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ABSTRACT 

Gold prospecting is a significant but capital-intensive source of revenue for developing 

nations, hence, the need for a fast and less expensive approach for determination of high 

potential zones prior investment. Remote Sensing (RS) for the identification of 

hydrothermally altered rocks in examining the response of ratios of some band combinations, 

adoption of the relationship between lineament and gold mineralization and also, patterns of 

gold presence especially under simulated environmental condition within the study area has 

been a challenge. The study provided a means by which RS could be used as s suitable tool 

for mapping possible precursor of Gold (Au) mineralization in Rafi Local Government Area 

of Niger state. RS technique was adopted as means for delineating hydrothermal alteration 

zones for probable precursor of Au mineralization. Such characteristics include rock-

outcrops, oxidation, silification, iron oxide and invariably hydrothermal alteration. In the 

overall, the percentage contribution of each contributory characteristic determined the spatial 

distribution of the mineral. The study utilised six spectral bands from LandSAT 8 OLI 

satellite image to compute Principal Component Analysis (PCA), hydrothermally altered 

rock, Lineament extraction, Sabin's ratio & Kaufmann's ratio and Multi-Criterial Analysis 

(MCA) for the regions of Iron Oxide, Oxidation and Silification within the study area using   

the ArcGIS, ENVI and PCI GEOMATICAL softwares. Image processing techniques; band 

compositing (True colour composite TCC (band 4,3,2) and False colour composite FCC 

(5,4,3 & 7,5,2), band rationing (Kaufmanns (7/5, 5/4, 6/7) and Sabins (4/2, 6/7, 6/5) ratio as 

well as Boolean rations (4/2,5/7,7/5,6/5 respectively) ) and Principal Component Analysis 

PCA were applied for the  extraction of spectral and spatial information related to lithology, 

structures and hydrothermal alteration. PCA eigenvalues of 83% for the ratio of Sabin’s and 

76% for Kaufmann were obtained. These served as a-priori weighting considerations based 

on the significance factor of the largest band contributor in both indices (Sabins and 

Kaufmann). Results obtained showed that the variable weight overlay (guided by PCA 

eigenvalues) was more consistent with the reality of the area than the equal weight overlay 

and the Multicriteria analysis region for hydrothermal alteration occupying 80% of the area. 

It was therefore concluded that integration of remote sensing techniques (using the adopted 

ratios) provided a tool for delineating economic mineralization of Au. 
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CHAPTER ONE 

1.0                                                  INTRODUCTION 

1.1 Background to the Study 

Remote sensing (RS) of the earth, or earth observation (EO), being the science of identifying 

features of the earth surface and their properties of biophysical and geophysical estimation 

using radiation from electromagnetic, being measured by spaceborne sensors (shuttles of 

space and satellites) or aircraft (airborne) or platforms (Agar and Coulter, 2007; Drury, 

2001). Scientists of the Earth have focused on geology of the environment, exploration of 

hydro-carbon and mineral global experiences in using data remotely sensed (Omer and 

Zeinelabdein, 2018).  

EO has played an important role in geological mapping, especially in areas with limited 

infrastructure and harsh environmental conditions. EO methods offer: the opportunity to 

analyse and map surface geology in a relatively short time and at reduced cost; provide 

additional (sometimes new) information for preliminary geological investigations; and give 

a synoptic view of a study area often difficult to obtain from field-based observation alone 

(Chernicoff and Nash, 2002; Kariuki et al., 2004). Broad lithological information is deduced 
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from a variety of indicators observed in remotely sensed imagery, including landforms, 

structural features, soils, vegetation types and drainage patterns (Rajesh, 2004 and Agar and 

Coulter, 2007).  

Mineral prospecting and several other mining activities are an important source of national 

income in most developing countries; with prospectors constantly in search for fast and cheap 

techniques that can aid the task (Aminzadeh and Samani, 2006). Usually, mineral exploration 

is capital intensive, and as such, prospectors are often not willing to invest until the presence 

and quantity of mineralization is empirically ascertained. The uncertainty of the presence and 

quantity of Gold (Au) minerals in Rafi Local Government Area of Niger state has led to the 

nefarious activities by illegal miners within the area. Such illegal mining works have 

continued to increase the rate of environmental degradation and loss of minerals (Sadiya et 

al., 2015). 

Conventional methods for mineral prospecting are costly and time consuming, therefore 

necessitating the utilization of a faster and cost-effective method.  RS has since been utilized 

as a fast, cost-effective and very reliable tool for geologic mapping and mineral exploration 

(Goetz et al., 1983). Since the initial stage of RS technology, RS images are applied to 

mineral exploration in either mapping of geological features, such as fractures and faults, 

which host ore deposits; and mapping hydrothermal alteration minerals using their spectral 

features (Sabins, 1999). Discrimination of hydrothermal alteration assemblages and their 

distribution is an important part in exploration of hydrothermal ore deposits and generation 

of the most appropriate ore deposit model (Thompson et al, 1999).  

1.2 Statement of the Research Problem 
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Mining activities as well as prospecting of mineral and have been on the increase for the past 

twenty years. Prospectors on the search constantly for newer techniques of technology that 

can aid them in recognizing mineral reserves in a timeframe faster and at low costs 

(Zeinelabdein et al, 2020). Field data procurement and visual interpretation is labour 

intensive, time consuming and costly, the use of ground survey method is very limited and 

cannot be widely applied in other remote and large regions which requires plenty of time and 

financial backing (Aminzadeh and Samani, 2006).  

RS for the identifying rocks that are altered hydrothermally in examining the response of 

ratios of some band combinations, acceptance of the relationship between lineament and gold 

mineralization and also, patterns of gold presence especially under simulated environmental 

condition within the study area has been a challenge and has not been well documented. 

Therefore, this study will complement the documentary of this. 

1.3  Research Question 

i. How effective will remote sensing be for mapping hydrothermally altered regions 

within the study area? 

ii. How can the response of bands ratios be examined for hydrothermally altered 

rocks?  

iii. How can the characteristics of sub-surface lineament affect Gold deposit? 

iv. In what ways can Multi-criteria analysis under simulated environmental condition   

be identified within the hydrothermally alteration zones? 

1.4 Aim and Objective of the Study:  
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The aim of this study is to examine the suitability of Landsat imageries with a view to identify 

Gold prospectivity in Rafi Local Government Area of Niger state, Nigeria. The specific 

objectives are to: 

i. identify the hydrothermally altered regions within the study area using selected band 

combination. 

ii. examine the response of ratios of certain band combinations for hydrothermally 

altered rocks within the study area. 

iii. identify the characteristics of sub-surface lineament and Gold mineralization.  

iv. Conduct simulation studies to investigate possible pattern of gold presence within the 

study area under simulated   environmental conditions. 

1.5 Scope of the Study 

RS technique was used as a suitable tool for mapping possible precursor of Gold (Au) 

mineralization in the identification of hydrothermally altered rocks by examining the 

response of ratios of some band combinations using different band ratios on the ENVI  and 

ArcGIS software, adoption of the relationship between lineament and gold mineralization 

and also, patterns of gold presence especially under simulated environmental condition 

within Rafi local government area of Niger state. Six spectral bands from LandSAT 8 OLI 

satellite image was used to detect the hydrothermally altered rock using the various band 

combination, Lineament extraction was done using the PCI Geomatical software, 

computation of Principal Component Analysis (PCA) on the ENVI software, Sabin's ratio & 

Kaufmann's ratio and Multi-Criterial Analysis (MCA) which pointed us to area with the 

presence of iron oxide, silification and oxidation within the study area.  
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1.6 Justification of the Study 

Mining in developing countries like Nigeria, have exposed the environment to serious 

hazards by the generation and uncontrolled discharge of enormous amounts of toxic aqueous 

wastes containing toxic heavy metals, as well as various organic pollutants, which impact 

adversely on human health and the ecosystem (Nuhu, 2014). 

Since mineral prospecting and mining activities have increased during the past two decades, 

prospectors are constantly on the search for newer technologies that can help them identify 

mineral reserves in a quicker timeframe and at reduced costs (Zeinelabdein et al, 2020). 

Despite several research efforts on the global scene where RS is used for lithology mapping, 

much has not been done in utilizing RS for identification of mineral deposits in Nigeria. 

Mineral exploration is a capital-intensive venture that requires heavy investment if 

environmental sustainability is to be achieved. 

The use of remote sensing data for detection and quantification of gold is of great benefit to 

the ascertaining risk assessment, financial viability and environmental impact of exploring 

the gold mineral.   

Lithological classification is an important application in geological remote sensing, and the 

multispectral data Landsat 8 OLI have been said to be efficient for lithological discrimination 

(Ge et al., 2018). As an economical and efficient technique, remote sensing has become a 

popular method for regional lithological mapping and also because information can be 

acquired at low cost through satellite imagery (Zhang and Li, 2014; Masoumi et al., 2017a). 

Lithological mapping and recognizing hydrothermally altered minerals through remote 

sensing instruments have been widely and successfully used for the exploration of epithermal 
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gold, porphyry copper, massive sulfide, chromite, magnetite and uranium ore deposits 

(Babiker et al., 2015). 

Hazardous effect of illegal mining on areas where little or no pointer to the presence of the 

study mineral can be reduced if remote sensing technique is accommodated.  In this study, 

RS data would be used to delineate hydrothermal alteration zones within Rafi LGA, with a 

view to identification of possible gold deposits within the study area.  

 

1.7 Study Area 

The study area is Rafi Local Government Area of Niger State, Nigeria (Figure 1.1). It’s at 

the PATH 189 and ROW 53 and on Long 6o 27’31” and Lat 10o 0‘41”. The site is chosen 

primarily based totally on the artisanal mining activities on going within the location. 

Consequently, there are shallow pits and burrows, in which small gold-bearing stones 

(quartz) are being extracted and deserted after the precious stones were completely extracted. 
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Figure 1.1: Map of the Study Area 

 

1.8 Geology of the Study Area 

About half of the landmass of Niger State is underlain by the Basement Complex rocks while 

the remaining half is occupied by the Cretaceous Sedimentary rocks of the Bida Basin (Figure 

1.2). It lies within the north-central portion of the Nigerian Basement complex rock which is 

characterized by three lithofacies namely; the migmatite-gneiss complex, the low-grade 

schist belt and the older granites (Olasehinde, 1999). The geological map (Figure 1.2) 

revealed that the area is underlain by granite and gneiss which in most locations are 

undifferentiated granite-gneiss-complex.  
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Figure 1.2: Geology of Niger state (Amadi, 2012). 

 

 

 

 

CHAPTER TWO 

2.0     LITERATURE REVIEW 

2.1 Developments in Lithology and Prospectivity Mapping using RS 

In recent years remote sensing has been used significantly in many applications such as 

geological mapping, agriculture mapping, hydrogeological research and prospecting for 

mineral deposits. The growing standard of living of the underdeveloped nations involves the 

search for extra resources to satisfy the needs of the populace. Therefore, new exploration 

strategies ought to be applied to find out previously unknown reserves. Remote Sensing can 
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map and examine rocks over masses of square miles in one imagery (Ghazali et al.,2015). 

RS-based geological mapping may indicate particular areas of interest that can then be 

investigated in detail on the ground. Improved geological understanding leads to looking for 

new resources in previously overlooked areas (Ghazali et al.,2015). 

Gold (AU) is a rare element in crustal rocks due to its generally chalcophile properties; it is 

increasingly enriched in mantle rocks and particularly the metallic core. In nature, gold is 

often alloyed with silver or copper, although tellurides and selenides are common 

components in some systems. Gold may substitute into the sulfides pyrite and arsenopyrite, 

where it is termed refractory, complicating mineral processing. It follows that gold becomes 

concentrated as magmas fractionally crystallize reporting to sulfide segregations that 

scavenge gold from the silicate residue (Herrington and Stanley, 2015). 

The 79th element on the periodic table of elements occurs in significant amount in three main 

types of deposit which include  

1. hydrothermal quartz vein and related deposit in metamorphic and igneous rock, 

2. in volcanic-exhalative sulphide deposit and  

3. in consolidated to unconsolidated placer deposit.  

It is metallic, and its colour varies from rich yellow to whitish yellow with increasing silver 

and also in blue and green in transmitted light. It has its peak reflectance at 700nm which is 

equal to 83.6% and also a member of copper group. Other members include copper, lead, 

maldonite and silver. Although, Gold cannot be detected directly by any remote sensing 

method, the presence of minerals such as iron oxides and clay minerals whose diagnostic 

spectral signatures (in the visible/shortwave infrared portion of the electromagnetic 

spectrum) could be used as indicators for identifications of hydrothermal alteration zones 
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which are associated with Gold occurrences. Though Gold cannot be identified directly from 

satellite images, but the tonal variation indicates matching of hydrothermal alteration zones 

with the locations of known base metals (Cu, Zn, and Ni), thus manifesting the signatures for 

gold mineralization in the area (Kotnise and Chennabasappa, 2015).  

AU has been extracted from North Eastern parts of Africa for more than 5000 years, and this 

may be the first place where the metal was extracted (Ghazali et al.,2015). The Arabian-

Nubian Shield (ANS) is an exposure of Precambrian crystalline rocks on the flanks of the 

Red Sea. The crystalline rocks are mostly Neoproterozoic in age. ANS includes the nations 

of Israel, Jordan. Egypt, Saudi Arabia, Sudan, Eritrea, Ethiopia, Yemen, and Somalia. 

Arabian Nubian Shield Consists of juvenile continental crest that formed between 900 550 

Ma, when intra oceanic arc welded together along ophiolite decorated arc. Primary Au 

mineralization probably developed in association with the growth of intra oceanic arc and 

evolution of back arc (Ghazali et al., 2015). Multiple episodes of deformation have obscured 

the primary metallogenic setting, but at least some of the deposits preserve evidence that they 

originate as sea floor massive sulphide deposits.  Recent endeavors by the Geological 

Research Authority of Sudan led to the discovery of a score of occurrences with gold and 

massive sulphide mineralizations (Ghazali et al., 2015).   

2.1.1 Importance of remote sensing in mineralization  

Remote sensing strategies in mineral exploration research may be used for extracting the 

subsequent records such as, mapping of rock (types, exposures, geomorphology and 

structural features), source rock for mineralization, contacts among rock types, shear zones 

and the crucial faults/fractures, lineament intersections, Extension of present mineralized 

belts/ formations, Anomalies and systems related to mineral deposits, Mapping of alteration 
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zones as indicator of mineralization, Base function records inclusive of road/rail network, 

drainage and water bodies (Krishnamurthy and Sreenivasan, 2005). 

2.1.2 Gold mineralization 

Gold mineralization takes place along the shape of epithermal veins and veinlets, that's 

related to zones that are hydrothermally altered. Thus, the identity of zones that are 

hydrothermally altered is one of the major signs for focus on innovative potential zones of 

epithermal gold mineralization (Bolouki et al., 2020). Recently, the identification of 

alteration mineral zones using remote sensing sensors is effectively and extensively used for 

prospecting porphyry copper, epithermal gold, uranium and massive sulfide deposits in 

metallogenic provinces around the world (Noori et al., 2019; Pour et al., 2019a).  

2.1.3 Mapping areas of high-potential mineralization 

The most important mineralogical difference between the altered and unaltered rocks is the 

abundance of alteration minerals such as alunite, montmorillonite and kaolinite in the altered 

rocks. Moreover, the difference between the mineralized and the non-mineralized altered 

rocks is the presence of abundant secondary iron minerals such as goethite, hematite, limonite 

and jarosite in association with other alteration minerals (Gabr et al., 2010). 

In the altered rocks, the change in abundance of any of the above-mentioned alteration 

minerals would lead to a slight change in the reflectance value that depends on that mineral's 

spectral characteristics. Sabins (1997) showed the curves of the average spectra form their 

measurements for both altered and unaltered rocks (Figure 2.1). Sabins (1997) observed that 

the spectral reflectance of both the altered and unaltered rock are characterized by lower 

reflectance in the TM band 7 than band 5 while in the visible portion of the spectrum, the 

altered rocks have higher red reflectance due to the iron enrichment of the rock (Figure 2.1). 
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The iron oxide-rich parts of the alteration are considered to be the main target for gold 

exploration. 

 

Figure 2.1. Average spectra for both altered and unaltered rocks. Numbers 1–5 and 7 

represent the width of each Landsat Thematic Mapper band. (Source: Sabins, 1997). 

 

 

 

 

 

2.1.4 Lithology 

Lithology studies physical properties like colour, texture, composition, or grain size of visible 

outcrop unit, core or hand samples. 

2.1.4.1 Prospectivity mapping 

Preliminary stages of mineral investigation have continually protected boring and different 

unfavorable and luxurious exploration strategies to measure ore-deposits underground 

(Chakraborty et al., 2020). The importance and application of remotes sensing lies in 

studying spatial items without real bodily interaction, in a quicker and non-unfavorable way. 

Existence of mineral is spatially measurable via way of means of geophysical, geological and 
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geochemical styles consequently fashioning remote sensing a number one device for its 

prospecting (Sabins, 1999).  

However, in many environments the ore and mineral deposits with economic value are often 

covered by vegetation, which poses a challenge for the utility of remote sensing as an 

exploration tool. Hence, current day exploration will require new and more effective remote 

sensing-based approaches to support on-going mineral vectoring efforts in areas with less 

surface rock exposure (Chakraborty et al., 2020). In particular, hyperspectral remote sensing, 

covering Visible Near-infrared (VNIR) and Shortwave Infrared (SWIR), can offer extra 

capability to explore subtle spectral changes of plants induced by underground metal 

mineralization (Chakraborty et al., 2020). 

