JOURNAL 28 \& 29

28.Shittu, A. A., Suleiman, A. \& Abel Tsado, A. J. (2020).
29.Shittu, A. A., Tsado, A. J., Salaudeen, H. T., Odine, L. C. \& Ibrahim, S.

Environmental Technology \& Science Journal

Vol. 11 Number 2

December 2020

Aim and Scope

The ' mo innmerat Technology and Science Journal (ETSJ) is devoted to the publsoation of papers whach advance knewledge of practical and theoretical issues that dasly piague our societs the am et the joursal is to provide an avenue for the dissemunation of academe reseanch tindings from vanous disiplines of the environment, engineering, pure and applied sciences. arts and social science which have materials that emphasize on environmental issues

ETSJ Jolicy

ETSI prohibits an author from submitting the same manuscript for concurrent consideration in two or more publications. The author must ensure that when a manuscript is submitted to ETSJ, the manuscript must be an onginal work. The Author should check the manuscript for any possible plagıanism using any program such as TURNITIN or any other software before submitring the manuscripts to ETSJ. Authors are not permitted to add or remove any names from the authorship provided at the time of initial submission without the consent of the Journal's Editor-in-Chief.

Guide for Authors

Please read the gurdelines and follow the instructions carefully, doing so will ensure that the publication of your manuscript is as rapid and efficient as possible. The Editorial Board reserves the right to return manuscripts without review that are not prepared in accordance with these guidelines

1. Manuenpts should not be more than 15 pages of A4 paper size (including abstracts, tables. figures. references and appendices) ryped in double spacing, tumes new roman and font sze 12 Addinonal fee of two thousand ($\mathbf{\alpha} 2000$) Naira will be charged for every addinonal page in excess of 15 pages
2. Each paper must be compiled in one column; all text should be left and righr justified. The page settungs to be 25 cm (1 unch) each for the top, bottom. left and right margins of an A4 paper Decimal numbering of all sections of the article is recommended (with the eaceptoon of the reference and acknowledgement sections).
3. To ensure anonymity in the peer reviewing process, articles must be structured in such a way that the titie of the paper, authors' names, address, and affilianon are wninen on the first page, followed by abstract and the body of the paper in that order
4. Each artacle should contain an abstract of not more than 300 words
5. Each article should contain between 5 and 7 key words (avoid use of phrases).
6. Use the 51 (Systeme Internationale) units and symbols, while Unusual Characters and symbols thould be explauned in a list of nomenclatures.
7. The journal's referencing style is the APA format
8. Figures. Tabies and Graphm ure to be placed at the approprate places in the paper and not at the end of the paper
9. Acknowledgement is optional, except for researches being funded through rescarch grant awards
10. Autbors should avoid using beaders, footers and special page breaks within the maruscripts
11. The manuscript is to be sent via electronic means to: etsjefutmuna edu. ing for a blind peer review, which under normal circumstance will not exceed 4 weeks, after

Authortsl with posituve revieu will be asked to effect corrections or revisions aftet Which the camera-ready manuscript is to be emailed to etsigiutmuna. edu.ng and to be accompanied by evidence of payment of publication fee

Eavipusunewal Tachoology a Seienoe Joumal
Vol II No ? Deceumber 2020
13. The Editorial board is not responsible for the information or views expressed by the author(s)
14. The copyright of this journal belongs exclusively in the Pditorial Board of Environmental Technology and Science Journal. No part of the publication may be reproduced, stered in it retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording of otherwise without prior permission of the School of Environmental Technology, Federal Unıversity of Technology, Minna-Nigeria or a licence permitting restricted copying.

Frequency of Publication

The journal is published twice a year in June and December

Subscription Details

The 2020 subscription rates for hardcopies of the journal including postage are:
Individual within Nigeria: $\mathrm{N} 2,000$ per copy and $\mathrm{N} 1,000$ for postage
Individual outside Nigeria including postage \$ 100
Institution within Nigeria: N 5.000 per copy and $\mathrm{NI}, 000$ for postage
Institution outside Nigeria including postage: $\$ 150$

Correspondence

All correspondence should be addressed to
The Managing Editor
Environmental Technology \& Science Journal
SET, FUT, Minna, Nigeria
Email: etsofa futminna edu.ng
Phone: +234805 $1703663,+2348036534507$

Published By

School of Environmental Technology. Federal University of Technology,
Minna-Nigeria

Managing Editor	
Prof R. A. Jimoh	Prof O. A. Kemiki
Department of Building.	Department of Estate Management and Valuation.
Minna. Nigeria	Federal University of Technology, Minna, Nigeria
Editorial Secretary 1 Dr Preat	
Dr B. O. Ganiyu	Department of Architecture,
Department of Quantity Surveying,	Federal University of Technology,
Federal University of Technology, Minna. Nigeria	Minna, Nigeria
+2348036269235	Dr J. E. Idiake
Editorial Secretary II	Department of Quantity Surveying. Federal University of Technology,
Dr E. B. Ogunbode	Minna, Nigeria
Department of Building,	
Federal Universiry of Technology,	Dr A. Kawu
Minna. Nigena	Department of Urban \& Regional
+2348063286122	Planning,
	Federal University of Technology,
Editorial Committee	Minna, Nigeria
DrA. D. Adamu	
Department of Quantity Surveying,	
Federal University of Technology,	Fer
Minna, Nigeria	Minna, Nigeria
Prof I. C. Onuigbo	
Department of Surveying \&	
Geoinformatics,	
Federal University of Technology,	
Minna, Nigeria	

Editorial Advisers

Prof R. E. Olagunju
Department of Architecture, Federal University of Technology, Minna, Nigeria

Prof (Mrs) S. N. Zubairu
Department of Architecture,
Federal University of Technology, Minna, Nigeria

Prof A. M. Junaid

Department of Urban \& Regional Planning,
Federal University of Technology, Minna, Nigeria

Prof Y. A. Sanusi

Department of Urban \& Regional Planning,
Federal University of Technology, Minna, Nigeria

Department of Building,

Prof D. A. Muazu Baze University, Abuja, Nigeria

Prof I. O. Aje

Department of Quantity Surveying, Federal University of Technology, Akure, Nigeria

Prof B. T. Aluko
Department of Estate Management, Obafemi Awolowo University, Ile-lfe, Nigeria

Prof P. C. Nwilo
Department of Surveying \& Geoinformatics, University of Lagos, Lagos, Nigeria

Prof U. O. Nkwogu
Department of Architecture, Imo State University, Owerri, Nigeria

Editorial

The outbreak of coronavirus virus (COVID-19) has not only interrupted world economies, but impacted negatively on the development of much needed infrastructure However, in the mudst of the COVID-19, the World Cities Day was celebrated on $31^{\prime \prime}$ October with this year's theme - valuing our communites and cities. The pandemic has further exposed our fragility most especially in the areas of health and education thereby making the call for R and D to be louder than ever before. It is on this note that I welcome you all to volume 11, number 2, December 2020 edition of Environmental Technology and Science Joumal (ETSJ). There are eleven (11) articles that cut across topics from the buili environment.

