

2.1.1.3 Remote sensing (RS) 

According to Wójtowicz et al. (2016), Remote Sensing is a precision farming method 

which employs sensors installed on aircraft or satellites to track variations in the 

wavelength of light from fields and crops that are currently in development. 

It is beneficial to keep track of the spectral and spatial variations throughout time at high 

resolution (Moran et al., 1997). The spatio-temporal variations aid in understanding the 

field's heterogeneity through time, aid in identifying various crop species, assist detect 
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plants that have been harmed by disease or pests, and keep track of stress, soil, plant, and 

drought conditions.  

2.1.1.4 Real-time kinematic (RTK) system  

A GPS-based navigation system called Real-Time Kinematic System improves the 

accuracy of satellite position data (Luo et al., 2016; Wang et al., 2016; Wikipedia 

Contributors, 2020). This highly accurate guiding system lessens operator burden by 

preventing costly skips and overlaps, saving money on input costs, and reducing 

production costs. This technique employs a fixed base station that broadcasts geolocation 

to the rover's GPS receiver in order for it to adjust its position with respect to the fixed 

base station's known position with a precision of 1-2 cm (Dwivedi et al., 2017). It makes 

precise row-to-row placement possible.   

2.1.1.5 Drones  

Drones might be seen as the body of farmers, whereas precision agriculture is their brain 

(Smith, 2018). Drones are deployed to inspect agricultural fields, soil, and weed spots for 

growth, texture, and the presence of diseases and pests. They are also utilized to spray 

chemical agents. Drones capture photographs with great resolution, enabling the creation 

of yield maps, contour maps, weed maps, and maps showing varied seeding rates 

(Dwivedi et al., 2017). 

2.2 Weed Management  

Since the dawn of civilisation, weeds have existed and are certainly not going to go away 

any time soon (Renard et al., 2012). Weeds are considered to be a persistent and pervasive 

hazard to agricultural output (Chen et al., 2012). Designing the best effective strategy in 

a range of settings that ensures a healthy environment and a low impact of invasive weeds 

is the general objective of weed control (Di-Tomaso et al., 2017).  
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Mechanical, cultural, biological, and chemical treatments are the four categories into 

which weed control strategies are typically separated (Scavo & Mauromicale, 2020).  

Although the invention and use of herbicides in the middle of the 20th century led to a 

reduction in the use of mechanical weeders on farms, these tools have since developed 

into highly effective and adaptable weed control tools for a range of cropping systems 

(Farooq et al., 2019). Many procedures can be used to accomplish mechanical weed 

removal. By burying certain seeds at depths from which they cannot sprout, primary 

tillage helps reduce weeds of species that reproduce by seeds (Machleb et al., 2020). 

Other seeds would be raised to the soil's exterior, allowing them to be directly exposed to 

cold, sunny or decomposition temperatures. 

Herbicide treatments, often referred to as chemical applications, are the most effective 

weed management techniques (Soltys et al., 2013). Herbicides are crucial weed-

controlling instruments that have increased production rates and enabled reduced-tillage 

farming techniques (Bajwa, 2014). Although the effectiveness of herbicides is 

undeniable, they may also cause soil erosion, environmental degradation, and health 

issues in people (Kumar et al., 2019). There are several methods to decrease the usage of 

expensive herbicides, including spot spraying, lower rates, and banding in conjunction 

with between-row cultivation (Regnier & Janke, 2020). Cost savings brought on the less 

frequent use of herbicides is one of the main advantages.   

2.2.1 Principles of site-specific weed management (SSWM) 

Site-Specific Weed Management (SSWM) entails treating solely weed spots and/or 

altering herbicide treatments in accordance with the distribution of weed species (such as 

herbicide-resistant or grass weeds) (De Castro et al., 2012). Numerous contemporary 

agronomic and technical research on weed management have focused on automatic site-

specific herbicide administration because it has the capacity to reduce the quantity of 
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sprayed chemical, enhancing farmer profits and decreasing pollution (Lati et al., 2021). 

The field is treated as a collection of discrete management zones by site-specific herbicide 

administration techniques, which allows for the use of certain quantities and varieties of 

herbicide to eliminate the weeds that are there (Meyer & Mulliken, 2008). No herbicide 

is used if weeds are absent or if their concentration is lower than the economic threshold 

for treatment (the amount of weeds needed to make treatment worthwhile) (Shirzadifar et 

al., 2015). To choose the most effective herbicide, it is crucial to be aware of the weed 

species that are present (Combarnous, 2017). When specific weeds have been identified, 

weeds can be managed in real-time (tactical technique) or strategically (strategic 

approach) employing a prepared field map that shows the species and position of weeds 

(Adamchuk et al., 2008). The tactical method necessitates a unique procedure but 

provides the farmer with a more accurate estimation of the quantity and kind of chemical 

required for a particular weed issue. Before weeds reduce agricultural yields 

economically, post-emergence herbicide treatments should be undertaken (De Castro et 

al., 2018). The essential time for weed management, according to UNL weed scientist 

Stevan Knezevic, is the post emergence period (Knezevic & Datta, 2015). The length of 

this phase is determined by the kind of crop, the variety of weed, the surrounding 

environment, and the quantity and concentration of the crop and weed. 

2.2.2 Unmanned aerial vehicle remote sensing tasks 

The majority of Unmanned Aerial Vehicle Remote Sensing applications employ 

photographs from sensors as primary data inputs; hence, they are computer vision-related 

tasks (Zhu et al., 2018). Thus, classification, detection, and segmentation are three 

common and important computer vision problems that can be classified into three 

categories for UAV Remote Sensing tasks in PA which employ Deep Learning techniques 

(mostly CNN) (Everingham et al., 2015).  



19 
 

(i) Classification attempts to forecast whether there will be or won't be at atleast one 

member of a specific object class in the photograph, and Deep Learning techniques 

are necessary to offer a real-valued certainty of the item's existence (Chen et al., 

2021b). In order to identify crop diseases (Hu et al., 2020; Ha et al., 2017; Huang et 

al., 2019), weed types (Bah et al., 2018a; Bah et al., 2018b; De Camargo et al., 2021; 

Ukaegbu et al., 2021), or crop types (Onishi & Ise, 2018; Zhao et al., 2020), 

classification approaches are generally utilize.  

(ii) Detection operations attempt to answer the inquiry "where are the occurrences in the 

photograph, if any," by predicting the bounding boxes of each item of a specific 

object class in the photograph with corresponding certainty. In other words, the 

object information that was retrieved is comparatively more accurate. The most 

common uses include identifying crops that have pests Chen et al. (2021a) or other 

diseases Li et al. (2021), locating the weeds in the images (Valente et al., 2019; 

Veeranampalayam et al., 2020), counting the crop number for yield estimation 

(Apolo-Apolo et al., 2020; Chen et al., 2019; Csillik et al., 2018) or disaster 

evaluation (Zhang et al., 2020b). 

(iii) Segmentation is a process which forecasts the instance labeling (for instance 

Segmentation) or object labeling (for semantic segmentation) of each pixel in the test 

photograph, providing a higher accurate categorization for each pixel. It has the 

ability not only to find things but also collect their finer-grained pixels. 

Consequently, to precisely pinpoint interesting characteristics in pictures, 

segmentation techniques are typically utilized. Semantic segmentation could assist 

in identifying and tracking crop leaf diseases (Stewart et al., 2019; Kerkech et al., 

2018; Kerkech et al., 2020), generating weed maps (Huang et al., 2018; Sa et al., 

2018; Zou et al., 2021), or assessing crop growth (Osco et al., 2021; Zhang et al., 
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2020a), and yields (Xu et al., 2020), whilst also, instance segmentation indeed can 

identify crop from weed plants (Champ et al., 2020; Mora-Fallas et al., 2020), or 

conduct crop seed phenotyping Toda et al. (2020) at a finer level.   

2.3 Machine Learning Methods 

Across various fields, including medical systems (Tsouros et al., 2017; Bonotis et al., 

2019), marketing (Cui & Curry, 2005) and biology (Tarca et al., 2007), Machine Learning 

(ML) has so far been utilized to analyze the data obtained for forecast and/or classification 

applications. Machine learning technologies are frequently used in Precision Agriculture 

to make the most of the vast amounts of data collected by UAVs (Mazzia et al., 2020). 

The use of Machine Learning (ML) may diagnose diseases, predict certain factors relating 

to crop growth rates, and even recognize different objects in photographs (Da Costa Lima 

& Mendes, 2020). Owing to the rapid developments occurring, particularly in the Deep 

Learning sector, the use of machine learning has significantly expanded lately (Dargan et 

al., 2020) 

2.4 Deep Learning Methods 

A Deep Learning model, one of the types of machine learning, is created using the human 

brain as a model. The Deep Learning Neural Networks replicate the cognitive processes 

of the human brain by simulating a web of interconnected nodes (Magomadov, 2019).  

Over the past few decades, a tiny subset of Artificial Intelligence (AI), commonly referred 

to as Machine Learning (ML), has transformed a variety of fields since its development 

in the 1950s.  Deep Learning (DL) was born out of the ML sub - field of Neural Networks 

(NN) (Alom et al., 2019).  Since its introduction, Deep Learning has caused disruptions 

of ever-increasing size and has excelled in nearly every application sector. Deep 

Learning, which employs either hierarchical or Deep Learning structures, is a subset of 
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ML that has mostly been created after 2006.  Determining model parameters is the first 

step in the learning process, which enables the learnt model (or algorithm) to carry out a 

specified task. For instance, the weight matrices are the parameters in Artificial Neural 

Networks (ANN).  

Contrarily, DL contains several layers between the input and output layer, allowing for 

the presence of numerous stages of non-linear central processing unit having hierarchical 

architectures which are employed for feature learning and pattern categorization 

(Schmidhuber, 2015; LeCun et al., 2015). According to several articles, DL is a universal 

learning strategy that can address practically any issue in a variety of application fields. 

So DL is not task-specific, to put it another way (Bengio, 2009). Figure 2.1 shows the 

classification of AI. Where, AI: Artificial Intelligence; ML: Machine Learning; SNN: 

Spiking Neural Networks; NN: Neural Networks; DL: Deep Learning. 

 
 

 

Figure 2.1: The classification of AI. (Source: Kilichan & Yilmaz, 2020) 

2.4.1 Convolutional neural network architecture 

As specified in a Conventional Multilayered Neural Network, CNN is among the 

subclasses of deep classifier architecture and consists of one or more convolutional layers 
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accompanied by one or more fully connected layers (Savalia & Emamian, 2018). CNN's 

design performs well while analyzing two-dimensional data types like images, movies, 

and so on (Browne et al., 2008). A receptive field is a condensed area of the perceptual 

field that is responsive to the intricate configuration of cells that make up the visual cortex 

(Ide & Kurita, 2017). Numerous approaches, including Neocognitron, HMAX, and Lenet, 

are available in the literature since the animal visual cortex seems to be the most potent 

visual processing system (Sornam et al., 2017; Azizah et al., 2017; Zahara et al., 2020; 

Pouyanfar et al., 2018). Since CNN never needs a shared weight, it differs from 

Neocognitron (Du, 2018; Sornam et al., 2017). The localized connection pattern between 

the neurons in neighbouring layers is how CNN's spatially local correlation originates. It 

can be illustrated graphically in Figure 2.2. 

 

Figure 2.2: Pattern of neuronal connectivity (Sornam et al., 2017) 

CNN has inputs, outputs, and hidden layers in between, similar to the design of a normal 

Neural Network (Sornam et al., 2017). These hidden layers carry out a task known as 

feature identification and three various types of data computations, including convolution, 

pooling, and rectifier linear unit (ReLu) (Albawi et al., 2017; Al-Saffar et al., 2017; 

Sornam et al., 2017). By passing the input photograph via a number of convolutional 

filters, the convolution layer is employed to activate a particular aspect of the photograph 

(Srinivas et al., 2016). Several aspects of the photograph are enabled by each filter. By 

streamlining the output via a nonlinear downsampling approach, the pooling layer aids in 
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reducing the amount of factors unrelated to the targeted problems (Sornam et al., 2017). 

Rectified Linear Units accelerate learning as well as improve productivity by turning 

negative values into zeros such that they can only be maintained as positive values (Tang 

et al., 2018; Sornam et al., 2017). 

In order for each layer to be capable of recognizing the various feature levels, these three 

distinct procedures are continually done to tens or even thousands of layers. The CNN 

architecture moved towards categorization after the feature identification was finished. 

The network's capacity to forecast the amount of output classes, k, is represented by the 

next-to-last layer, a fully connected layer which generates the K dimension vector, and 

the last layer, a softmax layer, which produces the categorization output (Chen et al., 

2016). The component of the CNN is depicted in Figure 2.3. 

 

Figure 2.3: Architecture of CNN (Sornam et al., 2017) 

2.4.1.1 Convolution layers  

Convolutional, Pooling, and Fully-Connected (FC) layers are the three categories of 

layers which constitute the Convolutional Neural Network (Akbar et al., 2017). A CNN 

model will be created after these layers are stacked. Convolutional layers' neuron 

components first were calculated by convolution operations over small regional spots of 

input, after which activation functions (tanh, sigmoid, ReLU, e.t.c.) are applied to create 
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a 2D feature chart, which is a crucial feature layer which distinguishes Convolutional 

Neural Network (CNN) from other conventional Neural Networks (3D feature map) 

(Zhang et al.,2019).  

Typically, we have that  

Z j = ∑ 𝑋𝑖 ∗ 𝐾𝑖𝑗 + 𝐵𝑗,𝑖                                                              (2.1) 

A j = f (Z j),                                                                            (2.2) 

while Z j indicates the output from the convolution process, Xi is the input to the 

convolutional layer, Kij is the convolution kernel, and Bj is the cumulative bias. In the 

expression that follows, Aj is the output feature map of the convolutional layer and f (Zj) 

is an activation function. Activation functions are computational processing on the input 

that adds non-linearity into Neural Networks and aid in detecting non-linear patterns in 

the input data (Sharma et al., 2017b). The terms "saturated functions" refer to sigmoid 

and Tanh. According to their descriptions or charts, the output of Sigmoid and Tanh 

saturates at 0 or 1 and -1 or 1, respectively, whenever the input is extremely tiny or 

extremely big. In terms of saturation, there are two issues. It is challenging to converge 

in the training phase because the gradients at saturated areas are nearly negative, 

substantially reducing neurons' backpropagation (Zhang et al., 2019). Additionally, 

weight initialization when employing saturated activation functions needs to be more 

carefully considered else the Neural Networks may well not train at all. Numerous non-

saturated activations have been suggested to address the saturation issue, including the 

Rectified Linear Unit (ReLU) (Nair & Hinton, 2010), Leaky ReLU (Maas et al., 2013), 

Parametric ReLU (PReLU) (He et al., 2015b) and Randomized Leaky ReLU (RReLU) 

(Xu et al., 2015). 
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In CNN, convolution is a crucial component. Contrarily, neurons within the same feature 

map use the same variables thanks to weight sharing that significantly lowers the overall 

amount of parameters (Indolia et al., 2018). The input may exhibit the same 

characteristics, which include edges, points, angles, etc., at several spatial locations. The 

CNN is less susceptible to position and moving because of weight sharing (Ghafoorian et 

al., 2017). However, because each convolution process only considers a tiny portion of 

the input, the recovered features retain the fundamental structure of the input, which aids 

in pattern recognition. Figure 2.4 provides an Activation Function plot. 

Figure 2.4: Activation function plot (Zhang et al., 2019) 

2.4.1.2 Pooling layer or subsampling layer 

In order to decrease the feature map resolution, convolutional layers are typically 

accompanied by subsampling layers (LeCun & Bengio, 1995; Huang et al., 2015; He & 

Sun, 2015). In line with this reduction in parameters, processing is likewise downsized. 

Figure 2.5 shows a Max Pooling layer implemented a single slice of an input volume, 

Z j = down (Xj),                                                                                                         (2.3) 

In which a subsampling strategy is represented by down(Xj).  
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Two common subsampling techniques, maximum operation and average operation, are 

employed in CNNs (Alotaibi & Mahmood, 2017). In addition to max pooling and average 

pooling, various techniques which are more effective in preventing overfitting issues in 

CNN have been suggested, including mixed pooling (Yu et al., 2014), stochastic pooling 

(Zeiler & Fergus, 2013), and Lp pooling (Sermanet et al., 2012).  He et al. (2015a) suggest 

a pooling technique known as spatial pyramids pooling (SPP), which may produce a 

constant length feature map and hence handle different input photograph dimensions. Fast 

Fourier Transform (FFT)-based CNNs can also use spectral pooling, a technique for 

reducing dimensionality in frequencies that maintains better information than spatial 

domain (Rippel et al., 2015). Whereas multi-scale orderless pooling, as described by 

Gong et al. (2014), surpasses other approaches in high variability scene matching. 

Contrary to convolution kernels, subsampling kernels are frequently chosen manually and 

don't alter throughout training and inference. Subsampling is done for two major motives. 

The first is that the size of the feature map is reduced by maximising or average over the 

preceding feature map, whereas the other is that by subsampling, the resultant feature 

map is much more resistant to distortions and mistakes of particular neuron units (Liu et 

al., 2017). 

Figure 2.5: Max pooling layer implimenting a single slice of an input volume. (Source: 

Rana, 2020) 
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2.4.1.3 Fully connected layer 

The Fully Connected (FC) layer, that links the neurons between two layers, is composed 

of neuronal cells along with weights and biases (Dose et al., 2018; Viquerat & Hachem, 

2020). These layers make up the final few levels of a CNN architecture and are often 

positioned just before output layer. This compresses the input photograph from the earlier 

stages and feeds it to the FC layer (Pu et al., 2019). The compressed vector is then sent 

through some additional FC levels, in which the standard procedures on mathematical 

operations happen. The categorization procedure starts to take effect at this point.  

2.4.1.4 Rectified linear unit layer 

ReLU stands for Rectified Linear Unit, that implements the non-saturating activation 

function f(x) = max (0, x) (Ren et al., 2016; Pratama & Kang, 2021). Through assigning 

negative values to zero, it essentially removes them from an activation map. Without 

changing the receptive fields of the convolution layers, it creates nonlinearities to the 

decision function and the entire network (Chi et al., 2019). 

The saturating hyperbolic tangent f(x) = tanh (x), f(x) = |tanh (x)|, and the sigmoid 

function (x) = (1+e-x)-1 are several other functions that may be employed to improve 

nonlinearity (Vijayaprabakaran & Sathiyamurthy, 2020; Vargas et al., 2021). ReLU is 

frequently used over other functions since it trains the neural network considerably more 

quickly without significantly degrading generalization accuracy (Huang et al., 2020). 

2.5 Faster RCNN Architecture 

An object detection technique relying on the region proposal approach is known as the 

Faster RCNN. The very earliest Region Proposal technique algorithm was region-based 

CNN (R-CNN) (Girshick et al., 2015). But then again, it was computationally intensive 

because each suggested zone required a CNN-based feature extraction. Sharing 
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convolutional features among area suggestions was suggested as a way to create a fast 

RCNN and cut down on computation time (Girshick, 2015). Fully convolutional Region 

Proposal Networks (RPN), which are taught to suggest accurate object areas, were 

presented as a faster version of RCNN to increase speed (Ren et al., 2015). The four 

components of the Faster RCNN model are classification, Region of Interest (RoI) 

pooling, Region Proposal Network (RPN) and feature extractor.  

This research utilized the Inception v2 convolutional layers for extraction of features. 

The Inception v2 network has the benefit of being translation and scale-invariant because 

of the utilization of broader networks having various kernel sizes in each layer of the 

network (Veeranampalayam Sivakumar et al., 2020). For this, the region proposal layer's 

feature map generated by the Inception v2 architecture is decreased in dimension. 

Anchors or permanent bounding boxes at every position serve to define the RPN (Chen 

et al., 2018). In order to allow the area proposal network to generate scale-invariant 

proposals, anchors with various scales and aspect ratios are established at each point.  A 

convolutional filter on the feature chart is used by the region proposal layer to provide a 

confidence score for the classifications of objects and backdrop (Suhail et al., 2020). It is 

known as the objectness score. Additionally, anchor box regression offsets are produced 

by the convolutional filter (Yi et al., 2021). As a result, if a region has k anchors, the 

convolutional filter in the area proposal network produces 6k data, including 4k 

coordinates and 2k scores. By this result, classification loss and bounding box regression 

loss are computed. The feature map from feature extractor can then be blended with the 

bounding box coordinates of anchors designated as objects. Bounding box areas with 

various sizes and aspect ratios are adjusted to fixed size outputs in the RoI pooling layer 

utilizing max pooling. 
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When there is maximal pooling, the down sampling is performed by the maximal number 

of pixels. The pooling layer is a down sampling layer (Krizhevsky et al., 2012). 

Following classification, the bounding box discrepancies with reference to the ground 

truth boxes of the max-pooled feature map of a predetermined size that corresponds with 

each output are regressed. As a result, two losses, the classification loss and the bounding 

box regression loss are estimated at this output, just as they were in the region proposal 

layer. Figure 2.6 shows the Faster RCNN architecture. 

 

Figure 2.6: Faster RCNN architecture (Veeranampalayam Sivakumar et al., 2020) 

2.5.1 Inception v2 architecture 

CNN architecture's "inception architecture" modifies the feature extraction process (Khan 

et al., 2020). The feature extraction section is where the difference may be found. 

As can be seen in figure 2.11, the feature extraction part of Inception v2 employs base 

layer and filter concat (Alamsyah et al., 2019). The enhanced usage of the computational 

resources within the network is an attribute of Inception design (Chelghoum et al., 2020). 
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The main advantage of the Inception Design is that it outperforms shallower and less 

broad networks while requiring just a slight improvement in processing resources, and it 

is efficient despite not using context or implementing bounding box regression (Szegedy 

et al., 2015). Utilizing clever factorization techniques, the inception design aims to 

decrease the constraint and increase better performance in terms of computing 

complexity. To increase computational performance, the 5x5 pixel convolution layer of 

the Inception v2 architecture was categorized to a 3x3 pixel convolution (Szegedy et al., 

2016). Figure 2.7 shows the Inception v2 architecture. 

 

Figure 2.7: Inception v2 architecture (Szegedy et al., 2015) 

2.5.2 YOLO v5 architecture 

Convolutional Neural Networks predicated on the "You Only Look Once" (YOLOv5) 

framework family enable real-time object identification. The YOLO family was updated 

with the publication of YOLOv5, by researcher Glenn and his colleagues, a month after 

YOLOv4 was released (Thuan, 2021). Glenn Jocher is the CEO of Ultralystics LLC and 

a researcher (Jocher et al., 2020). Alexey Bochkovsky built the YOLO models on top of 

the bespoke framework Darknet, which is primarily coded in C (Thuan, 2021; Wang, 

2021). The firm that adapts older itrations of YOLO onto PyTorch, among the most 

popular Deep Learning frameworks built in Python, is called Ultralystic, which is a brand-
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new Convolutional Neural Network that accurately recognises objects in real-time (Zhang 

et al., 2022). In this approach, the whole imagery is processed by a single Neural 

Network, after which it is divided into its component parts and bounding boxes and 

probabilities are predicted for each one (Hemanth, 2022). The weighting of these 

bounding boxes is based on the anticipated likelihood. The approach merely does a single 

forward propagation loop through the Neural Network before making predictions, or 

"only looking once" at the picture. Following non-max suppression, it provides 

discovered objects that makes sure the object detection algorithm only recognizes each 

object once. 

According to Liu et al. (2019), YOLOv5 is premised upon this, YOLO detection designs 

and utilizes the outstanding classifier optimization technique in the area of CNNs in recent 

times, which includes automated bounding box anchor training, enhancing mosaic data, 

and the cross-stage partial network, etc; which are in charge of various operations in 

various parts of the YOLOv5 architecture. The input, backbone, neck, and output are the 

four essential components of the YOLOv5 design. The data preparation, such as adaptive 

picture filling and mosaic data augmentation Wu et al. (2017), is mostly contained in the 

input terminal. YOLOv5 incorporates adaptive anchor frame computation on the input in 

order to adapt to various data sets, and this can therefore autonomously determine the 

starting anchor frame size as the data changes. By repeatedly convolution and pooling, 

feature charts of varying sizes may be extracted from the input picture, the backbone 

network mostly employs a Cross-Stage Partial network (CSP) Kim et al. (2019) and 

Spatial Pyramid Pooling (SPP) (He et al., 2015c). Whereas the SPP design allows for the 

realization of extracting features from various scales for same feature map and has the 

ability to create three-scale feature charts, that increase recognition precision, to cut down 

on the complexity of calculations, Bottleneck CSP is utilized and also speed up inference. 
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The feature pyramid architectures of FPN and PAN are applied to the neck network. 

Robust semantic features are transmitted from the top feature charts into the bottom 

feature charts utilizing the FPN structure (Liu et al., 2016b). 

Additionally, the PAN structure transfers powerful localization features from lower 

feature charts to higher feature charts (Wang et al., 2019). The collective strength of these 

two systems improves the feature acquired from different network levels in Backbone 

fusion, thus increasing the identification abilities. The head output is mostly utilized as 

the last detection step to forecast targets of various sizes on feature maps. Four 

architectures, known as YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x, make up the 

YOLOv5 (Liu et al., 2021; Yan et al., 2021). Their primary distinction is the quantity of 

feature extraction module and convolution kernels placed around particular points in the 

network. Figure 2.8 displays the YOLO v5 network architecture. 

 

Figure 2.8: The design of YOLO v5's network (Xu et al., 2021) 

2.6 Training Epochs 

Brownlee (2018) describes the number of epochs as a hyperparameter that specifies how 

many times the learning algorithm will run across the whole training dataset. Each sample 
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in the training dataset has had one epoch, which indicates that the internal model 

parameters have been updated. Each epoch is made up of one or more batches. For 

instance, as previously stated, an epoch with one batch is referred to as the batch gradient 

descent learning algorithm (Dogo et al., 2018). Consider a for-loop across the number of 

epochs, with each loop traversing the training dataset. Another nested for-loop within this 

for-loop iterates through each batch of samples, where each batch has the provided "batch 

size" number of samples. Typically, the number of epochs is huge, frequently hundreds 

or thousands, permitting the learning procedure to continue until the model error is 

adequately minimised (Hu, 2021). Examples of the number of epochs set to 10, 100, 500, 

1000, and larger can be found in the literature and tutorials. Line charts with epochs along 

the x-axis as time and the model's error or skill on the y-axis are typical (Hoiem et al., 

2021). These charts are also known as learning curves. These charts can aid in 

determining if the model has overlearned, underlearned, or is adequately fitted to the 

training dataset. 