 

 

 

2.1.4.2 Methods of prospectivity mapping 

The following methods are used in prospectivity mapping 

i. Remote Sensing  

In the nineties, the Geological Research Authority of Sudan (GRAS, 1989) in cooperation 

with BRGM (Bureau de Recherches Geologiques et Minieres) utilized satellite data of 

Landsat TM using spectral ratio technique to map possible mineralized zones in the Red Sea 

Hills of Sudan. The outcome of the study mapped a gossan type gold mineralization. Band 

ratio technique was applied to Arbaat area and a signature of alteration zone was detected. 

The alteration zones are commonly associated with mineralization. A filed check confirmed 
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the existence of stock work of gold bearing quartz in the alteration zone. Another type of 

gold mineralization that was discovered using remote sensing is the gold associated with 

metachert in the Atmur Desert (GRAS, 1989). 

As knowledge of geology and mineralization of the Red Sea hills improved, it became 

increasingly apparent that mineral deposits are located along linear structures trending NE-

SW of their study area and are associated with acid volcanicity (Ghazali et al.,2015). In 

crustal processes, gold is generally soluble as either chloride or sulfur complexes depending 

on fluid parameters. Gold contents in hydrothermal fluids are generally low and a world-

class gold deposit demands the migration of world-class volumes of fluids through an ore-

bearing system to produce it. At surface, gold is largely concentrated physically by residual, 

fluvial, and eolian processes, except in extreme weathering conditions (Herrington and 

Stanley, 2015). Hydrothermal alterations and weathering processes of the sulphide 

mineralization produce spectral anomalies that extend beyond the ore body itself. To this end 

satellite images provide a superb synoptic view of the structural features and the spectral 

anomalies. Special interest was focused on ratio image processing techniques, whereby false 

colour composite images were produced using combination of bands in Red, Green and Blue, 

that rendered maps of alteration zones. Ground-truthing of the outlined areas disclosed the 

existence of stockworks that contain gold and sulphide mineralization (Ghazali et al.,2015). 

The most common type of alteration is the breakdown of feldspars and ferromagnesian 

minerals to a variety of clays and other hydroxyl bearing minerals. Such minerals can be 

detected by remote sensing techniques since the ShortWave infrared (SWIR) range of their 

spectra exhibit absorption (Drury 1993). Besides, a considerable number of ore occurrences 

contain sulphide minerals particularly pyrite (FeS2) which undergo breakdown to sulphuric 

acid and a number of ferric hydroxides and complex sulphates which are both strongly 
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coloured and possess crystal field absorption in the visible and near infrared range (VNIR) 

(Sabins, 1987; Drury, 1993). This suite of alteration features proved to be extremely useful 

in delineating a variety of hydrothermal ore deposits (Drury, 1993). It has been well 

established that ferric iron exhibits pronounced absorption features at around 0.82 μm and 

0.35μm, whereas ferrous iron has absorption at 1.0, 4.8-2.0 and 0.55-0.45. Hydroxyl – 

bearing minerals like clays have a major absorption feature around 1.9, 2.35 and 2.5 (Gupta, 

1991). Detection of the above-mentioned minerals has been used as prospecting guide for 

ore deposits. Ratio images are known for enhancement of spectral contrasts among the bands 

considered in the rationing and have successfully been used in mapping alteration zones 

(Segal, 1983). 

Conventional methods like color composites, several band rationing techniques, are applied 

to the original unregistered raw data. The resulting images are considered to be the potential 

alteration maps. The band ratio images are known for enhancement of spectral contrasts 

among the bands considered in the ratio operation and have successfully been used in 

mapping of alteration zones (Segal 1983). From the theoretical knowledge of mineral’s 

spectral properties, it is well recognized that the Landsat TM bands ratios of 3/1, 5/7, 5/4 are 

analyzed for iron oxides, hydroxyl bearing minerals, ferrous oxides, respectively. Based on 

the above considerations the spectral features of ferric and hydroxyl – bearing mineral, in 

which hydrothermally altered rocks are often rich, are used to produce a false colour 

composite image using combinations of bands 5/7, 5/4 and 3/1 in R, G and B respectively. 

The obtained image mapped the alteration zone in reddish yellow. Another composite ratio 

image was produced using bands 5/7, 3/1 and 4/3 in R, G and B respectively. Although this 

combination of ratio image appears to be fairly different from the previous one, the final 

result remains the same thus lending support to the previous conclusion (Ghazali et al., 2015). 
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Kotnise and Chennabasappa (2015) applied colour composite, band rationing, principal 

components analysis (PCA), and spatial filtering enhancement techniques for their image 

processing. The production of color composite images is based on known spectral properties 

of rocks and alteration minerals in relation to the selected spectral bands. For instance, 

LandSat TM band 7 is used primarily for mineral and rock discrimination, whereas bands 4 

and 5 are primarily used for vegetation monitoring. Spectral analysis exploits spectral 

properties of rocks in order to interpret lithological variations in rock alterations that are 

expressed as variations in colour intensity values within colour composite images. Colour 

composite images displayed as red, green, and blue (RGB), respectively, show rocks of 

similar composition in colors that tend to have same resemblance. They used Spatial filtering 

for extraction of features like geologic lineaments. These filters enhance visual interpretation 

of remotely sensed lineament maps and to get smoothness in the images. 

Multi spectral remote sensing (Landsat+ and ASTER) was used for image enhancement and 

interpretation in the identification, detection, and in delineation of lithological rock units, 

hydrothermal alterations, and geologic structures associated with auriferous sulphide 

deposits in the southern extension of Kolar Schist belt by Perry and Vincent (2009). Kotnise 

and Chennabasappa (2015) also used Landsat images to indicate the influence of Structural 

controls in gold mineralization. 

Chernicoff and Nash (2002) combined a 1-4-7 composite of Landsat Thematic Mapper (TM) 

bands with aeromagnetic data for analysing geological structures in the northern 

Precordillera region of Argentina. The information derived from the Landsat (TM) imagery 

conformed to published maps and also revealed a new set of previously unknown structures. 

The resulting structures were superimposed on an aeromagnetic image, which enabled the 

precise delineation of lithomagnetic domain boundaries and magnetic pattern breaks 
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(inferred faults). The combination of these datasets led to the definition of a major structural 

system which controls the economic potential of gold targets in their study area.  

For many years EO for geological mapping was focused on the use of spectral information 

to detect alteration zones (Pour and Hashim, 2012a; 2012b) and for lithological mapping 

(Hewson et al., 2005) without exploiting spatial information. It has been acknowledged that 

the incorporation of spatial information improves spectral classification (Blaschke, 2010), 

more so in geology due to its ability to infer geological transitions. Traditional EO 

lithological boundary detection is often subjective, with distinct variation occurring between 

expert analyses.  

Saliti et al, (2011) investigated the automatic detection of lithological boundaries based on 

the pattern rotational variant template edge matching algorithm of ASTER imagery in the 

South West of Iran. The accuracy of the detected lithological boundaries was spatially 

assessed by five experts against two reference sources: a published geological map produced 

by Iranian oil operation companies (scale 1:100 000) and boundaries interpreted from a pair 

of stereo aerial photographs (scale 1:50 000). Although the results could not be quantified 

(due to no ground truth data of mineral composition), a comparison of the boundary detection 

with those of reference sources showed a spatial correspondence between rotational variant 

template edge matching technique and reference boundaries. It was noted that in 

heterogeneous areas this method did not correlate with the reference boundaries.  

ii. Hyperspectral remote sensing for mineral exploration  

Hyperspectral remote sensing employs from 100 to 200 contiguous spectral bands to record 

a complete and contiguous spectrum for each image pixel. For many geological materials 

(rocks, soils and minerals) and some vegetation types, these spectral curves are diagnostic of 
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the molecular structure and chemical composition of that material. This leads to the 

possibility of not just discriminating the material but actually identifying it and putting a 

name to the major mineral components present in every pixel of an image. Many a times a 

single pixel has mixture of minerals. Such mixing produces composite spectra unlike 

anything in one’s database of spectral signatures of materials. Computer algorithms are 

available to de-convolve, or separate, the mixed signature, determine the relative proportions 

of the several materials within the field of views and identify their spectra against a database 

of known materials.  

Hyperspectral sensing thus allows “Mineral Mapping”, i.e., identification and mapping of 

rock, regolith and alteration mineralogy using the principle of spectroscopy (Figure 2.2). 

Thus a “Mineral Map” can now be made to help exploration units to narrow down on zone 

of mineral alteration around mineral deposits and detect previously unrecognized mineral 

patterns across mineral belts (Huntington, 1998). 
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Figure 2.2.  Spectral reflectance curves for some alteration minerals. Minor absorption 

features help distinguishes minerals (Source: Sabins, 1987). 

Two major application areas of hyperspectral data to mineral exploration are: First, 

Lithologic and mineral mapping, i.e., direct sensing of bedrock and minerals and second, 

Geobotanical mapping, i.e., exploration in vegetated environments which has the potential 

of identifying the areal distribution of specific element associated spectral changes in 

vegetation which are related to soil geochemistry or lithology. Geobotanical anomalies 

associated with ore bodies may also be expressed as abrupt changes from one plant 

community to another or as specific indicator plant species. Hyperspectral remote sensing 

data are well suited to mapping bedrock and identifying the presence and abundance of 

specific diagnostic minerals at specific scales (Rivard et al., 2002).  

The minerals that have been successfully identified to date with hyperspectral remote sensing 

are: OH-bearing minerals, carbonates, sulphates, olivines, pyro-xenes, iron oxides and 

hydroxides. The identification of minerals and the mapping of their distribution provide the 

necessary leads for exploration of related mineral deposits (Rivard et al., 2002). The 

advantage of hyperspectral remote sensing to mineral exploration is the ability to identify the 

presence, distribution and abundances of specific diagnostic minerals that will help direct 

mineral exploration at considerable cost savings. 

The use of airborne hyperspectral imaging spectrometers such as HyMAP (Cocks et al., 

1998) or HySpex (Baastad et al., 2005) is a common approach in exploration campaigns 

recently (Van der meer et al., 2012). These airborne sensors combine a good signal-to-noise 

ratio and a good spectral and spatial resolution. However, the usage of these systems in large 

and remote areas involves high costs due to the difficult logistics that is involved in airborne 

hyperspectral campaigns.  
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Therefore, the usage of multispectral imagers, such as the Operational Land Imager aboard 

Landsat-8 (Irons et al., 2012) and Sentinel-2 (Drusch et al., 2012) in combination with 

hyperspectral spaceborne instruments such as Hyperion (Ungar et al., 2003) and EnMAP 

(Kaufmann et al., 2006), will increase in geological mapping and exploration campaigns to 

reduce airborne related costs to a minimum possible extent.  

This is due to the open data policy that accompanies these spaceborne missions as in the case 

of the National Aeronautics and Space Administration’s (NASA’s) EO-1 satellite, or 

NASA’s Landsat programme. The future European Sentinel-2 and the future German 

EnMAP missions will supply data with a similar data usage policy to the geoscientific 

community worldwide.  

iii. Geophysical methods 

  

Geophysical tools, including different techniques such as magnetic, self-potential (SP), 

induced polarization (IP) and resistivity, are important techniques in mineral exploration for 

ores located in basement rocks. Integrated geophysical methods were used for mineral 

exploration (Macnae 1979, Smith 2002). The IP technique was used for mineral exploration, 

as well as for hydrological and environmental geology studies (Kiberu 2002; Sternberg and 

Oehler 1990). Also, the self-potential (SP) method has a wide range of applications in 

engineering and geotechnical investigations (Corwin 1984, Markiewicz et al 1984), in 

geothermal exploration (Corwin and Hoover 1979, Anderson 1984) and in the exploration 

for minerals, particularly metallic sulfides (Corry 1981, Yungul 1950). In addition, the 

magnetic technique was used by Ramadan and Sultan (2004) for identifying massive sulfide 

zones. 

Exploration geophysics plays a major role in unlocking mineral reserves. It is well recognized 

that many easily discovered large mineral deposits with a strong geophysical signature have 
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already been identified. Future discoveries present significant challenges, being located 

undercover, in remote areas, and with less prominent geophysical signals. 

Fu et al., (2020) discuss an application of various deep-penetrating geophysical techniques 

to the exploration of ore deposits. In particular, they consider an important role of 

geophysical surveys in studying the banded iron formations (BIF). It is well known that the 

large-scale BIF-type iron mines represent one of the most important iron ore resources in the 

world. They constitute 70% of the world’s high-grade iron ore reserves, and BIF type iron 

mines produce over 90% of the world’s iron ores. They are found all over the world, but 

mainly in Russia, Australia, Brazil, Canada, China, Africa, India, and the United States. 

Fu et al., (2020) present the results of integrated geophysical surveys in the Anshan-Benxi 

area of the North China Craton, where several major BIF-type iron deposits are located. 

Fu et al, (2020) used deep-penetrating geophysical methods, including the high-precision 

ground magnetic survey (HPGMS), transient electromagnetic (TEM), and magnetotelluric 

(MT) methods. The results show that an optimal combination of these geophysical methods 

makes it possible to accurately determine the anomalous spatial locations and morphologies 

of the concealed iron ore bodies. 

Alfouzan et al, (2020) present the results of the Saudi Arabian Glass Earth Pilot Project which 

was a part of the geophysical exploration program to explore the upper crust of the Kingdom 

for minerals, groundwater, and geothermal resources. The project began with a large-scale 

airborne geophysical survey over approximately 8000 sq. km of green-field area, including 

electromagnetic (EM), magnetics, and gravity methods (Zhdanov et al, 2018). Based on the 

results of the airborne survey, several prospective mineralization targets were identified for 

follow-up exploration. A spectral induced polarization (SIP) survey was completed over one 

of the prospective targets. The field data were collected with a distributed array system, 
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which had the potential for a strong inductive coupling (IC) effect. Alfouzan et al., (2020) 

developed a method to fully include all 3D IC effects in the inversion of induced polarization 

(IP) data. The field SIP data were inverted using the generalized effective-medium theory of 

induced polarization (GEMTIP) in conjunction with integral equation-based modeling and 

inversion methods. The results of this inversion were interpreted and used to design a drill 

hole set up in the survey area, which intersected significant mineralization associated with 

gold, silver, and other base metals. 

Zhang et al, (2020) applied controlled-source first-arrival tomography to study the P wave 

velocity structure of the Zhuxi ore deposit, located in Jiangxi province, South China. Their 

velocity model identified the proven orebodies, mainly related to magmatic hydrothermal 

activities during the Yanshanian period. These were visible as high-velocity zones, 

corresponding to widespread copper–iron and a few tungsten–molybdenum orebodies. These 

results helped to further evaluation of the total reserves, suggesting that seismic tomography 

could be a useful tool for mineral exploration. 

Raju and Kumar (2020) demonstrated how airborne and ground magnetic survey data could 

be effectively used for studying the Iron–Oxide–Copper–Gold (IOCG) deposits in 

Gadarwara, showed that such deposits could be inferred from the predictive magnetic 

exploration models combined with geological observations and petrophysical data. 

Ihbach et al. (2020) examined the water potential of aquifers within in the phosphatic series 

in Morocco, using a combination of several geophysical methods: magnetic resonance 

sounding (MRS), electrical resistivity tomography (ERT), time-domain electromagnetics 

(TDEM), and frequency-domain electromagnetics (FDEM). Ihbach et al. (2020) 

demonstrated the efficiency of the MRS method for prospecting groundwater resources, and 

evaluated the importance in the geological context of Youssoufia open-pit mining in 
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Morocco. The ERT method was used to delineate the conductive horizons attributed to the 

groundwater aquifers. The TDEM and FDEM data were used for mapping and delimiting the 

aquifer potential recharge zones in the phosphate series. In summary, the authors confirmed 

the effectiveness of the developed approach to geophysical prospecting for groundwater 

resources in phosphate deposits. 

2.2 Remote Sensing and Electromagnetic Spectrum in Mineral Prospecting Studies  

The use of remote sensing for discrimination of the different geological materials on the 

surface of the earth is based on the way the Electromagnetic Radiation (EMR) interacts with 

the different features on the earth. An electromagnetic (EM) field is a physical field produced 

by charged objects and theoretically extends to infinity. It acts by the Lorenz force on the 

charged objects found in it. 

An electromagnetic field is a combination of an electric and a magnetic field, with the electric 

field being produced by stationary charges and magnetic charges in motion (electric 

currents). In the past, theories of electric and magnetic fields were considered separately, and 

later it was understood that electric and magnetic fields were only two parts of one larger 

whole of the electromagnetic field. 

From the standpoint of classical theory, the EM field can be considered as a smooth 

continuous field propagating in the form of waves, while from the point of view of quantum 

mechanics it can be viewed as being made up of individual corpuscle photons. Accordingly, 

the EM field can be seen as: continuous structure or discrete structure (Dervic et al., 2019). 

Electromagnetic radiation is a self-propagating wave in space or through matter, and it has 

both electrical and magnetic components that oscillate in phase normally (at an angle of 90 

°) to each other and in the direction of the propagation of the wave or energy. Otherwise, the 
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term "radiation" means energy in the form of waves or sub-atomic particles in motion emitted 

by atoms or other bodies, when it changes from a higher energy state to a lower energy state 

(Dervic et al., 2019).  

 No known medium is opaque to all wavelengths of the electromagnetic spectrum (Figure 

2.3), which extends from radio waves, whose wavelengths are measured in kilometers, 

through the infrared, visible, and ultraviolet spectral regions, to x-rays and gamma rays, of 

wavelengths down to 10, −13 m. Similarly, no material medium is transparent to the whole 

electromagnetic spectrum. A medium which absorbs a relatively wide range of wavelengths 

is said to exhibit general absorption, while a medium which absorbs only restricted 

wavelength regions of no great range exhibits selective absorption for those particular 

spectral regions. For example, the substance pitch shows general absorption for the visible 

region of the spectrum, but is relatively transparent to infrared radiation of long wavelength. 