The I"article by Saidu et al. examined the approaches for the implementation of e procurement in building construction projects in FCTA, with a view to mitigating procurement fraud in the sector. The study recommended that both the Federal and State Governments should come up with policies and frameworks that will mandate FCTA construction projects to be procured through eprocurement platform.

Abu et al in the $2^{\text {nd }}$ paper mitigating strategies for high cost of construction projects in Nigeria advocated for the proper supervision and site management during the course of construction projects in order to reduce the shoddy work, mistakes, reworks and variations that might lead to high cost of construction projects.

According to Bashir, there are several risk management maturity (RMM) models that have defined maturity levels with corresponding capability attributes for each maturity level, however, there is a lack of clear strategies for highway contractors to attain higher levels of

RMM. In the $3^{\text {nt }}$ paper, strategies for sustaining optimised risk management maturity level by highway contractors in Nigeria were developed. The study concluded that the adoption of the strategies will ultimately lead to better project delivery and more efficient utilisation of resources in the construction industry.

Preserving green spaces in parks and gardens in the physical landscape of urban built environment is an action that has been identified as a contributing factor to the sustainability of urban areas. Emechebe in the $4^{\text {th }}$ paper assessed green space in urban built environment with a view to enhancing its sustainability. The study recommended creation of awareness on the need of the green spaces to users and also there should be provision of basic laws in the city that will protect the existence and suitability of the green spaces in the urban built environment.

Aka et al. in the $5^{\text {th }}$ paper sought find out the underlying strategies that can be adopted for effective minimization of disputes in the Nigerian construction industry. The study concluded that adequate knowledge of contractual document before the start of a project, bringing up contract conditions that are fair to all parties and maintaining a good relationship between the clients, professionals and workers are the underlying strategies that can be adopted to overcome disputes in Nigerian construction projects.

The target of any construction firm is to improve its productivity and Organisational efficiency. Unfortunately, the Awo et al. argued in the $6^{\text {th }}$ paper that productivity of construction to be very Nigeria has been established established low and various studies also producied that motivation influences the metivity. Hence, their paper assessed the motivational factors for improving
construction worken' productivity from the perspective of different stakeholders within Abuja. The peper recommended that management needs to review salaries, working conditions and other benefits to workers from time to time and organise training and re-training to maintain constant productivity improvement.

The $7^{\text {th }}$ paper by Bako et al, examined the use of remote sensing technology in the detection of changes on land surface topography which is usually caused by buman activities such as mining, building, road constructions, farming, borrow pits and others. The results showed that the topography of the study area has reduced in elevation by 13.55% as at June 2018 from what it used to be in the year 2000. This paper recommended that mining activity should be discouraged and the land reclaimed by the appropriate authority.

The growing demand for University education has led to the gradual elusion from residential housing needs of staff to the development of more academic facilities and no tangible plan has been made to provide housing for University staff. Therefore, Abdulkareem et al. in the $8^{\text {di }}$ paper assessed the effectiveness of housing intervention strategies of Universities-based Cooperative Societies to the staff of Nigerian Universities in Southwest Nigeria. The paper suggested that Government at all levels need to encourage the sustainability of housing interventions of Cooperative Societies in Nigeria with a view to eliminating the housing problem of University staff

The $9^{\text {th }}$ paper by Shittu et al. evaluated the effects of material management on the delivery of building construction projects in Niger State with a view to improving the cost and time performance of construction projects. The study recommended that all relevant stakeholders should ensure total
implementation of the cost control techniques for improving material management in construction projects in order to avoid cost and time overrun.

Elimisiemon et al. in the 10^{∞} paper stated that several developed countries in Europe and North America are aware, widely accepted and adopted Building Information Modelling (BIM). However, developing countries like Nigeria are still using conventional construction practices. Hence, the paper assessed the current status of BLM awareness level and usage in Abuja and Kaduna. As the largest client, govemment's lack of demand contributed to the low level of usage. The study recommended among others that the Federal Government should make BIM compulsory for its projects that exceed certain threshold values in order to encourage the usage among construction professionals.

The final paper by Shittu et al. stated that studies have globally revealed that disputes are an endemic feature in the construction industry: When not properly resolved, they may escalate and ultimately require litigarion proceedings. The paper therefore evaluared the effects of disputes on construction project delivery. It was thus recommended that parties to a contract should ensure that mechanism is put in place to effectively implement the identified strategies for controlling the effect of disputes so as to prevent ambiguity in the formulation of contract and contract administration.

As the world continue to batle COVID19 pandemic, we should tarry a little and ponder about what Martin Luther King Jr. said "All mankind is tied together. all life is interrelated. and we are all caught in an inescapable network of mutuality, tied in a single garment of identiry: Whatever affects one directly, affects all indirectly. For some strange reason I can never be what I ought to be until you are what you
ought to be. And you can never be what you ought to be until I am what I ought to be - this is the interrelated structure of reality"

Past and current editions of the Journal can be found at this web address: https. etsj. futminna.edu.ng for download at no cost.

Let us do it again, peace!

R. A. Jimoh

Managing Editor

Contents

1-12

Implementation of E-Procurement in Public Building Projects of the Federal Capital Territory Administration, Abuja Saidu 1., Abubakar M. I., Ola-Awo W.A.. Oke A.A. \& Alumbugu P.O.

Mitigating Strategies for High Cost of Construction Projects in Nigeria Abu A.G., Kasimu A.M \& Molwus I. I.

Strategies for Sustaining the Optimised Risk Management Maturity Level by Highway Contractors in Nigeria Bashir A.M.