2.7 Google Colaboratory 

Jupyter Notebooks which is the innovation on which Google Colaboratory is built, is 

introduced before Google Colaboratory. According to Perez & Granger (2007), Jupyter 

is a free software web application that combines interpreted languages, libraries, and 

visualization tools. Working locally or online is possible using a Jupyter notebook 

(Mendez et al., 2019). Each document consists of a number of cells, with script or 

markdown code in each cell and the output is embedded in the content. Text, tables, 

graphs, and images are common outputs. Due to the experiments' and findings' self-

contained presentation, using this technology facilitates the sharing and replication of 

scientific works (Randles et al., 2017). An initiative called Google Colaboratory, 

sometimes known as Colab, aims to spread knowledge about Machine Learning research 
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and teaching (Colombo-Filho et al., 2020). Jupyter-based collaborative notebooks 

function like a Google Document object, allowing users to work and interact on the same 

notebook and share it with others (Carneiro et al., 2018). The crucial Machine Learning 

and Artificial Intelligence libraries, including TensorFlow, Matplotlib and Keras, are 

provided by Colaboratory in both Python 2 and 3 runtimes (Waheed et al., 2020; Suljovic 

et al., 2022). All user data and customizations are lost when the Virtual Machine beneath 

the runtime (VM) is disabled. Though the notebook is still there, it is also feasible to 

upload things to the user's google drive account via the VM hard drive. 

On a laptop, the complete model is trained and tested using Google Colaboratory and the 

Python language. An entirely cloud-based, free Jupyter notebook environment is called 

Colaboratory. It doesn't require any configuration and operates completely in the cloud 

(Prashanth et al., 2021).  

2.8 Software 

Numerous software tools and strategies have been created to speed up data processing 

because it may often be time-consuming. Table 2.1 provides an overview of the software 

packages that have been used to process and speed up the data analyzing process in the 

works assessed. 
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Table 2.1: Software packages utilized for image processing in the research.   

Software Tool Summary 

  

 

 

Python programming 

v3.8 

Simple, general purpose, high level, and object-oriented 

programming language version 3.8. 

Google Colaboratory 

Free 

K80 GPU, RAM 16GB, Runtime 12hours, Jupyter notebook 

environment on google colabs. 

Google Colaboratory 

Pro 

GPU- K80,T4 AND P100; RAM 32GB; Runtime 24hours; 

cost 10$ per month; Jupyter notebook environment on google 

colabs. 

 

CNN is used by the majority of computer vision applications (Nanni et al., 2017; 

Voulodimos et al., 2018; Bhatt et al., 2021; Wang et al., 2019; Islam et al., 2016). 

Hardware for superior performance and excessive electricity usage of this hardware are 

indeed two significant issues with CNN (Carneiro et al., 2018). Consequently, high-

performance hardware is necessary, such as the GPU from Colaboratory. CNN training 

utilizing Colaboratory's enhanced runtime is 2.93 times quicker than with all of the 

physical cores of a Linux server, on average (Carneiro et al., 2018). 
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2.9 Related Literatures on Weed Detection using Machine and Deep Learning 

Algorithms 

The spotlight has been drawn to methods centered on Machine Learning for spotting 

weeds and crops (Murawwat et al., 2018). Support Vector Machine (SVM) classifier was 

employed by Murawwat et al. (2018) to distinguish between carrot crops and weeds. With 

72 training samples and 8 test samples, they were able to attain a classification accuracy 

of more than 50%. The problem with the classic ML technique, such SVM or RF 

classifiers, is that extraction of features is not automated and manually generated features 

creation is a time-consuming stage. According to certain research, Deep Learning can 

effectively cope with the drawbacks of manually created features for identifying weed 

and crops by retrieving the features directly from the input data, in contrast to standard 

Machine Learning techniques (Lee et al., 2015). Recent years have seen significant 

advancements in the categorization of Remote Sensing data employing Deep Learning 

for a variety of jobs, particularly agricultural ones. 

Convolutional Neural Networks (CNNs) have been utilized in several research to classify 

crops and identify weeds in agricultural applications (Mortensen et al., 2016; Potena et 

al., 2017; Di Cicco et al., 2017). Utilizing mixed crops of an oil radish plot with barely, 

weed, stump, grass, and background soil photographs, Mortensen et al. (2016) classified 

weeds using the VGG-16 CNN model. A perceptual system that employs shallow and 

deeper CNNs was developed by Potena et al. (2017) for the categorization of weed crops. 

When classifying weeds and crops, the deeper CNN is employed, whereas the shallower 

one is utilized to recognize vegetation. Using a SegNet, Di Cicco et al. (2017) generated 

sizable synthetic training datasets programmatically while randomly distributing the 
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targeted environment's essential properties (i.e., crop and weed species, type of soil, light 

conditions). The U-Net approach was used by Hashemi-Beni & Gebrehiwot (2020) to 

identify and separate crops from weeds utilizing a small dataset. To enhance the 

categorization outcomes, they used strategies like random cropping, random rotation, and 

reflection on the data. 

Additionally, techniques centered on Deep CNNs have shown successful weed 

categorization and detection results. For instance, Yu et al. (2019), Olsen et al. (2019), 

and Dyrmann et al. (2016) all employed similar techniques. Potena et al. (2017) used two 

distinct CNNs to analyse RGB and NIR pictures in order to quickly and precisely detect 

crops and weeds. 

A shallow CNN was utilized to categorize the retrieved pixels into crops and weeds after 

a lightweight CNN had quickly and robustly segmented the vegetation. Beeharry & 

Bassoo (2020) assessed the effectiveness of ANN and AlexNet, two weed detection 

algorithms based on UAV imagery. According to the experimental findings, AlexNet's 

weed identification accuracy was greater than 99%, while ANN's accuracy on the same 

dataset was just 48%. 

A model for segmenting weeds in aerial images was developed by Ramirez et al. (2020), 

who then compared it to SegNet and U-Net. The study's findings demonstrated that more 

accurate experimental results were achieved through data balancing and improved spatial 

semantic information. An enhanced Mask RCNN model was suggested by Patidar et al. 

(2020) to extract early cranesbill seedlings. These weeds can be utilized as natural 

rheumatoid arthritis treatments. The suggested technique made it possible to entirely 

remove the weeds from the actual photograph in order to receive all of the nutrients and 

enhance production. A Deep Neural Network-based (DNNs) semantic segmentation 
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strategy for weed crop detection was put out by You et al. (2020). In order to increase 

segmentation accuracy, four more components were included, which improved 

performance for weeds with random shapes in a complicated environment. These 

techniques can autonomously gather meaningful feature information from pictures 

without depending on image preprocessing or data conversion. 

Predicated on Faster RCNN, Le et al. (2021) investigated the detection of weeds from 

crops in difficult field environments. The outcomes showed that Faster RCNN 

techniques, particularly the Faster RCNN model with Inception-ResNet-V2, may be used 

to detect weeds in challenging field scenarios with changing weather, lighting, occlusion, 

and growth phases. For plant-specific management in precision farming, Lottes et al. 

(2018) combined crop-weed categorization with joint stem identification. Their method 

made use of an end-to-end trainable fully convolutional network that concurrently trains 

class-wise stem recognition and pixel-wise semantic segmentation while continuously 

estimating stem locations and the total area of crops and weeds. Using convolutional 

neural networks and convolutional neural network frameworks, Gothai et al. (2020) 

conducted research on weed detection. Building algorithms like the VGG-16, ZFNet, and 

ALEXNET with four, six, eight, or thirteen convolution layers, as well as other 

architectures, was done in an effort to increase accuracy.   

The research gaps from the reviewed literatures suggest that future works be executed in 

the following aspect: 

(i) Evaluating the effects of varying training epochs on the performance accuracy 

of some Deep Learning algorithms utilizing UAV’s for the acquisition of aerial 

data. This research project will focus on filling this gap. 
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(ii) Consideration of spectral and spatial resolutions to optimise the flight mission 

to capture the size of the smaller weeds to be discriminated for better 

performance accuracy is also unresolved. 

(iii) Utilizing multispectral and hyperspectral imageries for the development of 

improved classification algorithms for weed infestation assessments remains a 

gap according to literature.  
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CHAPTER THREE 

3.0                                         MATERIALS AND METHODS 

3.1 The Research Design 

This chapter’s layout contains the methodology that was adopted in conducting this 

research. Furthermore, it decribes the method of the materials that were utilized and also 

the data acquisition for the research, the data source, the preprocessing and processing 

operations of the data, including the methodological workflow adopted to achieve the 

desired aim of the research. Farmers suffer agricultural production losses due to 

unchecked weed growths on agricultural fields as a result of practicing conventional weed 

removal practices which are time consuming, labor intensive and have adverse effect on 

the soil. Consequently, this chapter illuminates the application of Deep Learning 

algorithms (Faster RCNN and YOLO v5) and Unmanned Aerial Vehicles in resolving the 

current issues faced by farmers. 

3.1.1 Hardware and materials used for this study 

The hardware materials utilized for this study comprises the following:  

i. The quadrotor (phantom 4) UAV  

ii. Flight controller 

iii. A battery  

iv. A microcomputer 

v.  RGB sensor. 
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vi. A Laptop PC with 8GB RAM, processor speed of 2.6 GHz and an internal 

memory of 1 TB. 

 

 

3.1.2 Software and tools used 

These are grouped into firmware and software. The firmware was executed on a 

Tensorflow library with a python programming language version 3.8 on both Google 

Colaboratory (Colab) free version which is accessible to all for free but having a RAM 

size of 16 GB and a runtime usage of 12hours and Google Colaboratory pro with a RAM 

size of 32 GB and a runtime usage of 24hours that attracts a fee of 9.99$. The python 

codes aids the coding of the identification and classification network model used for the 

training, testing and validation of the dataset. Furthermore, Pix4D mapper software was 

used to create an orthomosaic of the study site.  

3.2 Data Acquisition 

On February 17, 2022, amidst clear skies, high-resolution UAV photograph data were 

collected to assure comparable lighting conditions. A DJI Phantom 4, with an on-board 

RGB sensor having a resolution of 12 megapixels and 5.74 mm focal length, was utilized 

for the airborne survey. A 30 m height above ground level was selected for the flight 

mission. This made it possible to traverse the study area with a flying duration of around 

15 minutes and a spatial resolution of 0.5 cm. 

Eight field targets were distributed uniformly across the research site to be utilized as 

ground control points (GCPs) for georeferencing. A differential GPS (bi-frequency GNSS 

receiver) centered on the German SAPOS correction service was used to establish the 

field target centers for precision positioning in Real-Time Kinematic (RTK) mode.  
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In order to minimize shadows, the mission was undertaken at midday. Using the built-in 

three-axis gimbal, the sensor was mounted vertically at 900. About 254 photographs in all 

were captured at a mapping speed of 7 mph having a side and front overlap of 75%, 

correspondingly. With UAV weight (battery & propellers included) of 1380g and battery 

capacity of 5350 mAh. Plate I - IX presents the images of the flight path and equipments 

utilized in the acquisition of aerial images as well as GCP’s for georeferencing the dataset 

while Table 3.1 presents the details of the flight plan. 

 

Plate I: The flight path of the UAV 

 

Plate II: Unmanned aerial vehicle DJI phantom 4 
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Plate III: Flight controller and the display screen 

 

Plate IX: The DGPS instrument used for acquiring GCP’s 

Table 3.1: Details of the Flight Plan 

Parameters Value 

  

Shooting angle At 900, in line with the main path 

Capture mode Fly and capture 

Flight direction -330 

Speed 7mph 
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Altitude 30meters 

Starting waypoint 1 

Front overlap 75% 

Side overlap 75% 

 

3.3 Flow Chart for the Faster RCNN Algorithm 

The Site Specific Weed Management was implemented employing a Faster Region based 

Convolutional Neural Network which is a Deep Learning (DL) algorithm. This Deep 

Learning algorithm will generalize on the testing set after being trained.  Figure 3.1 shows 

the flow of the methods employed in this study, data acquired and processing. 

 

Figure 3.1: The workflow of the development and implementation of the faster 

RCNN weed detection model 

3.4 Pre-processing of Images  

End 
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In order for the dataset to fit into the model architecture for training and classifications of 

weed patches, the dataset were pre-processed utilizing the necessary software packages.  

This section contains the pre-processes employed to achieve the desired results. These 

processes are as follows: 

i. Image Resizing 

ii. Data Annotation 

iii. Splitting of Data 

 

 

3.4.1 Image resizing 

The initial dimensions of the raw aerial photographs were quite enormous to fit in the 

memory for processing so each raw aerial photographs of 4000 x 3000 mega pixels from 

the dataset were then resized to 750 x 1000 mega pixels. In Python programming, an 

adaptive interpolation technique is used to achieve the resize process. This was done to 

reduce the large sizes of individual images. 

3.4.2 Data annotation 

Annotation is a machine learning method that labels data on photos that feature specified 

items or objects by putting a bounding box around each crop in the field. The resized 

images are labeled in order to pick the suggested region, that's comprised of the respective 

crop. The weed regions in individual sub-images were labeled as rectangular bounding 

boxes utilizing the python labelling imager program (LabelImg). Only five (5) annotators 

were employed in the labeling procedure. The annotator was trained to outline rectangular 

bounding boxes surrounding weed spots and the different crops on the farm.  

3.4.3 Splitting data 



46 
 

Given that there is a considerable number of data, it is split into test sets and train sets. A 

training set is a subset of data used to train the model. The test set is a subset of 

information that may be examined using our qualified model. 254 sub-photographs in 

totality were manually labeled and were subsequently splitted between 80% training 

dataset and 20% test image. Figure 3.2 shows the pre-processing workflow. 

 

Figure 3.2: Workflow for pre-processing 

3.5  Supervised Learning for both the Faster RCNN and YOLO v5 Models 

The labeling of the training and validation datasets results in supervised learning. The 

aerial photograph and the associated annotations are part of the dataset supplied into the 

convolutional neural network as input. Accordingly, during supervised learning, the 

algorithm picks up knowledge from the labeled dataset on how to map a certain input to 

a specific output.   

3.6 Training the Model with Dataset 

Image 
Resizing

Image 
Annotation

Data 
Splitting
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This suggested model was trained on Google Colab having a GPU (NVIDIA GeForce 

GTX TITAN X (Linux)) employing Google Colaboratory Free with a GPU R-80 and 

RAM 16GB and Google Colaboratory Pro with GPU K80,T4,P100 and RAM 32GB. The 

runtime environment for Graphics Processing Units (GPUs) can considerably expedite 

the training process for many Deep Learning models. Tensorflow and CUDA/CuDNN 

are implemented to parallelize computations on the GPU. Python 3 programming 

notebook was thus uploaded. Numpy 1.19.5 and Tensorflow version 1.15.2 were installed 

on the virtual machine for compatibility and to do various mathematical operations, as 

well as to determine which GPU was allocated. The dataset was then loaded into the 

Google colab workspace, as well as into a "datalab folder," from where the photos, 

annotated files, and separate test samples were obtained. The labels were entered into a 

configuration file that defined all detectable classes ("sugarcane, spinach, pepper, banana, 

and weed"). The file names for training and validation were again retrieved by iterating 

through all image files. Bounding boxes were made employing the label imager 

"LabelImg software," which was also built in Python. Boundaries inside crops are defined 

by using coordinates of the bounding boxes in ".XML" formats via XML annotation files. 

The following step was to construct labelled tensor matrices (tf_records). Tensorflow 

Record files comprise the real input data for the machine learning process in binary 

format, making training faster. After that, the dataset is divided into training and testing 

data. 80% of the data was used for training, while the remaining 20% was used for testing. 

To evaluate the performance of the training, a Tensor board was placed and loaded. Paths 

and training parameters were set up to specify what files and model waypoints should be 

utilized during the training process, for example. 5 classes were defined, having a learning 

rate of 0.0002, a batch size of 32, and so forth. The training on GPU was then carried out 

for 10,000 epochs (this reflects the number of iterations the Deep Learning model has 
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accomplished over the entire training dataset) took about 27.8minutes to fully complete 

and subsequently, 20,000 epochs ran for 54minutes, 100,000 epochs ran for 3.6hours, 

200,000 epochs ran for 7.9hours and 242,000 epochs took about 9.6hours to train. Then 

the inference graph was exported. Inference means to apply the model to imagery which 

have not been utilised for training. This is the testing dataset. Whenever the loss function 

no longer converges and begins to idle about a given value, the training should be 

terminated. Figure 3.3 presents the workflow of the training process. 

 

 

Figure 3.3: The training process flowchat 

3.7 Evaluation and Prediction for both Faster RCNN and YOLO v5 Models 

Start 

End 
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The trained network is tested utilising test samples, and its performance is assessed 

utilizing metrics which include confusion matrix, precision, recall, and F1 score for 

various IoU ranges. A confusion matrix is used to measure object identification accuracy. 

3.7.1 Evaluation of performance 

A confusion matrix is an overview of how many predictions a model performed were 

accurate and inaccurate. It is beneficial to display both the model's faults and the many 

kinds of errors that might occur when predicting an object's classification (Hasan et al., 

2021). Below are the terminologies used in describing the classification results (Maxwell 

et al., 2021); 

i. True Positives (TP) describes the number of instances that the model accurately 

identified a positive sample as positive. 

ii. True Negatives (TN) indicates a specific number of instances the classifier 

correctly identified a negative sample as negative. 

iii. False Positive (FP) describes the frequency with which a negative sample was 

incorrectly categorized as a positive sample by the classifier. 

iv. False Negative (FN) indicates the frequency with which a positive sample was 

incorrectly categorized by the model as negative. 

3.7.2 Accuracy metric 

The algorithm's performance throughout all classes is often described by its accuracy 

metric. It is determined by dividing the number of accurate predictions by the overall 

number of predictions (Teimouri et al., 2018). 

Accuracy=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                         (3.1) 

3.7.3 Precision metric 
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The precision is computed as the ratio of True Positives to both the total number of False 

Positives and True Positives. The precision measures how effectively the model classifies 

a sample as positive (Prashanth et al., 2020). 

Precision = 
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                                      (3.2) 

The denominator rises and the accuracy becomes low whenever the model produces 

numerous wrong Positive classifications or few accurate Positive classifications. On the 

other side, the accuracy is higher when the model assigns more correctly classified 

positives and assigns less incorrectly classified positives. The accuracy rating ranges from 

zero (0) (no precision) to one (1) (complete or perfect precision). 

3.7.4 Recall metric 

Recall is measured as the proportion of positive samples that were actually accurately 

identified as Positive samples to all positive samples. The recall gauges how well the 

algorithm can identify positive samples. The greater the number of positive samples 

detected, the greater the recall (Jiang et al., 2020). 

Recall= 
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                                             (3.3) 

Only the classification of the positive samples is important to the recall. This is unrelated 

to the classification of the negative samples, such as for precision. The recall will indeed 

be 100% if the algorithm properly identifies all positive samples as positive, even if all 

negative samples are wrongly categorized as positive. The outcome is a number that 

ranges from 0.0 for no recall to 1.0 for complete or ideal recall. 

3.7.5 F1 score metric 

The harmonic mean of recall and precision is the F1 score. It accounts for both false 

positives and false negatives. This enables the combination of accuracy and recall into a 



51 
 

single metric that accounts for both characteristics. However neither Precision nor the 

Recall by themselves provides the general overview. It is possible to have great recall 

with poor precision or poor recall with superb precision. The F1 score offers a means of 

expressing both issues with a single score. Once the values for the Precision and Recall 

have been predicted, the macro average of both the Precision and Recall for the different 

epochs will then be calculated as follows: 

 

Average 

Precision=  
 P(Weeds) + P(Banana) + P(Sugarcane) + P(Spinach) + P(Pepper)

5
          (3.4)                                      

Average 

Recall= 
R(Weeds) + R(Banana) + R(Sugarcane) + R(Spinach) + R(Pepper)

5
                       (3.5)      

                            

   F1 Score = 
2∗(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙)
                                                  (3.6) 

3.8 Flow Chart for the YOLO v5 Algorithm 

The Site Specific Weed Management was implemented employing a YOLO v5 which is 

a Deep Learning (DL) algorithm. This DL algorithm will evaluate on the validation set 

then generalize on the testing set after being trained. Figure 3.4 presents the workflow for 

the methodology of YOLOv5s processing, data acquired and processing. 
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Figure 3.4: The workflow for the methodology of YOLO v5 processing 

3.8.1 Pre-processing of images 

The dataset were pre-processed to meet the dimensions that will properly fit into the 

architecture of the YOLO v5 model and manually annotated. The following steps were 

taken to achieve the desired results: 

i. Image Resizing 

ii. Data Annotation 

iii. Splitting of Data 

3.8.1.1 Image resizing 

The initial dimensions of the raw aerial photographs were too large to match up the 

memory for processing as a result, each raw photographs of 4000 x 3000 mega pixels 

taken from the dataset were then resized into 416 x 416 pixels to fit into the architecture 

of the Yolov5 model. With Python programming, an adaptive interpolation technique 

performs the resizing action.  

3.8.1.2 Data annotation 

Annotation is a machine learning method that labels data on photographs that constitute 

specified objects by putting a bounding box around each crop in the field. The images 

that have been resized are labeled to pick the proposed region, which is made up of 

separate crops. The weed regions in individual sub-images were labeled as rectangular 

bounding boxes utilizing the python labelling imager program (LabelImg). Five (5) 

annotators were employed in the labeling procedure. The annotator was trained to outline 

rectangular bounding boxes surrounding weed spots and the different crops on the farm.  

3.8.1.3 Splitting data 
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About 223 aerial photographs made up the dataset used to process the algorithm. This 

dataset was subsequently divided into Training Set of 156 (70%), Validation Set of 45 

(20%) and Test Set of 22 (10%) photographs. A training dataset is a subset of data used 

to train the classifier. The test set is a subset of data that may be examined utilizing the 

trained model and the validation set is used to assess the models’ performances. Despite 

the fact that validation metrics are relatively low, the results of algorithms validated 

utilizing an external validation dataset simply make the validation extra reliable for the 

actual implementation in the field.  Figure 3.5 presents the pre-processing workflow. 

Figure 3.5: Workflow for pre-processing of YOLO v5 dataset 

3.9 Training, Validation and Test of YOLO v5 Model 

YOLOv5 uses a darknet framework. Google Colaboratory was employed to perform data 

processing and analysis (Colab). Because training a neural network requires a virtual 

computer to operate for 12 hours and requires little computing effort, Colab Free was 

employed for this segment of the study. A GPU R-80 and 16GB of RAM were used for 

learning and identification operations (NVIDIA GeForce GTX TITAN X). A workstation 

running Ubuntu 18.04 with GPU acceleration served as the operating system for the 

Data 
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virtual machine employed in the current investigation. Python 3.8 programming was used 

to code and complete all Colab analysis. 

The dataset were assembled representing the images with labelled bounding boxes around 

the weeds and crops that are to be detected. All dataset were exported in the YOLOv5s 

format. In training the model, a number of arguments were passed such as defining the 

image size of 416 x 416, because the model was more sophisticated, a batch size of 16 

photographs was employed.  The dataset was then sub-divided into a training set of 156, 

Validation Set of 45 and a Testing Set of 22. Training epochs were set at 100, 300, 500, 

600, 700 and 1000, 5 classes were set for the models classification, the dataset location 

was set and the training process was carried out using the pre-trained weights that the 

YOLO programmers made available. The information is initially uploaded into CSP 

(Cross Stage Partial Network) to retrieve attributes of weeds and crops after being 

submitted with all the image data. The Head component is ultimately utilized to report 

data like class, grades, position, and object size. The focus module is used in the Backbone 

stage to retrieve useful information features. In evaluating the YOLO v5 model 

performance, training losses and performance metrics are saved to Tensorboard and 

further to a logfile. Then inference is run with the trained weights on contents of 

“test/images” folder or logfile (i.e. which is used for making real-world predictions and 

classification). The expended time for 100 epochs was 4minute 62 seconds, 300 epochs 

was 11minutes 88seconds, 500 epochs was 18minutes 48seconds, 600 epochs was 

22minutes 92seconds, 700 epochs was 25minutes 86seconds, and 1000 epochs was 

38minutes 22seconds. Figure 3.6 depicts a pictorial workflow of the YOLO v5 model. 
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Figure 3.6: Process flow of YOLOv5 

 

 

CHAPTER FOUR 

4.0                                       RESULTS AND DISCUSIONS  

4.1 Results and Discussions for the Faster RCNN 

This section presents the findings achieved while employing the Faster Region-based 

Convolutional Neural Network with inception v2 model for weed detection and 

classification in a mixed farm over 10,000, 20,000, 100,000, 200,000, 242,000 epochs are 

addressed. The research was carried out on Google Colaboratory employing Python 

programming, mostly utilizing the Tensorflow library. 

4.1.1 Training loss graphs 

Figures 4.1-4.5 show all of the usual training loss graphs together with the dataset, and 

all the losses over all the the five (5) distinct epochs considerably decreased as the number 

of training epochs increased all through the training process. The training loss represents 
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how effectively the algorithm matches the training data (Bontonou et al., 2019). The 

steady drop in training losses from Figure 4.1 to Figure 4.5 merely shows that the model 

kept learning throughout the training session with an increment in the number of epochs 

to a maximum of 242,000, beyond which there was no more significant learning from the 

training data. The training loss curves in Figure 4.1 were partially reduced, indicating that 

the model was still learning. The training loss starts to decrease in Figure 4.2. Between 

Figure 4.3 to 4.5, the training loss curves declined significantly and smoothed out at 

242,000 epochs, where it stabilized at 0. The total loss values are represented on the y 

axis, and the number of epochs is represented on the x axis (the number of epochs refers 

to how many instances the learning algorithm will run over the full training dataset). 

Figure 4.1 to Figure 4.5 were exported from a visualization tool-TensorBoard. 

Additionally, the training time over the training epochs of 10,000, 20,000, 100,000, 

200,000 and 242,000 were 27.8minutes, 54minutes, 3.6hours, 7.9hours and 9.6hours 

using Google Colaboratory. 

 

Figure 4.1: Total loss for 10,000 epochs 

                 Actual value 

                 Smoothed value 
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Figure 4.2: Total loss for 20,000 epochs 

 

Figure 4.3: Total loss for 100,000 epochs 
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Figure 4.4: Total loss for 200,000 epochs 

 

 

Figure 4.5: Total loss for 242,000 epochs 

4.2 Confusion Matrix for 10,000 Epochs 

The confusion matrices which is an evaluation of precision in Convolutional Neural 

Networks based Deep Learning as espunged by (Maxwell et al., 2021), was explored for 

Weed, Sugarcane, Banana, Spinach, and Pepper identification using the Faster RCNN 

Deep Learning model spanning five (5) different epochs have been shown in Table 4.1, 

Table 4.3, Table 4.5, Table 4.7 and Table 4.9. The diagonal values depict the accurate 
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estimates. The maximum accuracy recorded was 98.4% after the model had been trained 

with a batch sizes of 32 at 200,000 epochs. With respect to the hyperparameter value of 

batch size of 32, with 10,000 epochs in Table 4.1, the model successfully classified 75 % 

annotations of sugarcane out of 191 annotations of sugarcane and just 1 % annotation was 

mis-classified whereas 24 % annotations remained unsorted. 90 % of the annotations of 

spinach out of 145 spinach annotations were successfully classified and only 1 % was 

misclassified while 9 % also remained unsorted. Also, 92 % annotations of pepper were 

successfully classified out of a total of 204 annotations of pepper while 6 % remained 

unsorted. Further, 88 % annotations of Banana out of 65 annotations of Banana were 

correctly classified and just 3 % were not properly classified while 9 % remained 

unsorted. Ultimately, the classifier accurately determined 8 % annotations of weed out of 

372 annotations of weed and just 3 % annotations of weed were not properly classified 

while 89 % annotations of weed remained unsorted.  