Ordinary window glass is transparent to visible light, but shows general absorption for 

ultraviolet radiation of wavelengths below about 310 nanometers, while colored glasses show 

selective absorption for specific regions of the visible spectrum. The color of objects which 

are not self-luminous and which are seen by light reflected or transmitted by the object is 

usually the result of selective absorption of portions of the visible spectrum (Figure 2.3). 

Many colorless substances, such as benzene and similar hydrocarbons, selectively absorb 

within the ultraviolet region of the spectrum, as well as in the infrared (West, 2014). 
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Figure 2.3: The electromagnetic spectrum (Source: Dervic et al., 2019). 

2.2.1 Laws of absorption  

The capability of a medium to take in radiation relies upon on some of factors, in particular 

the digital and nuclear charter of the atoms and molecules of the medium, the wavelength of 

the radiation, the thickness of the soaking up layer, and the variables which decide the country 

of the medium, of which the maximum crucial are the temperature and the attention of the 

soaking up agent. In unique cases, absorption can be encouraged via way of means of electric 

powered or magnetic fields. The country of polarization of the radiation affects the absorption 

of media containing sure orientated structures, consisting of crystals of apart from cubic 

symmetry (West, 2014).  

 

2.2.2 Lambert’s law 

Lambert’s law, also called Bouguer’s law or the Lambert-Bouguer law, expresses the effect 

of the thickness of the absorbing medium on the absorption. If a homogeneous medium is 

thought of as being constituted of layers of uniform thickness set normally to the beam, each 

layer absorbs the same fraction of radiation incident on it. If I is the intensity to which a 
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monochromatic parallel beam is attenuated after traversing a thickness d of the medium, and 

I0 is the intensity of the beam at the surface of incidence (corrected for loss by reflection from 

this surface), the variation of intensity throughout the medium is expressed by Equation 2.1, 

𝐼 =  𝐼𝑂𝑒−𝛼𝑑                           (2.1) 

in which α is a constant for the medium called the absorption coefficient. This exponential 

relation can be expressed in an equivalent logarithmic form as in Equation (2.2), 

𝑙𝑜𝑔10 (𝐼𝑂/𝐼) =  (α/2.303)d = kd                        (2.2) 

where k = α∕ 2.303 is called the extinction coefficient for radiation of the wavelength 

considered. The quantity log10 (I0 ∕ I) is often called the optical density, or the absorbance of 

the medium. Equation 2.2 shows that as monochromatic radiation penetrates the medium, the 

logarithm of the intensity decreases in direct proportion to the thickness of the layer traversed. 

If experimental values for the intensity of the light emerging from layers of the medium of 

different thicknesses are available (corrected for reflection losses at all reflecting surfaces), 

the value of the extinction coefficient can be readily computed from the slope of the straight 

line representing the logarithms of the emergent intensities as functions of the thickness of 

the layer. Equations 2.1 and 2.2 show that the absorption and extinction coefficients have the 

dimensions of reciprocal length. The extinction coefficient is equal to the reciprocal of the 

thickness of the absorbing layer required to reduce the intensity to one-tenth of its incident 

value. Similarly, the absorption coefficient is the reciprocal of the thickness required to 

reduce the intensity to 1 ∕ e of the incident value, where e is the base of the natural logarithms, 

2.718 (West, 2014). 

2.2.3 Absorption measurement  

The measurement of the absorption of homogeneous media is usually accomplished by 

absolute or comparative measurements of the intensities of the incident and transmitted 
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beams, with corrections for any loss of radiant energy caused by processes other than 

absorption. The most important of these losses is by reflection at the various surfaces of the 

absorbing layer and of vessels which may contain the medium, if the medium is liquid or 

gaseous. Such losses are usually automatically compensated for by the method of 

measurement employed. Losses by reflection not compensated for in this manner may be 

computed from Fresnel’s laws of reflection (West, 2014). 

2.2.4 Scattering  

Absorption of electromagnetic radiation should be distinguished from the phenomenon of 

scattering, which occurs during the passage of radiation through inhomogeneous media. 

Radiant energy which traverses media constituted of small regions of refractive index 

different from that of the rest of the medium is diverted laterally from the direction of the 

incident beam. The diverted radiation gives rise to the hazy or opalescent appearance 

characteristic of such media, exemplified by smoke, mist, and opal. If the centers of 

inhomogeneity are sufficiently dilute, the intensity of a parallel beam is diminished in its 

passage through the medium because of the sidewise scattering, according to a law of the 

same form as the Lambert-Bouguer law for absorption, given in Equation (2.3), 

𝐼 =  𝐼𝑂𝑒−𝜏𝑑                                      (2.3) 

Rocks consisting of assemblages of minerals comprise of various proportions of different 

elements, held together as molecules by different types of bonds (Drury, 1987). When EMR 

interacts with these materials, three types of transitions can occur viz., electronic, vibrational 

and rotational. The transitions are conditioned by such features as the types of bonds, the co-

ordination state of atoms within the molecules of the minerals of which the rock is made of, 

the valency of the atoms (Drury, 1987). The energy detected by the remote sensing systems 

over the spectrum of EMR is therefore a function of how energy is partitioned between its 



40 

 

source and the materials with which it interacts on its way to the detector. The energy of any 

particular wavelength of radiation may be 

1.  transmitted through the material,  

2. absorbed within it,  

3. reflected by its surface, scattered by its constituent particles or re-radiated at another 

wavelength after absorption. 

Any material therefore has a characteristic spectrum, depending on its chemical and 

molecular composition. However, since the Earth’s surface comprises a host of combinations 

of different organic and inorganic compounds, the actual spectrum observed may have wide 

range of components (Drury, 1987). 

Availability of satellite remote sensing data in digital form makes it amenable for applying 

of various digital enhancements through the digital image processing techniques, which 

further help in bringing out valuable information on litho contacts, structural features and 

various anomalies associated with the occurrence of mineral deposits (RRSSC, 2004).  

Type of Remote Sensing data required for mineral exploration will depend on various factors 

like the scale of mapping, the type of terrain under investigation, the target minerals and the 

stage of mineral exploration. 

Mineral exploration strategy will depend on, firstly, what kind of geological/ lithological 

terrain we are exploring, which necessitates the need for geological mapping as an initial 

step. Secondly, the strategy will also depend on what kind of minerals are likely to be found 

in the terrain, which necessitates the need for knowledge of rock and mineral association 

(Krishnamurthy and Sreenivasan, 2005). 

2.2.5 Mapping hydrothermal alterations 
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Generally, in geological region the alteration zones are the indicator for the presence of ore 

body and give the nearest location for the gold deposit. Most of the alteration types associated 

with gold deposits is sericitization, oxidation, silicification, carbonitization, and 

ammoniation (Nouri, 2015).  

Hydrothermal alteration is proximal to many precious and base metal deposits, such as, in 

Archean greenstone belts, volcanogenic massive sulphide (VMS) deposits, porphyries as 

well as intrusion-related and orogenic gold mineralisation. These deposits are the result of 

hydrothermal to magmato-hydrothermal systems encompassed by thin (centimetres) to 

extensive (hundreds of kilometres) alteration halos (Cooke et al 2014). Halos are important 

indicators to mineral exploration companies, which are continually searching for reliable and 

easy-to-use approaches for finding mineralisation sites. 

Alteration is an open system process that results in chemical and mineralogical changes in a 

rock. A similar definition applies to metamorphism. However, the chemical changes induced 

by metamorphism are generally less intense than those observed within altered rocks. 

Distinction between these processes is subtle where deposits are formed by metamorphic 

fluids, such as orogenic gold deposits (Phillips and Powell, 2010). Weathering is another 

process that induces extreme chemical and mineralogical changes, but in contrast to 

hydrothermal alteration, it is restricted to superficial rocks and involves low-temperature 

fluids. 

Hydrothermal alteration is also generally distinguished from changes induced in rocks by 

magmatic fluids (e.g., fenitisation (Morgan, 1989)). However, again the distinction is subtle, 

as magmatic fluids are involved in several mineralising processes, such as porphyries, 

syenite-associated deposits, and some VMS (Sillitoe, 2010).  
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The products of alteration provide insights into the characteristics of hydrothermal systems, 

while also being useful vectors toward mineralization. Metals tend to concentrate in the most 

intensely altered rocks; sites where the greatest amount of fluids (high fluid/rock ratio) having 

peculiar characteristics (such as highest temperature, lowest pH) interacted with crustal 

rocks. However, to be useful for exploration, alteration must be recognised, typified, but, 

most importantly, quantified (Mathieu, 2018). 

The ability to discriminate between hydrothermally altered and unaltered rocks are 

considerable in mineral exploration studies (Pour and Hashim, 2014). In the region of solar 

reflected light, many minerals demonstrate diagnostic absorption features due to vibrational 

overtones, electronic transition, charge transfer and conduction processes (Cloutis, 1996).  

Different hydrothermal processes have certain mineral associations, such as iron-bearing 

minerals (e.g., goethite and hematite) and hydroxyl bearing minerals (e.g., kaolinite and 

alunite), which have significant spectral characteristics that allow their identification using 

optical remote sensing data through the use of different image processing techniques (Sabins, 

1999; Crósta et al., 2003). 

2.2.6 Relationship between spectrum portion and hydrothermal alteration  

 Hydrothermally altered rocks are regularly indicated via way of means of clay, iron oxide, 

sulfate minerals and carbonate which make diagnostic absorption signatures during the scene 

and close to infrared (VNIR) and shortwave infrared (SWIR) areas (Pour and Hashim, 2014). 

The shortwave infrared radiation is the best spectral region of the electromagnetic spectrum 

for sensing various aspects of hydrothermal alteration zones. Hydroxyl-bearing minerals 

present diagnostic spectral absorption features in the shortwave infrared radiation region, and 

thus this wavelength region is the best to explore and map hydrothermal alteration zones 

(Pour and Hashim, 2014). The importance of recognizing the spatial patterns of alteration 
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minerals makes remote sensing one of the standard procedures in exploration geology. It is 

realized now that certain minerals associated with hydrothermal processes show diagnostic 

spectral features that allow their remote detection and identification (Modabberi, 2017).  

2.2.6.1 Sulphidation 

Sulphidation makes sulphides from fluids generally carrying S and metals. If these elements 

combine with the Fe of the host rock, then only S and the metal gains are measured (Table 

2.1). Lithological controls are expected in Fe-enriched contexts (e.g., Fe-formations of 

Meliadine, an orogenic gold district) (Lawley et al., 2015). 

2.2.6.2 Silification  

Silicification is expressed in the field as quartz veins and stockwork or as “silica flooding” 

(i.e., pervasive silicification). Silicification is common, as Si is an abundant and soluble 

element (Table 2.1). An addition of Si to a rock produces either quartz (Equation 2.4) or other 

minerals in; for example, iron formations (Equation 2.5) (Colvine, 1988). However, 

silicification and quartz proportions correlate poorly, because magmatic, detritic, and 

metamorphic quartz are abundant, and because quartz is a sub-product of several alteration 

reactions (Equations 2.6–2.9) (Colvine, 1988). It is thus best to use mass balance calculations 

instead of petrological observations to quantify silicification. 

H4SiO4 <==> SiO2 + 2H2O                (2.4) 

7Fe3O4 +  24SiO2  +  3H2O  =>  3Fe7Si8O22(OH2) +  5O2 

 Magnetite  quartz          fluid   grunerite   fluid         (2.5) 

2.2.6.3 Carbonatisation 

Carbonatisation produces carbonates and corresponds to a CO2 gain (Table 2.1). To remain 

in a rock, C must combine with Ca, Mg, and/or Fe, which are either brought by the fluid or 
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are taken from the constituent minerals of the fresh rock. In the latter case, maximum 

carbonate proportion is dependent on the composition of the precursor. Furthermore, if C 

combines with the Ca of plagioclase, then paragonite and quartz by-products form, while the 

destabilisation of other minerals—alkali feldspar and clinopyroxene—may form muscovite 

and chlorite (Mathieu, 2016). Thus, quantifying the intensity of carbonatisation and 

distinguishing phyllosilicate by-products from those related to sericitisation and 

chloritisation processes is not straightforward. Characterisation of the carbonate phases is 

also pertinent, as Ca- and Fe-Mg-carbonates are observed in weakly and intensely altered 

rocks, respectively (Equation 2.6, modified from Colvine (Colvine, 1988)). 

3(Mg,Fe)5Al2Si3O10(OH)8 + 15CaCO3 + K+ + 15CO2 => 

KAl3Si3O10(OH)2+15Ca(Mg,Fe)(CO3)2+ 3SiO2 + 11H2O + 5O2 

chlorite + calcite + fluid => white mica + ankerite + dolomite + quartz + fluid               (2.6) 

2.2.6.4 Sericitisation 

Sericitisation is an acidic alteration that produces white mica-mostly thin muscovite (sericitic 

texture). A commonly held belief is that sericitisation is systematically accompanied by a K-

gain (Equation 2.7). However, sericitisation destabilises feldspar and may induce K-loss 

(Equation 2.8 (Leitch and Lentz (1994); Barrett and MacLean, (1994)). Depending on the 

precursor, by-products such as albite and quartz may be produced (Equation (2.9) (Colvine, 

1988) and plagioclase destruction may produce paragonite. Sericitisation generally results in 

Ca- and Na-losses, accompanied by a K-gain or loss (Table 2.1). 

3NaAlSi3O8 +  K+ +  2H+ <==> KAl3Si3O10(OH) 2 +  3Na+ +  6SiO2 

Albite    fluid   muscovite   fluid   quartz         (2.7) 

3KAlSi3O8 + 2H+ <==> KAl3Si3O10(OH) 2 +  2K+ +  6SiO2 

Orthoclase  fluid   muscovite  fluid   quartz                    (2.8) 
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4(Na,K)AlSi3O8 +  2H+ <==> NaAlSi3O8 + KAl3Si3O10(OH) 2 + 6SiO2 +  2Na+ 

Alkali  feldspar  fluid   albite   muscovite  quartz         fluid     (2.9) 

2.2.6.5 Chloritisation 

Chloritisation corresponds to gains of Fe and Mg and produces chlorite (Table 2.1). As with 

carbonatisation, Fe- and Mg-gains induce mineralogical changes as these elements combine 

with Si—transported or not by the fluid—and Al (an immobile element) to form chlorite. 

This process is well documented in VMS systems, where chloritisation destabilises the 

muscovite produced by a preceding sericitisation process, induces K-loss, and increases the 

acidity of the fluid (Equation 2.10) (Large, 2001). In addition, a zonation is generally 

observed, with Mg-chlorite being more distal from the core of the system than Fe-chlorite 

(Embley, 1988). Chloritised rocks display Fe- and/or Mg-gains and Ca-, Na-, and/or K-

losses. 

2KAl3Si3O10(OH) 2 + 3H4SiO4 + 9Fe2+ + 6Mg2+ + 18H2O = 3Mg2Fe3Al2Si3O10(OH)8 + 2K+ 

+ 28H+ 

muscovite   fluid    chlorite   fluid        (2.10) 

 

 

 

 

 

Table 2.1. Alteration types and associated chemical changes and alteration minerals. 

 Mass Changes Examples of Assemblages 

Sulphidation +S, +metals Any minerals + sulphides 

Silicification + Si Any minerals + quartz 
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Carbonatization +C, (+Ca) Carbonate ± quartz – white 

mica-chlorite (Gifkins, 

2005) 

Talc + chlorite + carbonate 

(Kishida and Kerrich, 

1987) 

Sericitisation +K or -K, -Na, -Ca, +H White mica + quartz + 

pyrite 

Chloritization +Fe, +Mg, +H 

-Na, -Ca, -K 

Chlorite + pyrite + white 

mica ± quartz (Gifkins, 

2005) 

Propylitization +H, +C Epidote + chlorite + albite 

± carbonate (Witt, 1992) 

k-feldspar alteration +K, -Na k-feldspar + biotite + quartz 

(Witt, 1992) 

Albitization +Na, -K Albite+hornblende±biotite-

quartz (Witt,1992) 

Source: (Gifkins, 2005) 

It is equally important to know mineral genesis, i.e., the nature of mineralisation or its origin. 

Whether the mineral deposit is Primary (In Igneous rocks), Secondary (in sedimentary and 

metamorphic rocks) or Tertiary (transported - Placer deposits) and also, it is required to know 

the processes responsible for mineral formation, i.e., whether the deposit has formed due to 

Sedimentary, Metamorphic, Igneous, Hydrothermal or Syngenetic/epigenetic processes 

(Krishnamurthy and Sreenivasan, 2005). Another important aspect to look for during mineral 

exploration is the ‘controls on mineralisation’. Most of the mineral deposits have structural 

(e.g faults, joint sets, folds, cracks or fractures) control, e.g. gold, copper, etc., whereas some 

minerals like bauxite have geomorphological (caused by relief) control. Primary 

mineralization in Nigeria is mostly lithologically and structurally controlled (Ajakaiye et al., 

1991). Structures include faults, shear zones (lineaments), pegmatites, quartz and quartzite 

veins (Ejepu et al 2018). 

The mineralisation related anomalies are the most important parameter, which has to be 

looked for while extracting information from satellite imageries for mineral exploration. 
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Some of the important mineralisation related anomalies that can be interpreted from satellite 

data as identified by Krishnamurthy and Sreenivasan, (2005) are; 

1. Gossan zones, 

2.  Alteration zones (gold, copper, etc. mineralisation),  

3. Highly fractured zones and carbonate rocks in metamorphic regime (hydrothermal 

mineralisation). 

4. Quartz veins (hydrothermal mineralisation such as gold),  

5. Carbonatite bodies (hydrothermal mineralisation) (Krishnamurthy and Sreenivasan, 

2005). 