Challenges of Achieving Sustainable Green Space in Urban Built Environment in Nigeria
Emechebe L.C.
44-52 Assessing the Underlying Strategies for Effective Minimization of Disputes in Nigerian Construction Industry
Aka A., Tukur A. Ka'ase E.T. Musa A.A. \& Salisu O.I
Assessment of Motivational Factors for Workers Productivity Improvement in Construction Projects in Abuja
Ola-Awo, W.A., Olonilebi, P., Ganiyu, B.O. \& Alumbugu, PO
Land Surface Topographic Change Detection Using Remote Sensing Techniques
Bako M., Zitta N., Saliu A.M. \& Ibrahim A.
Assessment of Effectiveness of Housing Intervention Strategies of Universities-based Cooperative Societies in Southwest Nigeria Abdulkareem S., Ogunleye M.B \& Ajayi MA.

Effects of Material Management on the Delivery of Building Construction Projects in Minna
Shittu A. A. Suleiman A. \& Tsado A.J.
98-106 Assessment of Building Information Modelling Awareness and Usage Levels in Abuja and Kaduna Elimisiemon M.C., Poopola JO. \& Salisu A.S.

Effects of Disputes on the Delivery of Construction Projects in Abuja Shittu A. A., Tsado A. J., Salaudeen H. T., Odine L. C. \& Ibrahim S.

JOURNAL 28

Effects of Material Management on the Delivery of Building Construction Projects in Minna

'Shittu A.A, Suleiman A. \& Tsado A.J
Department of Quantity Surveying, Federal University of Technology, Minna
funsho@futminna.edu.ng

Received: 23/11/2020 Revised: 24/12/2020 Accepted: 31/12/2020

Abstract

Studies revealed that improper materials management can affect the general performance of construction projects in respect to cost, time, quality and productivity. This study evaluated the effects of material management on the delivery of building construction projects in Niger State with a view to improving the cost and time performance of construction projects. Data were collected from professionals in four (4) Govemment Ministries in Minna who are incharge of the execution of housing and construction projects with the use of questionnaire which was administered to 86 professionals. The study found that lack of proper work plan with relative importance index (RII) of 0.84 is the most important barrier to effective material management in building construction projects while the most significant impact of material management on the cost delivery of construction projects is better cash flow management with mean item score of 4.31. In a related development, planning the project budget with a mean item score of 4.61 is the most effective cost control technique for improving material management in construction projects. It was concluded that cost control techniques for improving material management in construction projects are effective and therefore, material management has a significant effect on the delivery of building construction projects. It was thus recommended that all relevant stakeholders should ensure total implementation of the cost control techniques for improving material management in construction projects in order to avoid cost and time overrun.

Keywords: Construction Projects, Cost Control, Material Management.

Introduction

The success of a construction project depends upon having the right people with the right skills and equipment that are able to deliver the project on time and budget. In addition, Donyani and Flanagan (2009) reported that it is equally important to have the right materials in the right place at the right time, the casb flow and capital to adequately procure the labour and materials required. In spite of the fact that materials can represent anything from $30-70 \%$ of the cost of work on a project, yet material management has not received adequate attention from researchers (Donyani \& Flanagan, 2009). Material management is the system for planning and controlling to ensure that the right quality and quantity of
materials and equipment are specified in a timely manner. Furthermore, materials should be obtained at a reasonable cost and be available for use when needed. Material management includes procurement, shop fabrication, logistics, supply chain management, production on site and field servicing. All of these items require special attention in order to achieve cost reduction through materials' waste reduction on site (Donyani \& Flanagan, 2009).

Waste of construction materials on site refers to the difference berween materials delivered to site and those that are actually used for construction work Furthermore, waste can be defined as any losses produced by activities that generate direct or indirect
cost, but do not add value to the product (Ayegba, 2013). Rational management of materials to avoid waste is an important consideration for reducing construction cost and construction duration. Therefore, there is a need for efficient materials management in order to control productivity and cost in construction projects. Materials management is a process that coordinates planning, assessing the requirement sourcing, purchasing, storing, transporting, and controlling of materials, minimising the wastage and optimizing the productivity by reducing cost of materials in ways that are cost effective. So, materials management system attempts to ensure that the right quality and quantity of materials are appropriately selected, purchased, delivered, and handled on site in a timely manner and at a reasonable cost (Ayegba, 2013). Therefore, as a result of the complex nature of works undertaken by construction firms coupled with the need for effective material management on site, cost and time need to be effectively monitored and controlled if the anticipated profit margin will be realised for the contractor. This is required to ensure that projects are completed within the budgeted cost of the client The prevailing availability of cash over short term has the potential to influence the stand taken by both clients and contractors in respect of management of project cost. To safeguard their primary objectives of survival, growth and profitability, contracting organisations should put in place an effective cost management system within the structure of their organisations for effective project delivery.

According to Sheriff et al. (2015), cost control of a project involves the measuring and controlling the cost records of a project and work progress, which also involves the comparison of actual progress with the planning. Sheriff el al. (2015) stressed further that a project control system should be established for each capital project. The scope and detail of the control system should be based on the size, complexity, and sensitivity and execution strategy of the specific project. Each project control system
should include a cost management process that estimaten, monitors, predicts and reports project cost; a project scheduling management process that plans project activities, monitors completion of these activities, predicts timing of future activities and reports schedule status. Change management process that estimates the change impact, enable and documents the change decision, and integrate the change into the project scope of work to realise a cost effective way of executing works at building project sites. This can only be achieved through a well-defined system for planning and controlling to ensure that the right quality and quantity of materials and equipment are specified in a timely manner. It is in the light of this, it is imperative to undertake a research to evaluate the effect of material management on the delivery of building construction projects.

Kasim (2010) identified improper construction materials management as a factor affecting the general performance of construction projects in respect to construction time, quality, cost and overall construction productivity. Rivas (2011) reported that late delivery of construction materials, unavailability of materials before commencement of construction work, and the long distance of materials from the work location is the principal causes of materials related problems on construction sites. Management of materials among subcontractors are an issue almost on each construction site; materials are sometimes needed to be lifted from one place to another on the site resulting in additional cost of manpower and machinery (Anwar et al., 2015). Pauline (2014) also reported that difficulty to store materials on site due to limited space is another problem in connection with material management; sometime machineries cannot be adjusted on site due to acute space or mismanagement of site activities. Other problems identified in literature include: conflict among sub-contractors and difficulty to coordinate their materials, late delivery of ordered materials, cash flow problem to contractor due to delayed payments, rejection of materials due to non-
complance to specification and improper health and safety procedure should injuries occur

In view of the above, in the conatriction industry. it is observed that tranny contractors are facing the problem of exerosing cost control on materials management during construction actrvities which automatically resuits in time and cost overrun in building projects. In onder to address this problem, this study carried uet an evaluation of the effects of materials management on the delivery of building construction projects in Niger State with a view to improving the cost and time performance of construction projects.