Table 4.1: Confusion matrix at 10,000 epochs 

 Sugarcane Spinach Pepper Banana Weed Unsorted Total 

        

Sugarcane 144 0 2 0 0 45 191 

Spinach 0 130 2 0 0 13 145 

Pepper 0 0 187 0 0 17 204 

Banana 1 0 1 57 0 6 65 

Weed 7 0 5 1 29 330 372 
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Unsorted 52 13 77 9 29 0 180 

Total 204 143 274 67 58 411 1157 

    

4.2.1 Precision and recall values for 10,000 epochs 

In Table 4.2, the precision and recall values for 10,000 epochs are shown. The Precision 

value ranges from 0 (which means no precision) to 1 (which means perfect precision). 

Spinach had the highest precision of all classes (around 0.909), followed by banana, 

sugarcane, and pepper, whereas weed had the lowest precision (at approximately 0.500). 

Similar to precision, the Recall value ranges from 0 to 1. In terms of recall, "pepper" had 

the maximum value (about 0.917), followed by "spinach," "banana," "sugarcane," and 

"weed" (around 0.789), that had the lowest score.  This indicates that while the model 

was able to identify positive samples of "spinach," "banana," "sugarcane," and "pepper," 

it could not identify as many positive samples of "weed".  

Table 4.2: Precision and recall for 10,000 epochs 

Category Precision Recall 

   

Sugarcane 0.7058823529 0.7539267016 

Spinach 0.9090909091 0.8965517241 

Pepper 0.6824817518 0.9166666667 

Banana 0.8507462687 0.8769230769 
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Weed 0.5000000000 0.0779569892 

4.3 Confusion Matrix for 20,000 Epochs 

Table 4.3 shows the confusion matrix that was generated for 20,000 epochs. The findings 

demonstrates that the algorithm was capable of correctly classifying 88% annotations of 

sugarcane out of 191 annotations of sugarcane, while 12% annotations of sugarcane 

remained unsorted. Likewise, out of 145 annotations of spinach, 97% were accurately 

classified, whereas the remaining 3% remained unsorted. In addition, out of 204 

annotations of pepper, 95% were accurately classified, while 5% remained unsorted. 

Furthermore, out of 65 annotations of banana, 97% were accurately classified, while the 

remaining 3% remained unsorted. Ultimately, out of 372 annotations of weed, the 

algorithm correctly identified 52% annotations of weed, and just 0.5% annotations of 

weed were wrongly classified, leaving 47% of them unsorted. The accuracy of the weed 

classification at this epoch is just slightly better in comparison to the accuracy at 10,000 

epochs. 

Table 4.3: Confusion matrix for 20,000 epochs 

 Sugarcane Spinach Pepper Banana Weed Unsorted Total 

        

Sugarcane 169 0 0 0 0 22 191 

Spinach 0 141 0 0 0 4 145 

Pepper 0 0 193 0 0 11 204 
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Banana 0 0 0 63 0 2 65 

Weed 1 1 0 0 195 175 372 

Unsorted 24 6 14 4 96 0 144 

Total 194 148 207 67 291 214 1121 

4.3.1 Precision and recall values for 20,000 epochs 

Table 4.4 displays the precision and recall values that were derived for 20,000 epochs. 

The Precision and Recall values for spinach were the maximal, coming in at roughly 

0.952 and 0.972, correspondingly. This is closely preceded by “Banana”, “pepper”, 

“sugarcane” and “weed”. This indicates that while the model was capable of detecting 

positive samples for “sugarcane”, “spinach”, “pepper” and “banana”, it did so less 

frequently for "weed". 

Table 4.4: Shows the precision and recall for 20,000 epochs 

Category Precision Recall 

   

Sugarcane 0.8711340206 0.8848167539 

Spinach 0.9527027027 0.9724137931 

Pepper 0.9323671498 0.9460784314 

Banana 0.9402985075 0.9692307692 

Weed 0.6701030928 0.5241935484 
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4.4 Confusion Matrix for 100,000 Epochs 

The confusion matrix and the precision and recall values generated when the model was 

trained at 100,000 epochs, correspondingly, are shown in Tables 4.5 and 4.6. The outcome 

demonstrates that of 191 annotations of sugarcane, the classifier was capable of 

accurately classifying 100% of them. Additionally, 100% of the 204 annotations of 

pepper and 100% of the 145 annotations of spinach were both accurately classified. 

Similarly, out of 65 banana annotations, 100% were classified accurately. Ultimately, out 

of 372 weed annotations, the model correctly identified 98% of them, whereas the 

remaining 2% remained unsorted. 

Table 4.5: Confusion matrix for 100,000 epochs 

 Sugarcane Spinach Pepper Banana Weed Unsorted Total 

        

Sugarcane 191 0 0 0 0 0 191 

Spinach 0 145 0 0 0 0 145 

Pepper 0 0 204 0 0 0 204 

Banana 0 0 0 65 0 0 65 

Weed 0 0 0 0 363 9 372 

Unsorted 1 0 2 1 14 0 18 

Total 192 145 206 66 377 9 995 
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4.4.1 Precision and recall values for 100,000 epochs 

The class with the highest possible precision was "spinach," preceded by "pepper," 

"banana," and "weed," in that sequence, as shown by the results displayed in Table 4.6. 

The classes containing the highest recall values are "sugarcane," "spinach," "pepper," 

"banana," and "weed," in that sequence. In spite of the fact that "weed" again produced 

the lowest precision and recall values at this epoch, it was found that these values had 

greatly improved particularly in comparison to the outcomes of the model's training at 

20,000 epochs, reaching roughly 0.96 and 0.98, correspondingly. This indicates that the 

classifier was successful in identifying weed-positive samples at this point in time and 

that training tends to improve when more training epochs are added. 

Table 4.6: Precision and recall values for 100,000 epochs                  

Category Precision Recall 

   

Sugarcane 0.9947916667 1.0 

Spinach 1.0 1.0 

Pepper 0.9902912621 1.0 

Banana 0.9848484848 1.0 

Weed 0.9628647215 0.9758064516 

   

4.5 Confusion Matrix for 200,000 Epochs                                    
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Table 4.7 shows the confusion matrix that was generated after the network was trained at 

200,000 epochs, and Table 4.8 shows the precision and recall values that were also 

generated at this epoch.  At 200,000 epochs, the classifier was found to be 100% accurate 

in classifying 191 annotations of sugarcane, 100% accurate in classifying 145 annotations 

of spinach, and 100% accurate in classifying 204 annotations of pepper. Additionally, all 

65 annotations of banana were accurately classified, making 100% of them bananas. 

Ultimately, out of 372 weed annotations, the model correctly identified 99% of them, and 

just 0.8% remained unsorted. The trend of the results demonstrates that though the model 

has categorized all the annotated photographs of the different crops at 100,000 epochs 

successfully, it continues to get better at classifying weed as the epoch advances. 

 

Table 4.7: Shows the confusion matrix for 200,000 epochs 

 Sugarcane Spinach Pepper Banana Weed Unsorted Total 

        

Sugarcane 191 0 0 0 0 0 191 

Spinach 0 145 0 0 0 0 145 

Pepper 0 0 204 0 0 0 204 

Banana 0 0 0 65 0 0 65 

Weed 0 0 0 0 369 3 372 

Unsorted 2 0 3 1 7 0 13 
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Total 193 145 207 66 376 3 990 

 

4.5.1 Precision and recall values for 200,000 epochs 

Based on the precision values found in Table 4.8, it was determined that the classes with 

the highest precision were "spinach" and "banana," then "sugarcane," "pepper," and 

finally "weed," that had increased to 0.98. Additionally, the classes having the best recall 

were "sugarcane," "spinach," "pepper," "banana," and finally "weed," which also 

considerably improved to 0.9919, showing the classifier was capable of detecting positive 

samples of "weed" over time. 

 

 

Table 4.8: Precision and recall for 200,000 epochs 

Category Precision Recall 

   

Sugarcane 0.9896373057 1.0 

Spinach 1.0 1.0 

Pepper 0.9855072464 1.0 

Banana 1.0 1.0 

Weed 0.9813829787 0.9919354839 

4.6 Confusion Matrix for 242,000 Epochs                                    
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Tables 4.9 and 4.10 exhibit the outcome of the model's training at 242,000 epochs. The 

classifier flattened out and the weeds' precision started declining at 242,000 epochs. This 

meant that the classifier was no longer picking up new information from the training 

dataset, hence it was not necessary to go beyond 242,000 epochs. The confusion matrix 

is shown in Table 4.9, whereas Table 4.10 displays the precision and recall figures. With 

the exception of weed, all of the annotated crops could be effectively classified by the 

classifier at this time. Of the 372 annotations of weed, the model correctly identified 99%, 

meaning that 0.5% of the weed annotations were misclassified.   

 

 

 

Table 4.9: Confusion matrix for 242,000 epochs 

 Sugarcane Spinach Pepper Banana Weed Unsorted Total 

        

Sugarcane 191 0 0 0 0 0 191 

Spinach 0 145 0 0 0 0 145 

Pepper 0 0 204 0 0 0 204 

Banana 0 0 0 65 0 0 65 

Weed 0 0 0 0 370 2 372 

Unsorted 3 1 3 1 18 0 26 
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Total 194 146 207 66 388 2 1003 

 

4.6.1 Precision and recall values for 242,000 epochs 

Table 4.10's precision and recall values show that the classifier was starting to flatten out 

since the accuracy values started to decline, with the exception of "banana," that remained 

relatively stable. Although the recall value only slightly increased from 0.991 to 0.995, 

the precision value of "weed" decreased from 0.98 to 0.95, indicating that the training for 

classification and detection had achieved a saturation point during which moment the loss 

curve flattened out. This suggests that adding more epochs than 242,000 won't result in 

any substantial improvements in the classification and detection of weeds.   

 

Table 4.10: Precision and recall for 242,000 epochs 

Category Precision Recall 

   

Sugarcane 0.9845360824 1.0 

Spinach 0.9931506849 1.0 

Pepper 0.9855072464 1.0 

Banana 1.0 1.0 

Weed 0.9536082474 0.9946236559 

 

4.7 Performance of Faster RCNN Model Showing the Cumulative Result from the 

Accuracy Metrics. 
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The overall accuracy was 52.6 %, 67.9 %, 97.3 %, 98.4 %, and 97 % for 10,000 epochs, 

20,000 epochs, 100,000 epochs, 200,000 epochs, and 242,000 epochs, respectively. This 

indicates that significant improvements in the network's performance have been 

continuous as it trained with increment in epochs, particularly when the training epochs 

were extended gradually from 10,000 to 200,000 even as the batch size for the algorithm 

remained constant. The number of instances the learning algorithm will cycle through the 

full training dataset is known as an epoch (Brownlee, 2018). 

The cumulative performance was then reported at 10,000 epochs with an average 

precision of 73 %, an average recall of 70.4 %, and an F1 score of 71.7 %, and at 20,000 

epochs with an average precision of 87.3 %, an average recall of 85.9 %, and an F1 score 

of 86.6 %. When the training epoch was changed to 100,000, it was found that the average 

average precision was 98.7 %, the average recall was 99.5 %, and the F1 score was 99.1 

%; however, when the training epoch was changed to 200,000, the average precision was 

99.1 %, the average recall was 99.8 %, and the F1 score was 99.4 %. Lastly, when the 

training epoch was raised to 242,000, the average precision, average recall, and F1 score 

were generated and are displayed in Table 4.11 to be 98 %, 99.9  %, and 99.1%, 

correspondingly. The corresponding times for 10,000 epochs, 20,000 epochs, 100,000 

epochs, 200,000 epochs and 242,000 epochs were 27.8minutes, 54minutes, 3.6hours, 

7.9hours and 9.6hours. 

Table 4.11: Performance of faster RCNN inception v2 model showing the cumulative 

result from the accuracy metrics. 

Epochs Accuracy Average 

Precision 

Average 

Recall 

F1 score 
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10,000 0.5259615385 0.7296402565 0.7044050317 0.7168006091 

20,000 0.6788581624 0.8733210947 0.8593466592 0.8662175648 

100,000 0.9728643216 0.986559227 0.9951612903 0.9908415891 

200,000 0.9838383838 0.9913055062 0.9983870968 0.9948336993 

242,000 0.9720837488 0.9833604522 0.9989247312 0.9910814888 

The accuracy, precision, F1 score and recall for the five epochs are compared in Table 

4.11. Once contrasted to other epochs, the precision, accuracy, and F1 scores of 

inceptionV2 at 200,000 epochs and 32 batch size produced the best results, which makes 

it the perfect training epoch for accurate weed and crop identification. Using random 

testing photographs, the same InceptionV2 model was evaluated, and the outcomes are 

depicted in Plate V down to Plate IX. The findings collected indicate that the classifier 

had a very high degree of confidence in its ability to effectively detect the weed even 

amongst the sugarcane, spinach, pepper, and banana. 

Additionally, the performance of weed detection and classification outcomes was also 

examined. The classification accuracy of the deployed model for 10,000 epochs was 52.5 

%, the "weed precision achieved 50 %", the "weed recall achieved 7.7 %", and the "F1 

score also achieved 71.6 %". Furthermore, the model achieved a "classification accuracy 

of 67.8%", "weed precision of 67%," "weed recall of 52.4%," and an F1 score of 85.9% 

over 20,000 epochs. Likewise, 100,000 epochs produced "classification accuracy results 

of 97.2 %", "weed precision" results of 96.2 % was achieved, "weed recall" results of 

97.5 % was achieved, and an F1 score of 99 % was also achieved, whereas 200,000 

epochs produced "classification accuracy results of 98.3 %", "weed precision" results of 
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98.1 % was achieved, "weed recall" results of 99.1 % was achieved, and an F1 score of 

99.4 % was also achieved. Lastly, 242,000 epochs produced "classification accuracy 

results of 97 %","weed precision of 95 % was achieved, "weed recall of 99 % was 

achieved and a F1 scores of 99 % was also achieved over the metrics. 

In addition, it was identified that the automatic "weed" classifier had the maximum 

precision (98.4%) at 200,000 epochs before accuracy began to decline at 242,000 epochs 

and fell to 97%, whereas the "weed" precision likewise reduced from 0.98 at 200,000 

epochs to 0.95 at 242,000 epochs. 

4.8 Classification on Testing Dataset 

The Faster Region based Convolutional Neural Network model was used to identify and 

categorize crop images over 10,000, 20,000, 100,000, 200,000, and 242,000 epochs. 

Examples of typical photographic outcomes of the classifier are shown in Plates V to IX, 

demonstrating the model's capability to detect and categorize weeds from several other 

crops for each testing image on the test set. A predicted bounding box of weeds and 

sugarcane crops is shown in Plate V at 10,000 epochs. Weeds here were likewise only 

partly detected in the photograph using predicted bounding boxes and an accuracy of 62% 

due to their tiny size and the overlap of sugarcane leaves. The percentages of weeds, 

spinach, banana crops, and sugarcane within 20,000 epochs are displayed in Plate VI. The 

accuracy for banana crop is 99 %, spinach is 99 %, and sugarcane was about 97%. In the 

case where the weeds were apparent, the model correctly identified the annotated weeds 

in the farm photograph with 99% accuracy. At 100,000 epochs in Plate VII, the classifier 

had a weed detection rate of almost 98%. The classifier demonstrated its ability to detect 

the weeds in the sugarcane regions to a high degree of 99% in the following plots, which 

is displayed at 200,000 epochs in Plate VIII, and this was largely facilitated by the 



73 
 

classifier's learning ability with increase in the number of epochs. The detection and 

classification of weeds began to become less accurate in Plate IX at 242,000 epochs, and 

it was recognized that the model had achieved a saturated state. The accuracy decreased 

from 99% at 200,000 epochs to 96% at 242,000 epochs. When evaluated with crops in a 

mixed farm, the classifier is capable of constructing a decision boundary to accurately 

identify weeds from crops with a low frequency of misclassifications. 

         

 

 

Plate V: The classifier’s confidence in detecting and classifying weed classes was 62 % 

in accuracy at 10,000 epochs from the image 
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Plate VI: The classifier’s confidence in detecting and classifying weed classes was 67 % 

in accuracy at 20,000 epochs from the image 
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Plate VII: The classifier’s confidence in detecting and classifying weed classes was 98 

% in accuracy at 100,000 epochs from the image 
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Plate VIII: The classifier’s confidence in detecting and classifying weed classes was 99 

% in accuracy at 200,000 epochs from the image 
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Plate IX: The classifier’s confidence in detecting and classifying weed classes was 96 % 

in accuracy at 242,000 epochs from the image 

4.9 Results and Discussions for the YOLO v5 

In this section, the results obtained using the YOLO V5 architecture for classification of 

weeds in a mixed irrigation farm over 100, 300, 500, 600, 700 and 1000 epochs are 

addressed. Python programming was used to conduct the investigations on Google Colab, 

mostly utilizing the Darknet framework. 

The dataset were assembled representing the images with labelled bounding boxes around 

the weeds and crops that are to be detected. All dataset were exported in the YOLOv5s 

format. In training the Yolov5 model, a number of arguments were passed such as 

defining the image size of 416 x 416 and employing a batch size of 16 photographs due 

to the complexity of the model. The dataset were splitted into a training set made up of 
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70 % of the dataset, a validation set made up of 20 %, and a testing set made up of 10 %. 

Training epochs were set at 100, 300, 500, 600, 700 and 1000, 5 classes were set for the 

models classification, the dataset location was set and the training applied to the pre-

trained weights made available by the YOLO developers. The expended time for 100 

epochs was 4minute 62 seconds, 300 epochs was 11minutes 88seconds, 500 epochs was 

18minutes 48seconds, 600 epochs was 22minutes 92seconds, 700 epochs was 25minutes 

86seconds, and 1000 epochs was 38minutes 22seconds. 

4.9.1 Training loss graphs from YOLOv5 

The training loss per network epoch was determined so as to evaluate how well the 

network training process performed. The network went through 100, 300, 500, 600, 700 

and 1000 epochs, it can be seen that the training losses decreased all through from Figure 

4.6 down to Figure 4.11 meaning that the model was learning. The model keeps learning 

as it goes through even more epochs, which leads to less training loss in later epochs. In 

Figure 4.6, the loss curve started declining at a considerable rate. From 300 epochs in 

Figure 4.7, the author observed a loss that is mostly constant from Figure 4.7 to Figure 

4.11. This indicates however that the network is learning with increasing accuracy, which 

shows that the training loss was presumably minimal, as illustrated graphically in Figure 

4.7 to Figure 4.11. From Figure 4.9 to Figure 4.10, the loss curve had no significant 

improvement meaning the training curve flattened out at 600 epochs in Figure 4.9. The 

lower the loss becomes, the better the model performance will be. The number of epochs 

is shown on the x-axis, while the loss value is shown on the y-axis. The graphs were 

extracted from Tensorboard Visualization. 



79 
 

 

Figure 4.6: The train/classification loss for 100 epochs 

 

Figure 4.7: The train/classification loss for 300 epochs 
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Figure 4.8: The train/classification loss for 500 epochs 

 

Figure 4.9: The train/classification loss for 600 epochs 
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Figure 4.10: The train/classification loss for 700 epochs 

 

Figure 4.11: The train/classification loss for 1000 epochs 

4.9.2  Validation graphs from YOLO v5 

The developed model's performance was evaluated using the validation dataset. The step 

by step validation losses of the model are shown in Figure 4.12 to Figure 4.17. As 

observed from the plots, the models converge gradually and poorly at 100 epochs in 

Figure 4.12, but converge better as the loss function diminishes while it trains in Figure 

15 and remain constant down to Figure 4.17. This is in line with the theory that the model 
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is constantly tweaking its parameters and picking up relevant feature of the crops and 

weeds without “overfitting” when the network learns the training data well, but performs 

poorly on the generated data and “underfitting” when the algorithm is not able to model 

either the training data or testing data. Figure 4.12 to Figure 4.17 indicates a possible 

optimal case. The number of epochs is represented on the x-axis and y-axis represents the 

validation loss values. 

 

Figure 4.12: Validation loss for 100 epochs 

 

Figure 4.13: Validation loss for 300 epochs 
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Figure 4.14: Validation loss for 500 epochs 

 

Figure 4.15: Validation loss for 600 epochs 
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Figure 4.16: Validation loss for 700 epochs 

 

Figure 4.17: Validation loss for 1000 epochs 

4.10 Confusion Matrix for 100 Epochs 

The Confusion Matrix for multi - class classification is shown in Figure 4.18 (in this case, 

5 classes). The number of TP elements for each class is displayed on the diagonal (top 

left to bottom right) as follows: 53% of all objects in the class of banana trees, 32% of all 

objects in the class of spinach, 10% of all objects in the class of sugarcane, and 1% of all 

objects in the class of weeds were properly categorized.   Additionally, 13% of all banana-
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class objects were mistakenly predicted as sugarcane-class objects, another 33 % of 

objects of the weed class were tagged as unidentified by YOLO (unsorted). 3 % of all 

objects of spinach class were misclassified as sugarcane and 65% were classified as 

unknown. 5 % of all objects of sugarcane class were misclassified as spinach while 86 % 

were classified as unknown, and 99 % of all objects of the weed class was classified as 

unknown and were not categorized into any class by the classifier. 

 

 

Figure 4.18: Confusion matrix for 100 epochs 

4.10.1 Precision and recall values and graphs for 100 epochs 

In Table 4.12, the value of Precision is within 0 (absence of precision) and 1.0 (ideal 

precision). The most precise class was ‘pepper’ (an approximate of 0.947) preceded with 
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‘spinach’, ‘banana crop’, ‘sugarcane crop’ and ‘weed plants’ (at approximately 0.0504) 

as the least. The Recall value ranges from 0 (absence of precision) to 1.0 (ideal precision). 

The class with the best Recall was ‘banana’ (an approximate of 0.615) preceded with 

‘spinach’, ‘sugarcane crop’, ‘weed’ and ‘pepper crop’(at approximately 0.0167) as the 

least indicating that less positive samples of "weed" and "pepper" were found, but the 

classifier was capable of identifying positive samples of "spinach crops," "banana crops," 

and "sugarcane crops". 

Table 4.12: Precision and recall for 100 epochs 

Category Precision Recall 

   

Sugarcane 0.141 0.116 

Spinach 0.378 0.375 

Pepper 0.947 0.0167 

Banana 0.156 0.615 

Weed 0.0504 0.013 

 

Figure 4.19, depicts the models precision curve metric that estimates the proportion of 

accurate bounding box predictions. While Figure 4.20 depicts the recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.19, the model began improving swiftly from around 40 epochs all through to 98 

epochs where it slightly dropped in precision on the precision curve while in Figure 4.20, 

the recall curve also improved from 15 epochs which means the model is gradually 

learning. The y-axis demonstrates the value of precision for Figure 4.19 and the x-axis 
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displays the different ranges of epochs while the y-axis depicts the recall value for Figure 

4.20 and x-axis displays the different ranges of epochs. 

 

Figure 4.19: Depicts the precision metrics curve at 100 epochs 

 

Figure 4.20: Depicts the recall metrics curve at 100 epochs 

 

4.11 Confusion Matrix for 300 Epochs 

The Confusion Matrix for multiclass classification is displayed in Figure 4.21 (in this 

case, 5 classes). The number of TP combinations for every class is displayed on the 

diagonal, from top left to bottom right: 92% of all objects in the class of banana trees, 
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70% of all objects in the class of peppers, 97% of all objects in the class of spinach, 84% 

of all objects in the class of sugarcane, and 45% of all objects in the class of weed were 

properly categorized. Also, 8 % of all objects of the banana class were found by YOLO 

as unknown, another 2 % of all objects of the pepper class were misclassified spinach and 

28 % were found by YOLO as unknown. 3 % of all objects of spinach was found by 

YOLO as unknown, 16 % of all objects of sugarcane class were categorized as unknown. 

55 % of all the objects of weed class were classified as unknown and were not categorized 

by the classifier into any class. 

 

 

Figure 4.21: Confusion matrix for 300 epochs 

4.11.1 Precision and recall values and graphs for 300 epochs 

The precision and recall values are displayed in Table 4.13. The value of Precision ranges 

from 0 (absence of precision) to 1.0 (for an ideal precision). The most accurate class in 

terms of Precision and Recall was ‘spinach’ (at an approximate of 0.809 and 0.927) 
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correspondingly. Preceded with “banana crop”, “sugarcane”, “pepper crop” and “weed 

plant” with Precision and Recall (at approximately 0.458 and 0.319) as the least. This 

indicated that while the classifier was capable of identifying positive samples of 

"spinach," "banana," and "sugarcane", it did not identify as many positive samples of 

"weed". 

Table 4.13: Precision and recall for 300 epochs 

Category Precision Recall 

   

Sugarcane 0.653 0.721 

Spinach 0.809 0.927 

Pepper 0.541 0.650 

Banana 0.685 0.923 

Weed 0.458 0.319 

 

Figure 4.22, depicts the models precision curve metric that determines the proportion of 

accurate bounding box predictions. While Figure 4.23 depicts the recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.22, the model began improving swiftly from around 100 epochs all through to 

300 epochs on the precision curve and in Figure 4.23, the recall curve also improved 

swiftly all the way to 300 epochs which means the model was learning. The precision and 

recall capture the model performance, so the higher they are the better the model becomes. 

The y-axis demonstrates the value of precision for Figure 4.22 and the x-axis displays the 
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different ranges of epochs while the y-axis depicts the recall value for Figure 4.23 and x-

axis shows the different ranges of epochs. 

 

Figure 4.22: Depicts the precision metrics curve at 300 epochs 

 

Figure 4.23: Depicts the recall metrics curve at 300 epochs 
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4.12 Confusion Matrix for 500 Epochs 

The Confusion Matrix for multi - class classification is shown in Figure 4.24 (in this case, 

5 classes). The number of TP elements for each class is displayed on the diagonal (top 

left to bottom right) as follows: 85% of all items in the class of banana trees, 77% of all 

objects in the class of pepper, 94% of all objects in the class of spinach, 83% of all objects 

in the class of sugarcane, and 54% of all objects in the class of weed were properly 

categorized.   Additionally, 15 % of all objects of the banana class were found by YOLO 

as unknown, another 23 % of all objects of the pepper class were found by YOLO as 

unknown. 6 % of all objects of the spinach class were discovered by YOLO as 

unidentified, 17 % of all objects of sugarcane class were categorized as unknown. 1 % of 

all the objects of weed class were classified as sugarcane and 45 % of all objects of weed 

class were found by YOLO as unknown and had not been categorized into any class by 

the classifier. 
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Figure 4.24: Confusion matrix for 500 epochs 

4.12.1 Precision and recall values and graphs for 500 epochs 

As observed in Table 4.14, the most accurate class in terms of Precision and Recall was 

observed to be ‘spinach’ (at an approximate of 0.902 and 0.875) followed by ‘sugarcane’, 

‘weed’, ‘banana’ and ‘pepper’ (at approximately 0.560) as the least. Then the Recall 

values followed in the order of ‘sugarcane’, ‘banana’, ‘pepper’ and ‘weed’ (at 

approximately 0.269) as the least meaning that the classifier was capable of identifying 

Positive samples for “spinach crops”, “banana crops” and “sugarcane crops” but it did 

not identify many positive samples of “weed plants” but with great improvement in 

“weed” Precision initially from ‘0.458’ at 300 epochs to ‘0.747’ at 500 epochs. 
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Table 4.14: Precision and recall for 500 epochs 

Category Precision Recall 

   

Sugarcane 0.876 0.825 

Spinach 0.902 0.875 

Pepper 0.560 0.483 

Banana 0.734 0.769 

Weed 0.747 0.269 

 

Figure 4.25, depicts the models precision curve metric that determines the proportion of 

accurate bounding box predictions. While Figure 4.26 depicts the recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.25, the model began improving swiftly from around 100 epochs all through to 

500 epochs on the precision curve and in Figure 4.26, the recall curve also improved 

swiftly all the way to 500 epochs which means the model was learning. The precision and 

recall capture the model performance, so the higher they are the better the model becomes. 