6. Shear zones and lineament intersection zones in highly deformed rocks specially in 

mineralized areas, 

7.  Pegmatite bodies (micas & base metals), 

8. Basic dykes, silicified rocks and ultrabasic bodies (base metals),  

9. Old mine workings (metallic deposits), Circular anomalies (indicating Kimberlite 

pipes for diamonds),  

10. Drainage and vegetation anomalies,  

11. Rock out crops, intrusive bodies and reactive rocks and 

2.2.6.6 Shear zone 

Crustal scale shear zones are fundamental discontinuities that often are the sites of continental 

accretion, collision extension and intraplate deformation. Such zones may accommodate 

deformation via simultaneous components of pure and simple shear. The distribution of strain 

in shear zones may vary spatially and also temporally and pure and simple shear deformation 

may be partitioned within the shear zone. Once formed shear zones are often zones of 
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weakness and may further deform by reactivation leading to complex polyphaser 

deformation histories. 

The shear joints are filled with clay material and infilled few millimeters to few centimeters 

and the fractured zones are observed few centimeters to few meters with slicken sided planes 

(Rana et al, 2016). 

2.2.6.7 Gossan 

Gossan as defined by Jambor and Blowes (1994) is the name given to a large mass of residual 

Fe oxyhydroxide material formed by the oxidation of Fe-bearing sulfide ore deposits. 

Gossans are oxidized caps that form due to sulfide oxidation, dissolution, and precipitation 

of secondary minerals. Gossans are a type of iron-rich regolith that occur directly above a 

sulphide-rich orebody and can vary in thickness depending on the geometry of the orebody 

and degree of weathering. These iron oxide-rich gossan caps are formed from the oxidative 

weathering of primary metal sulphides (e.g. pyrite, chalcopyrite, pyrrhotite and arsenopyrite) 

by meteoric waters percolating through the near-surface environment (Haldar, 2018; Yesares 

et al., 2015). Meteoric waters are able to oxidize and leach soluble elements (e.g. Fe and S) 

from the orebody and reprecipitate some of them as secondary iron-bearing oxyhydroxides, 

oxides and oxy-sulphates (Velasco et al., 2013). These insoluble and iron-rich secondary 

minerals (e.g. goethite α-FeO(OH), hematite Fe2O3, jarosite KFe3(SO4)2(OH)6, melanterite 

FeSO4⋅7H2O and vivianite Fe3(PO4)2⋅8H2O) represent the dominant mineralogy within 

gossans and can exhibit a wide range of textures (Taylor,2011). Because gossans are found 

directly overlying sub-surface sulphide-bearing orebodies (Haldar, 2018; Velasco et al., 

2013), they represent highly prospective exploration targets. The tracing of gossans as an 

exploration technique has been used since antiquity (e.g. the Romans in the Iberian Pyrite 

Belt; see Cruz et al., 2018) and is still highly relied upon in modern exploration. In fact, the 
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recent discovery of primary gold mineralization in the Amani area of SW Tanzania was aided 

by the occurrence of gossan outcrops along regional NW-SE trending shear zones (Dunn et 

al., 2019).  

The gossan mineralogy comprises goethite, hematite, malachite, azurite, siderite and quartz 

assemblages, with supergene gold particles up to 6 mm and with an average gold 

concentration of 95 wt %. Intersections of dipslip normal faults (NW-SE and N-S trends) are 

favorable sites for gossans to develop from their study area (Dunn and Von der Heyden, 

2021). 

According to Rekhibi et al., 2015, gathering and analyzing all the criteria in the study area 

and studying the probability maps which the authors had produced, It is clear that gold and 

silver are present in outcrops bearing iron and quartize veins, alteration zones, dykes, and 

faults in area located north and east of Arkenu. Table 2.2 shows the mineral related anomaly, 

physical characteristics, chemical characteristics and the discriminative portion of Electro-

magnectic spectrum. The presence of Gold mineralization in this area, maybe because of its 

concentration during regional transformation in quartize or its movement to the nearby veins 

and alteration zones (Fripp, 1979).  
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Table 2.2:  The mineral related anomaly 

S/

N 

Mineral 

Related 

Anomaly 

Physical Characteristics Chemical 

Characteristics 

Discriminati

ve Portion of 

EM 

spectrum 

1 Gossan 

zones 

Large mass of residual Fe. 

Intersection of dipslip 

normal fault are 

favourable sites for 

gossan. 

Oxidation of Fe-

bearing sulphide ore 

deposit 

Sulphide oxidation, 

dissolution and 

precipitation of 

secondary minerals 

VNIR and 

SWIR (Band 

2, band 4, 

band 5 and 

band 6) 

(Sherman 

and Waite 

1985, Hunt 

and Ashley 

1979, Hunt 

1977) 

2 Alteratio

n zone 

Metal concentrates in 

most intensely altered 

rocks(high fluid – rock 

ratio) 

High temperature 

Lowest PH 

- Sericitisation 

- Oxidation 

- Sulphidation 

- Propylitization 

- Silification 

- Carbonitisatio

n 

- Ammoniation 

(Nouri, 2015) 

 

3 Hydrothe

rmal 

mineraliz

ation 

zone 

Proximal to many 

precious and base metal 

deposit 

Distinguished from 

changes induced in rock 

by magmatic fluid 

Indicated by iron oxide, 

clay, carbonate, sulphate 

minerals 

Archean greenstone 

belt 

Volcanogenic massive 

sulphide (VMS). 

Feritization  

Porphyries (Sillitoe, 

2010)  

Visible and 

near infrared 

(VNIR) and 

Shortwave 

infrared 

Region 

(Pour and 

Hashim, 

2014). 
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4 Lineame

nt 

intersecti

on zones 

and Shear 

zone 

Appear as straight lines or 

edges that may constitute 

tonal difference on the 

image 

 Landsat 8 

band 8. 

(5,8,2 

composite) 

better 

perception of 

contrast and 

land feature 

Edge 

enhancement 

and filtering 

technique.  

Source: (Nouri, 2015) 

2.2.7 Image spectral analysis 

There are number of image analysis algorithms that have been developed to analyse the 

extensive information contained in hyperspectral imagery. Spectral analysis methods usually 

compare pixel spectra with a reference spectrum (often called a target). Reference spectra 

can be derived from a variety of sources, including spectral libraries, which are collections 

of reflectance spectra measured from materials of known composition, usually in the field or 

laboratory (Shippert, 2002). The spectral libraries for different minerals of interest can be 

generated from field measurements, to facilitate analysis of hyperspectral imagery from those 

sites. Several spectral libraries generated by USGS, JPL and many others are also available 

integrated with different image processing packages such as ERDAS IMAGINE, ENVI e.t.c 

(Shippert, 2002). Besides, remote sensing of heavy metal contamination relies on 

spectroscopic test results (Song et al., 2015). The spectroscopic test provides valuable 

information on the spectral responses associated with heavy metal contamination, and thus, 

the test results give a band combination and spectral signatures useful for remote sensing 

approaches.  
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 The visible-near infrared-shortwave infrared (VNIR-SWIR) spectral ranges (350 to 2500 

nm) have been used to study the physicochemical properties of mineral objects and the 

associated environmental changes (Shin et al., 2015; Shin et al., 2016; Jeong et al., 2016; 

Mohamed et al., 2017). Lithological/Mineral identification capabilities are linked to 

available spectral information; e.g. capabilities increase from Landsat/Sentinel-2 to ASTER 

to hyperspectral imagery (Figure 2.4) (Mike, 2005). 

 

Figure 2.4: Comparison of Landsat and Sentinel sensors.  

Source: (Mike, 2005). 

 

2.3 Satellite Imageries for Lithology Mapping 

Table 2.3 summarizes the history of the Landsat series of satellites (NASA, 2011).  Over the 

years, Landsat enhanced the number of spectral bands and spatial resolution.  
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Table 2.3 Landsat systems, operational dates and sensors. 

Landsat 

satellite  

Launch   Decommissioned  Sensors  

Landsat-1  July 23, 1972  January 6, 1978  MSS (4 bands)  RBV (3 bands)  

Landsat-2  January 22, 1975  February 5, 1982  MSS (4 bands)  RBV (3 bands)  

Landsat-3  March 5, 1978  March 31, 1983  MSS (5 bands)  RBV (pan 

only)  

Landsat-4  July 16, 1982  June, 2001  (TM (7 bands)  MSS (4 bands)  

Landsat-5  March 1, 1984  2013  TM (7 bands)  MSS (4 bands)  

Landsat-6  October 5, 1993  Failed to achieve 

orbit  

ETM (8 bands)    

Landsat-7  April 15, 1999  Operational  ETM+ (8 

bands)  

  

Landsat-8  February 11,  

2013  

Operational  OLI (9 bands)  TIRS (2 bands)  

Source: (Markham and Helder, 2012) 

These four Landsat instruments generations (MSS, TM, ETM+ and OLI (and TIRS) have 

different band designations. Landsat Multispectral Scanner (MSS) imagery consist in four 

spectral bands with 60 meters spatial resolution. Each image covers approximately an area 

of 170 km (north-south) by 185 km (east-west). Specific band designations differ from 

Landsat 1-3 to Landsat 4-5 (USGS, 2015d). Landsat Thematic Mapper (TM) images are 

composed by seven spectral bands with a spatial resolution of 30 meters for Bands 1 to 5 and 

7 and for Band 6 (thermal infrared) is 120 meters, but is resampled to 30-meter pixels. 

Approximate scene size is 170 km (north-south) by 183 km (east-west) (USGS, 2015d).  

Landsat Enhanced Thematic Mapper Plus (ETM+) imagery consists of eight spectral bands 

with a spatial resolution of 30 meters for Bands 1 to 7 and the Band 8 (panchromatic) 

resolution is 15 meters. Scene size is approximately 170 km (northsouth) by 183 km (east-

west) (USGS, 2015d).  On May, 2013 Landsat 8 Operational Land Imager (OLI) became 

available as well as Thermal Infrared Sensor (TIRS) imagery. This data consists of nine 
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spectral bands (Table 2.4) with a spatial resolution of 30 meters for Bands 1 to 7 and 9, and 

15 meters resolution for Band 8 (panchromatic). New band 1 (ultra-blue) is useful for coastal 

and aerosol studies and new band 9 is useful for cirrus cloud detection. Bands 2-4 are visible 

bands whereas band 5 corresponds to near infrared (NIR). In addition, Band 6 and 7 

correspond to shortwave infrared (SWIR) spectrum. Thermal bands 10 and 11 are useful in 

providing more accurate surface temperatures and are collected at 100 meters resolution. 

Approximate capture scene size is 170 km (north-south) by 183 km (east-west).  

Table 2.4: Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS) bands characteristics 

Bands  Wavelength 

(micrometers)  

Ground Sampling  

Distance (meter per pixel)  

Band 1 – Coastal aerosol  0.43 - 0.45  30  

Band 2 – Blue  0.45 - 0.51  30  

Band 3 – Green  0.53 - 0.59  30  

Band 4 – visible Red  0.64 - 0.67  30  

Band 5 – Near Infrared (NIR)  0.85 - 0.88  30  

Band 6 – SWIR 1  1.57 - 1.65  30  

Band 7 – SWIR 2  2.11 - 2.29  30  

Band 8 – Panchromatic  0.50 - 0.68  15  

Band 9 – Cirrus  1.36 - 1.38  30  

Band 10 – Thermal Infrared  

(TIRS) 1  

10.60 - 11.19  100 * (30)  

Band 11 – Thermal Infrared  

(TIRS) 2  

11.50 - 12.51  100 * (30)  

Source: (USGS, 2015d) 

The Landsat 8 OLI image which has 9 spectral bands: 4 in the Visible (VIS) (0.43–0.67 mm), 

1band of the Near Infrared (NIR) (0.85–0.88 mm), 2 bands of the Shortwave Infrared (SWIR) 

(1.57–2.29 mm), 1band of cirrus (1.36–1.38 mm) and a final band in the Panchromatic band 
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(0.50–0.68 mm) was used for the purpose of this research. The first 8bands have spatial 

resolution of 30m while the panchromatic band has a resolution of 15m. The Panchromatic 

band is usually used to resample the other bands to 15m. Out of these 9 bands, only 5 bands 

(3, 4, 5, 6, 7) were used in this study. Selection of the date of image acquisition was carefully 

considered to ensure "cloud-free" and "water-free" images. Gathering data in visible, SWIR 

regions have a particular interest for geological application (Rajesh, 2004; Mwaniki et al., 

2015; USGS, 2015a, b):   

i. Band 7 (SWIR: 2.11-2.29 µm) – Coincides with absorption band caused by 

hydrous minerals (clay mica, some oxides, and sulfates) making them appear 

darker. Normally used in lithological mapping   

ii. Band 6 (SWIR: 1.57-1.65 µm) – soil and rock discrimination: this band is 

sensitive to moisture variation in vegetation and soils; it is sensitive to presence 

of ferric iron or hematite rocks.   

iii. Band 4 (Visible: 0.64-0.67µm) – discrimination of soil from vegetation: This 

band is good for discriminating soil and vegetation and delineating soil cover.   

Given the presence of the blue band in Landsat data, Landsat images are more suitable for 

discrimination of iron oxide/hydroxide minerals, such as hematite, goethite and jarosite 

(Yousefi, 2018). The blue band of Landsat Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM +) and Operational Land Imager (OLI) sensors is located in the 

absorption part of spectra for iron oxides, while the red band is associated with iron oxides’ 

reflectance. Landsat images have been used for geological purposes by Elsayed Zeinelabdein 

and El-Nadi (Zeinelabdein et al, 2020). Landsat TM with seven spectral bands have been 

used for regional scales of geological mapping (Kargi, 2007). Landsat TM/ETM + image has 
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been used for detecting alteration mineral assemblages associated with epithermal gold and 

porphyry copper mineralization and lithological mapping applications. Shortwave infrared 

bands (bands 5 and 7) of TM/ETM + have been used as a tool to identify hydroxyl- bearing 

minerals in the reconnaissance stages of copper/gold exploration (Abdelsalam, 2000).  

2.4 Lineament  

Earth surface and subsurface fractures represented by lineaments play essential role in natural 

resources exploration and susceptibility hazard mapping of earthquakes/landslides (Rowland 

and Sibson, 2004; Masoud and Koike, 2006).  

Lineament have been defined as natural crustal structures that may represent a zone of 

structural weakness (Walker, 2006). Lineaments may represent faults that control basin 

development and the distribution of reservoirs (Warner, 1997). Lineaments are linear features 

which provide information about the underlying geological structure (Andi et al., 2017). 

Thus, accurate geological features mapping is a critical task for oil exploration, groundwater 

storage and understanding the mechanisms of environmental disasters (Maged and Mazlan 

2010). Lineaments appear as linear tonal anomalies, linear vegetation anomalies or straight 

stream courses. Sudden and sharp shift or deviation of streams from their normal courses or 

displacement in the litho-units often indicates the lineaments/faults. Alignment of many 

water bodies in a straight line also may be because structural control (Krishnamurthy and 

Sreenivasan, 2005). Studies of linear geologic features (lineaments) of both local and 

regional significance, have been progressing rapidly (Abdullah et al., 2010 a & b). Regional 

lineaments are commonly interpreted as surface expressions of geologic weak zones at 

tectonic boundaries of basins and plates, as well as of faults and rock fractures (Milbury et 

al., 2007; Austin and Blenkinsop, 2008).  
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Many methods of automatic and semi-automatic extraction of lineaments from grid data such 

as satellite images and digital elevation models (DEMs) are mostly based on edge-detection 

techniques using spatial and morphological filters (Tripathi et al., 2000; Soto-Pinto et al., 

2013). 

Various methods are used for lineament extraction; image enhancement and manual 

digitizing techniques and automatic extraction using software and algorithms (Hashim, 2013; 

Rahnama and Gloaguen 2014; Scheiber et al., 2015). Remote sensing and GIS approaches 

are increasingly used in mapping geological structures (Ahmad et al., 2015; Cracknell, 2014; 

Meera et al., 2014) and hydrogeological investigations. 

The detection of lineament can be done using satellite imagery. There are two general 

methods of extracting lineaments from satellite imagery; the first involves manual digitizing 

of visually identified lineaments after image processing and the second is automated 

lineament extraction where the satellite image is subjected to automated processing by 

specifying different parameters such as curve length, linking distance, kernel size (Hung et 

al., 2005; Andi et al., 2017).  

Frequency and connectivity of the lineaments are strongly affected by the scale of the source 

grid data and detection parameters when filters are applied (Argialas and Mavrantza, 2004). 

In Suzen and Toprak (2010), different lineament extraction technique including singleband 

(histogram equalization and stretching), multiband enhancement (principal component 

analysis) and spatial domain filtering (Prewitt and Sobel filters) were tested and also which 

they developed a new algorithm which consist of a combination of large smoothing filters 

and gradient filters in order to get rid of artificial lineaments and was realized that the 

combination of spatial domain filters is the most cost-time efficient algorithm in lineament 
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analyses. Also, in their work it was said that the first step in the evaluation of lineament is to 

recognize the drainage system of the region which will illustrate the major characteristics of 

topography, morphology and also to emphasis the impact of the faulting on the final geometry 

of the area. 

The use of convectional edge detection filter techniques of lineament recognition has recently 

been criticized (Moreels and Smrekar, 2003) in which many linear features would be 

introduced that do not correspond to any geological element which increased the difficulty 

of lineament pattern interpretation. Satellite images and aerial photographs are extensively 

used to extract lineaments for different purposes. Since satellite images are obtained from 

varying wavelength intervals of the electromagnetic spectrum, they are considered to be a 

better tool to discriminate the lineaments and to produce better information than conventional 

aerial photographs (Casas et. al., 2000). 