Literature Review

Barriers to Effective Material Management in the Construction Industry
Problems related to managing the flow of materials can be found in every organisation. The proficient managemett of materials acts as a key function in the successful completion of a progect. The organising to materials is a very important and fundamental subject for every company and should be handled efficiently for the successful completion of a project Consequences of material departures are: Time deviations, Quality deviations, Quantity deviations, Product deviations. Materials are vital in the procedures in every industry since unavailability of materials can impede production. Unavailability of materials is not the only phase that can cause problems. Excessive quantitues of materials could also make serious problems for managers. Storage of materials can rane the costs of production and the overall coss of the project.

According to Donyami and Flanagan (2009), materials management can be divided into five categories. These are: measurement and specificution, procuremerit and purchasing process whacte the order is transmumed wo the supphier delivery to site and logistos of checking the order, offloading, and storing on wite admumastrative and financial process of payment, and using the materials in

 lack iA vombluy

 tame whact therrugt the witr vieodites.

 information her mestotian strong is ter wate Of Late whek mubbisg meatersall,
 laboer for manturiah warctung io site

Abcording st Katu (2010), thent iart many
 marageturts is vocurustivt pryenta W'ave tratugen diffizultes mrorupen
 lack of a proper work pian Tapprupnate manerials deki "r, ces exuchine papert work 3dvenci; affert manerail merneqetrenll All these avoet lead v. vankes and bounzge of
 materiali uo comarrace bilet In addiriun to the afore mertaceet wetre other usues relating t. materals marlogetmen are. recerving mancnals before the: ars teguired. cacaang trore it. Enior? 005 kad chatyges of detericrataco in qualry act reverving maternals at the tume of requiremern vausing losa of productury: moorrect matenals take off from drawige and desogn documents.

Impact of Poor Material Masagement on Cost and Time Delivery of Construction Projects

In cocestructave insuser:, cone of the iommon challerges people face is with ther matenal managrocte Poot maieral mathagement can lead to tasucs with the umelun for the enture project. According is Adefin al al
(2010), construction material management is of central imporiance to the economic development of the construction industry. Ajay et al (2017) also identified material management as an integrated process of designing. constructing new structures or remodelling existing structures, using materials more efficiently with a great importance of contributing to construction industry's performance improvement as well as solving material waste management problems. Several authors have shown that material waste from the construction firm represent a relatively large percentage of the production costs (Saidu \& Shakantu, 2016). The poor material management of materials leads to an increase in the total cost of building project (Ameh \& Itodo, 2013).

However, it is not ideal to commence a project without adequate supply of materials and effective planning of the materials required for project execution. This has the advantage of fostering a good relationship with the suppliers who should be selected due to the fulfilment of the standards required to meet the delivery time over a number of years (Adeyinka et al., 2014). In the light of this, effective practice of material management plays a key role in the successful completion of a project. The impact of effective materials management practices on construction projects includes:
i. Environmental impact: This includes the conservation of natural resources, reduction of energy consumption, conservation of landfill space and reduction of environmental impacts across the life cycle by decreasing the demand for virgin products (Van Ewijk \& Stegemann, 2016)
ii. Economic impact: It includes reduction in disposal costs and may reduce transportation of material conts which leads to reducing overall project costs, reduction in purchasing costs since non-virgin materials are offen less expensive than virgin resources, make contractors to be more compelitive with their bids at reduced costs and if creates employment opportumity and economic actuvities in the reuse and recycling industres (Beacon, 2008).
iii. Performance impact: This includes reclamation of salvaged or reuned materials which can perform as well as or better than virgin products in many applications, reduction in the overall costs of materials, better handling of materials, reduction in duplicated orders, materials will be on site when needed and in the quantities required. There will be improvements in labour productivity, improvements in project schedule, quality control, better field material control, better relations with suppliers, reduction in materials surplus, reduced storage of materials on site, labour savings, stock reduction, purchase savings and better cash flow management (Jensen, 2014).

Other impacts of material management practices that could benefit construction industry includes: reduce cost of materials, improvements in productivity, project will be constructed on time or than expected, purchase saving providing adequate storage of materal on site, improvements in project schedule, reduced materials wastage and better cash flow management (Albert, 2014). According to Patel and Vyas (2011). the benchmarking process prescribed for effective material management in construction projects includes: planning; purchasing: receiving: inspection, stocking and storage; issuing matenals; and inventory control. In a related study. Panle and Satihuddin (2015) added that material management process should be initiated from the needs generated from the construction site. The information gathered from these needs is then conveyed to Stores Department and materials is thereafter ordered from the store. Lastly. Sathuddin (2015) reported that vendor selection can then be carried out for the least value and best items.

Effective Cost Control Techniques for Improving Materials Management in Construction Projects

Material control aims at clemmating and minimizing all kinds of wastes and losses, while the materials are being purchased. stored, handled, issued or consumed. A

Eivurommental Technotogy \& Scisnce Joumal
Vol II No. 2 Daxember 2020
number of techniques are used in planning. procunng and holding stage of material which help in exercising and effecting material cost control At the same time, construction activities will generate big amount of the waste and it will cause difficulties in the industry. However, with the proper planning of material management, which is efficient and effective will belp to reduce the waste of materials during construction project and within the site. This will in turn increase the profitability of the industry. The Nigerian construction industry continues to occupy an umportant position in the nation's economy even though it contributes less than the manufacturing or other service industries (Aibinu \& Jagboro, 2002). The conmibution of the construction industry to national economic growth necessitates improved efficiency in the industry by means of cost effectiveness and timeliness. and would certainly contribute to cost savings for the country as a whole. It is also common knowledge that the implementanion of the construction project in the industry is usually accompanied with poor qualiry delivery and delivery time delay and cost increase as well as owner dissatisfaction (Hafez, 2011). Thus, the efficient use and management of material have an important influence on a company's profit and can delay project construction, (Abdul-Rahman \& Alidrisyi, 1994). Material management is a planned procedure that includes, the purchasing, delivery, handling and minmmation of waste with the aim of ensurng that requirement are met (Illingworth \& Thain. 2011)

According to Culvert (2010), a detailed materal schedule and co-ordination of the requastuon and order of material are amportant is ensuring material availability Efficient material planning is a key to high productivity on ste Material planning embraces quantifying. ordering and scheduling productivity will suffer if the material planming process is not executed pmoperly Bell and Stukhart (2007) reported a totai concept for a material management rystem (muns), which combined and
integrated the take-off, under evaluation, purchasing expediting and warehousing and distribution functions of material The system resulted in improved labour productivity, manpower and cast saving Al-Jibouri (2002) described a computer simulation model, which help to solve the problem of order and deliveries of materials in real life by keeping a predetermined list of order and delivery time of all the materials on site. The delivery of each kind of ineffective materials management for projects can result in significant cost blowouts and delays in project completion. Such cost inefficiencies will negatively impact global competitiveness and owner operators and engineering, procurement and construction companies are trying to streamline work processes for their projects. Inaccurate materials information, such as incorrect bills of materials, inaccurate cycle counts, shipping errors, receiving errors and so on, will also affect the overall project life cycle and increase project cost Having to deal with subcontractors outside of the materials management process impacts the overall project supply chain as there is an increased risk of data inconsistencies.