The y-axis demonstrates the value of precision for Figure 4.25 and the x-axis displays the 

different ranges of epochs while the y-axis depicts the recall value for Figure 4.26 and x-

axis displays the different ranges of epochs. 



94 
 

 

Figure 4.25: Depicts the precision metrics curve at 500 epochs 

 

Figure 4.26: Depicts the recall metrics curve at 500 epochs 

4.13 Confusion Matrix for 600 Epochs 

The Confusion Matrix for multi - class classification is displayed in Figure 4.27 (in this 

case, 5 classes). The number of TP combinations for each class is displayed on the 

diagonal, from top left to bottom right: 100% of all items in the banana tree class, 72% of 

all objects in the pepper class, 94% of all objects in the spinach class, 81% of all objects 

in the sugarcane class, and 56% of all objects in the weed class were properly categorized. 
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Also 28 % of all objects of the pepper class were found by YOLO as unknown. 6 % of 

all objects of the spinach class were found by YOLO as unknown, 19 % of all objects of 

sugarcane class were classified as unknown and 44 % of all objects of weed class were 

found by YOLO as unknown and could not be categorized into any class by the classifier. 

 

Figure 4.27: Confusion matrix for 600 epochs 

4.13.1 Precision and recall values and graphs for 600 epochs 

From the Precision and the Recall values presented in Table 4.15, it can be observed that 

the most accurate class in terms of Precision was “spinach” (at an approximate of 0.932) 

Preceded with “banana crops”, “sugarcane crops”, “weed plants” which improved to 

‘0.782’ and then “pepper” as the least. Also, the most accurate class in terms of Recall 

was “banana crops” (at 1.000) preceded with “spinach crops”, “sugarcane crops”, “pepper 

crops” and “weed plants” (at an approximate of 0.338) that also improved from ‘0.269’ 
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at 500 epochs indicating that the classifier could slowly but steadily recognize positive 

samples of "weed". 

Table 4.15: Precision and recall for 600 epochs 

Category Precision Recall 

Sugarcane 0.814 0.674 

Spinach 0.932 0.906 

Pepper 0.700 0.544 

Banana 0.891 1.000 

Weed 0.782 0.338 

 

Figure 4.28, depicts the models precision curve metric that determines the proportion of 

accurate bounding box predictions. While Figure 4.29 depicts the recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.28, the model began improving swiftly from around 100 epochs all through to 

600 epochs on the precision curve and in Figure 4.29, the recall curve also improved 

swiftly all the way to 600 epochs which means the model was learning. The precision and 

recall capture the model performance, so the higher they are the better the model becomes. 

The y-axis demonstrates the value of precision for Figure 4.28 and the x-axis displays the 

different ranges of epochs while the y-axis depicts the recall value for Figure 4.29 and x-

axis demonstrates the different ranges of epochs. 
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Figure 4.28: Depicts the precision metrics curve at 600 epochs 

 

Figure 4.29: Depicts the recall metrics curve at 600 epochs 

4.14 Confusion Matrix for 700 Epochs 

The Confusion Matrix for multi - class classification is shown in Figure 4.30 (in this case, 

5 classes). The number of TP elements for every class is displayed on the diagonal (top 

left to bottom right) as follows: 92% of all items in the "banana trees" class, 73% in the 
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"pepper" class, 94% in the "spinach" class, 81% in the "sugarcane" class, and 52% in the 

"weed" class were properly categorized. Also, 8 % of all objects of banana class were 

found by YOLO as unknown, 27 % of all objects of the pepper class were found by YOLO 

as unknown. 6 % of all objects of the spinach class were identified as unknown by YOLO, 

19 % of all objects of sugarcane class were classified as unknown and 48 % of all objects 

of weed class were found by YOLO as unknown and could not be categorized by the 

classifier into any class.  

 

 

Figure 4.30: Confusion matrix for 700 epochs 

4.14.1 Precision and recall values and graphs for 700 epochs 

From the Precision and the Recall values displayed in Table 4.16, The classifier appeared 

to be flattening out as the precision values started to decline with an exception for 

‘spinach’ that slightly increased with a ‘0.001’ margin. The value of Precision of “weed 
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plants” reduced from ‘’0.782’ to ‘0.433’ although the value of Recall increased slightly 

from ‘0.338’ to ‘0.429’ this indicates that the loss curve flattened at this epoch, indicating 

that the model training has achieved a saturation level. This suggests that adding more 

epochs than 700 won't result in any substantial improvements in the classification and 

detection of weeds. 

Table 4.16: Precision and recall for 700 epochs 

Category Precision Recall 

   

Sugarcane 0.688 0.744 

Spinach 0.933 0.938 

Pepper 0.654 0.650 

Banana 0.672 0.769 

Weed 0.433 0.429 

 

Figure 4.31, depicts the models precision curve metric that determines the proportion of 

accurate bounding box predictions. While Figure 4.32 depicts the recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.31, the model began improving swiftly from around 100 epochs all through to 

700 epochs on the precision curve and in Figure 4.32, the recall curve also improved 

swiftly all the way to 700 epochs which means the model was learning. The precision and 

recall capture the model performance, so the higher they are the better the model becomes. 

The y-axis demonstrates the value of precision for Figure 4.31 and the x-axis displays the 
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different ranges of epochs while the y-axis depicts the recall value for Figure 4.32 and x-

axis demonstrates the different ranges of epochs. 

 

Figure 4.31: Depicts the precision metrics curve at 700 epochs 

 

Figure 4.32: Depicts the recall metrics curve at 700 epochs 

4.15 Confusion Matrix for 1000 Epochs 

The Confusion Matrix for multi - class classification is shown in Figure 4.33 (in this case, 

5 classes). The number of TP elements for every class is displayed on the diagonal (top 

left to bottom right) as follows: 97% of all items in the spinach class, 86% of all objects 
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in the sugarcane class, 73% of all objects in the pepper class, 85% of all objects in the 

banana tree class, and 47% of all objects in the weed class were properly categorized. 

Also, 15 % of all objects of banana class were found by YOLO as unknown, 27 % of all 

objects of the pepper class were found by YOLO as unknown. 3 % of all objects of the 

spinach class was classed as unidentified by YOLO, 14 % of all objects of sugarcane class 

were classified as unknown and 53 % of all objects of weed class were found by YOLO 

as unknown and could not be categorized into any class by the classifier.  

 

 

Figure 4.33: Confusion matrix for 1000 epochs 
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4.15.1 Precision and recall values and graphs for 1000 epochs 

As observed in table 4.17, the “weed” Precision marginally improved from ‘0.433’ to 

‘0.449’. The value of Recall dropped from 0.429 to 0.403 of which is a direct implication 

that the classifier had already achieved a saturated level. At this point, there was no need 

to proceed further for the iteration. 

Table 4.17: Precision and recall for 1000 epochs 

Category Precision Recall 

   

Sugarcane 0.697 0.767 

Spinach 0.911 0.957 

Pepper 0.710 0.654 

Banana 0.791 0.846 

Weed 0.449 0.403 

 

Figure 4.34, depicts the models precision curve metric that determines the proportion of 

accurate bounding box predictions. While Figure 4.35 depicts the Recall curve metric that 

determines the percentage of the actual bounding box that was successfully predicted. In 

Figure 4.34, the model began improving swiftly from around 100 epochs all through to 

1000 epochs on the precision curve and in Figure 4.35, the Recall curve also improved 

swiftly all the way to 1000 epochs which means the model was learning. The Precision 

and Recall capture the model performance, so the higher they are the better the model 

becomes. The y-axis displays the precision value for Figure 4.34 and the recall value for 
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Figure 4.35, whereas the x-axis displays the different ranges of epochs for both Figure 

4.34 and Figure 4.35. 

 

Figure 4.34: Depicts the precision metrics curve at 1000 epochs 

 

Figure 4.35: Depicts the recall metrics curve at 1000 epochs 

4.16 Cumulative Accuracy Metric Values  

The overall accuracy obtained for 100 epochs was 16 %, 300 epochs was 65 %, 500 

epochs was 66 %, 600 epochs was 67 %, 700 epochs was 65 % and 1000 epochs was 64 

%. Thus there was steady improvement in the accuracies which was observed while 

increasing the number of epochs from 100 to 600 as the batches size for the YOLO v5 

remains the same.  
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At 100 epochs, the observed average Precision was 33%, average of Recall of 19% and 

also, the F1 score of 24%. As soon as the epoch reached 300 epochs, the observed average 

Precision was 63%, average of Recall was 71% and an F1 score of 67%. Also, 500 epochs, 

the observed average Precision was 76%, average of Recall achieved 64% and a F1 score 

of 69%. Subsequently, when increased to 600 epochs, the observed average Precision was 

82%, average of Recall achieved 69% and a F1 score of 75%. At 700 epochs, the observed 

average Precision was 67%, average of Recall achieved 70% and a F1 score of 69%. 

Finally, at 1000 epochs, the observed average Precision was 71%, average of Recall 

achieved 72% and a F1 score of 71% as shown in Table 4.18. Also, all epochs were 

processed on Colab Free having a GPU of K80, RAM of 16GB and runtime of 12hours. 

The expended time for 100 epochs was 4minute 62 seconds, 300 epochs was 11minutes 

88seconds, 500 epochs was 18minutes 48seconds, 600 epochs was 22minutes 92seconds, 

700 epochs was 25minutes 86seconds, and 1000 epochs was 38minutes 22seconds. 

Table 4.18 compares and contrasts each one of the epochs' Accuracies, average 

Precisions, average Recalls, and then the F1 scores. When contrasted to other epochs, 

YOLO v5 model at 600 epochs and batch size of 32, exhibited the best Precision, 

Accuracy, Recall and F1 score outcomes, indicating it to be the best training epoch for 

accurate weed and crop recognition.  
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Table 4.18: Showing the cumulative accuracy metrics of YOLO v5 

Epochs Accuracy Average 

Precision 

Average 

Recall 

F1 score 

     

100  0.160 0.334 0.190 0.242 

300  0.646 0.629 

 

0.708 0.666 

 

500  0.655 0.764 0.644 0. 699 

 

600  0.671 0.823 

 

0.692 

 

0. 752 

700  0.653 0.676 0.706 0.691 

 

1000  0.648 0.712 

 

0.725 

 

0.718 

 

The accuracy of the categorization estimates for weed performance for the automatic 

weed categorization was evaluated and the result from 100 epochs yielded a 16 % in 

classification accuracy, Precision of weed was 5 % and a Recall of weed was 13 %. For 

300 epochs, the classification accuracy of 65 % was gotten; Precision of weed was 

observed to be 46 % and the Recall for weed was achieved at 32 %. For 500 epochs, a 

classification accuracy having 66 % was achieved; with a Precision of weed at 75 % and 

an observed Recall of weed at 27 %. At 600 epochs, it also yielded a 67 % in classification 
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accuracy; a Precision of weed at 78 % and a Recall of weed at 34 % was achieved. At 

700 epochs, 65 % of classification accuracy was achieved; including a Precision weed of 

43 % and a Recall of weed at 43 %. Finally, at 1000 epochs, the classification accuracy 

of 65 % was achieved; with a Precision of weed at 45 % and also a Recall of weed at 40 

% was achieved over the evaluation metrics. 

In addition, it was discovered that the autonomous weed classification classifier's 

maximum weed precision (78%) was attained at 600 epochs, whereas the weed accuracy 

began to decline at 700 epochs, when it fell to (43%). Also, there was no significant 

improvement above 1000 epochs in the accuracy of weeds after increasing the epochs 

from 600 through to 1000 epochs. 

4.17 Output of the Model on the Testing Dataset 

The weed pattern visualization outcomes displayed in Plate X down to Plate XV which 

was done to observe the weeds of various sizes that have been identified within the mixed 

cropping farm containing sugarcane, pepper, banana and spinach crops. In Plate X at 100 

epochs, the yolov5s model was able to identify and classify weeds within the irrigated 

farm at approximately 63 % in precision. This was due to the fact that epoch used was 

too small for the model to completely learn. Plate XI at 300 epochs, the algorithm was 

able to classify weeds to a precision of 63 %. In Plate XII at 500 epochs, the model 

classified weeds to a precision of 74 %. At 600 epochs in Plate XIII, weeds were classified 

to a precision of 78 % within the farm. Furthermore, weed class was identified and 

classified to a precision of approximately 63 % in Plate XIV at 700 epochs and finally at 

1000 epochs in Plate XV, weeds were classified with an accuracy of 51 %. From the 

different epochs employed during training of the model, it was observed  that at 600 

epochs, the precision of weed reached it maximum state of 78 % and began to decline 
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with increase in the numbers of epochs from 600 epochs to 700 epochs at 63 % and finally 

to 51 % at 1000 epochs. This implies that the model can indeed predict weeds more 

accurately at 600 epochs, which is crucial for agricultural weed identification and 

classification purposes. 

 

Plate X: Weed classification results on test images at 100 epochs 
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Plate XI: Weed classification results on test images at 300 epochs 
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Plate XII: Weed classification results on test images at 500 epochs 
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Plate XIII: Weed classification results on test images at 600 epochs 
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Plate XIV: Weed classification results on test images at 700 epochs 
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Plate XV: Weed classification results on test images at 1000 epochs 
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4.18 Comparing the Performance of Faster RCNN and YOLO v5 Based on 

Results Obtained from the Overall Classification Accuracies, Weed Precision and 

Weed Recall  

The classifiers utilized have varying degrees of overall classification accuracy (Faster 

RCNN and YOLOv5s). As shown in Table 4.19, Faster RCNN exhibited the highest 

overall accuracies. Notably lower accuracies were observed using YOLOv5s. Using the 

Faster RCNN classifier, the lowest accuracies were realised at 10,000 epochs with an 

overall accuracy of 52%, weed precision of 50% and weed recall of 8% while the at 

200,000 epoch, the highest level of accuracies and saturated point were achieved with 

98% 0verall accuracy, 98% weed precision and 99% weed recall. While the minimum 

epoch of YOLOv5s classification at 100 epochs achieved the overall accuracy of 16%, 

weed precision of 5% and 1% for the weed recall. Furthermore, the classifier achieved a 

maximum weed precision at 600 epochs with a weed precision of 78%, weed recall of 

34% and an overall accuracy of 67%. With only 5 % for the lowest weed precision and 

of 78% for the highest weed precision of YOLOv5s, this exhibited by far a lesser 

accuracy. The Faster RCNN Deep Learning exhibited a better classification output 

making it the best classifier suitable for automatic weed identification and classification. 
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Table 4.19: Accuracy comparison of the minimal and maximal achievable accuracy 

epochs of both classifiers 

  

Classifier Epochs Overall 

accuracy 

Weed 

precision 

Weed 

recall 

     

Faster RCNN 10,000 (MIN) 0.526 0.500 0.078 

200,000 (MAX) 0.984 0.981 

 

0.992 

 

YOLOv5s 100 (MIN) 0.160 0.0504 0. 013 

600 (MAX) 0.671 0. 782 0. 338 

 

4.18.1 Processing time 

Time complexity varies significantly depending on the classifier and the number of 

observations. The model that required the most time to train, with an average of 27.8 

minutes (min) and 7.9 hours (max) per classification, was the Faster Region based 

Convolutional Neural Network algorithm this was due to the number of epochs, the model 

architecture, layers and parameters used which made the Faster RCNN take longer time. 

With YOLOv5, having a less complex architecture and lesser hyperparameters, the 

calculation times was shorter at 4minute 62 seconds and 18minutes 48seconds. Table 4.20 

depicts the minimum and maximum processing time for training both Deep Learning 

models. 
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Table 4.20: The minimum and maximum processing time for training the selected 

deep learning algorithms 

Classifiers Epochs Training time per 

classification 

   

Faster RCNN 10,000 (MIN) 27minutes 8seconds 

200,000 (MAX) 7hours 9minutes 

  

YOLOv5s 100 (MIN) 5minute 2seconds 

500 (MAX) 23minutes 38seconds 

 

In this research, YOLOv5 was discovered as being the least satisfactory classifier 

amongst the other deep-learning approach. With minimal computation times and no 

parameters that need to be tuned, Deep Learning delivers the most convenient usage. 

Notwithstanding, the poor categorization performance outweighs these benefits 

especially when classifying weeds that are small due to only two anchor boxes in a grid 

predicting only one class of object. Faster RCNN in comparison it is simple to apply, as 

just one variable is required to be set by the user and it can detect smaller weeds well 

since it has nine anchors in a single grid. After weighing every factor, including 

classification accuracy, robustness, calculation complexity, and intuitiveness, Faster 

RCNN was shown to be the better option for leveraging data supplied by UAVs to classify 

weeds and other crop kinds. Comparing this strategy to the YOLOv5s model, it performed 

better and was more robust in categorization. 
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CHAPTER FIVE 

5.0                                   Conclusion and Recommendations 

5.1 Summary of Findings 

This research explored the performance of two models in weed classification which are 

the Faster RCNN inception v2 model and YOLOv5s architecture making use of 

Unmanned Aerial Vehicle imagery to automatically distinguish and classify weed plants 

from crops within an irrigated farm in Minna the state capital of Niger State.  

After the implementation of the classification models (Faster RCNN and YOLO v5) for 

the identification and classification of weeds, the following findings were generated: 

(i) It was discovered that the accuracy of the models increased with increase in 

training epochs until the models were saturated. 

(ii) YOLO v5 was discovered to be the fastest in terms of runtime as compared to the 

Faster RCNN model which took greater time to complete its classification. 

(iii) It was also discovered that the Faster RCNN out-performed the YOLO v5 

classifier in aspects of performance accuracy in the development of the UAV 

based automatic crop type classification and weed detection scheme. 

 5.2 Conclusion 

Better accuracy in numerous real-time applications has been made possible by the 

enormous advances in Deep Learning techniques. This study has demonstrated the 

usability of Deep Learning strategies, specifically, Faster RCNN and YOLO v5 

algorithms, for weed identification and classification. The effectiveness of the Faster 

Region based Convolutional Neural Network applied and the YOLO v5 were assessed 
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employing metrics which include accuracy, the precision, the recall, and a F1 score and 

demonstrated to be exceptionally competent of autonomously recognizing and classifying 

weed plants in a mixed farmland from UAV data with the use of the documented loss 

function and confusion matrix. 

In summary, YOLOv5 showed advantages in fast computation times while achieving 

comparable detection accuracies in the identification and categorisation of weeds from a 

mixed farm as compare to Faster RCNN. Also, after assessing every metric, notably 

classification accuracy, the Precision, the Recall and a F1 score, Faster RCNN 

architecture appeared to be the most effective and accurate classification approach of 

weeds from various crop kinds employing Unmanned Aerial Vehicle imagery. 

Subsequently, it was also observed that the increase in epochs influences the accuracy of 

the classification model. With this, the aim of the research of implementing and 

evaluating the performance of the Deep Learning algorithms investigated was achieved. 

5.3 Recommendations 

From the findings of this research, it is recommended that spectral and spatial resolutions 

to optimise the flight mission to capture the size of the smaller weeds to be discriminated 

for better performance accuracy and also, it is recommended in Faster RCNN not to go 

above a maximum training of 200,000 epochs and below a minimum training of 10,000 

epochs for accurate performance and for the YOLO v5, it is advised not to exceed a 

maximum training epoch of 600 and a minimum training epoch of 100 for a good 

performance output. Hyper-parameter tunning and data augmentation (artificially 

increasing the training set by creating modified copies of a dataset using existing data) 

could be done to observe how they affect the models accuracy. 
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5.4 Contributions to Knowledge 

i. Performance accuracy increases with increase in training epochs for the selected 

Deep Learning models. 

ii. The Faster Region-based Convolutional Neural Network out performs the YOLO 

v5 algorithm in terms of Accuracy, average Precision, average Recall and F1 

score. 

iii. This research have made the application of the right quantity of farm inputs 

(water, manure/fertilizers and herbicides) more precise and also mitigated 

excessive chemical use.  

5.5 Future Work 

Further research should be carried out to further compare the effectiveness of Faster 

Region based Convolutional Neural Network model with a few other powerful Deep 

Learning methods to discover faster and more accurate models for weed detection on 

small farmlands while taking images at a distance less than 30m and closer for smaller 

weeds so they appear larger in the image.  

 

 

  

 

 

 

 



119 
 

REFERENCES 

Adamchuk, V. I., Bernards, M. L., & Meyer, G. E. (2008). EC08-708 Precision 

Agriculture: Weed Targeting Herbicide Management. Historical Materials from 

University of Nebraska-Lincoln Extension, 4871. 

Adekunle, I. O. (2013). Precision agriculture: Applicability and opportunities for 

Nigerian agriculture. Middle-East Journal of Scientific Research, 13(9), 1230-

1237, doi: 10.5829/idosi.mejsr.2013.13.9.1004 

Akbar, S., Peikari, M., Salama, S., Nofech-Mozes, S., & Martel, A. (2017). Transitioning 

between convolutional and fully connected layers in neural networks. In Deep 

Learning in Medical Image Analysis and Multimodal Learning for Clinical 

Decision Support (pp. 143-150), doi: 10.1007/978-3-319-67558-9_17 

Akobundu, I. O. (1987). Weed science in the tropics. Principles and practices. (p. 522). 

John Wiley. https://doi.org/19880711194 

Alamsyah, A., Saputra, M. A. A., & Masrury, R. A. (2019). Object detection using 

convolutional neural network to identify popular fashion product. In Journal of 

Physics: Conference Series, 1192(1), 012040, doi: 10.1088/1742-

6596/1192/1/012040 

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional 

neural network. In 2017 international conference on engineering and technology 

(ICET) (pp. 1-6), doi: 10.1109/ICEngTechnol.2017.8308186 

Alexandratos, N. & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 

revision. ESA Working paper, No. 12-03. Rome, FAO, doi 

10.22004/ag.econ.288998 

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., & Asari, 

V. K. (2019). A state-of-the-art survey on Deep Learning theory and architectures. 

Electronics, 8(3), 292, https://doi.org/10.3390/electronics8030292 

Alotaibi, M., & Mahmood, A. (2017). Improved gait recognition based on specialized 

deep convolutional neural network. Computer Vision and Image Understanding, 

164, 103-110, https://doi.org/10.1016/j.cviu.2017.10.004 

Al-Saffar, A.A.M., Tao, H., & Talab, M.A. (2017). Review of deep convolution neural 

network in image classification, in: Radar, Antenna, Microwave, Electronics, and 

Telecommunications (ICRAMET), 2017 International Conference on, IEEE, (pp. 

26–31), doi: 10.1109/ICRAMET.2017.8253139 

Annett, R., Habibi, H.R., & Hontela, A., (2014). Impact of glyphosate and glyphosate- 

based herbicides on the freshwater environment. Journal of Applied Toxicology, 

34, 458-479, https://doi.org/10.1002/jat.2997  

 

https://doi.org/19880711194
https://doi.org/10.1109/ICEngTechnol.2017.8308186
http://dx.doi.org/10.22004/ag.econ.288998
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1016/j.cviu.2017.10.004
https://doi.org/10.1109/ICRAMET.2017.8253139
https://doi.org/10.1002/jat.2997


120 
 

Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020). 

Deep Learning techniques for estimation of the yield and size of citrus fruits using 

a UAV. European Journal of Agronomy, 115, 126030, 

https://doi.org/10.1016/j.eja.2020.126030 

Azizah, L. M. R., Umayah, S. F., Riyadi, S., Damarjati, C., & Utama, N. A. (2017). Deep 

Learning implementation using convolutional neural network in mangosteen 

surface defect detection. In 2017 7th IEEE international conference on control 

system, computing and engineering (ICCSCE) (pp. 242-246), doi: 

10.1109/ICCSCE.2017.8284412 

Bah, M. D., Dericquebourg, E., Hafiane, A., & Canals, R. (2018a). Deep Learning based 

classification system for identifying weeds using high-resolution UAV imagery. In 

Science and Information Conference (pp. 176-187), doi: 10.1007/978-3-030-

01177-2_13 

Bah, M.D., Hafiane, A., Canals, R. (2018b). Deep Learning with Unsupervised Data 

Labeling forWeed Detection in Line Crops in UAV Images. Remote Sensing, 10, 

1690, https://doi.org/10.3390/rs10111690 

Bajwa, A. A. (2014). Sustainable weed management in conservation agriculture. Crop 

protection, 65, 105-113, https://doi.org/10.1016/j.cropro.2014.07.014 

Batte, M., & Van-Buren, R. (1999). Precision farming: A factor influencing productivity. 

Paper presented at the Northern Ohio Crops Day Meeting. Woody County OH, 

Ohio, USA. 

Beeharry, Y., & Bassoo, V. (2020). Performance of ANN and AlexNet for weed detection 

using UAV-based images. In 2020 3rd International Conference on Emerging 

Trends in Electrical, Electronic and Communications Engineering (ELECOM) (pp. 

163-167), doi: 10.1109/ELECOM49001.2020.9296994 

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends in 

Machine Learning, 2(1), 1-127, http://dx.doi.org/10.1561/2200000006 

Bergin, D., (2011). Weed Control Options for Coastal Sand Dunes: a Review. New 

Zealand Forest Research Institute LTD, (pp. 5-13). 

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., & Ghayvat, H. (2021). 

CNN Variants for Computer Vision: History, Architecture, Application, Challenges 

and Future Scope. Electronics, 10(20), 2470, 

https://doi.org/10.3390/electronics10202470 

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of 

photogrammetry and remote sensing, 65(1), 2-16, 

https://doi.org/10.1016/j.isprsjprs.2009.06.004 

Bond, W., & Grundy, A. C. (2001). Non‐chemical weed management in organic farming 

systems. Weed research, 41(5), 383-405, https://doi.org/10.1046/j.1365-

3180.2001.00246.x 

https://doi.org/10.1016/j.eja.2020.126030
https://doi.org/10.1109/ICCSCE.2017.8284412
https://doi.org/10.3390/rs10111690
https://doi.org/10.1016/j.cropro.2014.07.014
https://doi.org/10.1109/ELECOM49001.2020.9296994
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1046/j.1365-3180.2001.00246.x
https://doi.org/10.1046/j.1365-3180.2001.00246.x


121 
 

Bonotis, P.A., Tsouros, D.C., Smyrlis, P.N., Tzallas, A.T., Giannakeas, N., Evripidis, G., 

& Tsipouras, M.G. (2019). Automated Assesment of Pain Intensity based on EEG 

Signal Analysis. In Proceedings of the IEEE 19th International Conference on 

BioInformatics and BioEngineering, doi: 10.1109/BIBE.2019.00111 

Bontonou, M., Lassance, C., Hacene, G. B., Gripon, V., Tang, J., & Ortega, A. (2019). 