Satellite images representing reflectance and backscattering characteristics of the earth 

surface in response to electromagnetic waves at various wavelengths are generally used for 

lineament extraction. However, artificial linear features unrelated to fractures, such as 

boundaries of land use and land cover, also tend to be detected in satellite images. Precise 

DEM data can be used to avoid such misdetection. Results can be made more effective by 

the combined use of grid data from multiple sources that encompass wide compositional 

variations of subsurface geophysical attributes (e.g., gravity and magnetic) and depth 

variation represented by topography, especially when integrated at various scales. This can 

improve understanding of the relationship between tectonic trends and anomalies that 

develop at varying depths and geological discontinuities (Masoud and Koike, 2011a, 2011b). 
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In Taoufik et al., 2016, road network, trails and the electric grid were digitized from the 

topographic map and the true color composite. They were superposed on the different photo-

interpreted images to avoid their extraction as linear structures. False Color Composites 

(FCC) were realized to bring out more lineament’s details. The quality of the extracted 

lineaments depends also on the spatial resolution of data used (Hung et al., 2005). In this 

regard, band 8 was used in the RGB combination (5,8,2) which allowed a better perception 

of contrast and the distinction of land features. The overlaying of detected lineaments and 

the hydrographic network, digitized from the topographic map and Google Earth images, 

illustrates their spatial and directional relation (Taoufik et al., 2016). 

The concordance of some straight watercourses and lineaments show that they represent 

faults. Straight alignments of affluent will not occur unless they are following a faulted area 

(Sarala, 2012). Faults and tectonic movements reveal layers of tertiary marl, karstified 

limestone laying on soft sediments (Anonyme, 2002). In many landscapes, surface evidence 

of deformation can provide a tantalizing glimpse of the structures beneath the surface. For 

example, (Berberian, 1995) used the surface geometries and shapes of folds to infer the 

presence of master blind thrust faults at depth. (Cinque et al., 1993) used geomorphological 

domains in addition to subsurface datasets to infer the geodynamic evolution of the Southern 

Apennines. Similarly, (Shephard-Thorn et al., 1972) described the influence of the 

reactivation of basement faults on the structures of SE England. 

These three diverse studies highlight the importance of surface observations and the tectonic 

inheritance concept in subsurface geology.  

Burberry et al. (2018) used the shape of the land surface, as gleaned from satellite data and 

field-derived joint patterns, to understand the reactivation history of basement-involved 

faults in SE Nebraska and NE Kansas. Studies of specific structures (Gates and Costa, 1998; 
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Molliex et al., 2010; Said et al., 2011; Burberry and Mcmechan, 2012) indicate that 

subsequent structures, facies changes, and economic deposits may be affected by the motion 

of the pre-existing fault or faults. natural drainage systems display patterns of tributaries, run 

for long distances and are related in some fashion to the underlying geology. 

According to Arlegui and Soriano (1998), normal faults are linear structures, and in the 

identification of lineament in their study in 1996 shows that the presence of fractures favored 

the development of different landforms (karst depressions, linear drainage network, straight 

scarps) in which lineament can be recognized. In their work because of the high number of 

lineaments found an automatic scanning program to determine different parameters of each 

one of the lines was used. It was concluded that most lineament in their zone of study 

correspond to normal faults and belong to one of the three distinct categories (single fault, 

several faults, several parallel faults) and also that lineament density has good correlation 

with shallow structure, gentle folding and sub surface information. 

The surface features making up a lineament may be geomorphological, i.e. caused by relief 

or tonal, i.e. caused by contrast differences. Straight stream valleys and aligned segments of 

a valley are typical geomorphological expressions of lineaments (Hung et al, 2005). A tonal 

lineament may be a straight boundary between areas of contrasting tone. Differences in 

vegetation, moisture content, and soil or rock composition account for most tonal contrast 

(O’Leary et al., 1976). In general, linear features are formed by edges, which are marked by 

subtle brightness differences in the image and may be difficult to recognize. On the earth, 

lineaments could be 

1. straight stream and valley,  

2.  aligned surface depressions,  
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3.  soil tonal changes,  

4.  alignments in vegetation 

5. vegetation type and height changes  

6. abrupt topographic changes. 

All of these phenomena might be the result of structural phenomena such as faults, joint sets, 

folds, cracks or fractures. The old age of many geological lineaments means that younger 

sediments commonly cover them. When reactivation of these structures occurs, this results 

in arrays of brittle structures exposed on the surface topography. Similarly, the surface 

expression of a deep-seated lineament may be manifested as a broad zone of discrete 

lineaments (Richards, 2000). 

Lineaments usually appear as straight lines or “edges” on the images which in all cases 

contributed by the tonal differences within the surface material. The knowledge and the 

experience of the user is the key point in the identification of the lineaments particularly to 

connect broken segments into a longer lineament (Wang et al., 1990). From previous studies, 

one can conclude that lineaments usually occur as edges with tonal differences in satellite 

images and that most of the detection approaches are based on edge enhancement and 

filtering techniques (Mostafa and Bishta 2005; Fagbohun et al., 2017; Pour and Hashim, 

2014). 

In order to map structurally significant lineaments, it is necessary first, by careful and critical 

analysis of the image, to identify and screen features not caused by faulting (Sabins, 1997). 

Hung et al, (2005) in their analysis shows that by overlaying the fault map of their study area 

on average length of lineament map, most of the faults are located very close to locations 

with high values of lineament density. The directions of the faults are corresponding with the 

directions of the high-density patterns. 
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In the extraction of lineament by Mathew and Ariffin (2018), lineaments are aftermaths 

effects of tectonic plays on geological terrane, fewer counts of lineaments almost always 

suggest less effects of tectonic activity on surrounding rocks. The results of lineament 

analysis gave a proper interpretation of the main structural geology and tectonic forces and 

suggest the area is profoundly affected by several structural trends N-S, NW-SE and E-W 

directions. 

Lineaments reveal the architecture of the underlying rocks, which formed as a result of 

various tectonic (deformational) processes throughout the geological history of a region 

(Ramli et al., 2010).  In Javhar et al. (2019) it was noted that rivers sometime follow the 

geological structural elements but mostly are the result of erosion processes, which are not 

necessarily related to deformation. Therefore, it is important to evaluate the contribution of 

drainage-controlled extracted lineaments in the rose diagram directions of the lineaments.  

In general, automatic lineament extraction methods are based on edge detection techniques 

that enhance the pixels at the edges on an image. This is followed by edge linking along 

pixels displaying similarities such as same edge geometry were used to find the best fit of a 

known shape. The Hough transform method is a very robust technique for identifying and 

linking edge pixels that corresponds to linear features (Cross, 1988). In Suzen and Toprak 

(2010), different lineament extraction technique including singleband (histogram 

equalization and stretching), multiband enhancement (principal component analysis) and 

spatial domain filtering (Prewitt and Sobel filters) were tested and also which they developed 

a new algorithm which consist of a combination of large smoothing filters and gradient filters 

in order to get rid of artificial lineaments and was realized that the combination of spatial 

domain filters is the most cost-time efficient algorithm in lineament analyses. 
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2.5 Previous Studies on Remote Sensing for Prospectivity Mapping  

Optical imagery acquired by spaceborne and airborne sensors has been widely applied to 

mineral and lithological exploration for decades. For instance, the United States Geological 

Survey (USGS) used ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) data to map the hydrothermally altered rocks in the central and southern parts 

of the Basin and Range province of the United States (Mars, 2013). Due to its lower cost and 

higher accessibility than hyperspectral data, multispectral imagery, such as Landsat-5 TM, 

Landsat-7 ETM+ (enhanced thematic mapper plus), Landsat-8 OLI (operational land 

imager), and ASTER, is broadly utilized to extract lithologic, mineral, and structural 

information in metallogenic provinces (Pournamdari et al., 2014; Asl et al, 2015; Masoumi 

et al., 2017b). As one of the world’s earliest and longest continuously acquired collection of 

spaceborne moderate-resolution land remote sensing data, the Landsat series has been 

applied in geology for decades (Francis and Rothery 1987; Demirkesen, 2009; Asl et al, 

2015), for applications such as hydrothermal alteration (ferric iron and hydroxides) 

extraction, lithological discrimination, and geotectonic interpretation. With a higher spectral 

resolution in the shortwave infrared (SWIR) and thermal infrared (TIR) range than other 

multispectral data, ASTER provides a higher potential to undertake semi-quantitative 

mineral mapping. 

It has become the most popular imagery in geological exploration, especially in hydrothermal 

alteration and lithological unit discrimination, since the Terra satellite was launched in 1999 

(Pournamdari, et al, 2014; Tangestani, 2011). For example, Son et al. (2014) utilized ASTER 

data to map distribution patterns of hydrothermal alteration and igneous rocks in the 

southwestern Gobi in Mongolia. 
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Ninomiya and Fu (2016), applied ASTER TIR (thermal infrared) images to map regional 

lithological rocks in the Tibetan Plateau. However, with Landsat 7 being damaged in 2003 

and Landsat 5 retiring in 2013, only Landsat 8, launched in 2013, remains within the Landsat 

mission for routine operation. Moreover, due to an anomalously high SWIR detector 

temperature, ASTER SWIR data have been unavailable since April 2008. 

Thereafter, the Sentinel-2 mission, launched by the European Space Agency (ESA), acts as 

important data continuity and enhancement for the Earth observation. The Sentinel-2 Multi-

Spectral Imager (MSI) consists of identical Senitnel-2A and Sentinel-2B, which were 

launched on 23 June 2015 and 7 March 2017, respectively. With a short revisit time (every 

5 days with two satellites), the Sentinel-2 missions aimed at global monitoring for 

environment and security, such as forest monitoring, land cover change detection, and natural 

disaster management (Pesaresi et al, 2016; Navarro et al, 2017). In addition, the high-

resolution Sentinel-2 multispectral data were confirmed to have potential for mineral 

mapping in geological investigations in the last several years, especially for the iron 

absorption feature, due to the similar or even higher spectral setting than Landsat series and 

SPOT in the VNIR region (Van der Meer et al, 2014; Christian et al, 2014; Van der Werff, 

and Van der Meer, 2015). However, there is rare research exploring the capability of 

Sentinel-2 data for complex lithological classification. 

Although it is not new to use remote sensing technique for lithological classification in 

geological investigation (Masoumi et al, 2017a; Yu et al, 2012; Li et al, 2011), many studies 

are limited, due to the coarse spatial/spectral resolutions of multispectral data, causing 

difficulties in accurately classifying rock units (Yu et al, 2012). As a solution, multiple 

ancillary data with texture information, such as airborne geophysical data (Metelka, 2018), 
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DEM (De Boissieu, 2018), and geomorphic feature (Masoumi et al, 2017a), can be integrated 

with multispectral imagery for improved lithological classifications (Yu et al, 2012). 

In (Ge et al, 2018), lithological classification was performed in the Shibanjing ophiolite 

complex in the Beishan orogenic belt in Inner Mongolia, China. The research aimed at 

investigating the potential of the Sentinel-2A and the integrations of multispectral imagery 

for lithological classification in the Shibanjing ophiolite complex. Specifically, (i) five 

typical machine learning methods, including artificial neural network (ANN), k-nearest 

neighbor (k-NN), maximum likelihood classification (MLC), random forest classifier (RFC), 

and support vector machine (SVM), were compared to select the optimal classifier for 

lithological classification using the data combination of Sentinel-2A and DEM (Sentinel-2A 

+ DEM); (ii) three data combinations, OLI + DEM, ASTER + DEM, and Sentinel-2A + 

DEM, were employed to classify lithological units, which aimed to evaluate the capability of 

Sentinel-2A for lithological mapping; and (iii) two data combinations, OLI + ASTER + DEM 

and Sentinel-2A + ASTER + DEM, were utilized to compare the capability of different 

combinations of multispectral bands for lithological classification. 

2.6 Principal Component Analysis 

There are a significant number of image processing methods that have been developed during 

the past decades for detecting anomalous areas, such as hydrothermal alteration zones, using 

satellite images. Among these methods, dimensionality reduction or transformation 

techniques are known to be a robust type of methods, which are helpful, as they reduce the 

extent of a study area at the initial stage of mineral exploration. Principal component analysis 

(PCA), independent component analysis (ICA), and minimum noise fraction (MNF) are the 

dimensionality reduction techniques known as multivariate statistical methods that convert a 
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set of observed and correlated input variables into uncorrelated or independent components 

(Shirmard et al, 2020). 

Principal Component Analysis (PCA) is a statistical method widely used in geological studies 

(Zhang, et al., 2007; Gabr, et al., 2010; Pour and Hashim, 2011a&b, 2012a&b; Amer et al., 

2012; Adiri et al., 2016). It has the advantage of compressing the information contained in 

initial bands into new bands called Principal Components (PCs) (Gabr et al., 2010; Adiri et 

al., 2016). Consequently, this transformation eliminates the redundancy of data, isolates 

noise, and then enhances the targeted information in the image (Amer et al., 2012). 

The Principal Components Analysis (PCA) as a technique used to enhance and separate 

certain spectral signatures from the background (Gabr et al., 2010, Moradi et al., 2015). PCA 

consists of a linear transformation applied on highly correlated multidimensional data like 

multispectral imagery which has a similar visual appearance for different bands, causing data 

redundancy (high correlation of spectral bands) (Loughlin, 1991). Thus, PCA analysis 

consists of a multivariate statistical technique that selects uncorrelated linear combinations 

(eigenvector loadings) of variables in such a way that each successively extracted linear 

combination, or Principal Component (PC) has a lower variance (Singh and Harrison, 1985). 

The number of output PCs is the same as the number of the input spectral bands.   

The first Principal Component, PC1, contains most of the data variability, and highlights 

features common to all input bands and often display important structural information. PC1 

corresponds to a vector in the direction of the maximum variance of pixels in the scene. The 

second PC, PC2, contains the second most data variability. It is orthogonal to PC1 in n 

directional space and highlights the spectral differences between visible and the infrared 

spectral bands. Third PC, PC3 includes the third most variability and is orthogonal to the 

other two PCs.  The other PCs have less variability (Gabr et al., 2010; Moradi et al., 2015).  
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This analysis has been successfully applied in Landsat images showing that the first three 

principal components may contain over 90 percentage of the information in the original seven 

bands (Fundamentals of Remote Sensing, 2012). These calculations have been widely used 

in remote sensing to classify the land surface (Jia and Richards, 1999) and detect changes 

(Eastman and Filk, 1993). 

The PCs analysis can be used in a standard or selective method (Rajesh, 2004; Van der Meer 

et al., 2012). In a standard analysis, all the available spectral bands are used in the input for 

the PC calculation; in a selective analysis a PCA at selected input bands are applied. For 

enhancement of hydrothermal alteration zones, the bands with spectral characteristics of the 

dominant altered minerals in visible, NIR and SWIR regions of spectrum were selected 

(Rajesh, 2004; Van der Meer et al, 2012).   

The feature-oriented PCs method (Loughlin, 1991) was used in order to enhance iron oxide 

and hydroxyl bearing areas. In this selective method, bands with spectral signatures for iron 

and hydroxyl bearing minerals was only used (Crosta and Rabelo, 1993; Rajesh, 2004; Van 

der Meer et al., 2012). Iron oxides are a constituent of alteration zones associated with 

hydrothermal sulfide deposits and can be highlighted by band 4 / band 2 ratio (Sabins, 1999; 

Pour and Hashim, 2015). Hydroxyl bearing minerals are the most widespread product of 

alteration and correspond to a diversity of clays and sheet silicates, which contain Al-OH and 

MgOH bearing minerals and hydroxides in alteration zones. The band ratio 6/7 will highlight 

areas of altered zones comprising dominantly hydroxyl-bearing minerals (Sabins, 1999).       
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2.7 Extraction of Band Ratio 

Digital image processing of remotely sensed data, especially by applying various 

enhancements through different image processing techniques like band combinations, 

filtering, ratioing, etc. can bring out additional information on geology, structures and 

alteration zones, which are important for mineral exploration (RRSSC, 2004). Band ratioing 

is a technique where digital numbers (brightness values) of one band are divided by that of 

another band. This corresponds to the peaks of high and low reflectance curve (Goetz et al., 

1983, Pour and Hashim, 2015).  The digital enhancements involve a series of steps wherein 

the satellite data is processed through various algorithms to bring out better contrast and 

interpretability for extracting meaningful information from the images.  

Band combination is the simplest type of digital image processing technique, wherein the 

satellite data obtained in different spectral bands is combined and displayed in the RGB 

plane. The selection of the best band combination out of the ‘n’ number of band combinations 

possible for a satellite data depends on the application and the features of interest. In most 

cases the, the best colour composite for mineral exploration is found to be with one of the 

band as SWIR or Mid Infra-Red (MIR). The enhanced color composite with a band 

combination of NIR, SWIR and Green (RGB:452 for IRS-1C/1D/P6 data) is found to bring 

out the contrast between lithounits, pediment zones, structural details and the circular 

anomalies more prominently.  

Various contrast stretches such as linear, root, histogram equalization, etc. help in bringing 

out better contrast between different features in the image, which enhances the 

interpretability of the image (Jenson, 2000). Identical surface materials can give different 

brightness values because of the topographic slope and aspect, shadows, or seasonal changes 
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in sunlight illumination angle and intensity. These variances affect the viewer’s 

interpretations and may lead to misguided results. Therefore, the band ratio operation could 

be able to transform the data without reducing the effects of such environmental condition. 