Material management is the system for planning and controlling to ensure that the right quality and quantity of material and equipment are specified in a timely manner. Materials should be obtained at a reasonable cost, and be avaulable for use when needed The cost of matenals represents a large proportion of the cosi. A good management system for materials manugement will lead to bencfits for construction. Cash flow has become crucial for the survival of any business, if materials are purchased early. Capital may be tied up and interest charges incurred for the excess inventory of material. Material may deteriorate during storage or be stolen: also delays and extra expenses may be encurred if matenals required for particular activaties are not available Modern methods of material management have been embraced by the manufacturers across a wide range of industry sectors outside of constructan (Kaming ef al., 1997).

According to Sheriff et al (2015), cost control is the processing of raw information received from projects, operating divisions, and special staff division and relating this information to various project cost estimates and schedules for the purpose of presentation of result in the form of reports to all levels of company management, the client and outside agencies. Also, cost control of a project involves the measuring and collecting the cost record of a project and work progress it involves the comparison of actual project with the planning the objective of cost control of a project is to gain the maximum profit within the designated period and satisfactory quality of work. In view of this, the application of cost control practice on site activities will bring about effective site materials management. The main cost control techniques that can be used to achieve this are: Planning the Budget; Keeping a Track of Cost; Effective Time Management; Project Change Control; and Use of Eamed Value.

Research Methodology

This study adopted the quantitative research approach. This approach was adopted because it gives room for objective reasoning about an issue and reporting the outcome in numeric terms. In line with this, Kothan (2004) described a quantitative research to involve data generation in a quantitative form which can be subjected in a formal and rigid fashion to rigorous quantitative analysis. The use of structured questionnare baved on a five-point Likert Scale format was employed to collect data. Research population is generally a large collection of individuals of objects that is the main focus of a scientufic query, it refers to the total number of the consideruble population for the research (Morenikeji, 2006). In the light of this, the population for the study is comprised of registered professionals in government owned Mimistries such as the Ministry of Works, Land and Housing: Niger State Housing Corporation, Niger State Geographic Information System Agency (NIGIS) and Niper State Urban Development Board in Niger State. The research population
according to the data obtained was 111 (one hundred and eleven) professionals. The sampling frame for this study covers professionals in these Ministries which involve Architects, Quantity Surveyors, Builders, Estate Surveyors, Town Planners, Electrical Engineers, Mechanical Engineers and Civil Engineers. The criteria for selecting these professionals are years of experience of at least 5 years and above and actively participating in ongoing projects. All the respondents met these criteria. The sample size for this study is 86 because according to Krejcie and Morgan's (1970) table, the sample size for a population size of 110 is 86 . Since the nearest value to the population size (111) in Krejcie and Morgan's table was 110, then 86 was used as the sample size. The use of simple random sampling technique was adopted in order to make the sample representative of the population. Analysis of data collected was carried out using percentage, Relative Importance Index (RII) and Mean Item Score (MIS).

The formula for calculating RII and MIS for data analysis is expressed in Equations 1 and 2 as follows:

i. Relative Importance Index

Relative Importance Index is being ranked from 0.00 to 1.00 and they all have their decision rule as shown in Table 2 .The formula for Relative Importance Index (RII) is as follows:

$$
\text { RII }-\frac{I W}{A X}
$$

Where: $\mathbf{\Sigma}=$ Summation, $\mathbf{W}=$ the weights of every one of the factors given by respondents and it was in the range of (1$5)$. (\wedge 5) the largest value of weight (t.e. Highest factor) and finally N refers to the Total of number respondents.

ii. Mean Item Score

Mean Item Score is being ranked from 1.00 to 5.00 and they all have their deciston rule as shown in Table 2. The formula for Mean item score (MIS) is as follows:

$$
\text { MIS }=\frac{\mathrm{tN}}{\mathrm{~N}} \quad(2)
$$

Where $L=$ Summation. $W=$ Weight, and $N=$ Total The decision rule adopted for the RII and MIS are summanised in Table I.

Results and Discussion

The sevtesn presems the profile of resplvatents and also discusses the results of the analisis of data carried out

Response Rate

Egght -al (N e) swpies of questionnaire were admimstered to the respondents during the course of the field work. Of these So copies, sevent (0) was correctly filled, returned and used for the analyxic. This gives a response rate of $\mathrm{S} 14^{\circ} \%$. Ankrah (2007) had a respluse rate of $15,42 \%$ and expressed that the response rate normal for questionnaire sunvess is $20-30 \%$ In addition 15.72% and 40.37% were the reppune rates in the studies of Agumba and Haupt (2014) and Shitru (2016) respeczively. This therefore implies that the response rate in this study is adequate.

Barriers to Effective Materials Management

This sevtion presents and discusses the RII recults of the rwenty (20) barriers to effective materials management. Table 2
reveals that Lack of proper Work Plan, Transport Difficulties, Waste, Improper handling on Site, Inappropriate Material Deliver: Management of Surplus Materials, and Misuse of the Specification with RII ranging from $0.81-0.84$ are the most important barriers to effective matenals management in building construction projects in Niger State. Other barriers to effective materials management in building construction projects in Niger State ranging between Failure to order on Time ($\mathrm{RII}=0.81$) and Excessive paperwork (RII $=0.72$) are also important. On the average, the identified barriers to effective materials management in building construction projects in Niger State are important (average $\mathrm{RII}=0.78$). The findings here agree with that of Donyani and Flanagan (2009) where it was reported that these barriers identified can constitute a major obstacle in terms of purchasing and supply of materials not matching materials with the ordering purchase.