Introducing graph smoothness loss for training  deep learning architectures. In 2019 

IEEE Data Science Workshop (DSW) (pp. 160-164). IEEE. 

Brejda, J.J., Moorman, T. B., Smith, J.L., Karlen, D.L., Allan, D.L. & Dao, T.H. (2000). 

Distribution and variability of surface soil properties at a regional scale. Soil 

Science Society of American Journal, 64(3), 974-982, 

https://doi.org/10.13140/RG.2.2.19360.79362 

Browne, M., Ghidary, S. S., & Mayer, N. M. (2008). Convolutional neural networks for 

image processing with applications in mobile robotics. In Speech, Audio, Image and 

Biomedical Signal Processing using Neural Networks (pp. 327-349), 

https://doi.org/10.1007/978-3-540-75398-8_15 

Brownlee, J. (2018). What is the Difference between a Batch and an Epoch in a Neural 

Network. Machine Learning Mastery, 20. Retrieved from: 

https://deeplearning.lipingyang.org/wp-content/uploads/2018/07/What-is-the-

Difference-Between-a-Batch-and-an-Epoch-in-a-Neural-Network_.pdf 

Carballido, J., Rodríguez-Lizana, A., Agüera, J., & Perez-Ruiz, M. (2013). Field sprayer 

for inter and intra-row weed control: performance and labor savings. Spanish 

Journal of Agricultural Research, 11, 642-651, 

http://dx.doi.org/10.5424/sjar/2013113-3812 

Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T., Bian, G. B., De Albuquerque, V. 

H. C., & Reboucas-Filho, P. P. (2018). Performance analysis of google colaboratory 

as a tool for accelerating Deep Learning applications. IEEE Access, 6, 61677-

61685, doi: 10.1109/ACCESS.2018.2874767 

Cevallos, J. C., Villagomez, J. A., & Andryshchenko, I. S. (2019). Convolutional neural 

network in the recognition of spatial images of sugarcane crops in the troncal region 

of the coast of Ecuador. Procedia Computer Science, 150, 757-763, 

https://doi.org/10.1016/j.procs.2019.02.001 

Champ, J., Mora‐Fallas, A., Goëau, H., Mata‐Montero, E., Bonnet, P., & Joly, A. (2020). 

Instance segmentation for the fine detection of crop and weed plants by precision 

agricultural robots. Applications in plant sciences, 8(7), e11373, 

https://doi.org/10.1002/aps3.11373 

Chang, L., Deng, X., Zhou, M., Wu, Z., Yuan, Y., Yang, S., & Wang, H. (2016). 

Convolution neural network in image understanding. ACTA automatic sinica, 

42(09), 1300-1312. 

Chauhan, B. S. (2020). Grand challenges in weed management. Frontiers in Agronomy, 

1, 3, https://doi.org/10.3389/fagro.2019.00003 

https://doi.org/10.1109/BIBE.2019.00111
https://doi.org/10.13140/RG.2.2.19360.79362
http://dx.doi.org/10.5424/sjar/2013113-3812
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.1016/j.procs.2019.02.001
https://doi.org/10.3389/fagro.2019.00003


122 
 

Chauvel, B., Guillemin, J. P., Gasquez, J., & Gauvrit, C. (2012). History of chemical 

weeding from 1944 to 2011 in France: Changes and evolution of herbicide 

molecules. Crop Protection, 42, 320-326, 

https://doi.org/10.1016/j.cropro.2012.07.011 

Chelghoum, R., Ikhlef, A., Hameurlaine, A., & Jacquir, S. (2020). Transfer learning using 

convolutional neural network architectures for brain tumor classification from MRI 

images. In IFIP International Conference on Artificial Intelligence Applications 

and Innovations (pp. 189-200).  

Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., Huang, Y. M. (2021a). 

Identification of Fruit Tree Pests with Deep Learning on Embedded Drone to 

Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997, doi: 

10.1109/ACCESS.2021.3056082 

Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021b). Review of Image 

Classification Algorithms Based on Convolutional Neural Networks. Remote 

Sensing, 13(22), 4712, https://doi.org/10.3390/rs13224712 

Chen, S., Wang, H., Xu, F., & Jin, Y. Q. (2016). Target classification using the deep 

convolutional networks for SAR images. IEEE transactions on geoscience and 

remote sensing, 54(8), 4806-4817, doi: 10.1109/TGRS.2016.2551720 

Chen, Y. P., Li, Y., Wang, G., & Xu, Q. (2018). A multi-strategy region proposal network. 

Expert Systems with Applications, 113, 1-17, 

https://doi.org/10.1016/j.eswa.2018.06.043 

Chen, Y. Q., Peng, S. U. I., Chen, L. U. A. N., & SHI, X. P. (2012). Xanthium suppression 

under maize|| sunflower intercropping system. Journal of Integrative Agriculture, 

11(6), 1026-1037, https://doi.org/10.1016/S2095-3119(12)60095-1 

Chen, Y., Lee, W.S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019). 

Strawberry Yield Prediction Based on a Deep Neural Network Using High-

Resolution Aerial Orthoimages. Remote Sensing, 11, 1584, 

https://doi.org/10.3390/rs11131584 

Chi, Z., Li, Y., & Chen, C. (2019). Deep convolutional neural network combined with 

concatenated spectrogram for environmental sound classification. In 2019 IEEE 7th 

International Conference on Computer Science and Network Technology (ICCSNT) 

(pp. 251-254). 

Colombo-Filho, M. E., Mello Galliez, R., Andrade Bernardi, F., Oliveira, L. L. D., 

Kritski, A., Koenigkam Santos, M., & Alves, D. (2020). Preliminary results on 

pulmonary tuberculosis detection in chest x-ray using convolutional neural 

networks. In International Conference on Computational Science (pp. 563-576).  

Combarnous, Y. (2017). Endocrine Disruptor Compounds (EDCs) and agriculture: The 

case of pesticides. Comptes Rendus Biologies, 340(9-10), 406-409, 

https://doi.org/10.1016/j.crvi.2017.07.009 

https://doi.org/10.1016/j.cropro.2012.07.011
https://doi.org/10.1109/ACCESS.2021.3056082
https://doi.org/10.3390/rs13224712
https://doi.org/10.1109/TGRS.2016.2551720
https://doi.org/10.1016/j.eswa.2018.06.043
https://doi.org/10.1016/S2095-3119(12)60095-1


123 
 

Crookston, R. K. (2006). A top 10 list of developments and issues impacting crop 

management and ecology during the past 50 years. Crop science, 46(5), 2253-2262, 

https://doi.org/10.2135/cropsci2005.11.0416gas 

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018).  Identification of 

Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural 

Networks. Drones, 2, 39, https://doi.org/10.3390/drones2040039 

Cui, D., & Curry, D. (2005). Prediction in marketing using the support vector machine. 

Marketing Science, 24(4), 595-615, https://doi.org/10.1287/mksc.1050.0123 

Da Costa Lima, A., & Mendes, K. F. (2020). Variable rate application of herbicides for 

weed management in pre-and postemergence. In Pests, weeds and diseases in 

agricultural crop and animal husbandry production, doi: 

https://dx.doi.org/10.5772/intechopen.93558 

Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A survey of Deep Learning 

and its applications: a new paradigm to machine learning. Archives of 

Computational Methods in Engineering, 27(4), 1071-1092, 

https://doi.org/10.1007/s10462-018-9633-3 

De Camargo, T., Schirrmann, M., Landwehr, N., Dammer, K. H., & Pflanz, M. (2021). 

Optimized Deep Learning model as a basis for fast UAV mapping of weed species 

in winter wheat crops. Remote Sensing, 13(9), 1704, 

https://doi.org/10.3390/rs13091704 

De Castro, A. I., Jurado-Expósito, M., Peña-Barragán, J. M., & López-Granados, F. 

(2012). Airborne multi-spectral imagery for mapping cruciferous weeds in cereal 

and legume crops. Precision Agriculture, 13(3), 302-321, 

https://doi.org/10.1007/s11119-011-9247-0 

De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & 

López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early 

weed mapping between and within crop rows using UAV imagery. Remote Sensing, 

10(2), 285, doi.org/10.3390/rs10020285 

Di Cicco, M., Potena, C., Grisetti, G., & Pretto, A. (2017). Automatic model based dataset 

generation for fast and accurate crop and weeds detection. In 2017 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS) (pp. 5188-

5195).  

Di-Tomaso, J. M., Monaco, T. A., James, J. J., & Firn, J. (2017). Invasive plant species 

and novel rangeland systems. In Rangeland systems, (pp. 429-465), doi: 

10.1007/978-3-319-46709-2 

Dogo, E. M., Afolabi, O. J., Nwulu, N. I., Twala, B., & Aigbavboa, C. O. (2018). A 

comparative analysis of gradient descent-based optimization algorithms on 

convolutional neural networks. In 2018 international conference on computational 

techniques, electronics and mechanical systems (CTEMS) (pp. 92-99), 

https://doi.org/10.1109/CTEMS.2018.8769211 

https://doi.org/10.3390/drones2040039
https://doi.org/10.3390/rs13091704
https://doi.org/10.1007/s11119-011-9247-0


124 
 

Dose, H., Møller, J. S., Iversen, H. K., & Puthusserypady, S. (2018). An end-to-end Deep 

Learning approach to MI-EEG signal classification for BCIs. Expert Systems with 

Applications, 114, 532-542, https://doi.org/10.1016/j.eswa.2018.08.031 

Du, J. (2018). Understanding of object detection based on CNN family and YOLO. In 

Journal of Physics: Conference Series, 1004(1), 012029. IOP Publishing, doi: 

10.1088/1742-6596/1004/1/012029 

Dwivedi, A., Naresh, R., Kumar, R., Yadav, R.S. & Kumar, R. (2017). Precision 

Agriculture. In Promoting Agri-Hortucultural, Technological Innovations, (pp. 83-

105).  

Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using 

deep convolutional neural network. Biosystems engineering, 151, 72-80, 

https://doi.org/10.1016/j.biosystemseng.2016.08.024 

Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., & Maggio, A. (2021). Drone and 

sensor technology for sustainable weed management: A review. Chemical and 

Biological Technologies in Agriculture, 8(1), 1-11, https://doi.org/10.1186/s40538-

021-00217-8 

Everingham, M., Eslami, S. M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, 

A. (2015). The pascal visual object classes challenge: A retrospective. International 

journal of computer vision, 111(1), 98-136, https://doi.org/10.1007/s11263-014-

0733-5 

Farooq, O., Mubeen, K., Ali, H. H., & Ahmad, S. (2019). Non-chemical Weed 

Management for Field Crops. In Agronomic Crops, (pp. 317-348), doi: 

10.1007/978-981-32-9783-8_16 

Francies, M. L., Ata, M. M., & Mohamed, M. A. (2022). A robust multiclass 3D object 

recognition based on modern YOLO Deep Learning algorithms. Concurrency and 

Computation: Practice and Experience, 34(1), e6517, 

https://doi.org/10.1002/cpe.6517 

Gemtos, T., Fountas, S., Tagarakis, A., & Liakos, V. (2013). Precision agriculture 

application in fruit crops: Experience in handpicked fruits. Procedia Technology, 

8, 324-332, https://doi.org/10.1016/j.protcy.2013.11.043 

Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I. W., Sanchez, C. I., Litjens, 

G., & Platel, B. (2017). Location sensitive deep convolutional neural networks for 

segmentation of white matter hyperintensities. Scientific Reports, 7(1), 1-12, 

https://doi.org/10.1038/s41598-017-05300-5 

Gianessi, L. P. (2013). The increasing importance of herbicides in worldwide crop 

production. Pest management science, 69(10), 1099-1105, 

https://doi.org/10.1002/ps.3598 

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on 

computer vision, (pp. 1440-1448). 

https://doi.org/10.1016/j.biosystemseng.2016.08.024
https://doi.org/10.1186/s40538-021-00217-8
https://doi.org/10.1186/s40538-021-00217-8
https://doi.org/10.1016/j.protcy.2013.11.043
https://doi.org/10.1038/s41598-017-05300-5


125 
 

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2015). Region-based convolutional 

networks for accurate object detection and segmentation. IEEE transactions on 

pattern analysis and machine intelligence, 38(1), 142-158, doi: 

10.1109/TPAMI.2015.2437384 

Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014). Multi-scale orderless pooling of 

deep convolutional activation features. In European conference on computer vision, 

(pp. 392-407).  

Gothai, E., Natesan, P., Aishwariya, S., Aarthy, T. B., & Singh, G. B. (2020). Weed 

Identification using Convolutional Neural Network and Convolutional Neural 

Network Architectures. In 2020 Fourth International Conference on Computing 

Methodologies and Communication (ICCMC), (pp. 958-965). 

Grenzdörffer, G. J., Engel, A., & Teichert, B. (2008). The photogrammetric potential of 

low-cost UAVs in forestry and agriculture. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 1207-

1214. 

Griepentrog, H. W., & Dedousis, A. P. (2010). Mechanical weed control. In Soil 

Engineering, 171-179, doi: 10.1007/978-3-642-03681-1_11 

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., & Chen, T. (2018). Recent 

advances in convolutional neural networks. Pattern recognition, 77, 354-377. 

Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., Jones, & M. G. (2021). A survey of 

Deep Learning techniques for weed detection from images. Computers and 

Electronics in Agriculture, 184, 106067. 

https://doi.org/10.1016/j.compag.2021.106067 

Hashemi-Beni, L., & Gebrehiwot, A. (2020). Deep Learning for remote sensing image 

classification for agriculture applications. The International Archives of 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 51-54, 

https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-51-2020 

Hassanein, M., & El-sheimy, N. (2017). Efficient Weed Detection Using Low-Cost UAV 

System. In Proceedings of the 10th International Conference for Mobile Mapping 

Technology. 

He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. In 

Proceedings of the IEEE conference on computer vision and pattern recognition, 

(pp. 5353-5360). 

He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Spatial pyramid pooling in deep 

convolutional networks for visual recognition. IEEE transactions on pattern 

analysis and machine intelligence, 37(9), 1904-1916, 

https://doi.org/10.1109/TPAMI.2015.2389824 

He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing 

human-level performance on imagenet classification, in: IEEE International 

Conference on Computer Vision (ICCV), (pp. 1026–1034). 

https://doi.org/10.1109/TPAMI.2015.2437384


126 
 

Hemanth, A. S. (2022). Face Mask Detection Using YOLO v5. IJNRD-International 

Journal of Novel Research and Development (IJNRD), 7(5), 390-395. 

Hervás Martínez, C., Pérez Ortiz, M., Peña Barragán, J. M., Gutiérrez, P. A., Torres 

Sánchez, J., & López Granados, F. (2015). A weed monitoring system using UAV-

imagery and the Hough transform. In XV Congress of the Spanish Society of 

Malherbology: Malherbology and technology transfer: Seville, October 19-22, 

2015, (pp. 233-239).  

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in 

sustainable agriculture. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 363(1491), 543-555, https://doi.org/10.1098/rstb.2007.2169 

Hoiem, D., Gupta, T., Li, Z., & Shlapentokh-Rothman, M. (2021). Learning curves for 

analysis of deep networks. In International conference on machine learning (pp. 

4287-4296). PMLR. 

Hoppin, J. A. (2014). Pesticides and respiratory health: where do we go from here? 

Occupational and environmental medicine, 71(2), 80-80, 

http://dx.doi.org/10.1136/oemed-2013-101876 

Hu, G., Yin, C., Wan, M., Zhang, Y., & Fang, Y. (2020). Recognition of diseased Pinus 

trees in UAV images using Deep Learning and AdaBoost classifier. Biosystems 

Engineering, 194, 138-151, https://doi.org/10.1016/j.biosystemseng.2020.03.021 

Hu, Y. (2021). Traffic Fatality Rate Prediction Based on Deep Neural Network and 

Bayesian Neural Network (Doctoral dissertation, Northern Illinois University). 

Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., & Zhang, L. (2018). A fully 

convolutional network for weed mapping of unmanned aerial vehicle (UAV) 

imagery. PloS one, 13(4), e0196302. 

Huang, H., Deng, J., Lan, Y., Yang, A., Zhang, L., Wen, S., & Deng, Y. (2019). Detection 

of helminthosporium leaf blotch disease based on UAV imagery. Applied Sciences, 

9(3), 558, https://doi.org/10.3390/app9030558 

Huang, J., Zhou, W., Li, H., & Li, W. (2015). Sign language recognition using 3d 

convolutional neural networks. In 2015 IEEE international conference on 

multimedia and expo (ICME), (pp. 1-6). 

Huang, N. F., Chou, D. L., Lee, C. A., Wu, F. P., Chuang, A. C., Chen, Y. H., & Tsai, Y. 

C. (2020). Smart agriculture: real-time classification of green coffee beans by using 

a convolutional neural network. IET Smart Cities, 2(4), 167-172, 

https://doi.org/10.1049/iet-smc.2020.0068 

Huang, Y., & Thomson, S. J. (2015). Remote sensing for cotton farming. Cotton, 57, 439-

464, https://doi.org/10.2134/agronmonogr57.2013.0030  

Ide, H., & Kurita, T. (2017). Improvement of learning for CNN with ReLU activation by 

sparse regularization. In 2017 International Joint Conference on Neural Networks 

(IJCNN), (pp. 2684-2691). 



127 
 

Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual understanding 

of convolutional neural network-a Deep Learning approach. Procedia computer 

science, 132, 679-688, https://doi.org/10.1016/j.procs.2018.05.069 

Islam, S. S., Rahman, S., Rahman, M. M., Dey, E. K., & Shoyaib, M. (2016). Application 

of Deep Learning to computer vision: A comprehensive study. In 2016 5th 

international conference on informatics, electronics and vision (ICIEV) (pp. 592-

597). 

Jabir, B., & Falih, N. (2022). Deep Learning-based decision support system for weeds 

detection in wheat fields. International Journal of Electrical and Computer 

Engineering, 12(1), 816, doi: 10.11591/ijece.v12i1.pp816-825 

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed 

control in agricultural systems. Crop protection, 72, 57-65, 

https://doi.org/10.1016/j.cropro.2015.03.004 

Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., & Song, C. (2020). CNN feature 

based graph convolutional network for weed and crop recognition in smart farming. 

Computers and Electronics in Agriculture, 174, 105450, 

https://doi.org/10.1016/j.compag.2020.105450 

Jocher, G., Nishimura, K., Mineeva, T., & Vilariño, R. (2020). YOLOv5 (2020). 

Retrieved from GitHub repository: https://github.com/ultralytics/yolov5 

Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric 

spaces and vegetation indices for vine diseases detection in UAV images. 

Computers and electronics in agriculture, 155, 237-243, 

https://doi.org/10.1016/j.compag.2018.10.006 

Kerkech, M., Hafiane, A., & Canals, R. (2020). VddNet: Vine Disease Detection Network 

Based on Multispectral Images and Depth Map. Remote Sensing, 12(20), 3305, 

https://doi.org/10.3390/rs12203305 

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent 

architectures of deep convolutional neural networks. Artificial intelligence review, 

53(8), 5455-5516. 

Kilichan, R., & Yilmaz, M. (2020). Artificial intelligence and robotic technologies in 

tourism and hospitality industry. Erciyes University Journal of Social Sciences 

Institute, (50), 353-380, https://doi.org/10.48070/erusosbilder.838193 

Kim, D., Park, S., Kang, D., & Paik, J. (2019). Improved center and scale prediction-

based pedestrian detection using convolutional block. In 2019 IEEE 9th 

International Conference on Consumer Electronics (ICCE-Berlin) (pp. 418-419). 

Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: revisiting data 

analysis. Weed Science, 63(SP1), 188-202, https://doi.org/10.1614/WS-D-14-

00035.1 

https://github.com/ultralytics/yolov5
https://doi.org/10.1614/WS-D-14-00035.1
https://doi.org/10.1614/WS-D-14-00035.1


128 
 

Kramer, O. (2013). K-nearest neighbors. In Dimensionality reduction with unsupervised 

nearest neighbors (pp. 13-23). Springer, Berlin, Heidelberg, 

https://doi.org/10.1007/978-3-642-38652-7 

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep 

convolutional neural networks. In Proceedings of the Advances in Neural 

Information Processing Systems, Lake Tahoe, NV, USA, (pp. 1097–1105). 

Kumar, S., Karaliya, S.K. & Chaudhary, S. (2017). Precision Farming Technologies 

towards Enhancing Productivity and Sustainability of Rice-Wheat Cropping 

System. International Journal of Current Microbiology and Applied Sciences, 6(3), 

142-151, https://doi.org/10.20546/ijcmas.2017.603.016 

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. H. (2019). 

Nano-based smart pesticide formulations: Emerging opportunities for agriculture. 

Journal of Controlled Release, 294, 131-153, 

https://doi.org/10.1016/j.jconrel.2018.12.012 

Lati, R. N., Rasmussen, J., Andujar, D., Dorado, J., Berge, T. W., Wellhausen, C., & 

Christensen, S. (2021). Site‐specific weed management—constraints and 

opportunities for the weed research community: Insights from a workshop. Weed 

Research, 61(3), 147-153. 

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time 

series. The handbook of brain theory and neural networks, 3361(10). 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-

444, https://doi.org/10.1038/nature14539. 

Le, V. N. T., Truong, G., & Alameh, K. (2021). Detecting weeds from crops under 

complex field environments based on faster RCNN. In_2020 IEEE eighth 

international conference on communications and electronics (ICCE) (pp.350-355). 

IEEE. 

Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P., (2015). Deep-plant: Plant 

identification with convolutional neural networks. In 2015 IEEE international 

conference on image processing (ICIP), IEEE, (pp. 452-456). 

Li, F., Liu, Z., Shen, W., Wang, Y., Wang, Y., Ge, C., & Lan, P. (2021). A remote sensing 

and airborne edge-computing based detection system for pine wilt disease. IEEE 

Access, 9, 66346-66360, doi: 10.1109/ACCESS.2021.3073929 

Liu, B., & Bruch, R. (2020). Weed detection for selective spraying: A review. Current 

Robotics Reports, 1(1), 19-26. 

Liu, K., Tang, H., He, S., Yu, Q., Xiong, Y., & Wang, N. (2021). Performance validation 

of YOLO variants for object detection. In Proceedings of the 2021 International 

Conference on Bioinformatics and Intelligent Computing (pp. 239-243). 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. 

(2016b). Ssd: Single shot multibox detector. In European conference on computer 

vision (pp. 21-37). 

https://doi.org/10.20546/ijcmas.2017.603.016
https://doi.org/10.1016/j.jconrel.2018.12.012
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ACCESS.2021.3073929


129 
 

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep 

neural network architectures and their applications. Neurocomputing, 234, 11-26, 

https://doi.org/10.1016/j.neucom.2016.12.038 

Liu, X. P., Li, G., Liu, L., & Wang, Z. (2019). Improved YOLOV3 target recognition 

algorithm based on adaptive eged optimization. Microelectronics and Computer, 

36(7), 59-64. 

Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest. 

In International Conference on Information Computing and Applications (pp. 246-

252).  

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., & Stachniss, C. (2018). Joint stem 

detection and crop-weed classification for plant-specific treatment in precision 

farming. In 2018 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS) (pp. 8233-8238). 

Luo, X., Li, S., & Xu, H. (2016). Results of real-time kinematic positioning based on real 

GPS L5 data. IEEE Geoscience and Remote Sensing Letters, 13(8), 1193-1197. 

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier Nonlinearities Improve Neural 

Network Acoustic Models. Proceedings of the 30th International Conference on 

Machine Learning, Atlanta, Georgia, USA, 30(1), 3. 

Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., & Gerhards, R. (2020). 

Sensor-based mechanical weed control: Present state and prospects. Computers and 

electronics in agriculture, 176, 105638, 

https://doi.org/10.1016/j.compag.2020.105638 

Magomadov, V. S. (2019). Deep Learning and its role in smart agriculture. In Journal of 

Physics: Conference Series, 1399(4), 044109, doi: 10.1088/1742-

6596/1399/4/044109 

Malta, A., Mendes, M., & Farinha, T. (2021). Augmented reality maintenance assistant 

using yolov5. Applied Sciences, 11(11), 4758, 

https://doi.org/10.3390/app11114758 

Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy assessment in 

convolutional neural network-based Deep Learning remote sensing studies—part 

1: Literature review. Remote Sensing, 13(13), 2450. 

Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., & Gay, P. (2020). UAV and machine 

learning based refinement of a satellite-driven vegetation index for precision 

agriculture. Sensors, 20(9), 2530, https://doi.org/10.3390/s20092530 

McCabe, M.F., Houborg, R., & Rosas, J., (2015). The potential of unmanned aerial 

vehicles for providing information on vegetation health, in: Proceedings of the 21st 

International Congress on Modelling and Simulation. Gold Coast, Australia, (pp. 

1399–1405). 

McFadyen, R. E. (2012). Food security for a 9 billion population: more R&D for weed 

control will be critical. In Proc. 18th Australasian Weeds Conference (pp. 306-309). 

https://doi.org/10.1016/j.compag.2020.105638


130 
 

Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward 

collaborative open data science in metabolomics using Jupyter Notebooks and 

cloud computing. Metabolomics, 15(10), 1-16, https://doi.org/10.1007/s11306-

019-1588-0 

Meyer, G. E., & Mulliken, J. A. (2008). Weed Targeting Herbicide Management. 

Historical Materials from University of Nebraska-Lincoln Extension, 4871, 

https://digitalcommons.unl.edu/extensionhist/4871 

Monteiro, A., & Santos, S. (2022). Sustainable Approach to Weed Management: The 

Role of Precision Weed Management. Agronomy, 12(1), 118, 

https://doi.org/10.3390/agronomy12010118 

Mora-Fallas, A., Goëau, H., Joly, A., Bonnet, P., & Mata-Montero, E. (2020). Instance 

segmentation for automated weeds and crops detection in farmlands. A first 

approach to Acoustic Characterization of Costa Rican Children’s Speech. Retrieved 

from: 

https://www.academia.edu/44819282/A_first_approach_to_Acoustic_Characteriz

ation_of_Costa_Rican_Children_s_Speech  

Moran, M., Inoue, Y. & Barnes, E. (1997). Opportunities and limitations for image-based 

remote sensing in precision crop management. Remote Sensing of Environment, 

61(3), 319-346, https://doi.org/10.1016/S0034-4257(97)00045-X 

Mortensen, A. K., Dyrmann, M., Karstoft, H., Jørgensen, R. N., & Gislum, R. (2016). 

Semantic segmentation of mixed crops using deep convolutional neural network. 

In CIGR-Agricultural Engineering conference (pp. 26-29). 