In addition, ratio operation may also provide unique information that is not available in any 

single band which is very useful for disintegrating the surface materials (Jensen, 1996). The 

band ratio images are known for enhancement of spectral contrasts among the bands 

considered in the ratio operation and have successfully been used in mapping of alteration 

zones (Segal, 1983). Various arithmetic combinations of the image bands are more useful for 

geological applications. The most useful of these combinations is the band ratio, which is 

simply dividing the digital number of a pixel in one band by that in another band. The ratios 

of different bands are useful in highlighting various features from the image. For example, 

the ratio of the two Mid Infrared (MIR) bands (band 5 and band 7 of Landsat TM) can bring 

out the hydrothermal altered zones; the ratio of Near Infrared (NIR) band and Red band can 

bring out vegetation anomalies. 

The digitally enhanced color composites generated through the digital enhancement 

techniques discussed above are used for mapping of rock types, exposures, geomorohology 

and structural features, to delineate mineralized zones or source rock for mineralisation, 

extension of mineralized belts/formations, shear zones and the important faults, fractured 

zones, lineament intersections, anomalies and structures associated with mineral deposits, 

contacts between different rock types, mapping of alteration zones as indicator of 

mineralisation and various other mineralisation related anomalies using the various satellite 

image interpretation keys (Krishnamurthy and Sreenivasan, 2005). When using colour 

composites, the bands are selected based on spectral reflectance and the absorption features 

of the minerals or mineral assemblage to being mapped (Mateus and Frutuoso, 2015). Band 
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ratio technique was applied by Ghazali et al. (2015) to Arbaat area and a signature of 

alteration zone was detected.  

Some authors refer the following band ratios for geological use, usually used to enhance 

lithological features (Sabins, 1999; Rajesh, 2004; Han and Nelson, 2015; Mwaniki et al., 

2015). Pour et al. (2019b) refer to a band ratio for identification of hydrothermal alteration 

minerals. The RGB image (4/2, 6/7, 5) was created to allow the identification of lithology, 

altered rocks and vegetation. With the same purpose, Kaufmann ratio (7/5; 5/4; 6/7) was also 

used (Ali and Pour, 2014).  

Minerals such as alunite, and clay minerals such as illite, kaolinite and montmorillonite have 

distinctive absorption (low reflectance) features as ~2200nm and low absorption at ~1600 

nm (Sabins,1999); iron oxides and sulphate minerals commonly have a strong reflectance 

near red and low blue reflectance (Figure 2.5) (Hans and Nelson, 2015). The ratio of Landsat 

8 band 6 (1570 nm – 1650 nm) over band 7 (2110 – 2290) can be applied to distinguishes 

altered rocks containing clays and alunite from unaltered rocks. Areas with abundant iron 

minerals are shown with the ratio image of Landsat 8 OLI band 4 (640-670 nm) over band 2 

(450-510 nm). (Sabins, 1999; Van der Meer et al., 2012; Han and Nelson, 2015). 
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Figure 2.5: (A) Laboratory spectra of alunite, chlorite, kaolinite, muscovite, calcite, and 

epidote. (B) Laboratory spectra of limonite, jarosite, hematite and goethite (Clark et al., 

1993). 

 

Using the theoretical knowledge about the spectral properties of most rocks and minerals, 

TM bands 3/1 and 5/7 were selected for iron oxides and hydroxyl bearing mineral 

respectively. Whereas band ratio 5/4 has been computed to enhance possible ferrous oxides. 

Based on the above considerations the spectral features of ferric and hydroxyl – bearing 

mineral, in which hydrothermally altered rocks are often rich, are used to produce a false 

colour composite image using combinations of bands 5/7, 5/4 and 3/1 in R, G and B 

respectively. The obtained image has mapped the alteration zone in reddish yellow. This 

alteration can easily be observed in the lower right corner and right central part of the image. 

Another composite ratio image was produced using bands 5/7, 3/1 and 4/3 in R, G and B 

respectively. Although this combination of ratio image appears to be fairly different from the 

previous one, the final result remains the same thus lending support to the previous 

conclusion. Groundtruthing of the outlined areas of wall rock alterations has disclosed the 
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existence of a quartz stockwork that contains gold and base metal sulphide mineralization. 

Band ratio technique was applied and a signature of alteration zone in Yellowish color was 

detected. The gossan type of gold mineralization was successfully mapped in the Red Sea 

Hills of Sudan making use of Satellite imagery. 

For identification of hydrothermal alteration minerals using Landsat-8 data, two band ratios 

have been developed based on laboratory spectra of alteration minerals. Mapping iron oxides 

will be carried out using bands 2 and 4 because iron oxide/hydroxide minerals such as 

hematite, jarosite and limonite have high reflectance within 0.63 to 0.69 μm (the equivalent 

to ETM+ band 3) and high absorption within 0.45 to 0.52 μm (the equivalent to ETM+ band 

1). The analysis to map clay and carbonate minerals must incorporate bands 6 and 7 attributed 

to high reflectance in the range of 1.55 to 1.75 μm and high absorption in 2.08 to 2.35 μm 

that correspond with ETM+ bands 5 and 7, respectively.      

2.8 Matrix Format of the Landsat Imagery 

A Landsat image can be expressed in matrix format (Equation 2.11) in the following way: 

Xn,b  = (
𝑥1,1 ⋯ 𝑥1, 𝑛

⋮ ⋱ ⋮
𝑥6,1 ⋯ 𝑥6, 𝑛

)               2. 11 

where n represents the number of the pixels and b the number of bands (Estornell et al, 2013). 

Considering each band as a vector, the above matrix can be simplified as follows in equation 

2.12: 

Xk  = (
𝑥1
𝑥2...
𝑥6

)                  2.12 

where k is the number of bands. 
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To reduce the dimensionality of the original bands the eigenvalues of the covariance matrix 

must be calculated (Estornell et al, 2013). This matrix can be calculated as follows in 

Equation 2.13: 

Cb,b   =  (
𝜎1,1 ⋯ 𝜎1,6

⋮ ⋱ ⋮
𝜎6,1 ⋯ 𝜎6,6

)                2.13 

where σij (Equation 2.14) is the covariance of each pair of different bands. 

σ i,j = 
1

𝑁−1
 ∑ 𝐷𝑁p, i −  𝜇i ) (𝐷𝑁p, j − 𝜇j)𝑁

𝑃=1            2.14 

where DNp,i is a digital number of a pixel p in the band i, DNp.j is a digital number of a 

pixel p in the band j, µi and µj are the averages of the DN for the bands i and j, respectively. 

From the variance-covariance matrix, the eigenvalues (λ) are calculated as the roots of the 

characteristic equation (Equation 2.15), 

det (С - λI) = 0                 2.15 

where C is the covariance matrix of the bands and I is the diagonal identity matrix.  

2.9  Principal Component Matrix Format of the Landsat Imagery 

The eigenvalues indicate the original information that they retain. From these values the 

percentage of original variance explained by each principal component can be obtained 

calculating the ratio of each eigenvalue in relation to the sum of all them (Chuvieco, 2010). 

Those components which contain minimum variance and thus minimum information can be 

discarded. In remote sensing two bands located very close in the electromagnetic spectrum 

will have a high correlation (Estornell et al, 2013). 

The principal components can be expressed (Equation 2.16) in matrix form: 
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Y6 = (

𝑦1

𝑦2
...

𝑦6

) = (
𝑤1,1 ⋯ 𝑤1,6

⋮ ⋱ ⋮
𝑤6,1 ⋯ 𝑤6,6

) (
𝑥1
𝑥2...
𝑥6

)             2.16 

where Y is the vector of the principal components, W the transformation matrix, and X the 

vector of the original data. The coefficients of the transformation matrix W are the 

eigenvectors that diagonalizes the covariance matrix of the original bands. These values 

provide information on the relationship of the bands with each principal component. From 

these values it is possible to link a main component with a real variable. The eigenvectors 

can be calculated from the vector - matrix equation for each eigenvalue _k, 

(С - λkI)wk = 0                  2.17 

where C is the covariance matrix, λk is the k eigenvalues (six in our example), I is the diagonal 

identity matrix, and wk is the k eigenvectors.  
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CHAPTER THREE 

3.0     MATERIALS AND METHODS               

3.1 Materials                    

3.1.1 Landsat data                    

The Landsat 8 OLI imagery of PATH 189 and ROW 53 was downloaded from the USGS 

site with "LC08_L1TP_189053_20180305_20180319_01_T1" production ID.  

Table 3.1: Details of the metadata  

Geographical 

area 

Satellite 

mission 

Date  Parameters 

Madaka  Landsat 

8OLI 

05/03/2018 Path 189, Row 53 

 

3.1.2 Geographic information system (GIS) software 

GIS software was used for preprocessing, enhancement, to classify remote sense imagery 

and to extract spatial information. This is an effective tool for integration and for analysis of 

large amount of georeferenced spatial data with different formats and attributes. ArcMap 

10.2 from ESRI, ENVI (Environment for Visualising Image) 5.3, PCI Geomatical 2015, were 

used (commercial software and open source software, respectively). Rajesh (2004) defines 

four steps to map mineral potential occurrence areas using GIS:   

i. Build a database containing spatial digital data;  

ii. Extract predictive evidence for a particular mineral deposit type;  

iii. Calculate weights for each predictive evidence map;  

iv. Combine the maps to predict mineral potential.  
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3.2 Methods 

Several digital image processing methods were simultaneously utilized in order to achieve the 

research aim. The various methods and the basic rationale behind their utilization are presented 

in Figure 3.1 below; 

 

Figure 3.1: Workflow of methodology 

Colour legend 

Blue box = input 

Yellow box = process 

Green box = output 
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3.2.1 Image pre-processing (Top of atmosphere correction TOA) 

As already stated, for mineral exploration mapping, the most appropriated bands are located 

in the visible, NIR and SWIR regions. In this work, bands 2 to 7 from Landsat 8 OLI and the 

panchromatic (band 8) were used. This panchromatic band has a higher spatial resolution 

when compared with the multispectral bands, and was used for sharpening the image using 

it as a greyscale base image. The raw images were quantized and calibrated scaled Digital 

Numbers (DN). Radiometric calibration and the FLAASH (Fast-Line of sight Atmospheric 

Analysis of Spectral Hypercube) in Figure 3.2, corrections were applied to the imagery. 

 

Usually, image enhancement is required for a better interpretation of the study area. This 

operation consists in a stretch imagery contrast to improve the information content of the 

image. According to Rajesh, (2004); Hung et al. (2005); Sukumarb et al. (2014), spatial 

filtering techniques provides better visualization, highlighting or suppressing some features 

of the image that allows to extract oriented features. This was used to filter the imageries 

Figure 3.2: FLAASH correction 



78 

 

used in this research work based on spatial frequency, so rapid variations in brightness levels 

can indicate roughness and low spatial frequency smother areas.  

Image sub-setting 

After the image was downloaded and all the layers staked, in other to get our Region Of 

Interest (ROI), the entire image was subset by creating a shape file for the ROI on the Envi 

environment as in the figure 3.3.  

 

 

The data collected (geological data (lithology and structural), satellite data, topographical 

data (DEM) and mineral occurrence data) used in this study were spatially analyzed in way 

to generate a final target exploration map. 

3.2.2 Image processing methods 

The Image processing methods in this study was used to transform the multispectral satellite 

data into images that enhance geological features in contrast with the background. In this 

Figure 3.3: ROI subset 
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study, enhancements techniques, such as Band composite (figure 3.4) carried out on the Envi 

environment, Band Rationing (figure 3.5), Principal Component Analysis (PCA) (Figure 3.6) 

and Lineament extraction (figure 3.7) were applied which allowed the extraction of spatial 

and spectral information related to lithology, structures, hydrothermal alteration, and others. 

These techniques allow to create a mineral potential map of gold mineralization occurrence 

and delineate mineral exploration targets for further work. Target delineation involves the 

analysis and integration of various thematic geological data.  

 

 
Figure 3.4: Band composting operation 
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Figure 3.5: Band ratio operation 

Figure 3.6: PCA operation 
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3.2.2.1 Single band combinations 

The Landsat imagery used in this research is composed by grey-scale images correspondents 

to spectral bands. When a composite of three bands (red, green, and blue) is created a 

colourful multispectral image will result, which can be true colour or false colour (in this 

case, a NIR band is used instead of blue band). There are different band combinations 

possibilities whereby some of them enhance relevant features for mineral exploration.  

A composite with the visible bands of the spectrum, that correspond to red, green and blue, 

called a true colour composite was used to generate a true colour composite image as in 

Figure 3.8, this was done on the ENVI environment. When a composite is created with non-

visible bands it is called a false colour composite image (Mateus and Frutuoso, 2015). In the 

creation of the false colour image, the combination of three bands (visible bands and infrared 

bands or only infrared bands) in red, green and blue produced an image that enhance some 

characteristics depending the selected spectral bands. The bands are assigned based on 

Figure 3.7: Lineament extraction operation 
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spectral properties of the rocks and alteration minerals which correspond to the work of 

Mateus and Frutuoso, 2015.  Some band composites are useful in a first approach for mineral 

and rock discrimination and interpret possible alterations based in colour intensity variations, 

as RGB (7, 5, 2) or the RGB (5,6, 7). 

 

 

3.2.2.2 Colour composite (CC) 

The Colour composites are various colour combinations that were done to enhance specific 

features in the image. A natural or true colour composite (TCC) of the image displayed a 

combination of the visible red, green and blue bands to the corresponding red, green and blue 

channels on the computer display. A TCC shows all features of an image in their true and 

natural colours. In most cases, due to spatial resolution, it is often very difficult to 

discriminate most features in TCC, hence a false colour composite was imposed to aid visual 

discrimination. The False colour composites (FCC) generated allowed us to visualize the 

wavelengths the human eye does not see (near the infrared range). False colour images are a 

Figure 3.8: Band compositing operation 
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representation of a multispectral image created using ranges other than visible red, green and 

blue (RGB) components. 

3.2.2.3 Band ratio (BR) 

This technique was used to improve the contrast and enhance compositional information 

while suppressing useless information, like earth’s surface and shadowing caused by 

topography surface shadow, allowing highlight some features that cannot be seen in raw data. 

Band ratios are very useful for highlighting certain features or materials that cannot be seen 

in the raw bands. It was based on highlighting the spectral differences that are unique to the 

materials being mapped.  

Different band ratios were tested in this work Figure 3.9, in order to enhancing 

hydrothermally altered rocks and lithological units. The selection of bands were related to 

the spectral reflectance and position of the absorption bands of the mineral or assemblage of 

minerals to be mapped.  

 

Based on the spectral reflectance curve for hydrothermally altered rocks, BR was used to 

emphasize possible anomaly within the target thus leading to the identification of the specific 

Figure 3.9: Band Ratio operation 
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mineral features which was in accordance with San et al., 2004; Nouri et al, 2012. 

Furthermore, BR was used to reduce the effect of topography, hence enhancing the difference 

between spectral responses of each band. The BRs and red–green–blue (RGB) color 

composite (CC) created with the Landsat 8 OLI images serve as basis for mineral detection 

(Mars and Rowan, 2010). The various BR used to execute this research is depicted in Table 

3.3 

Source: (Aransiola and Odumosu, 2021) 

 

CC BR Interpretation Reference 

Color Mineral depicted 

TCC 4,3,2 Green Vegetation Welch and Ehlers 

1987 

Han and Nelson, 

2015 

Brown Soil / Rock outcrops 

Blue Water 

FCC 5,6,7 Light blue Outcrop Zoheir et al, 2012a 

Black Water 

Orange Vegetated Areas 

Boolean 4/2 Bright tone Iron-oxide: Showing evidence of 

oxidation this tending towards 

hydrothermal alteration 

 Zoheir et al, 2012b 

Boolean 6/7 Bright tone Allunite and hydrothermal clay i.e 

hydroxl bearing rocks. Further 

showing evidence of 

hydrothermal alteration 

 Han and Nelson, 

2015 

Boolean 7/5 Bright tone clay minerals (illite, kaolinite and 

montmorillonite). More evidence 

of hydrothermal alteration 

 Han and Nelson, 

2015 

Boolean 6/5 Bright tone Ferrous minerals. Also serving as 

evidence of hydrothermal 

alteration 

 Mwaniki et al., 

2015 

Sabin's ratio (4/2, 6/7, 

6/5) 

Light green  Altered rocks Sabins, 1999 

Light blue-

yellow 

 Outcrop 

Kaufmann's 

ratio 

(7/5, 5/4, 

6/7) 

Red Could be Hydrothermal alteration Mia and Fujimitsu, 

2012 Dark green Metal sediments 

Table 3.3: A serial arrangement of the Band Ratio used for Au 

Mineralization prospecting 
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3.2.2.4 Extraction of sub-lineament map 

For the purpose of this study, the LINE module of PCI GEOMATICAL was used on the first 

PC (Figure 3.7) band after the image was atmospherically and radiometrically corrected to 

generate a lineament map. The SRTM data of the study area was layer stacked with the 

lineament map uploaded in the ARCGIS environment to check for any correlation between 

the two maps. 

3.2.3 Principal component analysis 

The principal component (PC) analysis was carried out in the ArcMap environment first, on 

the entire Row and Path before sub-setting, which displayed the result in a grayscale 

thereafter, the ratios needed for alteration minerals were uploaded. In the activated 

classification tab on the ArcMap environment was displayed the principal component where 

the number of bands was inputted by adding them up one by one with the raster bands and 

the output location was saved at the output data file tab. 

 
Figure 3.10: PCA in progress 
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PCS was performed on the Sabin’s and Kaufmann’s ratio in order to serve as an apriori 

weighting statistics based on the significance factor of the largest band contributor in both 

indices. Principle Component Analysis (PCA), de-correlates the data within each spectral 

band, such that the most common characteristics of all bands are placed in the highest 

category and lesser common characteristics are placed in lower categories, until all variance 

is explained (Odumosu et al, 2022). It is invaluable for exploration of data and landscape 

characteristics, simultaneously drawing attention to the most noteworthy and best-hidden 

features in a scene. Equation (3.1) is an expression of the mathematical formulation that 

implements PCA.  