Tahle 1: Decinion Rule for Data Analysis

SCALE	Cal -Ont Point		Level of Interpretation		
	RUI	MIS	Level of Importance	Level of Significance	Level of Effecriveness
5	0.81-1.00	4.51-500	Ver) Importan!	Vory Significant	Very Effective
4	0.61-0.80	$351-450$	Important	Significant	Effiotive
3	0.41-0.60	251.350	Farry taportant	Fairly Signiticant	Fairly Effective
2	$0.21-0.40$	$151-250$	Less Important	Less Sigmficant	Less Effective
1	$0.00 \cdot 0.20$	$100 \cdot 150$	Least Important	Least Significant	Least Effective

Table 1: Barriers to Effective Materials Management In Construetion Projects in Niger State

S/No.	Code	Barriers to Effective Materials Management	RII	Rank	Decision
1	B5	Lack of prope Work Plan	0.84	19090]	Very Important
2	B2	Transport Difficultes	0.83	2nd	Very Imporamt
3	B1	Waste	0.83	2 nd	Very Impuram
4	B3	Improper handling on Site	0.83	2 nd	Vary important
5	86	Inappropriate Material Delivery	0.82	5 h	Very Important
6	B20	Management of Surplus Materials	0.82	5 th	Very Important
7	B4	Misuse of the Specificaton	0.81	7 h	Very Important
8	B15	Failure to order on Time	0.80	8 h	Importan!
9	B16	Lack of Commmunication	0.79	9th	Important
10	B14	Delivery at the Wrong Time	0.77	10th	Important
11	818	Double handling of Materials	0.77	104	Important
12	812	Wrong Material	0.77	10th	Important
13	B8	Lack of Information	0.75	13th	Important
14	B17	Theff of Materials	0.74	14th	Imporamt
15	B10	Subsequent design change	0.74	14th	Imporant
16	B13	Unavailatility of Storage Space	0.73	16 th	Important
17	819	Not matching Materals	0.73	16th	Important
18	B9	Missing Matcrial	0.73	16 th	Important
19	B11	Over Ordering	0.73	16 th	Imporant
20	B7	Excessive paperwork	0.72	20w	Important
Average RII			0.78		Impertant

Impact of Poor Material Management on the Cost and Time Delivery

The use of MIS was employed to examine the impact of poor material management on the cost and time delivery of construction projects based on the respondents* perception. The MIS results on the impact of poor material management on the cost and tume delivery of construction projects are presented in Tables 3 and 4. Table 3 summanses the results of the impact of poor material management on the cost delivery of construction projects, while that of the impact of poor material management on the time delivery of construction projects is summarised in Table 4
Table 3 reveals that the most significant impact of material management on the cost delivery of construction projects are Better cash flow Management (MIS 4.31) and Reduction in Material Surplus (MIS 4.30). The other impact of material management on the cost delivery of construction projects are also significant. These range from Quality Control (MIS $=4.26$) to Stock Reduction (MIS $=3.90$). Averagely, all the identrfied impact of material management on the cost delivery of construction projects are also significant in Niger State are sgnificant (average MIS $=4.12$)

It is shown in Table 4 that the most significant impact of material management on the time delivery of construction projects are Reduction in energy Consumption (MIS $=4.43$) and Availabiliny of material (MIS $=$ 4.39) Sufficient quantity of material, Incorrect bill of material, Material procurement, Storage changes, and Inaccurate cycle counts with MIS of 4.23 , $4.23,4.19,3.93$ and 3.73 respectively also have significant impact on the time delivery of construction projects. Shipping error and Receiving error with MIS of 3.50 and 3.43 respectively are shown to be fairly significant impact of material management on the time delivery of construction projects. On the average, all the impacts of material management on the time delivery of construction projects in Niger State are signiticant with average MIS of 4.01 .

The findings of this section are in line with the study of Adafin ct al. (2010). Adafin et al. (2010) reported that poor materal mamagement can lead to issues with the timeline for the entire project. Therefore effective practice of materials management plays a key role in the successful conpletion of a project in terms of cost and time delivery. Hence. construction material management is of central importance to the
economic development of the construction industry.

Cost Control Techniques for Improving Materials Management

The study employed the use of MIS to examine the level of effectuveness of the identified cost control techniques for improving materials management in construction projects based on the opimion of the respondents. Table 5 shows five (5) major cost control techniques for improving material management in construction projects. Table 4.8 reveals that Planning the Project Budget (MIS $=4.61$) is the most effective cost control techniques for improving material management in construction projects. It was also shown that Effective Time Management, Keeping a track of costs, Use of Earn Value and Project Change Control with MIS of 4.46 ,
4.1, 4.24 and 4.17 respectively are also effective cost control techniques for improving matcrial management in construction projects. It was also revealed that all the identified cost control techniques for improving material management in construction projects in Niger State are effective (average MIS $=4.8$). This finding is synonymous with the finding of Sheriff et al. (2015). Sheriff et al. (2015) discovered that cost control techniques enhance the measuring and collecting of the cost record of a project. It was further stated that the techniques enhance work progress through the comparison of actual project wath the planning, thereby bringing about gaining of maximum profit within designated period and satisfactory quality of work.

Tahie 3: Impact of Poor Materials Management on Cost Delivery of Construction Projects

S/No	Code	Cosi Impact of Poor Materials Management	MIS	Rank	Decision
1	C12	Better cash flow Management	4.31	Ist	Significant
2	C1.I	Reduction in Material Surplus	4.30	2nd	Significant
3	C1.8	Quality Control	4.26	3 dr	Significant
4	C1.12	Control of Materials on Site	4.26	3 rd	Significant
5	C1.5	Improvement in Labour Productivity	4.23	5th	Significant
6	C1.7	Labour Saving	4.14	6th	Signiticant
7	C1.10	Better handling of Material	4.11	7th	Significant
8	C1.4	Reduction in Duplicated Order	4.09	8 th	Significant
9	C1. 6	Reduce Cost of Material	4.06	9th	
10	C1.11	Good Relationship with Suppliers	4.00	$10 \mathrm{~h}$	Significant
11	$\mathrm{C} 1.13$	Material Waste Reduction	3.96	Ilth	Significant
12	Cl_{3}	Stock reduction	3.90	12th	Significant
13	C1. 9	Stock Reducuion	3.90	13th	Significant
Average MIS			4.12		Significunt

Table 4: Impact of Poor Materials Management on Time Delivery of Construction Projects

S/No	Code	Time Impact of Poor Materials Management	MIS	Rank	Decision
I	C2.1	Reduction in energy Consumption	4.43	Ist	Significant
2	C2.2	Availability of material	4.39	2nd	Significant
3	C2.4	Sufficient quantity of material	4.23	3rd	Significant
4	C2.8	Incorrect bill of material	4.23	4th	Significant
5	C2.3	Material procurcment	4.19	5th	Significant
6	C2.9	Storage changes	3.93	6th	Significant
7	C2.7	Inaccurate cycle counts	3.73	7th	Significant
8	C2.5	Shipping error	3.50	8 th	Fairly Significant
9	C2.6	Receiving emor	$\mathbf{3 . 4 3}$	9th	Fairly Significant
		Average MIS			Significant

economic development of the construction industry.