Mulla, D. J., (2013). Twenty five years of remote sensing in precision agriculture: Key 

advances and remaining knowledge gaps. Biosystems Engineering. 114, 358–371, 

https://doi.org/10.1016/j.biosystemseng.2012.08.009 

Murawwat, S., Qureshi, A., Ahmad, S., & Shahid, Y., (2018). Weed Detection Using 

SVMs. Engineering, Technology & Applied Science Research, 8(1), 2412-2416. 

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann 

machines, in: International Conference on Machine Learning (ICML), 2010, (pp. 

807–814). 

Nanni, L., Ghidoni, S., & Brahnam, S. (2017). Handcrafted vs. non-handcrafted features 

for computer vision classification. Pattern Recognition, 71, 158-172, 

https://doi.org/10.1016/j.patcog.2017.05.025 

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied 

geomatics, 6(1), 1-15, https://doi.org/10.1007/s12518-013-0120-x 

Nogueira, K., Penatti, O. A., & Dos Santos, J. A. (2017). Towards better exploiting 

convolutional neural networks for remote sensing scene classification. Pattern 

Recognition, 61, 539-556, https://doi.org/10.1016/j.patcog.2016.07.001 

Olsen, A., Konovalov, D. A., Philippa, B., Ridd, P., Wood, J. C., Johns, J., & White, R. 

D. (2019). DeepWeeds: A multiclass weed species image dataset for Deep 

https://doi.org/10.1016/S0034-4257(97)00045-X
https://doi.org/10.1016/j.patcog.2016.07.001


131 
 

Learning. Scientific reports, 9(1), 1-12, https://doi.org/10.1038/s41598-018-38343-

3 

Onishi, M., & Ise, T. (2018). Automatic classification of trees using a UAV onboard 

camera and Deep Learning. Computer and information sciences, 

https://doi.org/10.48550/arXiv.1804.07437 

Osco, L. P., Nogueira, K., Marques Ramos, A. P., Faita Pinheiro, M. M., Furuya, D. E. 

G., Gonçalves, W. N., & dos Santos, J. A. (2021). Semantic segmentation of citrus-

orchard using deep neural networks and multispectral UAV-based imagery. 

Precision Agriculture, 22(4), 1171-1188, https://doi.org/10.1007/s11119-020-

09777-5 

Patidar, S., Singh, U., & Sharma, S. K. (2020, July). Weed seedling detection using mask 

regional convolutional neural network. In 2020 International Conference on 

Electronics and Sustainable Communication Systems (ICESC) (pp. 311-316). 

Patil-Shirish, S., & Bhalerao, S. A. (2013). Precision farming: the most scientific and 

modern approach to sustainable agriculture. International Research Journal of 

Science and Engineering, 1(2), 21-30. 

Pena, J. M., Torres-Sánchez, J., De Castro, A. I., Kelly, M., & López-Granados, F. (2013). 

Weed mapping in early-season maize fields using object-based analysis of 

unmanned aerial vehicle (UAV) images. PloS one, 8(10), e77151, 

https://doi.org/10.1371/journal.pone.0077151 

Pena, J.M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A.I., & López-Granados, 

F. (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) 

technology for weed seedling detection as affected by sensor resolution. Sensors 

15, 5609–5626, https://doi.org/10.3390/s150305609 

Pena-Barragán, J. M., Kelly, M., De-Castro, A. I., & López-Granados, F. (2012). 

Discrimination of Crop Rows using Object-Based Analysis in UAV Images for 

early Site-Specific Weed Management in Maize Fields. In Proceedings of the First 

International Conference on Robotics and Associated High-technologies and 

Equipment for Agriculture. Applications of automated systems and robotics for 

crop protection in sustainable precision agriculture,(RHEA-2012) Pisa, Italy-

September 19-21, 2012 (pp. 249-254).  

Perez, F., & Granger, B. E. (2007). IPython: a system for interactive scientific computing. 

Computing in science & engineering, 9(3), 21-29, 

https://doi.org/10.1109/MCSE.2007.53 

Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., & Walsh, M. J. (2018). The 

challenge of herbicide resistance around the world: a current summary. Pest 

management science, 74(10), 2246 -2259, https://doi.org/10.1002/ps.4821 

Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. 

Agronomy for sustainable development, 33(1), 243-255, 

https://doi.org/10.1007/s13593-012-0105-x 

https://doi.org/10.1007/s11119-020-09777-5
https://doi.org/10.1007/s11119-020-09777-5
https://doi.org/10.1002/ps.4821
https://doi.org/10.1007/s13593-012-0105-x


132 
 

 

Potena, C., Nardi, D., & Pretto, A. (2017). Fast and accurate crop and weed identification 

with summarized train sets for precision agriculture. In International Conference 

on Intelligent Autonomous Systems, (pp. 105-121), doi: 10.1007/978-3-319-48036-

7_9 

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., & Iyengar, S. S. (2018). 

A survey on Deep Learning: Algorithms, techniques, and applications. ACM 

Computing Surveys (CSUR), 51(5), 1-36, https://doi.org/10.1145/3234150 

Prashanth, B., Mendu, M., & Thallapalli, R. (2021). Cloud based Machine learning with 

advanced predictive Analytics using Google Colaboratory. Materials Today: 

Proceedings, https://doi.org/10.1016/j.matpr.2021.01.800 

Prashanth, D. S., Mehta, R. V. K., & Sharma, N. (2020). Classification of handwritten 

Devanagari number–an analysis of pattern recognition tool using neural network 

and CNN. Procedia Computer Science, 167, 2445-2457, 

https://doi.org/10.1016/j.procs.2020.03.297 

Pratama, K., & Kang, D. K. (2021). Trainable activation function with differentiable 

negative side and adaptable rectified point. Applied Intelligence, 51(3), 1784-1801, 

https://doi.org/10.1007/s10489-020-01885-z 

Pu, Y., Apel, D. B., Szmigiel, A., & Chen, J. (2019). Image recognition of coal and coal 

gangue using a convolutional neural network and transfer learning. Energies, 12(9), 

1735, https://doi.org/10.3390/en12091735 

Ramirez, W., Achanccaray, P., Mendoza, L. F., & Pacheco, M. A. C. (2020). Deep 

convolutional neural networks for weed detection in agricultural crops using optical 

aerial images. In 2020 IEEE Latin American GRSS & ISPRS Remote Sensing 

Conference (LAGIRS) (pp. 133-137). 

Rana, K. (2020). Pooling Layer — Short and Simple. Retrieved from plainenglish: 

https://ai.plainenglish.io/pooling-layer-beginner-to-intermediate-fa0dbdce80eb  

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the 

Jupyter notebook as a tool for open science: An empirical study. In 2017 

ACM/IEEE Joint Conference on Digital Libraries (JCDL) (pp. 1-2). 

Reddy, R. R., & Panicker, M. R. (2021). Hand-Drawn Electrical Circuit Recognition 

using Object Detection and Node Recognition. Computer and information sciences, 

https://doi.org/10.48550/arXiv.2106.11559 

Regnier, E. E., & Janke, R. R. (2020). Evolving strategies for managing weeds. In 

Sustainable agricultural systems (pp. 174-202).  

Ren, A., Li, Z., Wang, Y., Qiu, Q., & Yuan, B. (2016). Designing reconfigurable large-

scale Deep Learning systems using stochastic computing. In 2016 IEEE 

International Conference on Rebooting Computing (ICRC) (pp. 1-7). 

https://doi.org/10.1016/j.procs.2020.03.297
https://ai.plainenglish.io/pooling-layer-beginner-to-intermediate-fa0dbdce80eb


133 
 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster RCNN: Towards real-time object 

detection with region proposal networks. Advances in neural information 

processing systems, 28, https://doi.org/10.1109/TPAMI.2016.2577031 

Renard, D., Iriarte, J., Birk, J. J., Rostain, S., Glaser, B., & McKey, D. (2012). Ecological 

engineers ahead of their time: The functioning of pre-Columbian raised-field 

agriculture and its potential contributions to sustainability today. Ecological 

Engineering, 45, 30-44, https://doi.org/10.1016/j.ecoleng.2011.03.007 

Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional 

neural networks. Advances in neural information processing systems, 28. 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. 

P. (2012). An assessment of the effectiveness of a random forest classifier for land-

cover classification. ISPRS journal of photogrammetry and remote sensing, 67, 93-

104, https://doi.org/10.1016/j.isprsjprs.2011.11.002 

Rueda‐Ayala, V. P., Rasmussen, J., Gerhards, R., & Fournaise, N. E. (2011). The 

influence of post‐emergence weed harrowing on selectivity, crop recovery and crop 

yield in different growth stages of winter wheat. Weed Research, 51(5), 478-488, 

https://doi.org/10.1111/j.1365-3180.2011.00873.x 

Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., & Siegwart, R. (2018). 

WeedMap: A large-scale semantic weed mapping framework using aerial 

multispectral imaging and deep neural network for precision farming. Remote 

Sensing, 10(9), 1423, https://doi.org/10.3390/rs10091423 

Sabat-Tomala, A., Raczko, E., & Zagajewski, B. (2020). Comparison of support vector 

machine and random forest algorithms for invasive and expansive species 

classification using airborne hyperspectral data. Remote Sensing, 12(3), 516. 

https://doi.org/10.3390/rs12030516 

Sahu, B., Chatterjee, S., Mukherjee, S., & Sharma, C. (2019). Tools of precision agri-

culture: A review. International Journal of Chemical Studies, 7, 2692-2696. 

Savalia, S., & Emamian, V. (2018). Cardiac arrhythmia classification by multi-layer 

perceptron and convolution neural networks. Bioengineering, 5(2), 35, 

https://doi.org/10.3390/bioengineering5020035 

Scavo, A., & Mauromicale, G. (2020). Integrated weed management in herbaceous field 

crops. Agronomy, 10(4), 466, https://doi.org/10.3390/agronomy10040466 

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural 

networks, 61, 85-117, https://doi.org/10.1016/j.neunet.2014.09.003 

Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied 

to house numbers digit classification. In Proceedings of the 21st international 

conference on pattern recognition (ICPR2012) (pp. 3288-3291).  

Shanmugam, S., Assunção, E., Mesquita, R., Veiros, A., & Gaspar, P. D. (2020). 

Automated weed detection systems: A review. KnE Engineering, 5(6), 271–284.  

https://doi.org/10.18502/keg.v5i6.7046 

https://doi.org/10.1111/j.1365-3180.2011.00873.x


134 
 

Sharma, A., Liu, X., Yang, X., & Shi, D. (2017a). A patch-based convolutional neural 

network for remote sensing image classification. Neural Networks, 95, 19-28, 

https://doi.org/10.1016/j.neunet.2017.07.017 

Sharma, S., Sharma, S., & Athaiya, A. (2017b). Activation functions in neural networks. 

Towards data science, 6(12), 310-316. 

Shirzadifar, A. M., Loghavi, M., & Raoufat, M. H. (2015). Development and evaluation 

of a real time site-specific inter-row weed management system. Iran Agricultural 

Research, 32(2), 39-54, doi: 10.22099/iar.2015.2004 

Shrestha, M., & Khanal, S. (2020). Future prospects of precision agriculture in Nepal. 

Archives of Agriculture and Environmental Science, 5(3), 397-405, 

https://dx.doi.org/10.26832/24566632.2020.0503023 

Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control 

systems: A review. Computers and electronics in agriculture, 61(1), 63-78, 

https://doi.org/10.1016/j.compag.2007.05.008 

Smith, P. (2018). Drones in Precision Agriculture. Retrieved from dronebelow: 

https://dronebelow.com/2018/07/19/drones-in-precision-agriculture 

Smith, R. G., Ryan, M. R., & Menalled, F. D. (2011). Direct and indirect impacts of weed 

management practices on soil quality. Soil management: Building a stable base for 

agriculture, 275-286, https://doi.org/10.2136/2011.soilmanagement.c18 

Soltys, D., Krasuska, U., Bogatek, R., & Gniazdowska, A. (2013). Allelochemicals as 

bioherbicides—Present and perspectives. London, UK: IntechOpen limited, doi: 

10.5772/56185 

Sornam, M., Muthusubash, K., & Vanitha, V. (2017). A survey on image classification 

and activity recognition using deep convolutional neural network architecture. In 

2017 ninth international conference on advanced computing (ICoAC) (pp. 121-

126).  

Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & 

Babu, R. V. (2016). A taxonomy of deep convolutional neural nets for computer 

vision. Frontiers in Robotics and AI, 2, 36, 

https://doi.org/10.3389/frobt.2015.00036 

Starling, A. P., Umbach, D. M., Kamel, F., Long, S., Sandler, D. P., & Hoppin, J. A. 

(2014). Pesticide use and incident diabetes among wives of farmers in the 

Agricultural Health Study. Occupational and environmental medicine, 71(9), 629-

635, http://dx.doi.org/10.1136/oemed-2013-101659 

Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., & 

Gore, M. A. (2019). Quantitative phenotyping of Northern Leaf Blight in UAV 

images using Deep Learning. Remote Sensing, 11(19), 2209, 

https://doi.org/10.3390/rs11192209 

https://dronebelow.com/2018/07/19/drones-in-precision-agriculture
https://doi.org/10.2136/2011.soilmanagement.c18
https://doi.org/10.3389/frobt.2015.00036
http://dx.doi.org/10.1136/oemed-2013-101659


135 
 

Suhail, A., Jayabalan, M., & Thiruchelvam, V. (2020). Convolutional neural network 

based object detection: A review. Journal of critical reviews, 7(11), 786-792, 

https://doi.org/10.1002/9781119681328.ch6 

Suljović, A., Čakić, S., Popović, T., & Šandi, S. (2022, March). Detection of Plant 

Diseases Using Leaf Images and Machine Learning. In 2022 21st International 

Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-4).  

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. 

(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 1-9). 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the 

inception architecture for computer vision. In Proceedings of the IEEE conference 

on computer vision and pattern recognition (pp. 2818-2826). 

Tang, Z., Luo, L., Peng, H., & Li, S. (2018). A joint residual network with paired ReLUs 

activation for image super-resolution. Neurocomputing, 273, 37-46, 

https://doi.org/10.1016/j.neucom.2017.07.061 

Tarca, A. L., Carey, V. J., Chen, X. W., Romero, R., & Drăghici, S. (2007). Machine 

learning and its applications to biology. PLoS computational biology, 3(6), e116, 

https://doi.org/10.1371/journal.pcbi.0030116 

Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., & 

Jørgensen, R. N. (2018). Weed growth stage estimator using deep convolutional 

neural networks. Sensors, 18(5), 1580, https://doi.org/10.3390/s18051580 

Thuan, D. (2021). Evolution of yolo algorithm and yolov5: the state-of-the-art object 

detection algorithm (Bachelor’s Thesis, Oulu University of Applied Sciences). 

Retrieved from: https://www.theseus.fi/handle/10024/452552 

Tirado, R., Englande, A. J., Promakasikorn, L., & Novotny, V. (2008). Use of 

agrochemicals in Thailand and its consequences for the environment. Greenpeace 

Research Laboratories Technical. Bangkok, Thailand. 

Toda, Y., Okura, F., Ito, J., Okada, S., Kinoshita, T., Tsuji, H., & Saisho, D. (2020). 

Training instance segmentation neural network with synthetic datasets for crop seed 

phenotyping. Communications biology, 3(1), 1-12, https://doi.org/10.1038/s42003-

020-0905-5 

Torres-Sánchez, J., López-Granados, F., & Pena, J. M. (2015). An automatic object-based 

method for optimal thresholding in UAV images: Application for vegetation 

detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43-

52, https://doi.org/10.1016/j.compag.2015.03.019 

Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). 

Configuration and specifications of an unmanned aerial vehicle (UAV) for early 

site specific weed management. PloS one, 8(3), e58210, 

https://doi.org/10.1371/journal.pone.0058210 

Tsouros, D. C., Smyrlis, P. N., Tsipouras, M. G., Tsalikakis, D. G., Giannakeas, N., 

Tzallas, A. T., & Manousou, P. (2017). Automated collagen proportional area 

https://www.theseus.fi/handle/10024/452552


136 
 

extraction in liver biopsy images using a novel classification via clustering 

algorithm. In 2017 IEEE 30th International Symposium on Computer-Based 

Medical Systems (CBMS) (pp. 30-34). 

Ukaegbu, U., Tartibu, L., Okwu, M., & Olayode, I. (2021). Development of a Light-

Weight Unmanned Aerial Vehicle for Precision Agriculture. Sensors, 21, 4417, 

https://doi.org/10.3390/s21134417 

Valente, J., Doldersum, M., Roers, C., & Kooistra, L. (2019). Detecting Rumex 

Obtusifolius Weed Plants in Grasslands from UAV RGB Imagery using Deep 

Learning. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial 

Information Sciences, 4. 

Vargas, V. M., Gutiérrez, P. A., Barbero-Gómez, J., & Hervás-Martínez, C. (2021). 

Activation Functions for Convolutional Neural Networks: Proposals and 

Experimental Study. IEEE Transactions on Neural Networks and Learning 

Systems. Retrieved from:  https://ieeexplore.ieee.org/document/9521668/ 

Veeranampalayam Sivakumar, A. N., Li, J., Scott, S., Psota, E., J. Jhala, A., Luck, J. D., 

& Shi, Y. (2020). Comparison of object detection and patch-based classification 

Deep Learning models on mid-to late-season weed detection in UAV imagery. 

Remote Sensing, 12(13), 2136, https://doi.org/10.3390/rs12132136 

Vijayaprabakaran, K., & Sathiyamurthy, K. (2020). Towards activation function search 

for long short-term model network: a differential evolution based approach. Journal 

of King Saud University-Computer and Information Sciences. Retrieved from: 

https://www.sciencedirect.com/science/article/pii/S1319157820303505 

Vilà, M., Williamson, M., & Lonsdale, M. (2004). Competition experiments on alien 

weeds with crops: lessons for measuring plant invasion impact? Biological 

invasions, 6(1), 59-69, https://doi.org/10.1023/B:BINV.0000010122.77024.8a 

Viquerat, J., & Hachem, E. (2020). A supervised neural network for drag prediction of 

arbitrary 2D shapes in laminar flows at low Reynolds number. Computers & Fluids, 

210, 104645, https://doi.org/10.1016/j.compfluid.2020.104645 

Vissoh, P. V., Gbèhounou, G., Ahanchédé, A., Kuyper, T. W., & Röling, N. G. (2004). 

Weeds as agricultural constraint to farmers in Benin: results of a diagnostic study. 

NJAS-Wageningen Journal of Life Sciences, 52(3-4), 305-329, 

https://doi.org/10.1016/S1573-5214(04)80019-8 

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep 

Learning for computer vision: A brief review. Computational intelligence and 

neuroscience, 2018. Retrieved from: 

https://www.hindawi.com/journals/CIN/2018/7068349/ 

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., & Pandey, H. M. 

(2020). An optimized dense convolutional neural network model for disease 

recognition and classification in corn leaf. Computers and Electronics in 

Agriculture, 175, 105456, https://doi.org/10.1016/j.compag.2020.105456 

https://doi.org/10.3390/rs12132136
https://www.sciencedirect.com/science/article/pii/S1319157820303505
https://www.hindawi.com/journals/CIN/2018/7068349/
https://doi.org/10.1016/j.compag.2020.105456


137 
 

Wang, L., Li, Z., Zhao, J., Zhou, K., Wang, Z., & Yuan, H. (2016). Smart device-

supported BDS/GNSS real-time kinematic positioning for sub-meter-level 

accuracy in urban location-based services. Sensors, 16(12), 2201, 

https://doi.org/10.3390/s16122201 

Wang, W., Xie, E., Song, X., Zang, Y., Wang, W., Lu, T., & Shen, C. (2019). Efficient 

and accurate arbitrary-shaped text detection with pixel aggregation network. In 

Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 

8440-8449). 

Wang, Y. (2021). A Ros-Based Toy-Car Detect-And-Place Domestic Robot (Master's 

thesis, California State Polytechnic University, Pomona). 

Westwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter, 

D. C., & Zollinger, R. (2018). Weed management in 2050: Perspectives on the 

future of weed science. Weed science, 66(3), 275-285, doi:10.1017/wsc.2017.78 

Wikipedia Contributors. (2020). Real-time Kinematic. Retrieved from Wikipedia, The 

Free Encyclopedia: https://en.wikipedia.org/w/index.php?title=Real-

time_kinematic&id=959795335 

Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of remote sensing 

methods in agriculture. Communications in Biometry and Crop Science, 11(1), 31-

50. 

Wu, C., Wen, W., Afzal, T., Zhang, Y., & Chen, Y. (2017). A compact dnn: approaching 

googlenet-level accuracy of classification and domain adaptation. In Proceedings 

of the IEEE conference on computer vision and pattern recognition (pp. 5668-

5677). 

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations 

in convolutional network. In International Conference on Machine Learning 

Workshop, https://doi.org/10.48550/arXiv.1505.00853 

Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based 

on ensemble learning. Forests, 12(2), 217, https://doi.org/10.3390/f12020217 

Xu, W., Yang, W., Chen, S., Wu, C., Chen, P., & Lan, Y. (2020). Establishing a model 

to predict the single boll weight of cotton in northern Xinjiang by using high 

resolution UAV remote sensing data. Computers and Electronics in Agriculture, 

179, 105762, https://doi.org/10.1016/j.compag.2020.105762 

Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A real-time apple targets detection 

method for picking robot based on improved YOLOv5. Remote Sensing, 13(9), 

1619, https://doi.org/10.3390/rs13091619 

Yang, Z., Sinnott, R., Ke, Q., & Bailey, J. (2021). Individual Feral Cat Identification 

through Deep Learning. In 2021 IEEE/ACM 8th International Conference on Big 

Data Computing, Applications and Technologies (BDCAT'21) (pp. 101-110), 

https://doi.org/10.1145/3492324.3494168 

https://en.wikipedia.org/w/index.php?title=Real-time_kinematic&id=959795335
https://en.wikipedia.org/w/index.php?title=Real-time_kinematic&id=959795335
https://doi.org/10.3390/f12020217
https://doi.org/10.3390/rs13091619


138 
 

Yao, H., & Huang, Y. (2013). Remote sensing applications to precision farming. Remote 

sensing of natural resources, (pp. 333-352), https://doi.org/10.1201/b15159 

 

Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., & Metaxas, D. (2021). Oriented object 

detection in aerial images with box boundary-aware vectors. In Proceedings of the 

IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2150-

2159). 

You, J., Liu, W., & Lee, J. (2020). A DNN-based semantic segmentation for detecting 

weed and crop. Computers and Electronics in Agriculture, 178, 105750, 

https://doi.org/10.1016/j.compag.2020.105750 

Young, S. L., Pierce, F. J., & Nowak, P. (2014). Introduction: Scope of the problem rising 

costs and demand for environmental safety for weed control. In Automation: The 

future of weed control in cropping systems (pp. 1-8), https://doi.org/10.1007/978-

94-007-7512-1_1 

Yousefi, M. R., & Razdari, A. M. (2015). Application of GIS and GPS in precision 

agriculture (a review). International Journal of Advanced Biological and 

Biomedical Research, 3(1), 7-9. 

Yu, D., Wang, H., Chen, P., & Wei, Z. (2014). Mixed pooling for convolutional neural 

networks. In International conference on rough sets and knowledge technology (pp. 

364-375), https://doi.org/10.1007/978-3-319-11740-9_34 

Yu, J., Sharpe, S. M., Schumann, A. W., & Boyd, N. S. (2019). Deep Learning for image-

based weed detection in turfgrass. European journal of agronomy, 104, 78-84, 

https://doi.org/10.1016/j.eja.2019.01.004 

Zahara, L., Musa, P., Wibowo, E. P., Karim, I., & Musa, S. B. (2020). The facial emotion 

recognition (FER-2013) dataset for prediction system of micro-expressions face 

using the convolutional neural network (CNN) algorithm based Raspberry Pi. In 

2020 Fifth international conference on informatics and computing (ICIC) (pp. 1-

9). 

Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep 

convolutional neural networks. Computer and information sciences, 

https://doi.org/10.48550/arXiv.1301.3557 

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for 

precision agriculture: a review. Precision agriculture, 13(6), 693-712, doi: 

10.1007/s11119-012-9274-5 

Zhang, J., Xie, T., Yang, C., Song, H., Jiang, Z., Zhou, G., & Xie, J. (2020a). Segmenting 

purple rapeseed leaves in the field from UAV RGB imagery using Deep Learning 

as an auxiliary means for nitrogen stress detection. Remote Sensing, 12(9), 1403, 

https://doi.org/10.3390/rs12091403 

https://doi.org/10.1201/b15159
https://doi.org/10.1016/j.compag.2020.105750


139 
 

Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., & Yu, B. (2019). Recent advances in 

convolutional neural network acceleration. Neurocomputing, 323, 37-51, 

https://doi.org/10.1016/j.neucom.2018.09.038 

 

Zhang, Z. D., Tan, M. L., Lan, Z. C., Liu, H. C., Pei, L., Yu, W. X. (2022). CDNet: a real-

time and robust crosswalk detection network on Jetson nano based on YOLOv5. 

Neural Computing and Applications, (pp. 1-12), https://doi.org/10.1007/s00521-

022-07007-9 

Zhang, Z., Flores, P., Igathinathane, C., L. Naik, D., Kiran, R., & Ransom, J. K. (2020). 

Wheat lodging detection from UAS imagery using machine learning algorithms. 

Remote Sensing, 12(11), 1838, doi:10.3390/rs12111838 

Zhao, J., Zhong, Y., Hu, X., Wei, L., & Zhang, L. (2020). A robust spectral-spatial 

approach to identifying heterogeneous crops using remote sensing imagery with 

high spectral and spatial resolutions. Remote Sensing of Environment, 239, 111605, 

https://doi.org/10.1016/j.rse.2019.111605 

Zhu, P., Wen, L., Bian, X., Ling, H., & Hu, Q. (2018). Vision meets drones: A challenge. 

Computer and information sciences, https://doi.org/10.48550/arXiv.1804.07437 

Zou, K., Chen, X., Zhang, F., Zhou, H., & Zhang, C. (2021). A field weed density 

evaluation method based on UAV imaging and modified U-Net. Remote Sensing, 

13(2), 310, https://doi.org/10.3390/rs13020310 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.neucom.2018.09.038
https://doi.org/10.1007/s00521-022-07007-9
https://doi.org/10.1007/s00521-022-07007-9
https://doi.org/10.48550/arXiv.1804.07437


140 
 

Appendix A 

Ground Control Points (GCP’s) 

S/N Station ID Control 

Category 

Coordinates (m) Height 

   Northing Easting  

0. CSN 128P 

 

Primary 1056599.017 222702.652 245.519 

1. JA01 Secondary 1053910 225665.4 209.9429 

2. JA02 Secondary 1053950 225650.8 209.6335 

 

3. JA03 Secondary 1053993 225697.0 209.7679 

4. JA04 Secondary 1054008 

 

225727.8 209.6353 

5. JA05 Secondary 1054005 225779.2 209.186 

6. JA06 Secondary 1053948 225758.6 209.1649 

7. JA07 Secondary 1053914 225713.8 211.1355 

8. JA08 Secondary 1053945 225706.5 210.6092 
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Appendix B 

Training codes for Faster RCNN 

import functools 

import json 

import os 

import tensorflow as tf 

 

from object_detection import trainer 

from object_detection.builders import input_reader_builder 

from object_detection.builders import model_builder 

from object_detection.utils import config_util 

 

tf.logging.set_verbosity(tf.logging.INFO) 

 

flags = tf.app.flags 

flags.DEFINE_string('master', '', 'Name of the TensorFlow master to 

use.') 

flags.DEFINE_integer('task', 0, 'task id') 

flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy 

per worker.') 

flags.DEFINE_boolean('clone_on_cpu', False, 

                     'Force clones to be deployed on CPU.  Note 

that even if ' 

                     'set to False (allowing ops to run on gpu), 

some ops may ' 

                     'still be run on the CPU if they have no GPU 

kernel.') 

flags.DEFINE_integer('worker_replicas', 1, 'Number of 

worker+trainer ' 

                     'replicas.') 

flags.DEFINE_integer('ps_tasks', 0, 

                     'Number of parameter server tasks. If None, 

does not use ' 

                     'a parameter server.') 

flags.DEFINE_string('train_dir', '', 

                    'Directory to save the checkpoints and training 

summaries.') 