𝑆 =  ∑ 𝑖 ∑ 𝑗 (𝑍𝑖𝑗 −  𝑋𝑖𝑃𝑗)2               (3.1) 

Where: 𝑧𝑖𝑗 = original data, index 𝑖 stands for the variable number and 𝑗 for the observation 

number. 𝑝𝑗 = the principal component which is used with a set of coefficients 𝑥𝑖 to 

approximate the jth observation of the ith variable 𝑧𝑖𝑗 as 𝑥𝑖𝑝𝑗. The values of the 𝑥𝑖’s and the 

𝑝𝑗 are to be chosen so as to minimize the sum of the squared deviations between the actual 

data. 

3.2.4 Multi-criterial analysis 

Two weighted overlay operation scenarios were performed within ArcMAP 10.2 using the 

conditioning factors for oxidation, silification, iron oxide and hydrothermal alteration. For 

oxidation, Tarnish in gold results from a reaction to oxygen with the air which can be well 

observed in bands 4 and 2 (4/2). For silification, when rock have contact with groundwater, 

the extra dissolved silicon dioxide in the groundwater will deposit in the rock pores and result 

in an increase in the rock's silicon amount. This explains the close association of silification 
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and gold mineralization. Being a metallic luster, the condition for silification responded in 

bands (6/7) and (7/5). 

For iron oxide, is a reddish-brown solid that can be identified in bands 6 and 5. The Boolean 

maps were also re-classified based on the variation in the grey scale values using the re-class 

tool in ArcGIS. The nearest neighbor classification method was used for the classification 

with the areas corresponding to suspected gold mineralization taken as the high gold 

mineralization zones as shown in Table 3.4. 

Table 3.4: Weighting criteria for weighted overlay analysis 

S/No Conditioning factor Scenario 1 Scenario 2 Remarks 

Assigned weight (%) 

1 TCC (Rock outcrop) 10                     6  

2 FCC (Rock outcrop) 10                     6  

3 Oxidation 20                     12  

4 Boolean (6/7) silification 10                      6  

5 Boolean (7/5) silification 10                      6  

6 Iron oxide 20                      12  

7 Sabins (hydrothermal alteration) 10                     32 Has highest PCA 

8 Kaufmann (hydrothermal alteration) 10                     20  

  100                   100  
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1  Presentation of Results 

The results obtained are presented in the order of various zones/regions identified within he 

study area. The results are presented as follows; 

4.1.1  Regions of Hydrothermal Alterations 

The regions with the hydrothermal alterations as derived from various ratios are presented below 

Figure 4.1; (a) shows the ratio of band 4/2, (b), the ratio of band 6/5, (c), ratio 7/5, (d), displays 

the ratio of 6/7 and (e), band ratio of 7/6. All in dark and bright pixels. 
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Figure 4.1: Hydrothermal Alteration Mappings: (a) band ratio 4/2 (b)band ratio 6/5 (c) 

band ratio 7/5 (d) band ratio 6/7 (e) band ratio 7/6 
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This corresponds directly to minerals associated with this alteration and represents surface 

expression for auriferous deposits. Thus, it was applied the ratio of Landsat 8 OLI band 4 

over band 2, to highlight areas with abundant iron oxides bearing minerals, as brighter pixels 

(Figure 4.1 (a)). Ratio of Band 6 over band 5 discriminate ferrous minerals in bright tone 

(Figure 4.1 (b)). Clay minerals, as illite, kaolinite, and montmorillonite are discriminated 

with the ratio image of band 7 over band 5 as bright pixels (Figure 4.1 (c)). The ratio image 

of band 6 over band 7 distinguish altered rocks containing clays and alunite from unaltered 

rocks, where pixels are bright (Figure 4.1 (d)). The spectral value in the image can determine 

the iron oxide value in wetlands (Demattê et al., 2017). Iron oxide research using remote 

sensing is mostly carried out in dryland with low vegetation cover and mining areas (Arisanty 

et al., 2021).     

4.1.2 Band combination response for hydrothermally altered rocks     

The natural representation of the study area as it is when in Red Green Blue (RGB) is displayed 

in the Figure 4.3 below, in the visible spectrum region of the Landsat imagery used. Figure 4.4 

expresses the false colour combination of bands 5,4,3, Figure 4.5, shows the RGB combination 

for bands 7,5,2, figure 4.6, illustrates the Sabins ratios (4/2, 6/7, 6/5), Figure 4.7 demonstrates 

Kaufmann ratio (7/5, 5/4, 6/7) respectively and Figure 4.8 shows the summary of the band 

combinations. 
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Figure 4.2: Landsat 8 OLI Natural colour 

 

Figure 4.3: Landsat 8 False colour combination 5,4,3 
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Figure 4.4: RGB combination for bands 7,5,2 

 

 

Figure 4.5: Sabins ratios (4/2, 6/7, 6/5) 
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Figure 4.6: Kaufmann ratio (7/5, 5/4, 6/7) 

 

 



94 

 

 

 

4.1.3 Principal Component Analysis and Sub Surface Lineament  

4.1.3.1 Presentation of PCA results 

The Principal Component Analysis for the selected Landsat 8 band used that shows the spectral 

response of relevant substances and the spectral information of minerals as displayed in Figure 

4.9, Figure 4.10 A-D display the various PCA of the ratios of (5,4,3), (7,5,2), Kaufmanns, Sabins 

respectively. 

Figure 4.7: Figure 4.2 to 4.6 summary 

A = true colour 

B = false colour (5,4,3) 

C = false colour (7,5,2) 

D = Sabins ratio  

E = Kaufmanns ratio 
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Figure 4.9: PCA for (A) 5,4,3 (B) 7,5,2 (C) Kaufmanns (D) Sabins respectively 

Figure 4.8: Principal Component Analysis (PCA) for Landsat 

band used 
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Table 4.1 illustrates the 1.00000 along the diagonal, the first to sixth column shows the PCA 

for each band used. This summarizes the correlation matrix for the six bands used as 

displayed below; 

Table 4.1: The Correlation matrix of Principal Component Analysis (PCA) for bands 

2,3,4,5,6,7 of Landsat used. 

Layer  1 2 3 4 5 6 

2 1.00000 0.99771 0.98847 0.98297 0.97647 0.97275 

3 0.99771 1.00000 0.99534 0.98273 0.97986 0.97727 

4 0.98847 0.99534 1.00000 0.97830 0.98669 0.98551 

5 0.98297 0.98273 0.97830 1.00000 0.98201 0.96833 

6 0.97647 0.97986 0.98669 0.98201 1.00000 0.99502 

7 0.97275 0.97727 0.98551 0.96833 0.99502 1.00000 

 

For PCA 1, band 6 has the highest value with 0.54479 and band 2 with 0.29787, PCA 2, band 

5 with the highest and band 7 with the lowest, PCA 3 has band 3 with high and band 5 lowest, 

same apply with PCA (4-6) with highest and lowest respectively as shown in Table 4.2. 

Table 4.2: Principal component 1,2,3,4,5,6 for the input band1,2,3,4,5,6 which are the 

eigen vector 

Eigen 

vector  

PCA 1 PCA 2 PCA 3 PCA 4  PCA 5 PCA 6 

Band 2 0.29787 0.30273 0.42114 0.56653 0.32721 0.46286 

Band 3 0.29978 0.23358 0.46422 0.00034 0.04299 -0.79889 

Band 4 0.33028 0.01747 0.43746 -0.73395 -0.14012 0.37539 

Band 5 0.47610 0.61633 -0.53980 -0.01780 -0.31777 0.02808 

Band 6 0.54479 -0.39210 -0.34337 -0.12950 0.63961 -0.07538 

Band 7 0.43458 -0.56558 0.08047 0.35110 -0.60114 0.01227 

 

The EV and EV are presented below (Table 4.3), the columns identify the 6 PC layers while 

the row displays the EV and EV gotten from the bands of the imagery used. This summarizes 

the values gotten from the EV and EV. 
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Table 4.3: Eigenvalues and eigenvectors (EV & EV) for the Landsat bands used 

 

Here (Table 4.4), the first column gives the PC layer information from 1-6, the second 

column presents the EV, the third column the percent of EV and the last, the accumulated 

EV. This summarizes all the figures derived from the above mentioned. 

Table 4.4: Percent and accumulative eigenvalues for the Landsat bands used 

Pc layer Eigenvalue Percent of Eigenvalues Accumulative 

of Eigenvalues 

1 257878606.86135 98.6018 98.6018 

2 2134108.02539 0.8160 99.4178 

3 1161104.70861 0.4440 99.8617 

4 220660.40312 0.0844 99.9461 

5 132762.67796 0.0508 99.9969 

6 8196.48149 0.0031 100.0000 

 

The covariance matrix is shown in Table 4.5 in which the column signifies the layer of the PC 

for Sabins ratio while the row, the layer for the bands. This abridges the values derived from 

the covariance computation. 

 

 

Pc 

layer 

1 2 3 4 5 6 

EV & 

EV 

257878606.

86135 

2134108.

02539 

1161104.

70861 

220660.4

0312 

132762.6

7796   

8196.4814

9 

Band       

2 0.29787 0.30273 0.42114 0.56653 0.32721 0.46286 

3 0.29978 0.23358 0.46422 0.00034 0.04299 -0.79889 

4 0.33028 0.01747 0.43746 -0.73395 -0.14012 0.37539 

5 0.47610 0.61633 -0.53980 -0.01780 -0.31777 0.02808 

6 0.54479 -0.39210 -0.34337 -0.12950 0.63961 -0.07538 

7 0.43458 -0.56558 0.08047 0.35110 -0.60114 0.01227 



98 

 

Table 4.5: Covariance matrix for Sabins PCA 

Layer 1 2 3 

1 0.02784 0.02909 0.02531 

2 0.02909 0.03925 0.02374 

3 0.02531 0.02374 0.03641 

 

The Correlation matrix is shown in Table 4.6 in which the column signifies the layer of the 

PC for Sabins ratio while the row, the layer for the bands. This abridges the values derived 

from the Correlation matrix computation       

Table 4.6: Correlation matrix for Sabins ratio PCA 

Layer 1 2 3 

1 1.00000 0.87988 0.79506 

2 0.87988 1.00000 0.62789 

3 0.79506 0.62789 1.00000 

 

The first column from the table below illustrates the PC layer, the second column shows the 

Eigenvalue, the third column displays the percent of Eigen value and the last represents the 

accumulative of Eigen value all for Sabins ratio. This table summarizes the percent and the 

accumulative eigenvalues for Sabins ratio as presented in Table 4.7 below; 
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Table 4.7: Percent and accumulative eigenvalues for Sabins ratio 

Pc layer Eigenvalue Percent of 

eigenvalue 

Accumulative of 

eigenvalues 

1 0.08680 83.8641 83.8641 

2 0.01414 13.7022 97.5663 

3 0.00252 2.4337 100.0000 

 

The covariance matrix for Kaufmann ratio is shown in Table 4.8 below in which the column 

signifies the layer of the PC for Kaufmann ratio while the row, the layer for the bands. This 

summarizes the values derived from the covariance computation. 

Table 4.8: Covariance matrix for Kaufmann ratio PCA  

Layer 1 2 3 

1 0.03248 0.01169 0.01328 

2 0.01169 0.05678 0.04432 

3 0.01328 0.04432 0.03925 

 

The Correlation matrix for Kaufmann’s ratio is shown in Table 4.9 below in which the 

column signifies the layer of the PC for Kaufmann ratio while the row, the layer for the bands. 

This summarizes the values derived from the Correlation matrix computation. 
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Table 4.9: Correlation matrix for Kaufmann ratio PCA 

Layer 1 2 3 

1 1.00000 0.27228 0.37199 

2 0.27228 1.00000 0.93880 

3 0.37199 0.93880 1.00000 

 

The first column from the table below illustrates the PC layer, the second column shows the 

Eigenvalue, the third column displays the percent of Eigen value and the last represents the 

accumulative of Eigen value all for Kaufmann’s ratio. This table summarizes the percent and 

the accumulative eigenvalues for Kaufmann ratio as presented in Table 4.10 below; 

Table 4.10: Percent and accumulative eigenvalues Kaufmann ratio 

Pc layer Eigenvalue Percent of 

eigenvalues 

Accumulative of 

eigenvalues 

1 0.09786 76.1538 76.1538 

2 0.02811 21.8742 98.0280 

3 0.00253 1.9720 100.0000 

 

4.1.3.2 Sub-lineament maps result 

Various lineament analysis was done and are presented in Figure 4.11 to 4.14, the Extracted 

lineament of the study area, Overlaid lineament on the drainage and SRTM, Lineament and the 

drainage overlaid and the summary respectively. The blue color shows the drainage while the 

red, the lineament. This summarizes the different estimate from sub-lineament.  
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Figure 4.10: Extracted lineament of the study area 

 

Figure 4.11: Overlaid lineament on the drainage and SRTM 
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Figure 4.12: Lineament and the drainage overlaid 

Figure 4.13: Summary of Figure 4.9 to 4.12 

 

 

; 

A = Extracted lineament of 

the study area 

B = Overlaid lineament on 

the drainage and SRTM 

C = Lineament and the 

drainage overlaid 
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4.1.4 Multi criteria analysis for conditions 

The multicriteria analysis was done and the result presented in Figure 4.14a-d which shows 

region of iron oxide, oxidation, hydrothermal alteration and silification respectively. Figure 4.15 

a-d, displays the extracted lineament of the study area, gold mineralization on equal weight, 

overlaid lineament and drainage pattern and weighted gold mineralization zones 

correspondingly. Figure 4.14 and 4.15 (a-d) summarizes all the result gotten from the 

multicriteria analysis. 

Figure 4.14: Simple raster combination (raster overlay) of Figure 4.1 to 4.7 showing (a) Iron-

oxide in light green (b) oxidation in purple (c) Hydrothermal alteration in mint green (d) 

silification in deep blue 
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Figure 4.15: (a-d) Extracted lineament of the study area, Gold mineralization (equal 

weight) Au zones in dark peach, lineament and drainage overlaid and Gold mineralization 

(Oxidation 40, silification 30, Iron oxide 30) respectively. 
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4.2 Discussion of Results 

4.2.1 Hydrothermal alterations 

Images enhancing hydrothermal altered rocks using band ratios with distinctive reflection 

features were produced and presented in Figure 4.1.          

In Figure 4.1 (a) Landsat 8 band ratio 4/2 image reveals areas where iron minerals (hematite, 

goethite, limonite, etc.)  are abundant shown in bright tones; (b) Landsat 8 band ratio 6/5 

image discriminates ferrous minerals with bright tone. (c) Landsat 8 band ratio (7/5) image 

reveals clay minerals, as illite, kaolinite and montmorillonite, in bright tones. (d) Landsat 8 

band ratio 6/7 image shows alunite and hydrothermal clay minerals in bright tones. 

In Figure 4.1(a) bands of Landsat-8, bands 2 and 4 responsive to iron oxides/hydroxides and 

bands 6 and 7 sensitive to hydroxyl-bearing minerals and carbonates, were also extensively 

used for hydrothermal alteration mineral mapping in metallogenic provinces (Pour and 

Hashim, 2015; pour et al., 2019c) in Figure 4.1(d) iron oxide/hydroxide minerals contain 

diagnostic spectral characteristics coincident with selected bands of different sensors (Sabins 

1999; Pour and Hashim, 2015). Hydroxyl-bearing (Al-OH and Fe,Mg-OH) and carbonates 

minerals were typically identified in the study region through Landsat-7 ETM+ band ratio of 

band 5/band 7, Landsat-8 band ratio of band 6/band 7 and ASTER band ratio of band 4/band 

9, respectively (Pour and Hasim, 2015; Abubakar et al, 2019; Pour et al, 2019c). 

An image incorporating these band ratios will discriminate altered from unaltered outcrop 

and highlight areas where concentration of these minerals occurs. 

Hydrothermal alteration is linked to the underground circulation, which can attract the 

surface of hot water, loaded with dissolved minerals (Au, Copper, Barite, etc.). This 

circulation of hydrothermal fluids often occurs in the veins in volcanic zone, near a magma 
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chamber, or in plutonic zone. It dissolves the minerals present in the rocks crossed El Atillah 

et al 2019. Hydroxyl-bearing minerals present diagnostic spectral absorption features in the 

shortwave infrared radiation region, and thus this wavelength region is the best to explore 

and map hydrothermal alteration zones (Pour and Hashim, 2014).  

4.2.2 Band combination response for hydrothermally altered rocks          

4.2.2.1 Single band combination 

Landsat 8 OLI was used to display the Natural colour of the study site in Maigiru, Madaka 

district Rafi local government Niger state Nigeria (Figure 4.2).  

Single band combinations were applied in a first approach, in order to analyze the study area 

and visually interpret the multispectral imagery. Using Landsat 8 OLI imagery, six bands 

(B2, B3, B4, B5, B6 and B7) some of them enhancing relevant features for mineral 

exploration. A true colour image was produced with Landsat 8 visible bands 4, 3 and 2 

(Figure 4.3). Green colour represent vegetation mostly along, brown and brown represent 

soil or rock and blue water. With this band combination, it is possible to do an exploratory 

analysis of the area, identifying rock exposure areas (brown), vegetated areas (green), rivers 

and lakes (blue) and urbanized areas. In addition, some structural features such as faults and 

fractures can be identified. Landsat 8 visible bands 4, 3 and 2 which is in contrast with 

Ombiro et al (2021) that combined bands 4,2,3 as True Image Colour 

4.2.2.2 False colour combination 

When composite image is created using a combination of 3 bands (such as infrared bands, 

shortwave infrared bands and visible bands) in RGB, an image that is produced tends to 

enhance certain features (Mwaniki et al 2015). This, however, depends on the bands selected 

for compositing. These bands are often assigned using the rocks’ or altered minerals’ spectral 
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characteristics. The band combination for identification of altered minerals, according to 

(Pour and Hashim, 2015; Rmdc, 2015), are: RGB (5,6,7), RGB (7, 5, 2) and RGB (5,4,3). It 

is for this reason that these band combinations were used to discriminate hydrothermally 

altered zones within the study area. The results for band combination are shown in Figure 

4.3. 