Cost Control Techniques for Improving Materials Management

The study employed the use of MIS to examine the level of effectuveness of the identified cost control techniques for improving materials management in construction projects based on the opimion of the respondents. Table 5 shows five (5) major cost control techniques for improving material management in construction projects. Table 4.8 reveals that Planning the Project Budget (MIS $=4.61$) is the most effective cost control techniques for improving material management in construction projects. It was also shown that Effective Time Management, Keeping a track of costs, Use of Earn Value and Project Change Control with MIS of 4.46 ,
4.1, 4.24 and 4.17 respectively are also effective cost control techniques for improving matcrial management in construction projects. It was also revealed that all the identified cost control techniques for improving material management in construction projects in Niger State are effective (average MIS $=4.8$). This finding is synonymous with the finding of Sheriff et al. (2015). Sheriff et al. (2015) discovered that cost control techniques enhance the measuring and collecting of the cost record of a project. It was further stated that the techniques enhance work progress through the comparison of actual project with the planning, thereby bringing about gaining of maximum profit within designated period and satisfactory quality of work.

S/No	Code	Coss Impact of Poor Materials Management	MIS	Rank	Decision
1	C12	Better cash flow Management	4.31	Ist	Significant
2	C1.1	Reduction in Material Surplus	4.30	2nd	Significant
3	C1.8	Quality Control	4.26	3 rd	Significant
4	C1.12	Control of Materials on Site	4.26	3 rd	Significant
5	Cl. 5	tmprovenent in labour Productivity	4.23	5th	Significant
6	C1.7	Labour Saving	4.14	6th	Significant
7	C1. 10	Better handling of Material	4.11	7th	Significant
8	C1.4	Reduction in Duplicated Order	4.09	8 th	Significant
9	C1. 6	Reduce Cost of Material	4.06		
10	CL. 11	Good Relationship with Suppliers	4.00	$10 \mathrm{~h}$	Significant
11	C1. 13	Material Waste Reduction	3.96	Ith	
12	Cl_{3}	Stock reduction	3.90	$\begin{aligned} & 12 \mathrm{~h} \\ & 12 \mathrm{~h} \end{aligned}$	Sienificant
13	C1.9	Stock Reduction	3.90	13th	Significant
		Averuge MIS	4.12		Significunt

Table 4: Impact of Poor Materials Management on Time Delivery of Construction Projects

S/No	Code	Time Impact of Poor Materials Management	MIS	Rank	Decision
I	C2.1	Reduction in energy Consumption	4.43	1st	Significant
2	C2.2	Availability of material	4.39	2nd	Significant
3	C2.4	Sufficient quantity of material	4.23	3rd	Significant
4	C2.8	Incorrect bill of material	4.23	4th	Significant
5	C2.3	Material procurcment	4.19	5th	Significant
6	C2.9	Storage changes	3.93	6th	Significant
7	C2.7	Inaccurate cycle counts	3.73	7 th	Significant
8	C2.5	Shipping error	3.50	8 th	Fairly Significant
9	C2.6	Receiving error	$\mathbf{3 . 4 3}$	9th	Fairly Significant
		Average MIS			

Effects of Material Management on the Delivery of Building Construction Propects on Mirma
Shittu, Sulciman. Trado

Table 5: Cost Control Techniques for Improving Material Management in Construction Projects					
S/No	Code	Cost Control Techniques	MIS	Rank	Decision
I	D1	Planning the Project Budget	4.61	Ist	Very Effective
2	D3	Effective Time Management	4.46	2nd	Effective
3	D2	Keeping a track of Costs	4.41	3rd	Effective
4	D5	Use of Earn Value	4.24	4th	Effective
5	D4	Project Change Control	4.17	5th	Effective
Average MIS	4.38		Effective		

Conclusion and Recommendations

The study identified a problem of contractors' ineffective ability to exercise cost control on materials management during construction activities which automatically results in time and cost overrun in building projects it is observed that many contractors are facing the problem of. This necessitated an evaluation of the effect of material management on the delivery of building construction projects in Niger State with a view to improving the cost, quality and time performance of construction projects. Data were collected from professionals in (4) Government Ministries in Minna who are in-charge of the execution of housing and construction projects in Niger State with the adoption of questionnaire survey. Analysis of data was carned out with the use of descriptive statistical techniques such as Mean Item Score (MIS) and Relative Importance Index (RII).

As a result of the findings from the data analysis carried out for this study, it was revealed that all the identified barriers to effective materials management in building construction projects in Niger State are important but Lack of proper Work Plan, Transport Difficulties, Waste, Improper handling on Stte, Inappropriate Material Delivery, Management of Surplus Marerials, and Misuse of the Specification are the most important barriers to effective materials management in building construction projects. It was also shown that all the identified impact of material management on the cost delivery of construction projects are also significant in Niger State but the most significant impact of matenal management on the cost delivery
of construction projects are Better cash flow Management and Reduction in Material Surplus. All the impacts of material management on the time delivery of construction projects in Niger State are significant but the most significant umpact of material management on the time delivery of construction projects are Reduction in energy Consumption and Availability of material.

Finally, the study indicated that all the identified cost control techniques for improving material management in construction projects in Niger State are effective but planning the project budget is the most effective cost control techniques for improving material management in construction projects. It can therefore be concluded that the barriers to effective materials management in building construction projects in Niger State are important. Therefore, material management at construction sites has a significant effect on the delivery of building construction projects in Niger State is significant.