 

flags.DEFINE_string('pipeline_config_path', '', 

                    'Path to a pipeline_pb2.TrainEvalPipelineConfig 

config ' 

                    'file. If provided, other configs are ignored') 

 

flags.DEFINE_string('train_config_path', '', 

                    'Path to a train_pb2.TrainConfig config file.') 

flags.DEFINE_string('input_config_path', '', 

                    'Path to an input_reader_pb2.InputReader config 

file.') 

flags.DEFINE_string('model_config_path', '', 

                    'Path to a model_pb2.DetectionModel config 

file.') 

 

FLAGS = flags.FLAGS 

 

 

def main(_): 
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  assert FLAGS.train_dir, '`train_dir` is missing.' 

  if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir) 

  if FLAGS.pipeline_config_path: 

    configs = config_util.get_configs_from_pipeline_file( 

        FLAGS.pipeline_config_path) 

    if FLAGS.task == 0: 

      tf.gfile.Copy(FLAGS.pipeline_config_path, 

                    os.path.join(FLAGS.train_dir, 

'pipeline.config'), 

                    overwrite=True) 

  else: 

    configs = config_util.get_configs_from_multiple_files( 

        model_config_path=FLAGS.model_config_path, 

        train_config_path=FLAGS.train_config_path, 

        train_input_config_path=FLAGS.input_config_path) 

    if FLAGS.task == 0: 

      for name, config in [('model.config', 

FLAGS.model_config_path), 

                           ('train.config', 

FLAGS.train_config_path), 

                           ('input.config', 

FLAGS.input_config_path)]: 

        tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name), 

                      overwrite=True) 

 

  model_config = configs['model'] 

  train_config = configs['train_config'] 

  input_config = configs['train_input_config'] 

 

  model_fn = functools.partial( 

      model_builder.build, 

      model_config=model_config, 

      is_training=True) 

 

  create_input_dict_fn = functools.partial( 

      input_reader_builder.build, input_config) 

 

  env = json.loads(os.environ.get('TF_CONFIG', '{}')) 

  cluster_data = env.get('cluster', None) 

  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else 

None 

  task_data = env.get('task', None) or {'type': 'master', 'index': 

0} 

  task_info = type('TaskSpec', (object,), task_data) 

 

  # Parameters for a single worker. 

  ps_tasks = 0 

  worker_replicas = 1 

  worker_job_name = 'lonely_worker' 

  task = 0 

  is_chief = True 

  master = '' 

 

  if cluster_data and 'worker' in cluster_data: 

    # Number of total worker replicas include "worker"s and the 

"master". 

    worker_replicas = len(cluster_data['worker']) + 1 

  if cluster_data and 'ps' in cluster_data: 
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    ps_tasks = len(cluster_data['ps']) 

 

  if worker_replicas > 1 and ps_tasks < 1: 

    raise ValueError('At least 1 ps task is needed for distributed 

training.') 

 

  if worker_replicas >= 1 and ps_tasks > 0: 

    # Set up distributed training. 

    server = tf.train.Server(tf.train.ClusterSpec(cluster), 

protocol='grpc', 

                             job_name=task_info.type, 

                             task_index=task_info.index) 

    if task_info.type == 'ps': 

      server.join() 

      return 

 

    worker_job_name = '%s/task:%d' % (task_info.type, 

task_info.index) 

    task = task_info.index 

    is_chief = (task_info.type == 'master') 

    master = server.target 

 

  trainer.train(create_input_dict_fn, model_fn, train_config, 

master, task, 

                FLAGS.num_clones, worker_replicas, 

FLAGS.clone_on_cpu, ps_tasks, 

                worker_job_name, is_chief, FLAGS.train_dir) 

 

 

if __name__ == '__main__': 

  tf.app.run() 

 

Testing Codes for Faster RCNN 

import numpy as np 

import os 

import six.moves.urllib as urllib 

import sys 

import tarfile 

import tensorflow as tf 

import zipfile 

 

from distutils.version import StrictVersion 

from collections import defaultdict 

from io import StringIO 

from matplotlib import pyplot as plt 

from PIL import Image 

 

# This is needed since the notebook is stored in the object_detecti

on folder. 

sys.path.append("..") 

from object_detection.utils import ops as utils_ops 

from object_detection.utils import label_map_util 
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from object_detection.utils import visualization_utils as vis_util 

 

 

### Model preparation variable 

MODEL_NAME = 'trained_inference_graph' 

PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb' 

PATH_TO_LABELS = 'training/labelmap.pbtxt' 

NUM_CLASSES = 5 #remember number of objects you are training? cool. 

 

### Load a (frozen) Tensorflow model into memory. 

detection_graph = tf.Graph() 

with detection_graph.as_default(): 

  od_graph_def = tf.GraphDef() 

  with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: 

    serialized_graph = fid.read() 

    od_graph_def.ParseFromString(serialized_graph) 

    tf.import_graph_def(od_graph_def, name='') 

 

###Loading label map 

category_index = label_map_util.create_category_index_from_labelmap

(PATH_TO_LABELS) 

 

 

 

### Load image into numpy function 

def load_image_into_numpy_array(image): 

  (im_width, im_height) = image.size 

  return np.array(image.getdata()).reshape( 

      (im_height, im_width, 3)).astype(np.uint8) 

 

 

 

###STATING THE PATH TO IMAGES TO BE TESTED 

PATH_TO_TEST_IMAGES_DIR = 'test_images/' 

TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}

.jpg'.format(i)) for i in range(1, 5) ] 

IMAGE_SIZE = (12, 8) 

 

 

 

### Function to run inference on a single image which will later be

 used in an iteration 

def run_inference_for_single_image(image, graph): 

  with graph.as_default(): 
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    with tf.Session() as sess: 

      # Get handles to input and output tensors 

      ops = tf.get_default_graph().get_operations() 

      all_tensor_names = {output.name for op in ops for output in o

p.outputs} 

      tensor_dict = {} 

      for key in [ 

          'num_detections', 'detection_boxes', 'detection_scores', 

          'detection_classes', 'detection_masks' 

      ]: 

        tensor_name = key + ':0' 

        if tensor_name in all_tensor_names: 

          tensor_dict[key] = tf.get_default_graph().get_tensor_by_n

ame( 

              tensor_name) 

      if 'detection_masks' in tensor_dict: 

        # The following processing is only for single image 

        detection_boxes = tf.squeeze(tensor_dict['detection_boxes']

, [0]) 

        detection_masks = tf.squeeze(tensor_dict['detection_masks']

, [0]) 

        # Reframe is required to translate mask from box coordinate

s to image coordinates and fit the image size. 

        real_num_detection = tf.cast(tensor_dict['num_detections'][

0], tf.int32) 

        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_n

um_detection, -1]) 

        detection_masks = tf.slice(detection_masks, [0, 0, 0], [rea

l_num_detection, -1, -1]) 

        detection_masks_reframed = utils_ops.reframe_box_masks_to_i

mage_masks( 

            detection_masks, detection_boxes, image.shape[1], image

.shape[2]) 

        detection_masks_reframed = tf.cast( 

            tf.greater(detection_masks_reframed, 0.5), tf.uint8) 

        # Follow the convention by adding back the batch dimension 

        tensor_dict['detection_masks'] = tf.expand_dims( 

            detection_masks_reframed, 0) 

      image_tensor = tf.get_default_graph().get_tensor_by_name('ima

ge_tensor:0') 

 

      # Run inference 

      output_dict = sess.run(tensor_dict, 

                             feed_dict={image_tensor: image}) 

 

      # all outputs are float32 numpy arrays, so convert types as a

ppropriate 

      output_dict['num_detections'] = int(output_dict['num_detectio

ns'][0]) 
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      output_dict['detection_classes'] = output_dict[ 

          'detection_classes'][0].astype(np.int64) 

      output_dict['detection_boxes'] = output_dict['detection_boxes

'][0] 

      output_dict['detection_scores'] = output_dict['detection_scor

es'][0] 

      if 'detection_masks' in output_dict: 

        output_dict['detection_masks'] = output_dict['detection_mas

ks'][0] 

  return output_dict 

 

 

### To iterate on each image in the test image path defined  

### NB define the range of numbers and let it match the number of i

mAGES IN TEST FOLDER +1 

for image_path in TEST_IMAGE_PATHS: 

  image = Image.open(image_path) 

  # the array based representation of the image will be used later 

in order to prepare the 

  # result image with boxes and labels on it. 

  image_np = load_image_into_numpy_array(image) 

  # Expand dimensions since the model expects images to have shape:

 [1, None, None, 3] 

  image_np_expanded = np.expand_dims(image_np, axis=0) 

  # Actual detection. 

  output_dict = run_inference_for_single_image(image_np_expanded, d

etection_graph) 

  # Visualization of the results of a detection. 

  vis_util.visualize_boxes_and_labels_on_image_array( 

      image_np, 

      output_dict['detection_boxes'], 

      output_dict['detection_classes'], 

      output_dict['detection_scores'], 

      category_index, 

      instance_masks=output_dict.get('detection_masks'), 

      use_normalized_coordinates=True, 

      line_thickness=1) 

  display(Image.fromarray(image_np)) 
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Appendix C 

Training codes for YOLO v5 

import argparse 

import logging 

import math 

import os 

import random 

import time 

from copy import deepcopy 

from pathlib import Path 

from threading import Thread 

 

import numpy as np 

import torch.distributed as dist 

import torch.nn as nn 

import torch.nn.functional as F 

import torch.optim as optim 

import torch.optim.lr_scheduler as lr_scheduler 

import torch.utils.data 

import yaml 

from torch.cuda import amp 

from torch.nn.parallel import DistributedDataParallel as DDP 

from torch.utils.tensorboard import SummaryWriter 

from tqdm import tqdm 

 

import test  # import test.py to get mAP after each epoch 

from models.experimental import attempt_load 

from models.yolo import Model 

from utils.autoanchor import check_anchors 

from utils.datasets import create_dataloader 

from utils.general import labels_to_class_weights, increment_path, 

labels_to_image_weights, init_seeds, \ 

    fitness, strip_optimizer, get_latest_run, check_dataset, check_

file, check_git_status, check_img_size, \ 

    check_requirements, print_mutation, set_logging, one_cycle, col

orstr 

from utils.google_utils import attempt_download 

from utils.loss import ComputeLoss 

from utils.plots import plot_images, plot_labels, plot_results, plo

t_evolution 

from utils.torch_utils import ModelEMA, select_device, intersect_di

cts, torch_distributed_zero_first, is_parallel 

 

logger = logging.getLogger(__name__) 
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def train(hyp, opt, device, tb_writer=None, wandb=None): 

    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}

' for k, v in hyp.items())) 

    save_dir, epochs, batch_size, total_batch_size, weights, rank =

 \ 

        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_b

atch_size, opt.weights, opt.global_rank 

 

    # Directories 

    wdir = save_dir / 'weights' 

    wdir.mkdir(parents=True, exist_ok=True)  # make dir 

    last = wdir / 'last.pt' 

    best = wdir / 'best.pt' 

    results_file = save_dir / 'results.txt' 

 

    # Save run settings 

    with open(save_dir / 'hyp.yaml', 'w') as f: 

        yaml.dump(hyp, f, sort_keys=False) 

    with open(save_dir / 'opt.yaml', 'w') as f: 

        yaml.dump(vars(opt), f, sort_keys=False) 

 

    # Configure 

    plots = not opt.evolve  # create plots 

    cuda = device.type != 'cpu' 

    init_seeds(2 + rank) 

    with open(opt.data) as f: 

        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data di

ct 

    with torch_distributed_zero_first(rank): 

        check_dataset(data_dict)  # check 

    train_path = data_dict['train'] 

    test_path = data_dict['val'] 

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of

 classes 

    names = ['item'] if opt.single_cls and len(data_dict['names']) 

!= 1 else data_dict['names']  # class names 

    assert len(names) == nc, '%g names found for nc=%g dataset in %

s' % (len(names), nc, opt.data)  # check 

 

    # Model 

    pretrained = weights.endswith('.pt') 

    if pretrained: 

        with torch_distributed_zero_first(rank): 

            attempt_download(weights)  # download if not found loca

lly 

        ckpt = torch.load(weights, map_location=device)  # load che

ckpoint 

        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, a

nchors=hyp.get('anchors')).to(device)  # create 
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        exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and

 not opt.resume else []  # exclude keys 

        state_dict = ckpt['model'].float().state_dict()  # to FP32 

        state_dict = intersect_dicts(state_dict, model.state_dict()

, exclude=exclude)  # intersect 

        model.load_state_dict(state_dict, strict=False)  # load 

        logger.info('Transferred %g/%g items from %s' % (len(state_

dict), len(model.state_dict()), weights))  # report 

    else: 

        model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchor

s')).to(device)  # create 

 

    # Freeze 

    freeze = []  # parameter names to freeze (full or partial) 

    for k, v in model.named_parameters(): 

        v.requires_grad = True  # train all layers 

        if any(x in k for x in freeze): 

            print('freezing %s' % k) 

            v.requires_grad = False 

 

    # Optimizer 

    nbs = 64  # nominal batch size 

    accumulate = max(round(nbs / total_batch_size), 1)  # accumulat

e loss before optimizing 

    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # s

cale weight_decay 

    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") 

 

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups 

    for k, v in model.named_modules(): 

        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): 

            pg2.append(v.bias)  # biases 

        if isinstance(v, nn.BatchNorm2d): 

            pg0.append(v.weight)  # no decay 

        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Param

eter): 

            pg1.append(v.weight)  # apply decay 

 

    if opt.adam: 

        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['mome

ntum'], 0.999))  # adjust beta1 to momentum 

    else: 

        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['mom

entum'], nesterov=True) 

 

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['

weight_decay']})  # add pg1 with weight_decay 

    optimizer.add_param_group({'params': pg2})  # add pg2 (biases) 
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    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g oth

er' % (len(pg2), len(pg1), len(pg0))) 

    del pg0, pg1, pg2 

 

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf 

    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_sched

uler.html#OneCycleLR 

    if opt.linear_lr: 

        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) 

+ hyp['lrf']  # linear 

    else: 

        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1-

>hyp['lrf'] 

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) 

    # plot_lr_scheduler(optimizer, scheduler, epochs) 

 

    # Logging 

    if rank in [-1, 0] and wandb and wandb.run is None: 

        opt.hyp = hyp  # add hyperparameters 

        wandb_run = wandb.init(config=opt, resume="allow", 

                               project='YOLOv5' if opt.project == '

runs/train' else Path(opt.project).stem, 

                               name=save_dir.stem, 

                               entity=opt.entity, 

                               id=ckpt.get('wandb_id') if 'ckpt' in

 locals() else None) 

    loggers = {'wandb': wandb}  # loggers dict 

 

    # EMA 

    ema = ModelEMA(model) if rank in [-1, 0] else None 

 

    # Resume 

    start_epoch, best_fitness = 0, 0.0 

    if pretrained: 

        # Optimizer 

        if ckpt['optimizer'] is not None: 

            optimizer.load_state_dict(ckpt['optimizer']) 

            best_fitness = ckpt['best_fitness'] 

 

        # EMA 

        if ema and ckpt.get('ema'): 

            ema.ema.load_state_dict(ckpt['ema'].float().state_dict(

)) 

            ema.updates = ckpt['updates'] 

 

        # Results 

        if ckpt.get('training_results') is not None: 

            results_file.write_text(ckpt['training_results'])  # wr

ite results.txt 
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        # Epochs 

        start_epoch = ckpt['epoch'] + 1 

        if opt.resume: 

            assert start_epoch > 0, '%s training to %g epochs is fi

nished, nothing to resume.' % (weights, epochs) 

        if epochs < start_epoch: 

            logger.info('%s has been trained for %g epochs. Fine-

tuning for %g additional epochs.' % 

                        (weights, ckpt['epoch'], epochs)) 

            epochs += ckpt['epoch']  # finetune additional epochs 

 

        del ckpt, state_dict 

 

    # Image sizes 

    gs = max(int(model.stride.max()), 32)  # grid size (max stride) 

    nl = model.model[-

1].nl  # number of detection layers (used for scaling hyp['obj']) 

    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_siz

e]  # verify imgsz are gs-multiples 

 

    # DP mode 

    if cuda and rank == -1 and torch.cuda.device_count() > 1: 

        model = torch.nn.DataParallel(model) 

 

    # SyncBatchNorm 

    if opt.sync_bn and cuda and rank != -1: 

        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model

).to(device) 

        logger.info('Using SyncBatchNorm()') 

 

    # Trainloader 

    dataloader, dataset = create_dataloader(train_path, imgsz, batc

h_size, gs, opt, 

                                            hyp=hyp, augment=True, 

cache=opt.cache_images, rect=opt.rect, rank=rank, 

                                            world_size=opt.world_si

ze, workers=opt.workers, 

                                            image_weights=opt.image

_weights, quad=opt.quad, prefix=colorstr('train: ')) 

    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max labe

l class 

    nb = len(dataloader)  # number of batches 

    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible 

class labels are 0-%g' % (mlc, nc, opt.data, nc - 1) 

 

    # Process 0 

    if rank in [-1, 0]: 
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        testloader = create_dataloader(test_path, imgsz_test, batch

_size * 2, gs, opt,  # testloader 

                                       hyp=hyp, cache=opt.cache_ima

ges and not opt.notest, rect=True, rank=-1, 

                                       world_size=opt.world_size, w

orkers=opt.workers, 

                                       pad=0.5, prefix=colorstr('va

l: '))[0] 

 

        if not opt.resume: 

            labels = np.concatenate(dataset.labels, 0) 

            c = torch.tensor(labels[:, 0])  # classes 

            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # f

requency 

            # model._initialize_biases(cf.to(device)) 

            if plots: 

                plot_labels(labels, save_dir, loggers) 

                if tb_writer: 

                    tb_writer.add_histogram('classes', c, 0) 

 

            # Anchors 

            if not opt.noautoanchor: 

                check_anchors(dataset, model=model, thr=hyp['anchor

_t'], imgsz=imgsz) 

            model.half().float()  # pre-reduce anchor precision 

 

    # DDP mode 

    if cuda and rank != -1: 

        model = DDP(model, device_ids=[opt.local_rank], output_devi

ce=opt.local_rank) 

 

    # Model parameters 

    hyp['box'] *= 3. / nl  # scale to layers 

    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers 

    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image si

ze and layers 

    model.nc = nc  # attach number of classes to model 

    model.hyp = hyp  # attach hyperparameters to model 

    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou) 

    model.class_weights = labels_to_class_weights(dataset.labels, n

c).to(device) * nc  # attach class weights 

    model.names = names 

 

    # Start training 

    t0 = time.time() 

    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of w

armup iterations, max(3 epochs, 1k iterations) 

    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup

 to < 1/2 of training 



153 
 

    maps = np.zeros(nc)  # mAP per class 

    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-

.95, val_loss(box, obj, cls) 

    scheduler.last_epoch = start_epoch - 1  # do not move 

    scaler = amp.GradScaler(enabled=cuda) 

    compute_loss = ComputeLoss(model)  # init loss class 

    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' 

                f'Using {dataloader.num_workers} dataloader workers

\n' 

                f'Logging results to {save_dir}\n' 

                f'Starting training for {epochs} epochs...') 

    for epoch in range(start_epoch, epochs):  # epoch -------------

----------------------------------------------------- 

        model.train() 

 

        # Update image weights (optional) 

        if opt.image_weights: 

            # Generate indices 

            if rank in [-1, 0]: 

                cw = model.class_weights.cpu().numpy() * (1 - maps)

 ** 2 / nc  # class weights 

                iw = labels_to_image_weights(dataset.labels, nc=nc,

 class_weights=cw)  # image weights 

                dataset.indices = random.choices(range(dataset.n), 

weights=iw, k=dataset.n)  # rand weighted idx 

            # Broadcast if DDP 

            if rank != -1: 

                indices = (torch.tensor(dataset.indices) if rank ==

 0 else torch.zeros(dataset.n)).int() 

                dist.broadcast(indices, 0) 

                if rank != 0: 

                    dataset.indices = indices.cpu().numpy() 

 

        # Update mosaic border 

        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) /

/ gs * gs) 

        # dataset.mosaic_border = [b - imgsz, -

b]  # height, width borders 

 

        mloss = torch.zeros(4, device=device)  # mean losses 

        if rank != -1: 

            dataloader.sampler.set_epoch(epoch) 

        pbar = enumerate(dataloader) 

        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box

', 'obj', 'cls', 'total', 'targets', 'img_size')) 

        if rank in [-1, 0]: 

            pbar = tqdm(pbar, total=nb)  # progress bar 

        optimizer.zero_grad() 
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        for i, (imgs, targets, paths, _) in pbar:  # batch --------

----------------------------------------------------- 

            ni = i + nb * epoch  # number integrated batches (since

 train start) 

            imgs = imgs.to(device, non_blocking=True).float() / 255

.0  # uint8 to float32, 0-255 to 0.0-1.0 

 

            # Warmup 

            if ni <= nw: 

                xi = [0, nw]  # x interp 

                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou l

oss ratio (obj_loss = 1.0 or iou) 

                accumulate = max(1, np.interp(ni, xi, [1, nbs / tot

al_batch_size]).round()) 

                for j, x in enumerate(optimizer.param_groups): 

                    # bias lr falls from 0.1 to lr0, all other lrs 

rise from 0.0 to lr0 

                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_l

r'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) 

                    if 'momentum' in x: 

                        x['momentum'] = np.interp(ni, xi, [hyp['war

mup_momentum'], hyp['momentum']]) 

 

            # Multi-scale 

            if opt.multi_scale: 

                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs

) // gs * gs  # size 

                sf = sz / max(imgs.shape[2:])  # scale factor 

                if sf != 1: 

                    ns = [math.ceil(x * sf / gs) * gs for x in imgs

.shape[2:]]  # new shape (stretched to gs-multiple) 

                    imgs = F.interpolate(imgs, size=ns, mode='bilin

ear', align_corners=False) 

 

            # Forward 

            with amp.autocast(enabled=cuda): 

                pred = model(imgs)  # forward 

                loss, loss_items = compute_loss(pred, targets.to(de

vice))  # loss scaled by batch_size 

                if rank != -1: 

                    loss *= opt.world_size  # gradient averaged bet

ween devices in DDP mode 

                if opt.quad: 

                    loss *= 4. 