False Colour image was created for A, using bands 5, 4 and 3 (R, G, B). This band 

combination allows a better differentiation between vegetated areas (red areas) and good 

exposure outcrops (greyish colours). Light blue colour represent urbanized areas.  

For a preliminary geological study, a contrast-enhanced RGB combination (SWIR, NIR, and 

Visible) was created. The most contrasting band combination for lithological features and 

that provide more detail without additional enhancement should include one visible (2, 3 and 

4), one NIR (5) and one SWIR (6 or 7) band (USGS, 2015a). Based on this assumption, a 

composite using the bands 7, 5, 2 (RGB) was created (Figure 4.4) where it is possible identify 

outcrops as shades of orange and red, vegetation in light green and water in black.  

4.2.2.3 Sabins ratio                    

An image using Sabin’s ratio (4/2, 6/7 and 6/5 as RGB) was produced for lithological 

mapping and hydrothermal alteration zones (Figure 4.5). The ratio 4/2 was used for mapping 

iron oxides as hematite, limonite and jarosite, and has high reflectance in red region. The 

ratio 6/7 it’s used to map clay minerals as kaolinite, illite and montmorillonite. The ratio 6/5 

shows high reflectance in presence of ferrous minerals. In this Figure 4.5, light yellow colour 

represent outcrops and blue areas represent vegetation, Light green areas highlight 

hydrothermal alteration in outcrop rocks which is similar to Mateus and Frutuoso, 2015. This 

occupies like 20% of the study area which by interpretation means the area is hydrothermally 
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altered. According to Sabins, 1999; Ali and Pour, 2014, Sabins’ band ratio is beneficial for 

lithological mapping and detection of hydrothermal alteration zones. Sabins ratios were 

displayed as in Figure 4.5 above, strong yellow may represent buildings and other human 

constructions and light green altered rocks.  Colour variations can be seen in different band 

ratio results which are the primary keys to identify a hydrothermally altered zone. 

4.2.2.4 Kaufmanns ratio 

In Kaufmann ratio (7/5, 5/4, 6/7) Figure 4.6, this band ratio combination highlight meta-

sediments as dark green and granite outcrops are represented as rose, vegetation as light blue 

and water as red. Some red areas can be related to the hydrothermal alteration. Kaufmann 

band ratio (7/5, 5/4 and 6/7) was also used for separation of vegetation from altered zones 

(Ali and Pour, 2014). Also, like 15% of the region from Figure 4.6 show that the area is 

hydrothermally altered. Figure 4.7 displays Figure 4.2 to figure 4.6 in a view. 

4.2.3 PCA results analysis  

The PCA is part of the group of multidimensional descriptive methods called factorial 

methods. The PCA proposes, from a rectangular table of data containing the values of p 

quantitative variables for n units, geometric representations of these units. These variables 

make it possible to determine the main components (principal component (PC)) that represent 

the contribution of the original tapes involving the spectral response of relevant substances 

and the spectral information of minerals of particular interest as in Figure 4.8 and 4.9 (A - 

D). It is used to create new uncorrelated components by identifying the axes in the original 

data that account for the largest amount of variation. This method has always shown the 

effectiveness of the results related to geological discrimination and mineral exploration. 

Minerals and substances are represented as dark or bright pixels in PC images, respectively, 
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according to the sign of the charge of the proper vector (Corumluoglu et al., 2015; Vural et 

al., 2017). The satisfactory results obtained by this technique guided El Atillah et al 2019 to 

use this technique at different stages. 

Singh and Harrison (1985) states that new principal component images may be more 

interpretable than the original data as the multispectral dataset’s dimensionality is reduced. 

When considering the Figure 4.8 A&B no much difference could be observed when 

compared with the PCA images of Figure C&D which by interpretation might mean that FCC 

have little or no effect in the generation of PC.  Furthermore, the newly generated PCA 

images have more spectral difference, and the existing objects can be extracted effectively. 

PCA is more applicable for lithological mapping, and each lithological unit is revealed 

clearly in PC images; based on the selected minerals, the PC is selected, or sometimes, the 

composition of several PCs is created (Singh and Harrison, 1985). The boundary between 

two adjacent lithologies may be considered a lineament or sometimes a fault. Therefore, the 

analyst can easily digitize the edges from PC images. 

PCA table analysis 

The correlation matrix for the PCA of landsat bands used has all diagonals to be 1.0000 in 

Table 4.1 with 0.977275 as the lowest. The principal components for the bands and the eigen 

vectors of bands 2 to bands 7 in table 4.2 shows all positive in PCA 1, negative in PCA 2 

band. 

Spatially coherent information is clearly observed in the first five components (PC1, PC2, 

PC3, PC4, and PC5). The last PC band (PC6) contains less variance and so often appears 

noisy. The first three principal components (PC1, PC2, and PC3) contain about 99.6% of the 

total variance in the data. PC1 explains 98.61% (Table 4.2) of the total variance (spectral 

information) and has positive loadings for all bands. The second highest proportion of 
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variance (0.82%) (Table 4.4) is associated with PC2, which has negative loadings on bands 

6 (-0.392) and 7 (-0.566) (Table 4.3&4.4). PC3 explains 0.44% (Table 4.5) of the total 

variance and has negative loadings from bands 5 (-0.539) and 6 (-0.343) (Table 4.3&4.4). 

The PC 4 has negative loadings on bands 4 (-0.734) band 5 (-0.018) and band 6 (-0.130) and 

positive loadings on the other bands (Table 4.3&4.4). 

From Table 4.4, It is shown that the first principal component (PC1) consists of the positive 

elements of all spectral channels of the Landsat 8 image (bands 2, 3, 4, 5, 6, and 7). PC1 

amounts to about 98.60 % of the eigenvalue of the total variance for the PCA data. 

In Table 4.7 shows that the first principal component (PC1) consists of the positive elements 

of all spectral band of the sabins ratio of the Landsat 8 image (4/2, 6/7 and 6/5). PC1 amounts 

to about 83.86 % of the eigenvalue of the total variance for the PCA data. 

In Table 4.10 shows that the first principal component (PC1) consists of the positive elements 

of all spectral band of the Kaufmann’s ratio of the Landsat 8 image (7/5, 5/4 and 6/7). PC1 

amounts to about 76.15 % of the eigenvalue of the total variance for the PCA data. 

4.2.4 Sub-lineament extraction  

In general gold mineralization occurs within linear tectonic zones in which relatively high 

strain magnitudes and available kinematic indicators attest to shearing in transcurrent or 

thrust systems (Phani, 2014). Permeability induced by structural deformation provided the 

main access for the hydrothermal fluids which were derived from a source external to the 

immediate environment of deposition (Phani, 2014). In Figure 4.10, the study area lineament 

map generated from PCI geomatical with majority in the NE direction. 

Amaro and Strieder (1994) have emphasized that any lineament in imagery have topographic 

relief and/or associated tonal features which are due to the underground 3D structure in the 

Earth’s crust. In such cases, most of those linear features may be considered as topographic 
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highs or lows when seen in the lightening direction of the image. The patterns and nature of 

the lineaments are different according to the association of positive, negative or tonal 

lineaments. The boundary between two adjacent lithologies may be considered a lineament 

or sometimes a fault. Therefore, the analyst can easily digitize the edges from PC images 

(Singh and Harrison,1985). 

4.2.4.1 Lineament, drainage and SRTM overlaid 

In Javhar et al., 2019 it was noted that rivers sometime follow the geological structural 

elements but mostly are the result of erosion processes, which are not necessarily related to 

deformation. Therefore, it is important to evaluate the contribution of drainage-controlled 

extracted lineaments in the rose diagram directions of the lineaments. To this end, the 

drainage network of the study area was extracted from an SRTM digital elevation model 

(Figure 4.11). Comparing these directions with the lineament directions extracted from the 

radar data, we see that the contribution of the drainage network on the directions of the 

extracted lineaments is small because the lineaments’ directions have one dominant 

direction—NW-SE—and are not homogenously distributed in all directions. 

Geologic lineaments are important for mineral exploration as they are the potential locations 

for hosting ore bodies that are deposited by ascending hydrothermal fluids (Kotnise and 

Chennabasapa, 2015). 

4.2.4.2 Lineament and the drainage overlaid 

The drainage system which develops in an area is strictly dependent on the slope, the nature, 

and attitude of bedrock and on the regional and local fracture pattern (Travaglia and Dainelli, 

2003). Most stream networks are adapted to regional slope and geological structures, picking 

out the main fractures in the underlying rocks as it has appeared in Figure 4.12.  The contact 

between two lithologies can also appear as a linear feature. This contact may appear as a 
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change in drainage pattern across the structural features (Brockmann et al.,   1997) or the two 

units may have different spectral properties (Nguye and Ho, 1998). 

From the above Figure 4.10, majority of the drainages run NW which do not really correlate 

with the direction of the lineament which has its majority direction in the NWSW. From this 

it can be deduced that the lineaments are not majorly caused by drainages but might be by 

some other underlying factors as stated by Javhar et al., 2019 that rivers sometime follow the 

geological structural elements but mostly are the result of erosion processes, which are not 

necessarily related to deformation. Figure 4.13 displays the summary in Figure 4.9 – 4.12 in 

a view. 

4.3 Multi Criteria Analysis for Gold Pattern 

Iron oxide region was determined and displayed as light green (Figure 4.14a) and 

hydrothermal region as well (Figure 4.14c) which corresponds with the work of Aisabokhae 

and Oresajo, 2018; Putra et al., 2017 that say Landsat OLI can be used to calculate the 

correlation between iron oxide content in the soil and the possibility of hydrothermal 

alteration. The Landsat 8 OLI TIRS can determine the distribution of iron oxide and 

hydroxide minerals that dominate the alluvium and ophiolite rocky areas (Darmawan et al., 

2020). In Figure 4.15(b & d), the regions of Oxidation and Silification were displayed 

respectively. Oxidation in purple and Silification in deep blue.  

From Figure 4.15a which is the lineament map and likewise Figure 4.16c when compared 

with Figure 4.15(b & d) in the equal weight of oxidation silification and iron oxide and 

40:30:30 ratio, it could be deduced that only very few lineament exist in the region of the 

deep blue circle of Figure 4.15b. though there were existence of lineament in the region where 

the blue arrows in Figure 4.15(a to d) pointed, which by interpretation could mean that 



113 

 

oxidation, silification and the presence of iron oxides were not in large quantity there and 

these are strong indicators for the detection of gold minerals. Geological lineaments are the 

earth’s linear features indicating significant tectonic units in the crust associated with the 

formation of minerals, active faults, groundwater controls, earthquakes, and geomorphology 

(Ahmadi and Pekkan 2021). 
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CHAPTER FIVE 

5.0               CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion  

Bands 6/7 and 7/6 of Landsat 8 OLI with short wave infrared radiation employed in this study 

identified the hydrothermally altered region of the study area. 

Ratio 4/2 highlighted area with abundant iron oxides, ratio 6/5 identified the ferrous minerals, 

clay minerals were identified from 7/5 ratio, ratio 6/7 identified hydrothermally altered clay. 

Sabin's ratio (4/2,6/7,6/5) identified altered rocks in light green and Kaufmann's ratio 

(7/5,5/4,6/7) identified hydrothermally altered regions in red in the study area. 

From the lineament map of the study area generated, the sub surface lineament had little 

effect on the possible gold mineralization within the study area because only a few of the 

lineament were discovered in the region identified. It was deduced that majority of the area 

where a great number of lineaments exists have little or no gold mineral present in them 

though there might be another mineral. 

From the simulation studies, under the simulated environmental conditions in the 

identification of the region of Oxidation, Silification, Iron oxides and hydrothermal 

alterations with equal and unequal weight assignment, the possible pattern of Gold presence 

was discovered in the upper NE of the region. 

It was affirmed that by computed ratios, remote sensing studies could be used for demarcation 

of hydrothermal alteration zones which further buttress the point that Landsat 8 image 

processing methods such as band combination, band ratio, and principal component analysis 

proved accurate for identifying iron oxides. 

From the results obtained and the interpretation of the multi-criteria analysis, it can be 

deduced that gold mineralization prospectivity mapping using LandSAT 8 OLI is an accurate 
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means of gold potential zoning. The study further confirms that the use of weighted overlay 

wherein the results from PCA serve as a-priori weights for conditioning factor significantly 

improves the result obtained; thus, making the extracted information a better depiction of 

reality than using equal weights. Consequently, we conclude that Landsat 8 image processing 

methods such as band combination, band ratio (Sabins and Kaufmann), hydrothermal 

alterations and principal component analysis are accurate for identifying iron oxides which 

is an alteration mineral to the presence of Gold mineral. 

5.2 Recommendation 

Based on the processes of band rationing, identifying hydrothermally altered regions, 

extraction of subsurface lineament and simulations of some environmental condition such as 

Oxidation, Silification involved in this research, it hereby recommended that: 

1. Bands 6/7, 7/6, 4/2, 7/5, be used in any identification of hydrothermally altered region 

as well as the Sabins and Kaufmanns ratio. 

2. Lineament map of any site prospecting for gold mineral must be firstly generated in 

other to avoid lineament due to other factors. 

3. In other to further clarify the probable location of gold, the simulated environmental 

condition in identification of region of oxidation, silification, iron oxides and 

hydrothermal alteration should be considered. 

4. there should be a considerations on weighting based on the significance factor of the 

largest band contributor in both indices (Sabin’s and Kaufmann’s ratio) as results 

obtained showed that the variable weight overlay (guided by PCA eigenvalues) was 

more consistent with the reality of the area than the equal weight overlay, when both 

were compared with the reality of ongoing mining activities within the vicinity  In 

further studies for quantification of gold within the study area could be carried out. 
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5.3 Contribution to Research Knowledge 

This study revealed and addressed gaps in prospecting for gold using Landsat 8 imageries in 

Rafi local Government and in doing so, contribute significantly to knowledge. Based on the 

identified gaps, the research contributions identified are:  

  

I. Possibility of mapping gold mineralization zones using certain mapable 

characteristics associated with it based on their spectral features.  

II.  Characteristics such as rock-outcrops, oxidation, silification, iron oxide and 

invariably hydrothermal alteration as good pointers to gold exploration 

III.  The percentage contribution of each contributory characteristic can determine the 

spatial distribution of the mineral  

IV. The variable weight overlay (guided by PCA eigenvalues) was more consistent with 

the reality of the area than the equal weight overlay, when both were compared with 

the reality of ongoing mining activities within the vicinity.  

V. Using Multicriteria Analysis to investigate gold mineralization, oxidation, 

silification, iron oxide and hydrothermal alteration, the availability of gold can be 

ascertained.  
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APPENDICES 

APPENDIX A 

Appendix A: 

5_4_3 Landsat 

# Data file produced by Principal Components 

# Input raster(s): 

# 

 C:\Users\user\Desktop\mymtechthesis\m.techimagery\FINALFINALIMAGERY\M

AIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 
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#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

# The number of components = 21 

# Output raster(s): 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\543LANDSA 

 

APPENDIX B: 

Appendix Bi: 

7_5_2 LANDSAT 

# Data file produced by Principal Components 

# Input raster(s): 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 
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#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Coastal aerosol (0.443000 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Blue (0.482600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Green (0.561300 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Red (0.654600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\Near Infrared (NIR) (0.864600 Micrometers) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 1 (1.609000 Micrometers) 



141 

 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\MAIGIRU_AREA.dat\SWIR 2 (2.201000 Micrometers) 

# The number of components = 21 

# Output raster(s): 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\LATEST PCA\752LANSAT 

 

APPENDIX C 

Appendix Ci: 

KAUFMANN LANDSAT PCA 

# Data file produced by Principal Components 

# Input raster(s): 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\7_5_landsat\Ratio (SWIR 2 

(2.2010):MAIGIRU_AREA.dat / Near Infrared (NIR) (0.8646):MAIGIRU_AREA.dat) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\5_4_landat\Ratio (Near Infrared (NIR) 

(0.8646):MAIGIRU_AREA.dat / Red (0.6546):MAIGIRU_AREA.dat) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\6_7_landsat\Ratio (SWIR 1 

(1.6090):MAIGIRU_AREA.dat / SWIR 2 (2.2010):MAIGIRU_AREA.dat) 

# The number of components = 3 

# Output raster(s): 

#  C:\Users\user\Documents\ArcGIS\Default.gdb\Princip_9 

 

APPENDIX D 

Appendix Di: 

Sabins Landsat PCA 

# Data file produced by Principal Components 

# Input raster(s): 
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#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\4_2_landsat\Ratio (Red (0.6546):MAIGIRU_AREA.dat 

/ Blue (0.4826):MAIGIRU_AREA.dat) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\6_7_landsat\Ratio (SWIR 1 

(1.6090):MAIGIRU_AREA.dat / SWIR 2 (2.2010):MAIGIRU_AREA.dat) 

#  C:\Users\user\Desktop\my mtech thesis\m.tech imagery\FINAL FINAL 

IMAGERY\bands for pca in arcgis\6_5_landsat\Ratio (SWIR 1 

(1.6090):MAIGIRU_AREA.dat / Near Infrared (NIR) (0.8646):MAIGIRU_AREA.dat) 

# The number of components = 3 

# Output raster(s): 

#  C:\Users\user\Documents\ArcGIS\Default.gdb\Princip_8 

 

 