In view of the findings and conclusion of this study, it is recommended that more attention should be directed towards addressing the problems of Lack of proper Work Plan, Transport Difficulties, Waste, improper handling on Site, Inappropriate Material Delivery, Management of Surplus Materials and Misuse of the Specification. This will enhance effective materials management on construction sites. Government should also ensure that the main objectives of its construction projects are set to achieve better cash flow management and reduction in material surplus. This is to improve the cost and time
performance of construction projects in Niger State

In addition, all relevant stakeholders should ensure total mplementation of the cost contof teslmugues for improving material management in somstruction projects in order its avoid cost and time overrun especonity plauning the project budget. This study dhe not address the impact of materials managenent on the quality delivery of construction projects due to time constraint.

References

Abdul - Rahman, H. \& Alidrisyi, M. N
(1094). A Prospective of

Material Management Practices in a Fast Developing Economy: The case of Malaysia. Construction Management d Economics, 12, 413422
Adatin, J. K., Daramola, O. \& Ayodele, E. O. (2010) Studying of Material Control Strategies in Some Selected Construction Firms in Nigeria. Continental Journal of (online) Sustainable Development 1:62-72. Avaulable at http://www. wiloludjoural.com.
Adeyinka, B F., Jagboro, G. O., Ojo, G. K. \& Odediran, S. J. (2014). An assessment of construction professionals' level of compliance to ethical standards in the Nigerian construction industry. Journal of Consiruction Project Management and Innovation, 4(1), 863-881.
Agumba, J. N. \& Haupt, T. C. (2014). Implementation of Health and Safety Practices: Do Demographic Atributes Matter? Journal of Engincering Design \& Technology, 12(4), 531 550.

Available
at www.emeraldinsight com/1726 -0531.htm
Aibinu, A. A. \& Jagboro, G. O. (2002). The Effects of Construction Delays on Project Delivery in Nigeria Construction industry. International Journal of Project Managemen, 20. 593-599.

Ajayi, S. O., Oyedele, L. O., Akinadee, O. O., Bilal, M., Alaka, H. A. \& Owolabi, H. A. (2017). Optimizing material procurement for construction waste minimization: An exploration of success factors. Sustainable Material and Technologies, 11, 38-46.
Albert, 1. (2014). Assessment of Professional 's perception on Material Management Practices on Construction Sites in Selected States in Nigeria. Unpublished MSc thesis, Ahmadu Bello University, Zaria.
Al-Jibouri, S. (2002): Effects of Resources Management Techniques on Projects Schedules. International Journal of Project Management, 20, 271-277.
Ameh, J. O. \& Itodo, E. D. (2013). Professionals' views of material wastage on construction sites. Organization, Technology and Management in Construcrion: An International Journal, 5(1), 747-757.
Ankrah, N. A. (2009). An Investigation into the Impact of Culture on Construction Project Performance. Unpublished PhD thesis, University of Wolverhampton, Wolverhampton, UK.
Anwar, Z. Sohail, M. Shazia N. Hashim. H \& Muhammad, S. A (2015). Factors Affecting Material Procurement, Supply and Management in Building Projects of Pakistan: A Contractor's Perspective.
Arijeloye, B. T \& Akinradeyo, F. O. (2016). Assessment of Material Management on Building Projects in Ondo State. World Science News. 55 , 168 - 185 Available at www worldscientificnews.com
Beacon, B. M. (2008). Sustainability and the future of supply chain management. Operations and Supply Chain Management, 1(1). 4-18
Bell, L. C. \& Stukhart, G. (2007). Attributes of Material Management System. Journal of Construction Engineering and Management. 112, 14-21
Culvert, O (2010): "Correlates of Time Overrun in Commercial Construction". Brigham Young University Provo, Utah. April 8-10.

Donyami, S. \& Flanagan, R. (2009). The Impact of Effective Material Management on Construction Site Performance for Small and Medium Sized Construction Enterprises Proceedings of the Association of Researchers in Construction Management, pp. 11-20.
Hafez, N. (2010). Residential Project Obstacles and Problems in Kuwait MS Project. Development of Civil Engineering, Kuwait University.
Kaming, P. F., Olomolaiye, P.O., Holt, G. O. \& Haris, F. C. (1997). Factors Influencing Construction Time and Cost Overruns on High-rise Project in Indonesia. Construction Management and Economics, 15(1), 83-94
Illingworth, J. \& Thain, K. (2011). Material Management is it worth it? Technical Information Service. The Chartered Institute of Building, ASCOT, 93, 2-5.
Jensen. M. (2014). Lean Waste Siream: Reducing Material Use and Garbage Using Lean Principles. CRC Press.
Kasim, N. (2010). Material Management Practices in Construction Projects. Department of Construction and Real Estate Management University Tun Hussian in Malaysia.
Krejcie, R. V. \& Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30, 607 610
Morenikeji, W. (2006). Research and Analytical Techniques (for Social Scientists, Planners \& Environmentalists). Jos: Jos University Press Ltd.
Patel, K. V., \& Vyas, C. M. (2011). Construction Material Management on Project Sites. In National Conference on Recent Trends in Enginecring \& Technology. 1-5.
Pauline, N. L. (2014). Factors Affecting Materal Management in Building

Construction Projects. International Journal of Scientific Engineering and Technological Research 03(1021332137).

Rivas, A. (2011). Analysis of Factors Influencing Productivity Using Craftsmen Questionnaires. Journal of Construction Engineering and Management, 312-320.
Saidu, I. \& Shakantu, W. (2016). The contribution of construction materials waste to project cost overruns in Abuja, Nigeria: review articles. Acta Structilia: Journal for the Physical and Development Sciences, 23(1), 99113.

Sheriff, M. H., Remon, F. A. \& Hala, M. M. (2015). Optimal Techniques for cost Reduction and Control in Construction Sites. Journal of Human Research Management, 3(3), 17-26.
Shittu, A. A. (2016) Influence of Organisational Characteristics on Heaith and Safety Practices of Small and Medium-sized Construction Companies in Abuja. Unpublished PhD Thesis, Ahmadu Bello University, Zaria.
Shittu, A. A., Ibrahim, A. D., Ibrahim, Y. M. \& Adogbo, K. J. (2015). Assessment of Level of Implementation of Health and Safery Requirements in Construction Projects Executed by Small Firms in Abuja In D. R. Ogunsemi, O. A. Awodele \& A. E. Oke (Eds). Proceedings of the $2^{\text {nd }}$ Nigerian Institute of Quantity Sunveyors Research Conference. Federal University of Technology, Akure. $1^{\text {di }}-3^{\text {nt }}$ September. 467-482.
Van Ewijk, S. \& Stegemann, J. A. (2016). Limitations of the waste hierarchy for achieving absolute reductions in material throughput. Journal of Cleaner Production, 132, 122-128.