 

            # Backward 

            scaler.scale(loss).backward() 

 

            # Optimize 
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            if ni % accumulate == 0: 

                scaler.step(optimizer)  # optimizer.step 

                scaler.update() 

                optimizer.zero_grad() 

                if ema: 

                    ema.update(model) 

 

            # Print 

            if rank in [-1, 0]: 

                mloss = (mloss * i + loss_items) / (i + 1)  # updat

e mean losses 

                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9

 if torch.cuda.is_available() else 0)  # (GB) 

                s = ('%10s' * 2 + '%10.4g' * 6) % ( 

                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, tar

gets.shape[0], imgs.shape[-1]) 

                pbar.set_description(s) 

 

                # Plot 

                if plots and ni < 3: 

                    f = save_dir / f'train_batch{ni}.jpg'  # filena

me 

                    Thread(target=plot_images, args=(imgs, targets,

 paths, f), daemon=True).start() 

                    # if tb_writer: 

                    #     tb_writer.add_image(f, result, dataformat

s='HWC', global_step=epoch) 

                    #     tb_writer.add_graph(model, imgs)  # add m

odel to tensorboard 

                elif plots and ni == 10 and wandb: 

                    wandb.log({"Mosaics": [wandb.Image(str(x), capt

ion=x.name) for x in save_dir.glob('train*.jpg') 

                                           if x.exists()]}, commit=

False) 

 

            # end batch -------------------------------------------

----------------------------------------------------- 

        # end epoch -----------------------------------------------

----------------------------------------------------- 

 

        # Scheduler 

        lr = [x['lr'] for x in optimizer.param_groups]  # for tenso

rboard 

        scheduler.step() 

 

        # DDP process 0 or single-GPU 

        if rank in [-1, 0]: 

            # mAP 
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            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'g

r', 'names', 'stride', 'class_weights']) 

            final_epoch = epoch + 1 == epochs 

            if not opt.notest or final_epoch:  # Calculate mAP 

                results, maps, times = test.test(opt.data, 

                                                 batch_size=batch_s

ize * 2, 

                                                 imgsz=imgsz_test, 

                                                 model=ema.ema, 

                                                 single_cls=opt.sin

gle_cls, 

                                                 dataloader=testloa

der, 

                                                 save_dir=save_dir, 

                                                 verbose=nc < 50 an

d final_epoch, 

                                                 plots=plots and fi

nal_epoch, 

                                                 log_imgs=opt.log_i

mgs if wandb else 0, 

                                                 compute_loss=compu

te_loss) 

 

            # Write 

            with open(results_file, 'a') as f: 

                f.write(s + '%10.4g' * 7 % results + '\n')  # appen

d metrics, val_loss 

            if len(opt.name) and opt.bucket: 

                os.system('gsutil cp %s gs://%s/results/results%s.t

xt' % (results_file, opt.bucket, opt.name)) 

 

            # Log 

            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_

loss',  # train loss 

                    'metrics/precision', 'metrics/recall', 'metrics

/mAP_0.5', 'metrics/mAP_0.5:0.95', 

                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',

  # val loss 

                    'x/lr0', 'x/lr1', 'x/lr2']  # params 

            for x, tag in zip(list(mloss[:-

1]) + list(results) + lr, tags): 

                if tb_writer: 

                    tb_writer.add_scalar(tag, x, epoch)  # tensorbo

ard 

                if wandb: 

                    wandb.log({tag: x}, step=epoch, commit=tag == t

ags[-1])  # W&B 

 

            # Update best mAP 
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            fi = fitness(np.array(results).reshape(1, -

1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 

            if fi > best_fitness: 

                best_fitness = fi 

 

            # Save model 

            if (not opt.nosave) or (final_epoch and not opt.evolve)

:  # if save 

                ckpt = {'epoch': epoch, 

                        'best_fitness': best_fitness, 

                        'training_results': results_file.read_text(

), 

                        'model': deepcopy(model.module if is_parall

el(model) else model).half(), 

                        'ema': deepcopy(ema.ema).half(), 

                        'updates': ema.updates, 

                        'optimizer': optimizer.state_dict(), 

                        'wandb_id': wandb_run.id if wandb else None

} 

 

                # Save last, best and delete 

                torch.save(ckpt, last) 

                if best_fitness == fi: 

                    torch.save(ckpt, best) 

                del ckpt 

 

        # end epoch -----------------------------------------------

----------------------------------------------------- 

    # end training 

 

    if rank in [-1, 0]: 

        # Strip optimizers 

        final = best if best.exists() else last  # final model 

        for f in last, best: 

            if f.exists(): 

                strip_optimizer(f) 

        if opt.bucket: 

            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights

')  # upload 

 

        # Plots 

        if plots: 

            plot_results(save_dir=save_dir)  # save as results.png 

            if wandb: 

                files = ['results.png', 'confusion_matrix.png', *[f

'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] 

                wandb.log({"Results": [wandb.Image(str(save_dir / f

), caption=f) for f in files 
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                                       if (save_dir / f).exists()]}

) 

                if opt.log_artifacts: 

                    wandb.log_artifact(artifact_or_path=str(final),

 type='model', name=save_dir.stem) 

 

        # Test best.pt 

        logger.info('%g epochs completed in %.3f hours.\n' % (epoch

 - start_epoch + 1, (time.time() - t0) / 3600)) 

        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO 

            for m in (last, best) if best.exists() else (last):  # 

speed, mAP tests 

                results, _, _ = test.test(opt.data, 

                                          batch_size=batch_size * 2

, 

                                          imgsz=imgsz_test, 

                                          conf_thres=0.001, 

                                          iou_thres=0.7, 

                                          model=attempt_load(m, dev

ice).half(), 

                                          single_cls=opt.single_cls

, 

                                          dataloader=testloader, 

                                          save_dir=save_dir, 

                                          save_json=True, 

                                          plots=False) 

 

    else: 

        dist.destroy_process_group() 

 

    wandb.run.finish() if wandb and wandb.run else None 

    torch.cuda.empty_cache() 

    return results 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--

weights', type=str, default='yolov5s.pt', help='initial weights pat

h') 

    parser.add_argument('--

cfg', type=str, default='', help='model.yaml path') 

    parser.add_argument('--

data', type=str, default='data/coco128.yaml', help='data.yaml path'

) 

    parser.add_argument('--

hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparamet

ers path') 

    parser.add_argument('--epochs', type=int, default=300) 



159 
 

    parser.add_argument('--batch-

size', type=int, default=16, help='total batch size for all GPUs') 

    parser.add_argument('--img-

size', nargs='+', type=int, default=[640, 640], help='[train, test]

 image sizes') 

    parser.add_argument('--

rect', action='store_true', help='rectangular training') 

    parser.add_argument('--

resume', nargs='?', const=True, default=False, help='resume most re

cent training') 

    parser.add_argument('--

nosave', action='store_true', help='only save final checkpoint') 

    parser.add_argument('--

notest', action='store_true', help='only test final epoch') 

    parser.add_argument('--

noautoanchor', action='store_true', help='disable autoanchor check'

) 

    parser.add_argument('--

evolve', action='store_true', help='evolve hyperparameters') 

    parser.add_argument('--

bucket', type=str, default='', help='gsutil bucket') 

    parser.add_argument('--cache-

images', action='store_true', help='cache images for faster trainin

g') 

    parser.add_argument('--image-

weights', action='store_true', help='use weighted image selection f

or training') 

    parser.add_argument('--

device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 

    parser.add_argument('--multi-

scale', action='store_true', help='vary img-size +/- 50%%') 

    parser.add_argument('--single-

cls', action='store_true', help='train multi-class data as single-

class') 

    parser.add_argument('--

adam', action='store_true', help='use torch.optim.Adam() optimizer'

) 

    parser.add_argument('--sync-

bn', action='store_true', help='use SyncBatchNorm, only available i

n DDP mode') 

    parser.add_argument('--local_rank', type=int, default=-

1, help='DDP parameter, do not modify') 

    parser.add_argument('--log-

imgs', type=int, default=16, help='number of images for W&B logging

, max 100') 

    parser.add_argument('--log-

artifacts', action='store_true', help='log artifacts, i.e. final tr

ained model') 
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    parser.add_argument('--

workers', type=int, default=8, help='maximum number of dataloader w

orkers') 

    parser.add_argument('--

project', default='runs/train', help='save to project/name') 

    parser.add_argument('--

entity', default=None, help='W&B entity') 

    parser.add_argument('--

name', default='exp', help='save to project/name') 

    parser.add_argument('--exist-

ok', action='store_true', help='existing project/name ok, do not in

crement') 

    parser.add_argument('--

quad', action='store_true', help='quad dataloader') 

    parser.add_argument('--linear-

lr', action='store_true', help='linear LR') 

    opt = parser.parse_args() 

 

    # Set DDP variables 

    opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' 

in os.environ else 1 

    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.envir

on else -1 

    set_logging(opt.global_rank) 

    if opt.global_rank in [-1, 0]: 

        check_git_status() 

        check_requirements() 

 

    # Resume 

    if opt.resume:  # resume an interrupted run 

        ckpt = opt.resume if isinstance(opt.resume, str) else get_l

atest_run()  # specified or most recent path 

        assert os.path.isfile(ckpt), 'ERROR: --

resume checkpoint does not exist' 

        apriori = opt.global_rank, opt.local_rank 

        with open(Path(ckpt).parent.parent / 'opt.yaml') as f: 

            opt = argparse.Namespace(**yaml.load(f, Loader=yaml.Saf

eLoader))  # replace 

        opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.globa

l_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apr

iori  # reinstate 

        logger.info('Resuming training from %s' % ckpt) 

    else: 

        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights 

else 'hyp.scratch.yaml') 

        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_fi

le(opt.cfg), check_file(opt.hyp)  # check files 

        assert len(opt.cfg) or len(opt.weights), 'either --cfg or -

-weights must be specified' 
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        opt.img_size.extend([opt.img_size[-

1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test) 

        opt.name = 'evolve' if opt.evolve else opt.name 

        opt.save_dir = increment_path(Path(opt.project) / opt.name,

 exist_ok=opt.exist_ok | opt.evolve)  # increment run 

 

    # DDP mode 

    opt.total_batch_size = opt.batch_size 

    device = select_device(opt.device, batch_size=opt.batch_size) 

    if opt.local_rank != -1: 

        assert torch.cuda.device_count() > opt.local_rank 

        torch.cuda.set_device(opt.local_rank) 

        device = torch.device('cuda', opt.local_rank) 

        dist.init_process_group(backend='nccl', init_method='env://

')  # distributed backend 

        assert opt.batch_size % opt.world_size == 0, '--batch-

size must be multiple of CUDA device count' 

        opt.batch_size = opt.total_batch_size // opt.world_size 

 

    # Hyperparameters 

    with open(opt.hyp) as f: 

        hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps 

 

    # Train 

    logger.info(opt) 

    try: 

        import wandb 

    except ImportError: 

        wandb = None 

        prefix = colorstr('wandb: ') 

        logger.info(f"{prefix}Install Weights & Biases for YOLOv5 l

ogging with 'pip install wandb' (recommended)") 

    if not opt.evolve: 

        tb_writer = None  # init loggers 

        if opt.global_rank in [-1, 0]: 

            logger.info(f'Start Tensorboard with "tensorboard --

logdir {opt.project}", view at http://localhost:6006/') 

            tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard 

        train(hyp, opt, device, tb_writer, wandb) 

 

    # Evolve hyperparameters (optional) 

    else: 

        # Hyperparameter evolution metadata (mutation scale 0-

1, lower_limit, upper_limit) 

        meta = {'lr0': (1, 1e-5, 1e-

1),  # initial learning rate (SGD=1E-2, Adam=1E-3) 

                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning

 rate (lr0 * lrf) 
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                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam 

beta1 

                'weight_decay': (1, 0.0, 0.001),  # optimizer weigh

t decay 

                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (f

ractions ok) 

                'warmup_momentum': (1, 0.0, 0.95),  # warmup initia

l momentum 

                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial 

bias lr 

                'box': (1, 0.02, 0.2),  # box loss gain 

                'cls': (1, 0.2, 4.0),  # cls loss gain 

                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_we

ight 

                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with 

pixels) 

                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_we

ight 

                'iou_t': (0, 0.1, 0.7),  # IoU training threshold 

                'anchor_t': (1, 2.0, 8.0),  # anchor-

multiple threshold 

                'anchors': (2, 2.0, 10.0),  # anchors per output gr

id (0 to ignore) 

                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (eff

icientDet default gamma=1.5) 

                'hsv_h': (1, 0.0, 0.1),  # image HSV-

Hue augmentation (fraction) 

                'hsv_s': (1, 0.0, 0.9),  # image HSV-

Saturation augmentation (fraction) 

                'hsv_v': (1, 0.0, 0.9),  # image HSV-

Value augmentation (fraction) 

                'degrees': (1, 0.0, 45.0),  # image rotation (+/- d

eg) 

                'translate': (1, 0.0, 0.9),  # image translation (+

/- fraction) 

                'scale': (1, 0.0, 0.9),  # image scale (+/- gain) 

                'shear': (1, 0.0, 10.0),  # image shear (+/- deg) 

                'perspective': (0, 0.0, 0.001),  # image perspectiv

e (+/- fraction), range 0-0.001 

                'flipud': (1, 0.0, 1.0),  # image flip up-

down (probability) 

                'fliplr': (0, 0.0, 1.0),  # image flip left-

right (probability) 

                'mosaic': (1, 0.0, 1.0),  # image mixup (probabilit

y) 

                'mixup': (1, 0.0, 1.0)}  # image mixup (probability

) 

 



163 
 

        assert opt.local_rank == -

1, 'DDP mode not implemented for --evolve' 

        opt.notest, opt.nosave = True, True  # only test/save final

 epoch 

        # ei = [isinstance(x, (int, float)) for x in hyp.values()]

  # evolvable indices 

        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save

 best result here 

        if opt.bucket: 

            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket

)  # download evolve.txt if exists 

 

        for _ in range(300):  # generations to evolve 

            if Path('evolve.txt').exists():  # if evolve.txt exists

: select best hyps and mutate 

                # Select parent(s) 

                parent = 'single'  # parent selection method: 'sing

le' or 'weighted' 

                x = np.loadtxt('evolve.txt', ndmin=2) 

                n = min(5, len(x))  # number of previous results to

 consider 

                x = x[np.argsort(-

fitness(x))][:n]  # top n mutations 

                w = fitness(x) - fitness(x).min()  # weights 

                if parent == 'single' or len(x) == 1: 

                    # x = x[random.randint(0, n - 1)]  # random sel

ection 

                    x = x[random.choices(range(n), weights=w)[0]]  

# weighted selection 

                elif parent == 'weighted': 

                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # w

eighted combination 

 

                # Mutate 

                mp, s = 0.8, 0.2  # mutation probability, sigma 

                npr = np.random 

                npr.seed(int(time.time())) 

                g = np.array([x[0] for x in meta.values()])  # gain

s 0-1 

                ng = len(meta) 

                v = np.ones(ng) 

                while all(v == 1):  # mutate until a change occurs 

(prevent duplicates) 

                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) 

* npr.random() * s + 1).clip(0.3, 3.0) 

                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ra

vel(), 300) 

                    hyp[k] = float(x[i + 7] * v[i])  # mutate 
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            # Constrain to limits 

            for k, v in meta.items(): 

                hyp[k] = max(hyp[k], v[1])  # lower limit 

                hyp[k] = min(hyp[k], v[2])  # upper limit 

                hyp[k] = round(hyp[k], 5)  # significant digits 

 

            # Train mutation 

            results = train(hyp.copy(), opt, device, wandb=wandb) 

 

            # Write mutation results 

            print_mutation(hyp.copy(), results, yaml_file, opt.buck

et) 

 

        # Plot results 

        plot_evolution(yaml_file) 

        print(f'Hyperparameter evolution complete. Best results sav

ed as: {yaml_file}\n' 

              f'Command to train a new model with these hyperparame

ters: $ python train.py --hyp {yaml_file}') 

 

 

Testing code for YOLO v5 

import argparse 

import json 

import os 

from pathlib import Path 

from threading import Thread 

 

import numpy as np 

import torch 

import yaml 

from tqdm import tqdm 

 

from models.experimental import attempt_load 

from utils.datasets import create_dataloader 

from utils.general import coco80_to_coco91_class, check_dataset, ch

eck_file, check_img_size, check_requirements, \ 

    box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyx

y, set_logging, increment_path, colorstr 

from utils.metrics import ap_per_class, ConfusionMatrix 

from utils.plots import plot_images, output_to_target, plot_study_t

xt 

from utils.torch_utils import select_device, time_synchronized 

 

def test(data, 

         weights=None, 
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         batch_size=32, 

         imgsz=640, 

         conf_thres=0.001, 

         iou_thres=0.6,  # for NMS 

         save_json=False, 

         single_cls=False, 

         augment=False, 

         verbose=False, 

         model=None, 

         dataloader=None, 

         save_dir=Path(''),  # for saving images 

         save_txt=False,  # for auto-labelling 

         save_hybrid=False,  # for hybrid auto-labelling 

         save_conf=False,  # save auto-label confidences 

         plots=True, 

         log_imgs=0,  # number of logged images 

         compute_loss=None): 

    # Initialize/load model and set device 

    training = model is not None 

    if training:  # called by train.py 

        device = next(model.parameters()).device  # get model devic

e 

 

    else:  # called directly 

        set_logging() 

        device = select_device(opt.device, batch_size=batch_size) 

 

        # Directories 

        save_dir = Path(increment_path(Path(opt.project) / opt.name

, exist_ok=opt.exist_ok))  # increment run 

        (save_dir / 'labels' if save_txt else save_dir).mkdir(paren

ts=True, exist_ok=True)  # make dir 

 

        # Load model 

        model = attempt_load(weights, map_location=device)  # load 

FP32 model 

        gs = max(int(model.stride.max()), 32)  # grid size (max str

ide) 

        imgsz = check_img_size(imgsz, s=gs)  # check img_size 

 

        # Multi-

GPU disabled, incompatible with .half() https://github.com/ultralyt

ics/yolov5/issues/99 

        # if device.type != 'cpu' and torch.cuda.device_count() > 1

: 

        #     model = nn.DataParallel(model) 

 

    # Half 
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    half = device.type != 'cpu'  # half precision only supported on

 CUDA 

    if half: 

        model.half() 

 

    # Configure 

    model.eval() 

    is_coco = data.endswith('coco.yaml')  # is COCO dataset 

    with open(data) as f: 

        data = yaml.load(f, Loader=yaml.SafeLoader)  # model dict 

    check_dataset(data)  # check 

    nc = 1 if single_cls else int(data['nc'])  # number of classes 

    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector f

or mAP@0.5:0.95 

    niou = iouv.numel() 

 

    # Logging 

    log_imgs, wandb = min(log_imgs, 100), None  # ceil 

    try: 

        import wandb  # Weights & Biases 

    except ImportError: 

        log_imgs = 0 

 

    # Dataloader 

    if not training: 

        if device.type != 'cpu': 

            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_a

s(next(model.parameters())))  # run once 

        path = data['test'] if opt.task == 'test' else data['val']

  # path to val/test images 

        dataloader = create_dataloader(path, imgsz, batch_size, gs,

 opt, pad=0.5, rect=True, 

                                       prefix=colorstr('test: ' if 

opt.task == 'test' else 'val: '))[0] 

 

    seen = 0 

    confusion_matrix = ConfusionMatrix(nc=nc) 

    names = {k: v for k, v in enumerate(model.names if hasattr(mode

l, 'names') else model.module.names)} 

    coco91class = coco80_to_coco91_class() 

    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P',

 'R', 'mAP@.5', 'mAP@.5:.95') 

    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 

0., 0., 0. 

    loss = torch.zeros(3, device=device) 

    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] 

    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(da

taloader, desc=s)): 

        img = img.to(device, non_blocking=True) 
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        img = img.half() if half else img.float()  # uint8 to fp16/

32 

        img /= 255.0  # 0 - 255 to 0.0 - 1.0 

        targets = targets.to(device) 

        nb, _, height, width = img.shape  # batch size, channels, h

eight, width 

 

        with torch.no_grad(): 

            # Run model 

            t = time_synchronized() 

            out, train_out = model(img, augment=augment)  # inferen

ce and training outputs 

            t0 += time_synchronized() - t 

 

            # Compute loss 

            if compute_loss: 

                loss += compute_loss([x.float() for x in train_out]

, targets)[1][:3]  # box, obj, cls 

 

            # Run NMS 

            targets[:, 2:] *= torch.Tensor([width, height, width, h

eight]).to(device)  # to pixels 

            lb = [targets[targets[:, 0] == i, 1:] for i in range(nb

)] if save_hybrid else []  # for autolabelling 

            t = time_synchronized() 

            out = non_max_suppression(out, conf_thres=conf_thres, i

ou_thres=iou_thres, labels=lb, multi_label=True) 

            t1 += time_synchronized() - t 

 

        # Statistics per image 

        for si, pred in enumerate(out): 

            labels = targets[targets[:, 0] == si, 1:] 

            nl = len(labels) 

            tcls = labels[:, 0].tolist() if nl else []  # target cl

ass 

            path = Path(paths[si]) 

            seen += 1 

 

            if len(pred) == 0: 

                if nl: 

                    stats.append((torch.zeros(0, niou, dtype=torch.

bool), torch.Tensor(), torch.Tensor(), tcls)) 

                continue 

 

            # Predictions 

            predn = pred.clone() 

            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si

][0], shapes[si][1])  # native-space pred 
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            # Append to text file 

            if save_txt: 

                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # n

ormalization gain whwh 

                for *xyxy, conf, cls in predn.tolist(): 

                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)

) / gn).view(-1).tolist()  # normalized xywh 

                    line = (cls, *xywh, conf) if save_conf else (cl

s, *xywh)  # label format 

                    with open(save_dir / 'labels' / (path.stem + '.

txt'), 'a') as f: 

                        f.write(('%g ' * len(line)).rstrip() % line

 + '\n') 

 

            # W&B logging 

            if plots and len(wandb_images) < log_imgs: 

                box_data = [{"position": {"minX": xyxy[0], "minY": 

xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, 

                             "class_id": int(cls), 

                             "box_caption": "%s %.3f" % (names[cls]

, conf), 

                             "scores": {"class_score": conf}, 

                             "domain": "pixel"} for *xyxy, conf, cl

s in pred.tolist()] 

                boxes = {"predictions": {"box_data": box_data, "cla

ss_labels": names}}  # inference-space 

                wandb_images.append(wandb.Image(img[si], boxes=boxe

s, caption=path.name)) 

 

            # Append to pycocotools JSON dictionary 

            if save_json: 

                # [{"image_id": 42, "category_id": 18, "bbox": [258

.15, 41.29, 348.26, 243.78], "score": 0.236}, ... 

                image_id = int(path.stem) if path.stem.isnumeric() 

else path.stem 

                box = xyxy2xywh(predn[:, :4])  # xywh 

                box[:, :2] -= box[:, 2:] / 2  # xy center to top-

left corner 

                for p, b in zip(pred.tolist(), box.tolist()): 

                    jdict.append({'image_id': image_id, 

                                  'category_id': coco91class[int(p[

5])] if is_coco else int(p[5]), 

                                  'bbox': [round(x, 3) for x in b], 

                                  'score': round(p[4], 5)}) 

 

            # Assign all predictions as incorrect 

            correct = torch.zeros(pred.shape[0], niou, dtype=torch.

bool, device=device) 

            if nl: 
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                detected = []  # target indices 

                tcls_tensor = labels[:, 0] 

 

                # target boxes 

                tbox = xywh2xyxy(labels[:, 1:5]) 

                scale_coords(img[si].shape[1:], tbox, shapes[si][0]

, shapes[si][1])  # native-space labels 

                if plots: 

                    confusion_matrix.process_batch(predn, torch.cat

((labels[:, 0:1], tbox), 1)) 

 

                # Per target class 

                for cls in torch.unique(tcls_tensor): 

                    ti = (cls == tcls_tensor).nonzero(as_tuple=Fals

e).view(-1)  # prediction indices 

                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False

).view(-1)  # target indices 

 

                    # Search for detections 

                    if pi.shape[0]: 

                        # Prediction to target ious 

                        ious, i = box_iou(predn[pi, :4], tbox[ti]).

max(1)  # best ious, indices 

 

                        # Append detections 

                        detected_set = set() 

                        for j in (ious > iouv[0]).nonzero(as_tuple=

False): 

                            d = ti[i[j]]  # detected target 

                            if d.item() not in detected_set: 

                                detected_set.add(d.item()) 

                                detected.append(d) 

                                correct[pi[j]] = ious[j] > iouv  # 

iou_thres is 1xn 

                                if len(detected) == nl:  # all targ

ets already located in image 

                                    break 

 

            # Append statistics (correct, conf, pcls, tcls) 

            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 

5].cpu(), tcls)) 

 

        # Plot images 

        if plots and batch_i < 3: 

            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # lab

els 

            Thread(target=plot_images, args=(img, targets, paths, f

, names), daemon=True).start() 
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            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predi

ctions 

            Thread(target=plot_images, args=(img, output_to_target(

out), paths, f, names), daemon=True).start() 

 

    # Compute statistics 

    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy 

    if len(stats) and stats[0].any(): 

        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, s

ave_dir=save_dir, names=names) 

        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95 

        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.me

an() 

        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  

# number of targets per class 

    else: 

        nt = torch.zeros(1) 

 

    # Print results 

    pf = '%20s' + '%12.3g' * 6  # print format 

    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) 

 

    # Print results per class 

    if (verbose or (nc < 50 and not training)) and nc > 1 and len(s

tats): 

        for i, c in enumerate(ap_class): 

            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i],

 ap[i])) 

 

    # Print speeds 

    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, 

imgsz, batch_size)  # tuple 

    if not training: 

        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx

%g image at batch-size %g' % t) 

 

    # Plots 

    if plots: 

        confusion_matrix.plot(save_dir=save_dir, names=list(names.v

alues())) 

        if wandb and wandb.run: 

            val_batches = [wandb.Image(str(f), caption=f.name) for 

f in sorted(save_dir.glob('test*.jpg'))] 

            wandb.log({"Images": wandb_images, "Validation": val_ba

tches}, commit=False) 

 

    # Save JSON 

    if save_json and len(jdict): 
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        w = Path(weights[0] if isinstance(weights, list) else weigh

ts).stem if weights is not None else ''  # weights 

        anno_json = '../coco/annotations/instances_val2017.json'  #

 annotations json 

        pred_json = str(save_dir / f"{w}_predictions.json")  # pred

ictions json 

        print('\nEvaluating pycocotools mAP... saving %s...' % pred

_json) 

        with open(pred_json, 'w') as f: 

            json.dump(jdict, f) 

 

        try:  # https://github.com/cocodataset/cocoapi/blob/master/

PythonAPI/pycocoEvalDemo.ipynb 

            from pycocotools.coco import COCO 

            from pycocotools.cocoeval import COCOeval 

 

            anno = COCO(anno_json)  # init annotations api 

            pred = anno.loadRes(pred_json)  # init predictions api 

            eval = COCOeval(anno, pred, 'bbox') 

            if is_coco: 

                eval.params.imgIds = [int(Path(x).stem) for x in da

taloader.dataset.img_files]  # image IDs to evaluate 

            eval.evaluate() 

            eval.accumulate() 

            eval.summarize() 

            map, map50 = eval.stats[:2]  # update results (mAP@0.5:

0.95, mAP@0.5) 

        except Exception as e: 

            print(f'pycocotools unable to run: {e}') 

 

    # Return results 

    model.float()  # for training 

    if not training: 

        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels s

aved to {save_dir / 'labels'}" if save_txt else '' 

        print(f"Results saved to {save_dir}{s}") 

    maps = np.zeros(nc) + map 

    for i, c in enumerate(ap_class): 

        maps[c] = ap[i] 

    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tol

ist()), maps, t 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(prog='test.py') 

    parser.add_argument('--

weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt

 path(s)') 
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    parser.add_argument('--

data', type=str, default='data/coco128.yaml', help='*.data path') 

    parser.add_argument('--batch-

size', type=int, default=32, help='size of each image batch') 

    parser.add_argument('--img-

size', type=int, default=640, help='inference size (pixels)') 

    parser.add_argument('--conf-

thres', type=float, default=0.001, help='object confidence threshol

d') 

    parser.add_argument('--iou-

thres', type=float, default=0.6, help='IOU threshold for NMS') 

    parser.add_argument('--

task', default='val', help="'val', 'test', 'study'") 

    parser.add_argument('--

device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 

    parser.add_argument('--single-

cls', action='store_true', help='treat as single-class dataset') 

    parser.add_argument('--

augment', action='store_true', help='augmented inference') 

    parser.add_argument('--

verbose', action='store_true', help='report mAP by class') 

    parser.add_argument('--save-

txt', action='store_true', help='save results to *.txt') 

    parser.add_argument('--save-

hybrid', action='store_true', help='save label+prediction hybrid re

sults to *.txt') 

    parser.add_argument('--save-

conf', action='store_true', help='save confidences in --save-

txt labels') 

    parser.add_argument('--save-

json', action='store_true', help='save a cocoapi-

compatible JSON results file') 

    parser.add_argument('--

project', default='runs/test', help='save to project/name') 

    parser.add_argument('--

name', default='exp', help='save to project/name') 

    parser.add_argument('--exist-

ok', action='store_true', help='existing project/name ok, do not in

crement') 

    opt = parser.parse_args() 

    opt.save_json |= opt.data.endswith('coco.yaml') 

    opt.data = check_file(opt.data)  # check file 

    print(opt) 

    check_requirements() 

 

    if opt.task in ['val', 'test']:  # run normally 

        test(opt.data, 

             opt.weights, 

             opt.batch_size, 
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             opt.img_size, 

             opt.conf_thres, 

             opt.iou_thres, 

             opt.save_json, 

             opt.single_cls, 

             opt.augment, 

             opt.verbose, 

             save_txt=opt.save_txt | opt.save_hybrid, 

             save_hybrid=opt.save_hybrid, 

             save_conf=opt.save_conf, 

             ) 

 

    elif opt.task == 'speed':  # speed benchmarks 

        for w in opt.weights: 

            test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0

.45, save_json=False, plots=False) 

 

    elif opt.task == 'study':  # run over a range of settings and s

ave/plot 

        # python test.py --task study --data coco.yaml --iou 0.7 --

weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt 

        x = list(range(256, 1536 + 128, 128))  # x axis (image size

s) 

        for w in opt.weights: 

            f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt'  

# filename to save to 

            y = []  # y axis 

            for i in x:  # img-size 

                print(f'\nRunning {f} point {i}...') 

                r, _, t = test(opt.data, w, opt.batch_size, i, opt.

conf_thres, opt.iou_thres, opt.save_json, 

                               plots=False) 

                y.append(r + t)  # results and times 

            np.savetxt(f, y, fmt='%10.4g')  # save 

        os.system('zip -r study.zip study_*.txt') 

        plot_study_txt(x=x)  # plot 

 

 

 

 


